1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with SELinux. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ 42 */ 43 44 #include <linux/init.h> 45 #include <asm/types.h> 46 #include <asm/atomic.h> 47 #include <linux/mm.h> 48 #include <linux/module.h> 49 #include <linux/err.h> 50 #include <linux/kthread.h> 51 52 #include <linux/audit.h> 53 54 #include <net/sock.h> 55 #include <net/netlink.h> 56 #include <linux/skbuff.h> 57 #include <linux/netlink.h> 58 #include <linux/selinux.h> 59 #include <linux/inotify.h> 60 #include <linux/freezer.h> 61 #include <linux/tty.h> 62 63 #include "audit.h" 64 65 /* No auditing will take place until audit_initialized != 0. 66 * (Initialization happens after skb_init is called.) */ 67 static int audit_initialized; 68 69 #define AUDIT_OFF 0 70 #define AUDIT_ON 1 71 #define AUDIT_LOCKED 2 72 int audit_enabled; 73 int audit_ever_enabled; 74 75 /* Default state when kernel boots without any parameters. */ 76 static int audit_default; 77 78 /* If auditing cannot proceed, audit_failure selects what happens. */ 79 static int audit_failure = AUDIT_FAIL_PRINTK; 80 81 /* If audit records are to be written to the netlink socket, audit_pid 82 * contains the (non-zero) pid. */ 83 int audit_pid; 84 85 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 86 * to that number per second. This prevents DoS attacks, but results in 87 * audit records being dropped. */ 88 static int audit_rate_limit; 89 90 /* Number of outstanding audit_buffers allowed. */ 91 static int audit_backlog_limit = 64; 92 static int audit_backlog_wait_time = 60 * HZ; 93 static int audit_backlog_wait_overflow = 0; 94 95 /* The identity of the user shutting down the audit system. */ 96 uid_t audit_sig_uid = -1; 97 pid_t audit_sig_pid = -1; 98 u32 audit_sig_sid = 0; 99 100 /* Records can be lost in several ways: 101 0) [suppressed in audit_alloc] 102 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 103 2) out of memory in audit_log_move [alloc_skb] 104 3) suppressed due to audit_rate_limit 105 4) suppressed due to audit_backlog_limit 106 */ 107 static atomic_t audit_lost = ATOMIC_INIT(0); 108 109 /* The netlink socket. */ 110 static struct sock *audit_sock; 111 112 /* Inotify handle. */ 113 struct inotify_handle *audit_ih; 114 115 /* Hash for inode-based rules */ 116 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 117 118 /* The audit_freelist is a list of pre-allocated audit buffers (if more 119 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of 120 * being placed on the freelist). */ 121 static DEFINE_SPINLOCK(audit_freelist_lock); 122 static int audit_freelist_count; 123 static LIST_HEAD(audit_freelist); 124 125 static struct sk_buff_head audit_skb_queue; 126 static struct task_struct *kauditd_task; 127 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 128 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 129 130 /* Serialize requests from userspace. */ 131 static DEFINE_MUTEX(audit_cmd_mutex); 132 133 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 134 * audit records. Since printk uses a 1024 byte buffer, this buffer 135 * should be at least that large. */ 136 #define AUDIT_BUFSIZ 1024 137 138 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the 139 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ 140 #define AUDIT_MAXFREE (2*NR_CPUS) 141 142 /* The audit_buffer is used when formatting an audit record. The caller 143 * locks briefly to get the record off the freelist or to allocate the 144 * buffer, and locks briefly to send the buffer to the netlink layer or 145 * to place it on a transmit queue. Multiple audit_buffers can be in 146 * use simultaneously. */ 147 struct audit_buffer { 148 struct list_head list; 149 struct sk_buff *skb; /* formatted skb ready to send */ 150 struct audit_context *ctx; /* NULL or associated context */ 151 gfp_t gfp_mask; 152 }; 153 154 static void audit_set_pid(struct audit_buffer *ab, pid_t pid) 155 { 156 if (ab) { 157 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 158 nlh->nlmsg_pid = pid; 159 } 160 } 161 162 void audit_panic(const char *message) 163 { 164 switch (audit_failure) 165 { 166 case AUDIT_FAIL_SILENT: 167 break; 168 case AUDIT_FAIL_PRINTK: 169 if (printk_ratelimit()) 170 printk(KERN_ERR "audit: %s\n", message); 171 break; 172 case AUDIT_FAIL_PANIC: 173 panic("audit: %s\n", message); 174 break; 175 } 176 } 177 178 static inline int audit_rate_check(void) 179 { 180 static unsigned long last_check = 0; 181 static int messages = 0; 182 static DEFINE_SPINLOCK(lock); 183 unsigned long flags; 184 unsigned long now; 185 unsigned long elapsed; 186 int retval = 0; 187 188 if (!audit_rate_limit) return 1; 189 190 spin_lock_irqsave(&lock, flags); 191 if (++messages < audit_rate_limit) { 192 retval = 1; 193 } else { 194 now = jiffies; 195 elapsed = now - last_check; 196 if (elapsed > HZ) { 197 last_check = now; 198 messages = 0; 199 retval = 1; 200 } 201 } 202 spin_unlock_irqrestore(&lock, flags); 203 204 return retval; 205 } 206 207 /** 208 * audit_log_lost - conditionally log lost audit message event 209 * @message: the message stating reason for lost audit message 210 * 211 * Emit at least 1 message per second, even if audit_rate_check is 212 * throttling. 