1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* audit.c -- Auditing support 3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 4 * System-call specific features have moved to auditsc.c 5 * 6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 7 * All Rights Reserved. 8 * 9 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 10 * 11 * Goals: 1) Integrate fully with Security Modules. 12 * 2) Minimal run-time overhead: 13 * a) Minimal when syscall auditing is disabled (audit_enable=0). 14 * b) Small when syscall auditing is enabled and no audit record 15 * is generated (defer as much work as possible to record 16 * generation time): 17 * i) context is allocated, 18 * ii) names from getname are stored without a copy, and 19 * iii) inode information stored from path_lookup. 20 * 3) Ability to disable syscall auditing at boot time (audit=0). 21 * 4) Usable by other parts of the kernel (if audit_log* is called, 22 * then a syscall record will be generated automatically for the 23 * current syscall). 24 * 5) Netlink interface to user-space. 25 * 6) Support low-overhead kernel-based filtering to minimize the 26 * information that must be passed to user-space. 27 * 28 * Audit userspace, documentation, tests, and bug/issue trackers: 29 * https://github.com/linux-audit 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/file.h> 35 #include <linux/init.h> 36 #include <linux/types.h> 37 #include <linux/atomic.h> 38 #include <linux/mm.h> 39 #include <linux/export.h> 40 #include <linux/slab.h> 41 #include <linux/err.h> 42 #include <linux/kthread.h> 43 #include <linux/kernel.h> 44 #include <linux/syscalls.h> 45 #include <linux/spinlock.h> 46 #include <linux/rcupdate.h> 47 #include <linux/mutex.h> 48 #include <linux/gfp.h> 49 #include <linux/pid.h> 50 51 #include <linux/audit.h> 52 53 #include <net/sock.h> 54 #include <net/netlink.h> 55 #include <linux/skbuff.h> 56 #ifdef CONFIG_SECURITY 57 #include <linux/security.h> 58 #endif 59 #include <linux/freezer.h> 60 #include <linux/pid_namespace.h> 61 #include <net/netns/generic.h> 62 63 #include "audit.h" 64 65 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 66 * (Initialization happens after skb_init is called.) */ 67 #define AUDIT_DISABLED -1 68 #define AUDIT_UNINITIALIZED 0 69 #define AUDIT_INITIALIZED 1 70 static int audit_initialized = AUDIT_UNINITIALIZED; 71 72 u32 audit_enabled = AUDIT_OFF; 73 bool audit_ever_enabled = !!AUDIT_OFF; 74 75 EXPORT_SYMBOL_GPL(audit_enabled); 76 77 /* Default state when kernel boots without any parameters. */ 78 static u32 audit_default = AUDIT_OFF; 79 80 /* If auditing cannot proceed, audit_failure selects what happens. */ 81 static u32 audit_failure = AUDIT_FAIL_PRINTK; 82 83 /* private audit network namespace index */ 84 static unsigned int audit_net_id; 85 86 /** 87 * struct audit_net - audit private network namespace data 88 * @sk: communication socket 89 */ 90 struct audit_net { 91 struct sock *sk; 92 }; 93 94 /** 95 * struct auditd_connection - kernel/auditd connection state 96 * @pid: auditd PID 97 * @portid: netlink portid 98 * @net: the associated network namespace 99 * @rcu: RCU head 100 * 101 * Description: 102 * This struct is RCU protected; you must either hold the RCU lock for reading 103 * or the associated spinlock for writing. 104 */ 105 struct auditd_connection { 106 struct pid *pid; 107 u32 portid; 108 struct net *net; 109 struct rcu_head rcu; 110 }; 111 static struct auditd_connection __rcu *auditd_conn; 112 static DEFINE_SPINLOCK(auditd_conn_lock); 113 114 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 115 * to that number per second. This prevents DoS attacks, but results in 116 * audit records being dropped. */ 117 static u32 audit_rate_limit; 118 119 /* Number of outstanding audit_buffers allowed. 120 * When set to zero, this means unlimited. */ 121 static u32 audit_backlog_limit = 64; 122 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 123 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 124 125 /* The identity of the user shutting down the audit system. */ 126 static kuid_t audit_sig_uid = INVALID_UID; 127 static pid_t audit_sig_pid = -1; 128 static u32 audit_sig_sid; 129 130 /* Records can be lost in several ways: 131 0) [suppressed in audit_alloc] 132 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 133 2) out of memory in audit_log_move [alloc_skb] 134 3) suppressed due to audit_rate_limit 135 4) suppressed due to audit_backlog_limit 136 */ 137 static atomic_t audit_lost = ATOMIC_INIT(0); 138 139 /* Monotonically increasing sum of time the kernel has spent 140 * waiting while the backlog limit is exceeded. 141 */ 142 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0); 143 144 /* Hash for inode-based rules */ 145 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 146 147 static struct kmem_cache *audit_buffer_cache; 148 149 /* queue msgs to send via kauditd_task */ 150 static struct sk_buff_head audit_queue; 151 /* queue msgs due to temporary unicast send problems */ 152 static struct sk_buff_head audit_retry_queue; 153 /* queue msgs waiting for new auditd connection */ 154 static struct sk_buff_head audit_hold_queue; 155 156 /* queue servicing thread */ 157 static struct task_struct *kauditd_task; 158 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 159 160 /* waitqueue for callers who are blocked on the audit backlog */ 161 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 162 163 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 164 .mask = -1, 165 .features = 0, 166 .lock = 0,}; 167 168 static char *audit_feature_names[2] = { 169 "only_unset_loginuid", 170 "loginuid_immutable", 171 }; 172 173 /** 174 * struct audit_ctl_mutex - serialize requests from userspace 175 * @lock: the mutex used for locking 176 * @owner: the task which owns the lock 177 * 178 * Description: 179 * This is the lock struct used to ensure we only process userspace requests 180 * in an orderly fashion. We can't simply use a mutex/lock here because we 181 * need to track lock ownership so we don't end up blocking the lock owner in 182 * audit_log_start() or similar. 