213 * Always increment the lost messages counter. 214 */ 215 void audit_log_lost(const char *message) 216 { 217 static unsigned long last_msg = 0; 218 static DEFINE_SPINLOCK(lock); 219 unsigned long flags; 220 unsigned long now; 221 int print; 222 223 atomic_inc(&audit_lost); 224 225 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 226 227 if (!print) { 228 spin_lock_irqsave(&lock, flags); 229 now = jiffies; 230 if (now - last_msg > HZ) { 231 print = 1; 232 last_msg = now; 233 } 234 spin_unlock_irqrestore(&lock, flags); 235 } 236 237 if (print) { 238 if (printk_ratelimit()) 239 printk(KERN_WARNING 240 "audit: audit_lost=%d audit_rate_limit=%d " 241 "audit_backlog_limit=%d\n", 242 atomic_read(&audit_lost), 243 audit_rate_limit, 244 audit_backlog_limit); 245 audit_panic(message); 246 } 247 } 248 249 static int audit_log_config_change(char *function_name, int new, int old, 250 uid_t loginuid, u32 sid, int allow_changes) 251 { 252 struct audit_buffer *ab; 253 int rc = 0; 254 255 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 256 audit_log_format(ab, "%s=%d old=%d by auid=%u", function_name, new, 257 old, loginuid); 258 if (sid) { 259 char *ctx = NULL; 260 u32 len; 261 262 rc = selinux_sid_to_string(sid, &ctx, &len); 263 if (rc) { 264 audit_log_format(ab, " sid=%u", sid); 265 allow_changes = 0; /* Something weird, deny request */ 266 } else { 267 audit_log_format(ab, " subj=%s", ctx); 268 kfree(ctx); 269 } 270 } 271 audit_log_format(ab, " res=%d", allow_changes); 272 audit_log_end(ab); 273 return rc; 274 } 275 276 static int audit_do_config_change(char *function_name, int *to_change, 277 int new, uid_t loginuid, u32 sid) 278 { 279 int allow_changes, rc = 0, old = *to_change; 280 281 /* check if we are locked */ 282 if (audit_enabled == AUDIT_LOCKED) 283 allow_changes = 0; 284 else 285 allow_changes = 1; 286 287 if (audit_enabled != AUDIT_OFF) { 288 rc = audit_log_config_change(function_name, new, old, 289 loginuid, sid, allow_changes); 290 if (rc) 291 allow_changes = 0; 292 } 293 294 /* If we are allowed, make the change */ 295 if (allow_changes == 1) 296 *to_change = new; 297 /* Not allowed, update reason */ 298 else if (rc == 0) 299 rc = -EPERM; 300 return rc; 301 } 302 303 static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sid) 304 { 305 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, 306 limit, loginuid, sid); 307 } 308 309 static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sid) 310 { 311 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, 312 limit, loginuid, sid); 313 } 314 315 static int audit_set_enabled(int state, uid_t loginuid, u32 sid) 316 { 317 int rc; 318 if (state < AUDIT_OFF || state > AUDIT_LOCKED) 319 return -EINVAL; 320 321 rc = audit_do_config_change("audit_enabled", &audit_enabled, state, 322 loginuid, sid); 323 324 if (!rc) 325 audit_ever_enabled |= !!state; 326 327 return rc; 328 } 329 330 static int audit_set_failure(int state, uid_t loginuid, u32 sid) 331 { 332 if (state != AUDIT_FAIL_SILENT 333 && state != AUDIT_FAIL_PRINTK 334 && state != AUDIT_FAIL_PANIC) 335 return -EINVAL; 336 337 return audit_do_config_change("audit_failure", &audit_failure, state, 338 loginuid, sid); 339 } 340 341 static int kauditd_thread(void *dummy) 342 { 343 struct sk_buff *skb; 344 345 set_freezable(); 346 while (!kthread_should_stop()) { 347 skb = skb_dequeue(&audit_skb_queue); 348 wake_up(&audit_backlog_wait); 349 if (skb) { 350 if (audit_pid) { 351 int err = netlink_unicast(audit_sock, skb, audit_pid, 0); 352 if (err < 0) { 353 BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */ 354 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid); 355 audit_pid = 0; 356 } 357 } else { 358 if (printk_ratelimit()) 359 printk(KERN_NOTICE "%s\n", skb->data + 360 NLMSG_SPACE(0)); 361 else 362 audit_log_lost("printk limit exceeded\n"); 363 kfree_skb(skb); 364 } 365 } else { 366 DECLARE_WAITQUEUE(wait, current); 367 set_current_state(TASK_INTERRUPTIBLE); 368 add_wait_queue(&kauditd_wait, &wait); 369 370 if (!skb_queue_len(&audit_skb_queue)) { 371 try_to_freeze(); 372 schedule(); 373 } 374 375 __set_current_state(TASK_RUNNING); 376 remove_wait_queue(&kauditd_wait, &wait); 377 } 378 } 379 return 0; 380 } 381 382 static int audit_prepare_user_tty(pid_t pid, uid_t loginuid) 383 { 384 struct task_struct *tsk; 385 int err; 386 387 read_lock(&tasklist_lock); 388 tsk = find_task_by_pid(pid); 389 err = -ESRCH; 390 if (!tsk) 391 goto out; 392 err = 0; 393 394 spin_lock_irq(&tsk->sighand->siglock); 395 if (!tsk->signal->audit_tty) 396 err = -EPERM; 397 spin_unlock_irq(&tsk->sighand->siglock); 398 if (err) 399 goto out; 400 401 tty_audit_push_task(tsk, loginuid); 402 out: 403 read_unlock(&tasklist_lock); 404 return err; 405 } 406 407 int audit_send_list(void *_dest) 408 { 409 struct audit_netlink_list *dest = _dest; 410 int pid = dest->pid; 411 struct sk_buff *skb; 412 413 /* wait for parent to finish and send an ACK */ 414 mutex_lock(&audit_cmd_mutex); 415 mutex_unlock(&audit_cmd_mutex); 416 417 while ((skb = __skb_dequeue(&dest->q)) != NULL) 418 netlink_unicast(audit_sock, skb, pid, 0); 419 420 kfree(dest); 421 422 return 0; 423 } 424 425 #ifdef CONFIG_AUDIT_TREE 426 static int prune_tree_thread(void *unused) 427 { 428 mutex_lock(&audit_cmd_mutex); 429 audit_prune_trees(); 430 mutex_unlock(&audit_cmd_mutex); 431 return 0; 432 } 433 434 void audit_schedule_prune(void) 435 { 436 kthread_run(prune_tree_thread, NULL, "audit_prune_tree"); 437 } 438 #endif 439 440 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done, 441 int multi, void *payload, int size) 442 { 443 struct sk_buff *skb; 444 struct nlmsghdr *nlh; 445 int len = NLMSG_SPACE(size); 446 void *data; 447 int flags = multi ? NLM_F_MULTI : 0; 448 int t = done ? NLMSG_DONE : type; 449 450 skb = alloc_skb(len, GFP_KERNEL); 451 if (!skb) 452 return NULL; 453 454 nlh = NLMSG_PUT(skb, pid, seq, t, size); 455 nlh->nlmsg_flags = flags; 456 data = NLMSG_DATA(nlh); 457 memcpy(data, payload, size); 458 return skb; 459 460 nlmsg_failure: /* Used by NLMSG_PUT */ 461 if (skb) 462 kfree_skb(skb); 463 return NULL; 464 } 465 466 /** 467 * audit_send_reply - send an audit reply message via netlink 468 * @pid: process id to send reply to 469 * @seq: sequence number 470 * @type: audit message type 471 * @done: done (last) flag 472 * @multi: multi-part message flag 473 * @payload: payload data 474 * @size: payload size 475 * 476 * Allocates an skb, builds the netlink message, and sends it to the pid. 477 * No failure notifications. 478 */ 479 void audit_send_reply(int pid, int seq, int type, int done, int multi, 480 void *payload, int size) 481 { 482 struct sk_buff *skb; 483 skb = audit_make_reply(pid, seq, type, done, multi, payload, size); 484 if (!skb) 485 return; 486 /* Ignore failure. It'll only happen if the sender goes away, 487 because our timeout is set to infinite. */ 488 netlink_unicast(audit_sock, skb, pid, 0); 489 return; 490 } 491 492 /* 493 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 494 * control messages. 495 */ 496 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 497 { 498 int err = 0; 499 500 switch (msg_type) { 501 case AUDIT_GET: 502 case AUDIT_LIST: 503 case AUDIT_LIST_RULES: 504 case AUDIT_SET: 505 case AUDIT_ADD: 506 case AUDIT_ADD_RULE: 507 case AUDIT_DEL: 508 case AUDIT_DEL_RULE: 509 case AUDIT_SIGNAL_INFO: 510 case AUDIT_TTY_GET: 511 case AUDIT_TTY_SET: 512 case AUDIT_TRIM: 513 case AUDIT_MAKE_EQUIV: 514 if (security_netlink_recv(skb, CAP_AUDIT_CONTROL)) 515 err = -EPERM; 516 break; 517 case AUDIT_USER: 518 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 519 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 520 if (security_netlink_recv(skb, CAP_AUDIT_WRITE)) 521 err = -EPERM; 522 break; 523 default: /* bad msg */ 524 err = -EINVAL; 525 } 526 527 return err; 528 } 529 530 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type, 531 u32 pid, u32 uid, uid_t auid, u32 sid) 532 { 533 int rc = 0; 534 char *ctx = NULL; 535 u32 len; 536 537 if (!audit_enabled) { 538 *ab = NULL; 539 return rc; 540 } 541 542 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 543 audit_log_format(*ab, "user pid=%d uid=%u auid=%u", 544 pid, uid, auid); 545 if (sid) { 546 rc = selinux_sid_to_string(sid, &ctx, &len); 547 if (rc) 548 audit_log_format(*ab, " ssid=%u", sid); 549 else 550 audit_log_format(*ab, " subj=%s", ctx); 551 kfree(ctx); 552 } 553 554 return rc; 555 } 556 557 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 558 { 559 u32 uid, pid, seq, sid; 560 void *data; 561 struct audit_status *status_get, status_set; 562 int err; 563 struct audit_buffer *ab; 564 u16 msg_type = nlh->nlmsg_type; 565 uid_t loginuid; /* loginuid of sender */ 566 struct audit_sig_info *sig_data; 567 char *ctx = NULL; 568 u32 len; 569 570 err = audit_netlink_ok(skb, msg_type); 571 if (err) 572 return err; 573 574 /* As soon as there's any sign of userspace auditd, 575 * start kauditd to talk to it */ 576 if (!kauditd_task) 577 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 578 if (IS_ERR(kauditd_task)) { 579 err = PTR_ERR(kauditd_task); 580 kauditd_task = NULL; 581 return err; 582 } 583 584 pid = NETLINK_CREDS(skb)->pid; 585 uid = NETLINK_CREDS(skb)->uid; 586 loginuid = NETLINK_CB(skb).loginuid; 587 sid = NETLINK_CB(skb).sid; 588 seq = nlh->nlmsg_seq; 589 data = NLMSG_DATA(nlh); 590 591 switch (msg_type) { 592 case AUDIT_GET: 593 status_set.enabled = audit_enabled; 594 status_set.failure = audit_failure; 595 status_set.pid = audit_pid; 596 status_set.rate_limit = audit_rate_limit; 597 status_set.backlog_limit = audit_backlog_limit; 598 status_set.lost = atomic_read(&audit_lost); 599 status_set.backlog = skb_queue_len(&audit_skb_queue); 600 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0, 601 &status_set, sizeof(status_set)); 602 break; 603 case AUDIT_SET: 604 if (nlh->nlmsg_len < sizeof(struct audit_status)) 605 return -EINVAL; 606 status_get = (struct audit_status *)data; 607 if (status_get->mask & AUDIT_STATUS_ENABLED) { 608 err = audit_set_enabled(status_get->enabled, 609 loginuid, sid); 610 if (err < 0) return err; 611 } 612 if (status_get->mask & AUDIT_STATUS_FAILURE) { 613 err = audit_set_failure(status_get->failure, 614 loginuid, sid); 615 if (err < 0) return err; 616 } 617 if (status_get->mask & AUDIT_STATUS_PID) { 618 int new_pid = status_get->pid; 619 620 if (audit_enabled != AUDIT_OFF) 621 audit_log_config_change("audit_pid", new_pid, 622 audit_pid, loginuid, 623 sid, 1); 624 625 audit_pid = new_pid; 626 } 627 if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) 628 err = audit_set_rate_limit(status_get->rate_limit, 629 loginuid, sid); 630 if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT) 631 err = audit_set_backlog_limit(status_get->backlog_limit, 632 loginuid, sid); 633 break; 634 case AUDIT_USER: 635 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 636 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 637 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 638 return 0; 639 640 err = audit_filter_user(&NETLINK_CB(skb), msg_type); 641 if (err == 1) { 642 err = 0; 643 if (msg_type == AUDIT_USER_TTY) { 644 err = audit_prepare_user_tty(pid, loginuid); 645 if (err) 646 break; 647 } 648 audit_log_common_recv_msg(&ab, msg_type, pid, uid, 649 loginuid, sid); 650 651 if (msg_type != AUDIT_USER_TTY) 652 audit_log_format(ab, " msg='%.1024s'", 653 (char *)data); 654 else { 655 int size; 656 657 audit_log_format(ab, " msg="); 658 size = nlmsg_len(nlh); 659 audit_log_n_untrustedstring(ab, size, 660 data); 661 } 662 audit_set_pid(ab, pid); 663 audit_log_end(ab); 664 } 665 break; 666 case AUDIT_ADD: 667 case AUDIT_DEL: 668 if (nlmsg_len(nlh) < sizeof(struct audit_rule)) 669 return -EINVAL; 670 if (audit_enabled == AUDIT_LOCKED) { 671 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 672 uid, loginuid, sid); 673 674 audit_log_format(ab, " audit_enabled=%d res=0", 675 audit_enabled); 676 audit_log_end(ab); 677 return -EPERM; 678 } 679 /* fallthrough */ 680 case AUDIT_LIST: 681 err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid, 682 uid, seq, data, nlmsg_len(nlh), 683 loginuid, sid); 684 break; 685 case AUDIT_ADD_RULE: 686 case AUDIT_DEL_RULE: 687 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 688 return -EINVAL; 689 if (audit_enabled == AUDIT_LOCKED) { 690 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 691 uid, loginuid, sid); 692 693 audit_log_format(ab, " audit_enabled=%d res=0", 694 audit_enabled); 695 audit_log_end(ab); 696 return -EPERM; 697 } 698 /* fallthrough */ 699 case AUDIT_LIST_RULES: 700 err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid, 701 uid, seq, data, nlmsg_len(nlh), 702 loginuid, sid); 703 break; 704 case AUDIT_TRIM: 705 audit_trim_trees(); 706 707 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 708 uid, loginuid, sid); 709 710 audit_log_format(ab, " op=trim res=1"); 711 audit_log_end(ab); 712 break; 713 case AUDIT_MAKE_EQUIV: { 714 void *bufp = data; 715 u32 sizes[2]; 716 size_t len = nlmsg_len(nlh); 717 char *old, *new; 718 719 err = -EINVAL; 720 if (len < 2 * sizeof(u32)) 721 break; 722 memcpy(sizes, bufp, 2 * sizeof(u32)); 723 bufp += 2 * sizeof(u32); 724 len -= 2 * sizeof(u32); 725 old = audit_unpack_string(&bufp, &len, sizes[0]); 726 if (IS_ERR(old)) { 727 err = PTR_ERR(old); 728 break; 729 } 730 new = audit_unpack_string(&bufp, &len, sizes[1]); 731 if (IS_ERR(new)) { 732 err = PTR_ERR(new); 733 kfree(old); 734 break; 735 } 736 /* OK, here comes... */ 737 err = audit_tag_tree(old, new); 738 739 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 740 uid, loginuid, sid); 741 742 audit_log_format(ab, " op=make_equiv old="); 743 audit_log_untrustedstring(ab, old); 744 audit_log_format(ab, " new="); 745 audit_log_untrustedstring(ab, new); 746 audit_log_format(ab, " res=%d", !err); 747 audit_log_end(ab); 748 kfree(old); 749 kfree(new); 750 break; 751 } 752 case AUDIT_SIGNAL_INFO: 753 err = selinux_sid_to_string(audit_sig_sid, &ctx, &len); 754 if (err) 