183 */ 184 static struct audit_ctl_mutex { 185 struct mutex lock; 186 void *owner; 187 } audit_cmd_mutex; 188 189 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 190 * audit records. Since printk uses a 1024 byte buffer, this buffer 191 * should be at least that large. */ 192 #define AUDIT_BUFSIZ 1024 193 194 /* The audit_buffer is used when formatting an audit record. The caller 195 * locks briefly to get the record off the freelist or to allocate the 196 * buffer, and locks briefly to send the buffer to the netlink layer or 197 * to place it on a transmit queue. Multiple audit_buffers can be in 198 * use simultaneously. */ 199 struct audit_buffer { 200 struct sk_buff *skb; /* formatted skb ready to send */ 201 struct audit_context *ctx; /* NULL or associated context */ 202 gfp_t gfp_mask; 203 }; 204 205 struct audit_reply { 206 __u32 portid; 207 struct net *net; 208 struct sk_buff *skb; 209 }; 210 211 /** 212 * auditd_test_task - Check to see if a given task is an audit daemon 213 * @task: the task to check 214 * 215 * Description: 216 * Return 1 if the task is a registered audit daemon, 0 otherwise. 217 */ 218 int auditd_test_task(struct task_struct *task) 219 { 220 int rc; 221 struct auditd_connection *ac; 222 223 rcu_read_lock(); 224 ac = rcu_dereference(auditd_conn); 225 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0); 226 rcu_read_unlock(); 227 228 return rc; 229 } 230 231 /** 232 * audit_ctl_lock - Take the audit control lock 233 */ 234 void audit_ctl_lock(void) 235 { 236 mutex_lock(&audit_cmd_mutex.lock); 237 audit_cmd_mutex.owner = current; 238 } 239 240 /** 241 * audit_ctl_unlock - Drop the audit control lock 242 */ 243 void audit_ctl_unlock(void) 244 { 245 audit_cmd_mutex.owner = NULL; 246 mutex_unlock(&audit_cmd_mutex.lock); 247 } 248 249 /** 250 * audit_ctl_owner_current - Test to see if the current task owns the lock 251 * 252 * Description: 253 * Return true if the current task owns the audit control lock, false if it 254 * doesn't own the lock. 255 */ 256 static bool audit_ctl_owner_current(void) 257 { 258 return (current == audit_cmd_mutex.owner); 259 } 260 261 /** 262 * auditd_pid_vnr - Return the auditd PID relative to the namespace 263 * 264 * Description: 265 * Returns the PID in relation to the namespace, 0 on failure. 266 */ 267 static pid_t auditd_pid_vnr(void) 268 { 269 pid_t pid; 270 const struct auditd_connection *ac; 271 272 rcu_read_lock(); 273 ac = rcu_dereference(auditd_conn); 274 if (!ac || !ac->pid) 275 pid = 0; 276 else 277 pid = pid_vnr(ac->pid); 278 rcu_read_unlock(); 279 280 return pid; 281 } 282 283 /** 284 * audit_get_sk - Return the audit socket for the given network namespace 285 * @net: the destination network namespace 286 * 287 * Description: 288 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure 289 * that a reference is held for the network namespace while the sock is in use. 290 */ 291 static struct sock *audit_get_sk(const struct net *net) 292 { 293 struct audit_net *aunet; 294 295 if (!net) 296 return NULL; 297 298 aunet = net_generic(net, audit_net_id); 299 return aunet->sk; 300 } 301 302 void audit_panic(const char *message) 303 { 304 switch (audit_failure) { 305 case AUDIT_FAIL_SILENT: 306 break; 307 case AUDIT_FAIL_PRINTK: 308 if (printk_ratelimit()) 309 pr_err("%s\n", message); 310 break; 311 case AUDIT_FAIL_PANIC: 312 panic("audit: %s\n", message); 313 break; 314 } 315 } 316 317 static inline int audit_rate_check(void) 318 { 319 static unsigned long last_check = 0; 320 static int messages = 0; 321 static DEFINE_SPINLOCK(lock); 322 unsigned long flags; 323 unsigned long now; 324 unsigned long elapsed; 325 int retval = 0; 326 327 if (!audit_rate_limit) return 1; 328 329 spin_lock_irqsave(&lock, flags); 330 if (++messages < audit_rate_limit) { 331 retval = 1; 332 } else { 333 now = jiffies; 334 elapsed = now - last_check; 335 if (elapsed > HZ) { 336 last_check = now; 337 messages = 0; 338 retval = 1; 339 } 340 } 341 spin_unlock_irqrestore(&lock, flags); 342 343 return retval; 344 } 345 346 /** 347 * audit_log_lost - conditionally log lost audit message event 348 * @message: the message stating reason for lost audit message 349 * 350 * Emit at least 1 message per second, even if audit_rate_check is 351 * throttling. 352 * Always increment the lost messages counter. 353 */ 354 void audit_log_lost(const char *message) 355 { 356 static unsigned long last_msg = 0; 357 static DEFINE_SPINLOCK(lock); 358 unsigned long flags; 359 unsigned long now; 360 int print; 361 362 atomic_inc(&audit_lost); 363 364 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 365 366 if (!print) { 367 spin_lock_irqsave(&lock, flags); 368 now = jiffies; 369 if (now - last_msg > HZ) { 370 print = 1; 371 last_msg = now; 372 } 373 spin_unlock_irqrestore(&lock, flags); 374 } 375 376 if (print) { 377 if (printk_ratelimit()) 378 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 379 atomic_read(&audit_lost), 380 audit_rate_limit, 381 audit_backlog_limit); 382 audit_panic(message); 383 } 384 } 385 386 static int audit_log_config_change(char *function_name, u32 new, u32 old, 387 int allow_changes) 388 { 389 struct audit_buffer *ab; 390 int rc = 0; 391 392 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE); 393 if (unlikely(!ab)) 394 return rc; 395 audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old); 396 audit_log_session_info(ab); 397 rc = audit_log_task_context(ab); 398 if (rc) 399 allow_changes = 0; /* Something weird, deny request */ 400 audit_log_format(ab, " res=%d", allow_changes); 401 audit_log_end(ab); 402 return rc; 403 } 404 405 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 406 { 407 int allow_changes, rc = 0; 408 u32 old = *to_change; 409 410 /* check if we are locked */ 411 if (audit_enabled == AUDIT_LOCKED) 412 allow_changes = 0; 413 else 414 allow_changes = 1; 415 416 if (audit_enabled != AUDIT_OFF) { 417 rc = audit_log_config_change(function_name, new, old, allow_changes); 418 if (rc) 419 allow_changes = 0; 420 } 421 422 /* If we are allowed, make the change */ 423 if (allow_changes == 1) 424 *to_change = new; 425 /* Not allowed, update reason */ 426 else if (rc == 0) 427 rc = -EPERM; 428 return rc; 429 } 430 431 static int audit_set_rate_limit(u32 limit) 432 { 433 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 434 } 435 436 static int audit_set_backlog_limit(u32 limit) 437 { 438 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 439 } 440 441 static int audit_set_backlog_wait_time(u32 timeout) 442 { 443 return audit_do_config_change("audit_backlog_wait_time", 444 &audit_backlog_wait_time, timeout); 445 } 446 447 static int audit_set_enabled(u32 state) 448 { 449 int rc; 450 if (state > AUDIT_LOCKED) 451 return -EINVAL; 452 453 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 454 if (!rc) 455 audit_ever_enabled |= !!state; 456 457 return rc; 458 } 459 460 static int audit_set_failure(u32 state) 461 { 462 if (state != AUDIT_FAIL_SILENT 463 && state != AUDIT_FAIL_PRINTK 464 && state != AUDIT_FAIL_PANIC) 465 return -EINVAL; 466 467 return audit_do_config_change("audit_failure", &audit_failure, state); 468 } 469 470 /** 471 * auditd_conn_free - RCU helper to release an auditd connection struct 472 * @rcu: RCU head 473 * 474 * Description: 475 * Drop any references inside the auditd connection tracking struct and free 476 * the memory. 477 */ 478 static void auditd_conn_free(struct rcu_head *rcu) 479 { 480 struct auditd_connection *ac; 481 482 ac = container_of(rcu, struct auditd_connection, rcu); 483 put_pid(ac->pid); 484 put_net(ac->net); 485 kfree(ac); 486 } 487 488 /** 489 * auditd_set - Set/Reset the auditd connection state 490 * @pid: auditd PID 491 * @portid: auditd netlink portid 492 * @net: auditd network namespace pointer 493 * 494 * Description: 495 * This function will obtain and drop network namespace references as 496 * necessary. Returns zero on success, negative values on failure. 497 */ 498 static int auditd_set(struct pid *pid, u32 portid, struct net *net) 499 { 500 unsigned long flags; 501 struct auditd_connection *ac_old, *ac_new; 502 503 if (!pid || !net) 504 return -EINVAL; 505 506 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL); 507 if (!ac_new) 508 return -ENOMEM; 509 ac_new->pid = get_pid(pid); 510 ac_new->portid = portid; 511 ac_new->net = get_net(net); 512 513 spin_lock_irqsave(&auditd_conn_lock, flags); 514 ac_old = rcu_dereference_protected(auditd_conn, 515 lockdep_is_held(&auditd_conn_lock)); 516 rcu_assign_pointer(auditd_conn, ac_new); 517 spin_unlock_irqrestore(&auditd_conn_lock, flags); 518 519 if (ac_old) 520 call_rcu(&ac_old->rcu, auditd_conn_free); 521 522 return 0; 523 } 524 525 /** 526 * kauditd_printk_skb - Print the audit record to the ring buffer 527 * @skb: audit record 528 * 529 * Whatever the reason, this packet may not make it to the auditd connection 530 * so write it via printk so the information isn't completely lost. 531 */ 532 static void kauditd_printk_skb(struct sk_buff *skb) 533 { 534 struct nlmsghdr *nlh = nlmsg_hdr(skb); 535 char *data = nlmsg_data(nlh); 536 537 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit()) 538 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 539 } 540 541 /** 542 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue 543 * @skb: audit record 544 * 545 * Description: 546 * This should only be used by the kauditd_thread when it fails to flush the 547 * hold queue. 548 */ 549 static void kauditd_rehold_skb(struct sk_buff *skb) 550 { 551 /* put the record back in the queue at the same place */ 552 skb_queue_head(&audit_hold_queue, skb); 553 } 554 555 /** 556 * kauditd_hold_skb - Queue an audit record, waiting for auditd 557 * @skb: audit record 558 * 559 * Description: 560 * Queue the audit record, waiting for an instance of auditd. When this 561 * function is called we haven't given up yet on sending the record, but things 562 * are not looking good. The first thing we want to do is try to write the 563 * record via printk and then see if we want to try and hold on to the record 564 * and queue it, if we have room. If we want to hold on to the record, but we 565 * don't have room, record a record lost message. 566 */ 567 static void kauditd_hold_skb(struct sk_buff *skb) 568 { 569 /* at this point it is uncertain if we will ever send this to auditd so 570 * try to send the message via printk before we go any further */ 571 kauditd_printk_skb(skb); 572 573 /* can we just silently drop the message? */ 574 if (!audit_default) { 575 kfree_skb(skb); 576 return; 577 } 578 579 /* if we have room, queue the message */ 580 if (!audit_backlog_limit || 581 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) { 582 skb_queue_tail(&audit_hold_queue, skb); 583 return; 584 } 585 586 /* we have no other options - drop the message */ 587 audit_log_lost("kauditd hold queue overflow"); 588 kfree_skb(skb); 589 } 590 591 /** 592 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd 593 * @skb: audit record 594 * 595 * Description: 596 * Not as serious as kauditd_hold_skb() as we still have a connected auditd, 597 * but for some reason we are having problems sending it audit records so 598 * queue the given record and attempt to resend. 599 */ 600 static void kauditd_retry_skb(struct sk_buff *skb) 601 { 602 /* NOTE: because records should only live in the retry queue for a 603 * short period of time, before either being sent or moved to the hold 604 * queue, we don't currently enforce a limit on this queue */ 605 skb_queue_tail(&audit_retry_queue, skb); 606 } 607 608 /** 609 * auditd_reset - Disconnect the auditd connection 610 * @ac: auditd connection state 611 * 612 * Description: 613 * Break the auditd/kauditd connection and move all the queued records into the 614 * hold queue in case auditd reconnects. It is important to note that the @ac 615 * pointer should never be dereferenced inside this function as it may be NULL 616 * or invalid, you can only compare the memory address! If @ac is NULL then 617 * the connection will always be reset. 