755 return err; 756 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 757 if (!sig_data) { 758 kfree(ctx); 759 return -ENOMEM; 760 } 761 sig_data->uid = audit_sig_uid; 762 sig_data->pid = audit_sig_pid; 763 memcpy(sig_data->ctx, ctx, len); 764 kfree(ctx); 765 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, 766 0, 0, sig_data, sizeof(*sig_data) + len); 767 kfree(sig_data); 768 break; 769 case AUDIT_TTY_GET: { 770 struct audit_tty_status s; 771 struct task_struct *tsk; 772 773 read_lock(&tasklist_lock); 774 tsk = find_task_by_pid(pid); 775 if (!tsk) 776 err = -ESRCH; 777 else { 778 spin_lock_irq(&tsk->sighand->siglock); 779 s.enabled = tsk->signal->audit_tty != 0; 780 spin_unlock_irq(&tsk->sighand->siglock); 781 } 782 read_unlock(&tasklist_lock); 783 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_TTY_GET, 0, 0, 784 &s, sizeof(s)); 785 break; 786 } 787 case AUDIT_TTY_SET: { 788 struct audit_tty_status *s; 789 struct task_struct *tsk; 790 791 if (nlh->nlmsg_len < sizeof(struct audit_tty_status)) 792 return -EINVAL; 793 s = data; 794 if (s->enabled != 0 && s->enabled != 1) 795 return -EINVAL; 796 read_lock(&tasklist_lock); 797 tsk = find_task_by_pid(pid); 798 if (!tsk) 799 err = -ESRCH; 800 else { 801 spin_lock_irq(&tsk->sighand->siglock); 802 tsk->signal->audit_tty = s->enabled != 0; 803 spin_unlock_irq(&tsk->sighand->siglock); 804 } 805 read_unlock(&tasklist_lock); 806 break; 807 } 808 default: 809 err = -EINVAL; 810 break; 811 } 812 813 return err < 0 ? err : 0; 814 } 815 816 /* 817 * Get message from skb (based on rtnetlink_rcv_skb). Each message is 818 * processed by audit_receive_msg. Malformed skbs with wrong length are 819 * discarded silently. 820 */ 821 static void audit_receive_skb(struct sk_buff *skb) 822 { 823 int err; 824 struct nlmsghdr *nlh; 825 u32 rlen; 826 827 while (skb->len >= NLMSG_SPACE(0)) { 828 nlh = nlmsg_hdr(skb); 829 if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len) 830 return; 831 rlen = NLMSG_ALIGN(nlh->nlmsg_len); 832 if (rlen > skb->len) 833 rlen = skb->len; 834 if ((err = audit_receive_msg(skb, nlh))) { 835 netlink_ack(skb, nlh, err); 836 } else if (nlh->nlmsg_flags & NLM_F_ACK) 837 netlink_ack(skb, nlh, 0); 838 skb_pull(skb, rlen); 839 } 840 } 841 842 /* Receive messages from netlink socket. */ 843 static void audit_receive(struct sk_buff *skb) 844 { 845 mutex_lock(&audit_cmd_mutex); 846 audit_receive_skb(skb); 847 mutex_unlock(&audit_cmd_mutex); 848 } 849 850 #ifdef CONFIG_AUDITSYSCALL 851 static const struct inotify_operations audit_inotify_ops = { 852 .handle_event = audit_handle_ievent, 853 .destroy_watch = audit_free_parent, 854 }; 855 #endif 856 857 /* Initialize audit support at boot time. */ 858 static int __init audit_init(void) 859 { 860 int i; 861 862 printk(KERN_INFO "audit: initializing netlink socket (%s)\n", 863 audit_default ? "enabled" : "disabled"); 864 audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0, 865 audit_receive, NULL, THIS_MODULE); 866 if (!audit_sock) 867 audit_panic("cannot initialize netlink socket"); 868 else 869 audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 870 871 skb_queue_head_init(&audit_skb_queue); 872 audit_initialized = 1; 873 audit_enabled = audit_default; 874 audit_ever_enabled |= !!audit_default; 875 876 /* Register the callback with selinux. This callback will be invoked 877 * when a new policy is loaded. */ 878 selinux_audit_set_callback(&selinux_audit_rule_update); 879 880 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); 881 882 #ifdef CONFIG_AUDITSYSCALL 883 audit_ih = inotify_init(&audit_inotify_ops); 884 if (IS_ERR(audit_ih)) 885 audit_panic("cannot initialize inotify handle"); 886 #endif 887 888 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 889 INIT_LIST_HEAD(&audit_inode_hash[i]); 890 891 return 0; 892 } 893 __initcall(audit_init); 894 895 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ 896 static int __init audit_enable(char *str) 897 { 898 audit_default = !!simple_strtol(str, NULL, 0); 899 printk(KERN_INFO "audit: %s%s\n", 900 audit_default ? "enabled" : "disabled", 901 audit_initialized ? "" : " (after initialization)"); 902 if (audit_initialized) { 903 audit_enabled = audit_default; 904 audit_ever_enabled |= !!audit_default; 905 } 906 return 1; 907 } 908 909 __setup("audit=", audit_enable); 910 911 static void audit_buffer_free(struct audit_buffer *ab) 912 { 913 unsigned long flags; 914 915 if (!ab) 916 return; 917 918 if (ab->skb) 919 kfree_skb(ab->skb); 920 921 spin_lock_irqsave(&audit_freelist_lock, flags); 922 if (audit_freelist_count > AUDIT_MAXFREE) 923 kfree(ab); 924 else { 925 audit_freelist_count++; 926 list_add(&ab->list, &audit_freelist); 927 } 928 spin_unlock_irqrestore(&audit_freelist_lock, flags); 929 } 930 931 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, 