618 */ 619 static void auditd_reset(const struct auditd_connection *ac) 620 { 621 unsigned long flags; 622 struct sk_buff *skb; 623 struct auditd_connection *ac_old; 624 625 /* if it isn't already broken, break the connection */ 626 spin_lock_irqsave(&auditd_conn_lock, flags); 627 ac_old = rcu_dereference_protected(auditd_conn, 628 lockdep_is_held(&auditd_conn_lock)); 629 if (ac && ac != ac_old) { 630 /* someone already registered a new auditd connection */ 631 spin_unlock_irqrestore(&auditd_conn_lock, flags); 632 return; 633 } 634 rcu_assign_pointer(auditd_conn, NULL); 635 spin_unlock_irqrestore(&auditd_conn_lock, flags); 636 637 if (ac_old) 638 call_rcu(&ac_old->rcu, auditd_conn_free); 639 640 /* flush the retry queue to the hold queue, but don't touch the main 641 * queue since we need to process that normally for multicast */ 642 while ((skb = skb_dequeue(&audit_retry_queue))) 643 kauditd_hold_skb(skb); 644 } 645 646 /** 647 * auditd_send_unicast_skb - Send a record via unicast to auditd 648 * @skb: audit record 649 * 650 * Description: 651 * Send a skb to the audit daemon, returns positive/zero values on success and 652 * negative values on failure; in all cases the skb will be consumed by this 653 * function. If the send results in -ECONNREFUSED the connection with auditd 654 * will be reset. This function may sleep so callers should not hold any locks 655 * where this would cause a problem. 656 */ 657 static int auditd_send_unicast_skb(struct sk_buff *skb) 658 { 659 int rc; 660 u32 portid; 661 struct net *net; 662 struct sock *sk; 663 struct auditd_connection *ac; 664 665 /* NOTE: we can't call netlink_unicast while in the RCU section so 666 * take a reference to the network namespace and grab local 667 * copies of the namespace, the sock, and the portid; the 668 * namespace and sock aren't going to go away while we hold a 669 * reference and if the portid does become invalid after the RCU 670 * section netlink_unicast() should safely return an error */ 671 672 rcu_read_lock(); 673 ac = rcu_dereference(auditd_conn); 674 if (!ac) { 675 rcu_read_unlock(); 676 kfree_skb(skb); 677 rc = -ECONNREFUSED; 678 goto err; 679 } 680 net = get_net(ac->net); 681 sk = audit_get_sk(net); 682 portid = ac->portid; 683 rcu_read_unlock(); 684 685 rc = netlink_unicast(sk, skb, portid, 0); 686 put_net(net); 687 if (rc < 0) 688 goto err; 689 690 return rc; 691 692 err: 693 if (ac && rc == -ECONNREFUSED) 694 auditd_reset(ac); 695 return rc; 696 } 697 698 /** 699 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues 700 * @sk: the sending sock 701 * @portid: the netlink destination 702 * @queue: the skb queue to process 703 * @retry_limit: limit on number of netlink unicast failures 704 * @skb_hook: per-skb hook for additional processing 705 * @err_hook: hook called if the skb fails the netlink unicast send 706 * 707 * Description: 708 * Run through the given queue and attempt to send the audit records to auditd, 709 * returns zero on success, negative values on failure. It is up to the caller 710 * to ensure that the @sk is valid for the duration of this function. 711 * 712 */ 713 static int kauditd_send_queue(struct sock *sk, u32 portid, 714 struct sk_buff_head *queue, 715 unsigned int retry_limit, 716 void (*skb_hook)(struct sk_buff *skb), 717 void (*err_hook)(struct sk_buff *skb)) 718 { 719 int rc = 0; 720 struct sk_buff *skb; 721 static unsigned int failed = 0; 722 723 /* NOTE: kauditd_thread takes care of all our locking, we just use 724 * the netlink info passed to us (e.g. sk and portid) */ 725 726 while ((skb = skb_dequeue(queue))) { 727 /* call the skb_hook for each skb we touch */ 728 if (skb_hook) 729 (*skb_hook)(skb); 730 731 /* can we send to anyone via unicast? */ 732 if (!sk) { 733 if (err_hook) 734 (*err_hook)(skb); 735 continue; 736 } 737 738 /* grab an extra skb reference in case of error */ 739 skb_get(skb); 740 rc = netlink_unicast(sk, skb, portid, 0); 741 if (rc < 0) { 742 /* fatal failure for our queue flush attempt? */ 743 if (++failed >= retry_limit || 744 rc == -ECONNREFUSED || rc == -EPERM) { 745 /* yes - error processing for the queue */ 746 sk = NULL; 747 if (err_hook) 748 (*err_hook)(skb); 749 if (!skb_hook) 750 goto out; 751 /* keep processing with the skb_hook */ 752 continue; 753 } else 754 /* no - requeue to preserve ordering */ 755 skb_queue_head(queue, skb); 756 } else { 757 /* it worked - drop the extra reference and continue */ 758 consume_skb(skb); 759 failed = 0; 760 } 761 } 762 763 out: 764 return (rc >= 0 ? 0 : rc); 765 } 766 767 /* 768 * kauditd_send_multicast_skb - Send a record to any multicast listeners 769 * @skb: audit record 770 * 771 * Description: 772 * Write a multicast message to anyone listening in the initial network 773 * namespace. This function doesn't consume an skb as might be expected since 774 * it has to copy it anyways. 775 */ 776 static void kauditd_send_multicast_skb(struct sk_buff *skb) 777 { 778 struct sk_buff *copy; 779 struct sock *sock = audit_get_sk(&init_net); 780 struct nlmsghdr *nlh; 781 782 /* NOTE: we are not taking an additional reference for init_net since 783 * we don't have to worry about it going away */ 784 785 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) 786 return; 787 788 /* 789 * The seemingly wasteful skb_copy() rather than bumping the refcount 790 * using skb_get() is necessary because non-standard mods are made to 791 * the skb by the original kaudit unicast socket send routine. The 792 * existing auditd daemon assumes this breakage. Fixing this would 793 * require co-ordinating a change in the established protocol between 794 * the kaudit kernel subsystem and the auditd userspace code. There is 795 * no reason for new multicast clients to continue with this 796 * non-compliance. 797 */ 798 copy = skb_copy(skb, GFP_KERNEL); 799 if (!copy) 800 return; 801 nlh = nlmsg_hdr(copy); 802 nlh->nlmsg_len = skb->len; 803 804 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL); 805 } 806 807 /** 808 * kauditd_thread - Worker thread to send audit records to userspace 809 * @dummy: unused 810 */ 811 static int kauditd_thread(void *dummy) 812 { 813 int rc; 814 u32 portid = 0; 815 struct net *net = NULL; 816 struct sock *sk = NULL; 817 struct auditd_connection *ac; 818 819 #define UNICAST_RETRIES 5 820 821 set_freezable(); 822 while (!kthread_should_stop()) { 823 /* NOTE: see the lock comments in auditd_send_unicast_skb() */ 824 rcu_read_lock(); 825 ac = rcu_dereference(auditd_conn); 826 if (!ac) { 827 rcu_read_unlock(); 828 goto main_queue; 829 } 830 net = get_net(ac->net); 831 sk = audit_get_sk(net); 832 portid = ac->portid; 833 rcu_read_unlock(); 834 835 /* attempt to flush the hold queue */ 836 rc = kauditd_send_queue(sk, portid, 837 &audit_hold_queue, UNICAST_RETRIES, 838 NULL, kauditd_rehold_skb); 839 if (rc < 0) { 840 sk = NULL; 841 auditd_reset(ac); 842 goto main_queue; 843 } 844 845 /* attempt to flush the retry queue */ 846 rc = kauditd_send_queue(sk, portid, 847 &audit_retry_queue, UNICAST_RETRIES, 848 NULL, kauditd_hold_skb); 849 if (rc < 0) { 850 sk = NULL; 851 auditd_reset(ac); 852 goto main_queue; 853 } 854 855 main_queue: 856 /* process the main queue - do the multicast send and attempt 857 * unicast, dump failed record sends to the retry queue; if 858 * sk == NULL due to previous failures we will just do the 859 * multicast send and move the record to the hold queue */ 860 rc = kauditd_send_queue(sk, portid, &audit_queue, 1, 861 kauditd_send_multicast_skb, 862 (sk ? 