932 gfp_t gfp_mask, int type) 933 { 934 unsigned long flags; 935 struct audit_buffer *ab = NULL; 936 struct nlmsghdr *nlh; 937 938 spin_lock_irqsave(&audit_freelist_lock, flags); 939 if (!list_empty(&audit_freelist)) { 940 ab = list_entry(audit_freelist.next, 941 struct audit_buffer, list); 942 list_del(&ab->list); 943 --audit_freelist_count; 944 } 945 spin_unlock_irqrestore(&audit_freelist_lock, flags); 946 947 if (!ab) { 948 ab = kmalloc(sizeof(*ab), gfp_mask); 949 if (!ab) 950 goto err; 951 } 952 953 ab->skb = alloc_skb(AUDIT_BUFSIZ, gfp_mask); 954 if (!ab->skb) 955 goto err; 956 957 ab->ctx = ctx; 958 ab->gfp_mask = gfp_mask; 959 nlh = (struct nlmsghdr *)skb_put(ab->skb, NLMSG_SPACE(0)); 960 nlh->nlmsg_type = type; 961 nlh->nlmsg_flags = 0; 962 nlh->nlmsg_pid = 0; 963 nlh->nlmsg_seq = 0; 964 return ab; 965 err: 966 audit_buffer_free(ab); 967 return NULL; 968 } 969 970 /** 971 * audit_serial - compute a serial number for the audit record 972 * 973 * Compute a serial number for the audit record. Audit records are 974 * written to user-space as soon as they are generated, so a complete 975 * audit record may be written in several pieces. The timestamp of the 976 * record and this serial number are used by the user-space tools to 977 * determine which pieces belong to the same audit record. The 978 * (timestamp,serial) tuple is unique for each syscall and is live from 979 * syscall entry to syscall exit. 980 * 981 * NOTE: Another possibility is to store the formatted records off the 982 * audit context (for those records that have a context), and emit them 983 * all at syscall exit. However, this could delay the reporting of 984 * significant errors until syscall exit (or never, if the system 985 * halts). 986 */ 987 unsigned int audit_serial(void) 988 { 989 static DEFINE_SPINLOCK(serial_lock); 990 static unsigned int serial = 0; 991 992 unsigned long flags; 993 unsigned int ret; 994 995 spin_lock_irqsave(&serial_lock, flags); 996 do { 997 ret = ++serial; 998 } while (unlikely(!ret)); 999 spin_unlock_irqrestore(&serial_lock, flags); 1000 1001 return ret; 1002 } 1003 1004 static inline void audit_get_stamp(struct audit_context *ctx, 1005 struct timespec *t, unsigned int *serial) 1006 { 1007 if (ctx) 1008 auditsc_get_stamp(ctx, t, serial); 1009 else { 1010 *t = CURRENT_TIME; 1011 *serial = audit_serial(); 1012 } 1013 } 1014 1015 /* Obtain an audit buffer. This routine does locking to obtain the 1016 * audit buffer, but then no locking is required for calls to 1017 * audit_log_*format. If the tsk is a task that is currently in a 1018 * syscall, then the syscall is marked as auditable and an audit record 1019 * will be written at syscall exit. If there is no associated task, tsk 1020 * should be NULL. */ 1021 1022 /** 1023 * audit_log_start - obtain an audit buffer 1024 * @ctx: audit_context (may be NULL) 1025 * @gfp_mask: type of allocation 1026 * @type: audit message type 1027 * 1028 * Returns audit_buffer pointer on success or NULL on error. 1029 * 1030 * Obtain an audit buffer. This routine does locking to obtain the 1031 * audit buffer, but then no locking is required for calls to 1032 * audit_log_*format. If the task (ctx) is a task that is currently in a 1033 * syscall, then the syscall is marked as auditable and an audit record 1034 * will be written at syscall exit. If there is no associated task, then 1035 * task context (ctx) should be NULL. 1036 */ 1037 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1038 int type) 1039 { 1040 struct audit_buffer *ab = NULL; 1041 struct timespec t; 1042 unsigned int uninitialized_var(serial); 1043 int reserve; 1044 unsigned long timeout_start = jiffies; 1045 1046 if (!audit_initialized) 1047 return NULL; 1048 1049 if (unlikely(audit_filter_type(type))) 1050 return NULL; 1051 1052 if (gfp_mask & __GFP_WAIT) 1053 reserve = 0; 1054 else 1055 reserve = 5; /* Allow atomic callers to go up to five 1056 entries over the normal backlog limit */ 1057 1058 while (audit_backlog_limit 1059 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) { 1060 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time 1061 && time_before(jiffies, timeout_start + audit_backlog_wait_time)) { 1062 1063 /* Wait for auditd to drain the queue a little */ 1064 DECLARE_WAITQUEUE(wait, current); 1065 set_current_state(TASK_INTERRUPTIBLE); 1066 add_wait_queue(&audit_backlog_wait, &wait); 1067 1068 if (audit_backlog_limit && 1069 skb_queue_len(&audit_skb_queue) > audit_backlog_limit) 1070 schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies); 1071 1072 __set_current_state(TASK_RUNNING); 1073 remove_wait_queue(&audit_backlog_wait, &wait); 1074 continue; 1075 } 1076 if (audit_rate_check() && printk_ratelimit()) 1077 printk(KERN_WARNING 1078 "audit: audit_backlog=%d > " 1079 "audit_backlog_limit=%d\n", 1080 skb_queue_len(&audit_skb_queue), 1081 audit_backlog_limit); 1082 audit_log_lost("backlog limit exceeded"); 1083 audit_backlog_wait_time = audit_backlog_wait_overflow; 1084 wake_up(&audit_backlog_wait); 1085 return NULL; 1086 } 1087 1088 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1089 if (!ab) { 1090 audit_log_lost("out of memory in audit_log_start"); 1091 return NULL; 1092 } 1093 1094 audit_get_stamp(ab->ctx, &t, &serial); 1095 1096 audit_log_format(ab, "audit(%lu.%03lu:%u): ", 1097 t.tv_sec, t.tv_nsec/1000000, serial); 1098 return ab; 1099 } 1100 1101 /** 1102 * audit_expand - expand skb in the audit buffer 1103 * @ab: audit_buffer 1104 * @extra: space to add at tail of the skb 1105 * 1106 * Returns 0 (no space) on failed expansion, or available space if 1107 * successful. 1108 */ 1109 static inline int audit_expand(struct audit_buffer *ab, int extra) 1110 { 1111 struct sk_buff *skb = ab->skb; 1112 int oldtail = skb_tailroom(skb); 1113 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1114 int newtail = skb_tailroom(skb); 1115 1116 if (ret < 0) { 1117 audit_log_lost("out of memory in audit_expand"); 1118 return 0; 1119 } 1120 1121 skb->truesize += newtail - oldtail; 1122 return newtail; 1123 } 1124 1125 /* 1126 * Format an audit message into the audit buffer. If there isn't enough 1127 * room in the audit buffer, more room will be allocated and vsnprint 1128 * will be called a second time. Currently, we assume that a printk 1129 * can't format message larger than 1024 bytes, so we don't either. 1130 */ 1131 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1132 va_list args) 1133 { 1134 int len, avail; 1135 struct sk_buff *skb; 1136 va_list args2; 1137 1138 if (!ab) 1139 return; 1140 1141 BUG_ON(!ab->skb); 1142 skb = ab->skb; 1143 avail = skb_tailroom(skb); 1144 if (avail == 0) { 1145 avail = audit_expand(ab, AUDIT_BUFSIZ); 1146 if (!avail) 1147 goto out; 1148 } 1149 va_copy(args2, args); 1150 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1151 if (len >= avail) { 1152 /* The printk buffer is 1024 bytes long, so if we get 1153 * here and AUDIT_BUFSIZ is at least 1024, then we can 1154 * log everything that printk could have logged. */ 1155 avail = audit_expand(ab, 1156 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1157 if (!avail) 1158 goto out; 1159 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1160 } 1161 va_end(args2); 1162 if (len > 0) 1163 skb_put(skb, len); 1164 out: 1165 return; 1166 } 1167 1168 /** 1169 * audit_log_format - format a message into the audit buffer. 1170 * @ab: audit_buffer 1171 * @fmt: format string 1172 * @...: optional parameters matching @fmt string 1173 * 1174 * All the work is done in audit_log_vformat. 1175 */ 1176 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1177 { 1178 va_list args; 1179 1180 if (!ab) 1181 return; 1182 va_start(args, fmt); 1183 audit_log_vformat(ab, fmt, args); 1184 va_end(args); 1185 } 1186 1187 /** 1188 * audit_log_hex - convert a buffer to hex and append it to the audit skb 1189 * @ab: the audit_buffer 1190 * @buf: buffer to convert to hex 1191 * @len: length of @buf to be converted 1192 * 1193 * No return value; failure to expand is silently ignored. 1194 * 1195 * This function will take the passed buf and convert it into a string of 1196 * ascii hex digits. The new string is placed onto the skb. 1197 */ 1198 void audit_log_hex(struct audit_buffer *ab, const unsigned char *buf, 1199 size_t len) 1200 { 1201 int i, avail, new_len; 1202 unsigned char *ptr; 1203 struct sk_buff *skb; 1204 static const unsigned char *hex = "0123456789ABCDEF"; 1205 1206 if (!ab) 1207 return; 1208 1209 BUG_ON(!ab->skb); 1210 skb = ab->skb; 1211 avail = skb_tailroom(skb); 1212 new_len = len<<1; 1213 if (new_len >= avail) { 1214 /* Round the buffer request up to the next multiple */ 1215 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1216 avail = audit_expand(ab, new_len); 1217 if (!avail) 1218 return; 1219 } 1220 1221 ptr = skb_tail_pointer(skb); 1222 for (i=0; i<len; i++) { 1223 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */ 1224 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */ 1225 } 1226 *ptr = 0; 1227 skb_put(skb, len << 1); /* new string is twice the old string */ 1228 } 1229 1230 /* 1231 * Format a string of no more than slen characters into the audit buffer, 1232 * enclosed in quote marks. 