863 kauditd_retry_skb : kauditd_hold_skb)); 864 if (ac && rc < 0) 865 auditd_reset(ac); 866 sk = NULL; 867 868 /* drop our netns reference, no auditd sends past this line */ 869 if (net) { 870 put_net(net); 871 net = NULL; 872 } 873 874 /* we have processed all the queues so wake everyone */ 875 wake_up(&audit_backlog_wait); 876 877 /* NOTE: we want to wake up if there is anything on the queue, 878 * regardless of if an auditd is connected, as we need to 879 * do the multicast send and rotate records from the 880 * main queue to the retry/hold queues */ 881 wait_event_freezable(kauditd_wait, 882 (skb_queue_len(&audit_queue) ? 1 : 0)); 883 } 884 885 return 0; 886 } 887 888 int audit_send_list_thread(void *_dest) 889 { 890 struct audit_netlink_list *dest = _dest; 891 struct sk_buff *skb; 892 struct sock *sk = audit_get_sk(dest->net); 893 894 /* wait for parent to finish and send an ACK */ 895 audit_ctl_lock(); 896 audit_ctl_unlock(); 897 898 while ((skb = __skb_dequeue(&dest->q)) != NULL) 899 netlink_unicast(sk, skb, dest->portid, 0); 900 901 put_net(dest->net); 902 kfree(dest); 903 904 return 0; 905 } 906 907 struct sk_buff *audit_make_reply(int seq, int type, int done, 908 int multi, const void *payload, int size) 909 { 910 struct sk_buff *skb; 911 struct nlmsghdr *nlh; 912 void *data; 913 int flags = multi ? NLM_F_MULTI : 0; 914 int t = done ? NLMSG_DONE : type; 915 916 skb = nlmsg_new(size, GFP_KERNEL); 917 if (!skb) 918 return NULL; 919 920 nlh = nlmsg_put(skb, 0, seq, t, size, flags); 921 if (!nlh) 922 goto out_kfree_skb; 923 data = nlmsg_data(nlh); 924 memcpy(data, payload, size); 925 return skb; 926 927 out_kfree_skb: 928 kfree_skb(skb); 929 return NULL; 930 } 931 932 static void audit_free_reply(struct audit_reply *reply) 933 { 934 if (!reply) 935 return; 936 937 kfree_skb(reply->skb); 938 if (reply->net) 939 put_net(reply->net); 940 kfree(reply); 941 } 942 943 static int audit_send_reply_thread(void *arg) 944 { 945 struct audit_reply *reply = (struct audit_reply *)arg; 946 947 audit_ctl_lock(); 948 audit_ctl_unlock(); 949 950 /* Ignore failure. It'll only happen if the sender goes away, 951 because our timeout is set to infinite. */ 952 netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0); 953 reply->skb = NULL; 954 audit_free_reply(reply); 955 return 0; 956 } 957 958 /** 959 * audit_send_reply - send an audit reply message via netlink 960 * @request_skb: skb of request we are replying to (used to target the reply) 961 * @seq: sequence number 962 * @type: audit message type 963 * @done: done (last) flag 964 * @multi: multi-part message flag 965 * @payload: payload data 966 * @size: payload size 967 * 968 * Allocates a skb, builds the netlink message, and sends it to the port id. 969 */ 970 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 971 int multi, const void *payload, int size) 972 { 973 struct task_struct *tsk; 974 struct audit_reply *reply; 975 976 reply = kzalloc(sizeof(*reply), GFP_KERNEL); 977 if (!reply) 978 return; 979 980 reply->skb = audit_make_reply(seq, type, done, multi, payload, size); 981 if (!reply->skb) 982 goto err; 983 reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk)); 984 reply->portid = NETLINK_CB(request_skb).portid; 985 986 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 987 if (IS_ERR(tsk)) 988 goto err; 989 990 return; 991 992 err: 993 audit_free_reply(reply); 994 } 995 996 /* 997 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 998 * control messages. 999 */ 1000 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 1001 { 1002 int err = 0; 1003 1004 /* Only support initial user namespace for now. */ 1005 /* 1006 * We return ECONNREFUSED because it tricks userspace into thinking 1007 * that audit was not configured into the kernel. Lots of users 1008 * configure their PAM stack (because that's what the distro does) 1009 * to reject login if unable to send messages to audit. If we return 1010 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 1011 * configured in and will let login proceed. If we return EPERM 1012 * userspace will reject all logins. This should be removed when we 1013 * support non init namespaces!! 1014 */ 1015 if (current_user_ns() != &init_user_ns) 1016 return -ECONNREFUSED; 1017 1018 switch (msg_type) { 1019 case AUDIT_LIST: 1020 case AUDIT_ADD: 1021 case AUDIT_DEL: 1022 return -EOPNOTSUPP; 1023 case AUDIT_GET: 1024 case AUDIT_SET: 1025 case AUDIT_GET_FEATURE: 1026 case AUDIT_SET_FEATURE: 1027 case AUDIT_LIST_RULES: 1028 case AUDIT_ADD_RULE: 1029 case AUDIT_DEL_RULE: 1030 case AUDIT_SIGNAL_INFO: 1031 case AUDIT_TTY_GET: 1032 case AUDIT_TTY_SET: 1033 case AUDIT_TRIM: 1034 case AUDIT_MAKE_EQUIV: 1035 /* Only support auditd and auditctl in initial pid namespace 1036 * for now. */ 1037 if (task_active_pid_ns(current) != &init_pid_ns) 1038 return -EPERM; 1039 1040 if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) 1041 err = -EPERM; 1042 break; 1043 case AUDIT_USER: 1044 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1045 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1046 if (!netlink_capable(skb, CAP_AUDIT_WRITE)) 1047 err = -EPERM; 1048 break; 1049 default: /* bad msg */ 1050 err = -EINVAL; 1051 } 1052 1053 return err; 1054 } 1055 1056 static void audit_log_common_recv_msg(struct audit_context *context, 1057 struct audit_buffer **ab, u16 msg_type) 1058 { 1059 uid_t uid = from_kuid(&init_user_ns, current_uid()); 1060 pid_t pid = task_tgid_nr(current); 1061 1062 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 1063 *ab = NULL; 1064 return; 1065 } 1066 1067 *ab = audit_log_start(context, GFP_KERNEL, msg_type); 1068 if (unlikely(!