1233 */ 1234 static void audit_log_n_string(struct audit_buffer *ab, size_t slen, 1235 const char *string) 1236 { 1237 int avail, new_len; 1238 unsigned char *ptr; 1239 struct sk_buff *skb; 1240 1241 if (!ab) 1242 return; 1243 1244 BUG_ON(!ab->skb); 1245 skb = ab->skb; 1246 avail = skb_tailroom(skb); 1247 new_len = slen + 3; /* enclosing quotes + null terminator */ 1248 if (new_len > avail) { 1249 avail = audit_expand(ab, new_len); 1250 if (!avail) 1251 return; 1252 } 1253 ptr = skb_tail_pointer(skb); 1254 *ptr++ = '"'; 1255 memcpy(ptr, string, slen); 1256 ptr += slen; 1257 *ptr++ = '"'; 1258 *ptr = 0; 1259 skb_put(skb, slen + 2); /* don't include null terminator */ 1260 } 1261 1262 /** 1263 * audit_string_contains_control - does a string need to be logged in hex 1264 * @string - string to be checked 1265 * @len - max length of the string to check 1266 */ 1267 int audit_string_contains_control(const char *string, size_t len) 1268 { 1269 const unsigned char *p; 1270 for (p = string; p < (const unsigned char *)string + len && *p; p++) { 1271 if (*p == '"' || *p < 0x21 || *p > 0x7f) 1272 return 1; 1273 } 1274 return 0; 1275 } 1276 1277 /** 1278 * audit_log_n_untrustedstring - log a string that may contain random characters 1279 * @ab: audit_buffer 1280 * @len: lenth of string (not including trailing null) 1281 * @string: string to be logged 1282 * 1283 * This code will escape a string that is passed to it if the string 1284 * contains a control character, unprintable character, double quote mark, 1285 * or a space. Unescaped strings will start and end with a double quote mark. 1286 * Strings that are escaped are printed in hex (2 digits per char). 1287 * 1288 * The caller specifies the number of characters in the string to log, which may 1289 * or may not be the entire string. 1290 */ 1291 void audit_log_n_untrustedstring(struct audit_buffer *ab, size_t len, 1292 const char *string) 1293 { 1294 if (audit_string_contains_control(string, len)) 1295 audit_log_hex(ab, string, len); 1296 else 1297 audit_log_n_string(ab, len, string); 1298 } 1299 1300 /** 1301 * audit_log_untrustedstring - log a string that may contain random characters 1302 * @ab: audit_buffer 1303 * @string: string to be logged 1304 * 1305 * Same as audit_log_n_untrustedstring(), except that strlen is used to 1306 * determine string length. 1307 */ 1308 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 1309 { 1310 audit_log_n_untrustedstring(ab, strlen(string), string); 1311 } 1312 1313 /* This is a helper-function to print the escaped d_path */ 1314 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 1315 struct dentry *dentry, struct vfsmount *vfsmnt) 1316 { 1317 char *p, *path; 1318 1319 if (prefix) 1320 audit_log_format(ab, " %s", prefix); 1321 1322 /* We will allow 11 spaces for ' (deleted)' to be appended */ 1323 path = kmalloc(PATH_MAX+11, ab->gfp_mask); 1324 if (!path) { 1325 audit_log_format(ab, "<no memory>"); 1326 return; 1327 } 1328 p = d_path(dentry, vfsmnt, path, PATH_MAX+11); 1329 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 1330 /* FIXME: can we save some information here? */ 1331 audit_log_format(ab, "<too long>"); 1332 } else 1333 audit_log_untrustedstring(ab, p); 1334 kfree(path); 1335 } 1336 1337 /** 1338 * audit_log_end - end one audit record 1339 * @ab: the audit_buffer 1340 * 1341 * The netlink_* functions cannot be called inside an irq context, so 1342 * the audit buffer is placed on a queue and a tasklet is scheduled to 1343 * remove them from the queue outside the irq context. May be called in 1344 * any context. 1345 */ 1346 void audit_log_end(struct audit_buffer *ab) 1347 { 1348 if (!ab) 1349 return; 1350 if (!audit_rate_check()) { 1351 audit_log_lost("rate limit exceeded"); 1352 } else { 1353 if (audit_pid) { 1354 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 1355 nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0); 1356 skb_queue_tail(&audit_skb_queue, ab->skb); 1357 ab->skb = NULL; 1358 wake_up_interruptible(&kauditd_wait); 1359 } else if (printk_ratelimit()) { 1360 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 1361 printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, ab->skb->data + NLMSG_SPACE(0)); 1362 } else { 1363 audit_log_lost("printk limit exceeded\n"); 1364 } 1365 } 1366 audit_buffer_free(ab); 1367 } 1368 1369 /** 1370 * audit_log - Log an audit record 1371 * @ctx: audit context 1372 * @gfp_mask: type of allocation 1373 * @type: audit message type 1374 * @fmt: format string to use 1375 * @...: variable parameters matching the format string 1376 * 1377 * This is a convenience function that calls audit_log_start, 1378 * audit_log_vformat, and audit_log_end. It may be called 1379 * in any context. 1380 */ 1381 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 1382 const char *fmt, ...) 1383 { 1384 struct audit_buffer *ab; 1385 va_list args; 1386 1387 ab = audit_log_start(ctx, gfp_mask, type); 1388 if (ab) { 1389 va_start(args, fmt); 1390 audit_log_vformat(ab, fmt, args); 1391 va_end(args); 1392 audit_log_end(ab); 1393 } 1394 } 1395 1396 EXPORT_SYMBOL(audit_log_start); 1397 EXPORT_SYMBOL(audit_log_end); 1398 EXPORT_SYMBOL(audit_log_format); 1399 EXPORT_SYMBOL(audit_log); 1400