*ab)) 1069 return; 1070 audit_log_format(*ab, "pid=%d uid=%u ", pid, uid); 1071 audit_log_session_info(*ab); 1072 audit_log_task_context(*ab); 1073 } 1074 1075 static inline void audit_log_user_recv_msg(struct audit_buffer **ab, 1076 u16 msg_type) 1077 { 1078 audit_log_common_recv_msg(NULL, ab, msg_type); 1079 } 1080 1081 int is_audit_feature_set(int i) 1082 { 1083 return af.features & AUDIT_FEATURE_TO_MASK(i); 1084 } 1085 1086 1087 static int audit_get_feature(struct sk_buff *skb) 1088 { 1089 u32 seq; 1090 1091 seq = nlmsg_hdr(skb)->nlmsg_seq; 1092 1093 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); 1094 1095 return 0; 1096 } 1097 1098 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 1099 u32 old_lock, u32 new_lock, int res) 1100 { 1101 struct audit_buffer *ab; 1102 1103 if (audit_enabled == AUDIT_OFF) 1104 return; 1105 1106 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE); 1107 if (!ab) 1108 return; 1109 audit_log_task_info(ab); 1110 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 1111 audit_feature_names[which], !!old_feature, !!new_feature, 1112 !!old_lock, !!new_lock, res); 1113 audit_log_end(ab); 1114 } 1115 1116 static int audit_set_feature(struct audit_features *uaf) 1117 { 1118 int i; 1119 1120 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); 1121 1122 /* if there is ever a version 2 we should handle that here */ 1123 1124 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1125 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1126 u32 old_feature, new_feature, old_lock, new_lock; 1127 1128 /* if we are not changing this feature, move along */ 1129 if (!(feature & uaf->mask)) 1130 continue; 1131 1132 old_feature = af.features & feature; 1133 new_feature = uaf->features & feature; 1134 new_lock = (uaf->lock | af.lock) & feature; 1135 old_lock = af.lock & feature; 1136 1137 /* are we changing a locked feature? */ 1138 if (old_lock && (new_feature != old_feature)) { 1139 audit_log_feature_change(i, old_feature, new_feature, 1140 old_lock, new_lock, 0); 1141 return -EPERM; 1142 } 1143 } 1144 /* nothing invalid, do the changes */ 1145 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1146 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1147 u32 old_feature, new_feature, old_lock, new_lock; 1148 1149 /* if we are not changing this feature, move along */ 1150 if (!(feature & uaf->mask)) 1151 continue; 1152 1153 old_feature = af.features & feature; 1154 new_feature = uaf->features & feature; 1155 old_lock = af.lock & feature; 1156 new_lock = (uaf->lock | af.lock) & feature; 1157 1158 if (new_feature != old_feature) 1159 audit_log_feature_change(i, old_feature, new_feature, 1160 old_lock, new_lock, 1); 1161 1162 if (new_feature) 1163 af.features |= feature; 1164 else 1165 af.features &= ~feature; 1166 af.lock |= new_lock; 1167 } 1168 1169 return 0; 1170 } 1171 1172 static int audit_replace(struct pid *pid) 1173 { 1174 pid_t pvnr; 1175 struct sk_buff *skb; 1176 1177 pvnr = pid_vnr(pid); 1178 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr)); 1179 if (!skb) 1180 return -ENOMEM; 1181 return auditd_send_unicast_skb(skb); 1182 } 1183 1184 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 1185 { 1186 u32 seq; 1187 void *data; 1188 int data_len; 1189 int err; 1190 struct audit_buffer *ab; 1191 u16 msg_type = nlh->nlmsg_type; 1192 struct audit_sig_info *sig_data; 1193 char *ctx = NULL; 1194 u32 len; 1195 1196 err = audit_netlink_ok(skb, msg_type); 1197 if (err) 1198 return err; 1199 1200 seq = nlh->nlmsg_seq; 1201 data = nlmsg_data(nlh); 1202 data_len = nlmsg_len(nlh); 1203 1204 switch (msg_type) { 1205 case AUDIT_GET: { 1206 struct audit_status s; 1207 memset(&s, 0, sizeof(s)); 1208 s.enabled = audit_enabled; 1209 s.failure = audit_failure; 1210 /* NOTE: use pid_vnr() so the PID is relative to the current 1211 * namespace */ 1212 s.pid = auditd_pid_vnr(); 1213 s.rate_limit = audit_rate_limit; 1214 s.backlog_limit = audit_backlog_limit; 1215 s.lost = atomic_read(&audit_lost); 1216 s.backlog = skb_queue_len(&audit_queue); 1217 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; 1218 s.backlog_wait_time = audit_backlog_wait_time; 1219 s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual); 1220 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 1221 break; 1222 } 1223 case AUDIT_SET: { 1224 struct audit_status s; 1225 memset(&s, 0, sizeof(s)); 1226 /* guard against past and future API changes */ 1227 memcpy(&s, data, min_t(size_t, sizeof(s), data_len)); 1228 if (s.mask & AUDIT_STATUS_ENABLED) { 1229 err = audit_set_enabled(s.enabled); 1230 if (err < 0) 1231 return err; 1232 } 1233 if (s.mask & AUDIT_STATUS_FAILURE) { 1234 err = audit_set_failure(s.failure); 1235 if (err < 0) 1236 return err; 1237 } 1238 if (s.mask & AUDIT_STATUS_PID) { 1239 /* NOTE: we are using the vnr PID functions below 1240 * because the s.pid value is relative to the 1241 * namespace of the caller; at present this 1242 * doesn't matter much since you can really only 1243 * run auditd from the initial pid namespace, but 1244 * something to keep in mind if this changes */ 1245 pid_t new_pid = s.pid; 1246 pid_t auditd_pid; 1247 struct pid *req_pid = task_tgid(current); 1248 1249 /* Sanity check - PID values must match. Setting 1250 * pid to 0 is how auditd ends auditing. */ 1251 if (new_pid && (new_pid != pid_vnr(req_pid))) 1252 return -EINVAL; 1253 1254 /* test the auditd connection */ 1255 audit_replace(req_pid); 1256 1257 auditd_pid = auditd_pid_vnr(); 1258 if (auditd_pid) { 1259 /* replacing a healthy auditd is not allowed */ 1260 if (new_pid) { 1261 audit_log_config_change("audit_pid", 1262 new_pid, auditd_pid, 0); 1263 return -EEXIST; 1264 } 1265 /* only current auditd can unregister itself */ 1266 if (pid_vnr(req_pid) != auditd_pid) { 1267 audit_log_config_change("audit_pid", 1268 new_pid, auditd_pid, 0); 1269 return -EACCES; 1270 } 1271 } 1272 1273 if (new_pid) { 1274 /* register a new auditd connection */ 1275 err = auditd_set(req_pid, 1276 NETLINK_CB(skb).portid, 1277 sock_net(NETLINK_CB(skb).sk)); 1278 if (audit_enabled != AUDIT_OFF) 1279 audit_log_config_change("audit_pid", 1280 new_pid, 1281 auditd_pid, 1282 err ? 0 : 1); 1283 if (err) 1284 return err; 1285 1286 /* try to process any backlog */ 1287 wake_up_interruptible(&kauditd_wait); 1288 } else { 1289 if (audit_enabled != AUDIT_OFF) 1290 audit_log_config_change("audit_pid", 1291 new_pid, 1292 auditd_pid, 1); 1293 1294 /* unregister the auditd connection */ 1295 auditd_reset(NULL); 1296 } 1297 } 1298 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 1299 err = audit_set_rate_limit(s.rate_limit); 1300 if (err < 0) 1301 return err; 1302 } 1303 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 1304 err = audit_set_backlog_limit(s.backlog_limit); 1305 if (err < 0) 1306 return err; 1307 } 1308 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 1309 if (sizeof(s) > (size_t)nlh->nlmsg_len) 1310 return -EINVAL; 1311 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 1312 return -EINVAL; 1313 err = audit_set_backlog_wait_time(s.backlog_wait_time); 1314 if (err < 0) 1315 return err; 1316 } 1317 if (s.mask == AUDIT_STATUS_LOST) { 1318 u32 lost = atomic_xchg(&audit_lost, 0); 1319 1320 audit_log_config_change("lost", 0, lost, 1); 1321 return lost; 1322 } 1323 if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) { 1324 u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0); 1325 1326 audit_log_config_change("backlog_wait_time_actual", 0, actual, 1); 1327 return actual; 1328 } 1329 break; 1330 } 1331 case AUDIT_GET_FEATURE: 1332 err = audit_get_feature(skb); 1333 if (err) 1334 return err; 1335 break; 1336 case AUDIT_SET_FEATURE: 1337 if (data_len < sizeof(struct audit_features)) 1338 return -EINVAL; 1339 err = audit_set_feature(data); 1340 if (err) 1341 return err; 1342 break; 1343 case AUDIT_USER: 1344 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1345 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1346 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 1347 return 0; 1348 /* exit early if there isn't at least one character to print */ 1349 if (data_len < 2) 1350 return -EINVAL; 1351 1352 err = audit_filter(msg_type, AUDIT_FILTER_USER); 1353 if (err == 1) { /* match or error */ 1354 char *str = data; 1355 1356 err = 0; 1357 if (msg_type == AUDIT_USER_TTY) { 1358 err = tty_audit_push(); 1359 if (err) 1360 break; 1361 } 1362 audit_log_user_recv_msg(&ab, msg_type); 1363 if (msg_type != AUDIT_USER_TTY) { 1364 /* ensure NULL termination */ 1365 str[data_len - 1] = '\0'; 1366 audit_log_format(ab, " msg='%.*s'", 1367 AUDIT_MESSAGE_TEXT_MAX, 1368 str); 1369 } else { 1370 audit_log_format(ab, " data="); 1371 if (data_len > 0 && str[data_len - 1] == '\0') 1372 data_len--; 1373 audit_log_n_untrustedstring(ab, str, data_len); 1374 } 1375 audit_log_end(ab); 1376 } 1377 break; 1378 case AUDIT_ADD_RULE: 1379 case AUDIT_DEL_RULE: 1380 if (data_len < sizeof(struct audit_rule_data)) 1381 return -EINVAL; 1382 if (audit_enabled == AUDIT_LOCKED) { 1383 audit_log_common_recv_msg(audit_context(), &ab, 1384 AUDIT_CONFIG_CHANGE); 1385 audit_log_format(ab, " op=%s audit_enabled=%d res=0", 1386 msg_type == AUDIT_ADD_RULE ? 1387 "add_rule" : "remove_rule", 1388 audit_enabled); 1389 audit_log_end(ab); 1390 return -EPERM; 1391 } 1392 err = audit_rule_change(msg_type, seq, data, data_len); 1393 break; 1394 case AUDIT_LIST_RULES: 1395 err = audit_list_rules_send(skb, seq); 1396 break; 1397 case AUDIT_TRIM: 1398 audit_trim_trees(); 1399 audit_log_common_recv_msg(audit_context(), &ab, 1400 AUDIT_CONFIG_CHANGE); 1401 audit_log_format(ab, " op=trim res=1"); 1402 audit_log_end(ab); 1403 break; 1404 case AUDIT_MAKE_EQUIV: { 1405 void *bufp = data; 1406 u32 sizes[2]; 1407 size_t msglen = data_len; 1408 char *old, *new; 1409 1410 err = -EINVAL; 1411 if (msglen < 2 * sizeof(u32)) 1412 break; 1413 memcpy(sizes, bufp, 2 * sizeof(u32)); 1414 bufp += 2 * sizeof(u32); 1415 msglen -= 2 * sizeof(u32); 1416 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 1417 if (IS_ERR(old)) { 1418 err = PTR_ERR(old); 1419 break; 1420 } 1421 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 1422 if (IS_ERR(new)) { 1423 err = PTR_ERR(new); 1424 kfree(old); 1425 break; 1426 } 1427 /* OK, here comes... */ 1428 err = audit_tag_tree(old, new); 1429 1430 audit_log_common_recv_msg(audit_context(), &ab, 1431 AUDIT_CONFIG_CHANGE); 1432 audit_log_format(ab, " op=make_equiv old="); 1433 audit_log_untrustedstring(ab, old); 1434 audit_log_format(ab, " new="); 1435 audit_log_untrustedstring(ab, new); 1436 audit_log_format(ab, " res=%d", !err); 1437 audit_log_end(ab); 1438 kfree(old); 1439 kfree(new); 1440 break; 1441 } 1442 case AUDIT_SIGNAL_INFO: 1443 len = 0; 1444 if (audit_sig_sid) { 1445 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 1446 if (err) 1447 return err; 1448 } 1449 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 1450 if (!sig_data) { 1451 if (audit_sig_sid) 1452 security_release_secctx(ctx, len); 1453 return -ENOMEM; 1454 } 1455 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 1456 sig_data->pid = audit_sig_pid; 1457 if (audit_sig_sid) { 1458 memcpy(sig_data->ctx, ctx, len); 1459 security_release_secctx(ctx, len); 1460 } 1461 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 1462 sig_data, sizeof(*sig_data) + len); 1463 kfree(sig_data); 1464 break; 1465 case AUDIT_TTY_GET: { 1466 struct audit_tty_status s; 1467 unsigned int t; 1468 1469 t = READ_ONCE(current->signal->audit_tty); 1470 s.enabled = t & AUDIT_TTY_ENABLE; 1471 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1472 1473 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1474 break; 1475 } 1476 case AUDIT_TTY_SET: { 1477 struct audit_tty_status s, old; 1478 struct audit_buffer *ab; 1479 unsigned int t; 1480 1481 memset(&s, 0, sizeof(s)); 1482 /* guard against past and future API changes */ 1483 memcpy(&s, data, min_t(size_t, sizeof(s), data_len)); 1484 /* check if new data is valid */ 1485 if ((s.enabled != 0 && s.enabled != 1) || 1486 (s.log_passwd != 0 && s.log_passwd != 1)) 1487 err = -EINVAL; 1488 1489 if (err) 1490 t = READ_ONCE(current->signal->audit_tty); 1491 else { 1492 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD); 1493 t = xchg(¤t->signal->audit_tty, t); 1494 } 1495 old.enabled = t & AUDIT_TTY_ENABLE; 1496 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1497 1498 audit_log_common_recv_msg(audit_context(), &ab, 1499 AUDIT_CONFIG_CHANGE); 1500 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1501 " old-log_passwd=%d new-log_passwd=%d res=%d", 1502 old.enabled, s.enabled, old.log_passwd, 1503 s.log_passwd, !err); 1504 audit_log_end(ab); 1505 break; 1506 } 1507 default: 1508 err = -EINVAL; 1509 break; 1510 } 1511 1512 return err < 0 ? err : 0; 1513 } 1514 1515 /** 1516 * audit_receive - receive messages from a netlink control socket 1517 * @skb: the message buffer 1518 * 1519 * Parse the provided skb and deal with any messages that may be present, 1520 * malformed skbs are discarded. 1521 */ 1522 static void audit_receive(struct sk_buff *skb) 1523 { 1524 struct nlmsghdr *nlh; 1525 /* 1526 * len MUST be signed for nlmsg_next to be able to dec it below 0 1527 * if the nlmsg_len was not aligned 1528 */ 1529 int len; 1530 int err; 1531 1532 nlh = nlmsg_hdr(skb); 1533 len = skb->len; 1534 1535 audit_ctl_lock(); 1536 while (nlmsg_ok(nlh, len)) { 1537 err = audit_receive_msg(skb, nlh); 1538 /* if err or if this message says it wants a response */ 1539 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 1540 netlink_ack(skb, nlh, err, NULL); 1541 1542 nlh = nlmsg_next(nlh, &len); 1543 } 1544 audit_ctl_unlock(); 1545 } 1546 1547 /* Log information about who is connecting to the audit multicast socket */ 1548 static void audit_log_multicast(int group, const char *op, int err) 1549 { 1550 const struct cred *cred; 1551 struct tty_struct *tty; 1552 char comm[sizeof(current->comm)]; 1553 struct audit_buffer *ab; 1554 1555 if (!audit_enabled) 1556 return; 1557 1558 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER); 1559 if (!ab) 1560 return; 1561 1562 cred = current_cred(); 1563 tty = audit_get_tty(); 1564 audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u", 1565 task_pid_nr(current), 1566 from_kuid(&init_user_ns, cred->uid), 1567 from_kuid(&init_user_ns, audit_get_loginuid(current)), 1568 tty ? tty_name(tty) : "(none)", 1569 audit_get_sessionid(current)); 1570 audit_put_tty(tty); 1571 audit_log_task_context(ab); /* subj= */ 1572 audit_log_format(ab, " comm="); 1573 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 1574 audit_log_d_path_exe(ab, current->mm); /* exe= */ 1575 audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err); 1576 audit_log_end(ab); 1577 } 1578 1579 /* Run custom bind function on netlink socket group connect or bind requests. */ 1580 static int audit_multicast_bind(struct net *net, int group) 1581 { 1582 int err = 0; 1583 1584 if (!capable(CAP_AUDIT_READ)) 1585 err = -EPERM; 1586 audit_log_multicast(group, "connect", err); 1587 return err; 1588 } 1589 1590 static void audit_multicast_unbind(struct net *net, int group) 1591 { 1592 audit_log_multicast(group, "disconnect", 0); 1593 } 1594 1595 static int __net_init audit_net_init(struct net *net) 1596 { 1597 struct netlink_kernel_cfg cfg = { 1598 .input = audit_receive, 1599 .bind = audit_multicast_bind, 1600 .unbind = audit_multicast_unbind, 1601 .flags = NL_CFG_F_NONROOT_RECV, 1602 .groups = AUDIT_NLGRP_MAX, 1603 }; 1604 1605 struct audit_net *aunet = net_generic(net, audit_net_id); 1606 1607 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1608 if (aunet->sk == NULL) { 1609 audit_panic("cannot initialize netlink socket in namespace"); 1610 return -ENOMEM; 1611 } 1612 aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1613 1614 return 0; 1615 } 1616 1617 static void __net_exit audit_net_exit(struct net *net) 1618 { 1619 struct audit_net *aunet = net_generic(net, audit_net_id); 1620 1621 /* NOTE: you would think that we would want to check the auditd 1622 * connection and potentially reset it here if it lives in this 1623 * namespace, but since the auditd connection tracking struct holds a 1624 * reference to this namespace (see auditd_set()) we are only ever 1625 * going to get here after that connection has been released */ 1626 1627 netlink_kernel_release(aunet->sk); 1628 } 1629 1630 static struct pernet_operations audit_net_ops __net_initdata = { 1631 .init = audit_net_init, 1632 .exit = audit_net_exit, 1633 .id = &audit_net_id, 1634 .size = sizeof(struct audit_net), 1635 }; 1636 1637 /* Initialize audit support at boot time. */ 1638 static int __init audit_init(void) 1639 { 1640 int i; 1641 1642 if (audit_initialized == AUDIT_DISABLED) 1643 return 0; 1644 1645 audit_buffer_cache = kmem_cache_create("audit_buffer", 1646 sizeof(struct audit_buffer), 1647 0, SLAB_PANIC, NULL); 1648 1649 skb_queue_head_init(&audit_queue); 1650 skb_queue_head_init(&audit_retry_queue); 1651 skb_queue_head_init(&audit_hold_queue); 1652 1653 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1654 INIT_LIST_HEAD(&audit_inode_hash[i]); 1655 1656 mutex_init(&audit_cmd_mutex.lock); 1657 audit_cmd_mutex.owner = NULL; 1658 1659 pr_info("initializing netlink subsys (%s)\n", 1660 audit_default ? "enabled" : "disabled"); 1661 register_pernet_subsys(&audit_net_ops); 1662 1663 audit_initialized = AUDIT_INITIALIZED; 1664 1665 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 1666 if (IS_ERR(kauditd_task)) { 1667 int err = PTR_ERR(kauditd_task); 1668 panic("audit: failed to start the kauditd thread (%d)\n", err); 1669 } 1670 1671 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, 1672 "state=initialized audit_enabled=%u res=1", 1673 audit_enabled); 1674 1675 return 0; 1676 } 1677 postcore_initcall(audit_init); 1678 1679 /* 1680 * Process kernel command-line parameter at boot time. 1681 * audit={0|off} or audit={1|on}. 1682 */ 1683 static int __init audit_enable(char *str) 1684 { 1685 if (!strcasecmp(str, "off") || !strcmp(str, "0")) 1686 audit_default = AUDIT_OFF; 1687 else if (!strcasecmp(str, "on") || !strcmp(str, "1")) 1688 audit_default = AUDIT_ON; 1689 else { 1690 pr_err("audit: invalid 'audit' parameter value (%s)\n", str); 1691 audit_default = AUDIT_ON; 1692 } 1693 1694 if (audit_default == AUDIT_OFF) 1695 audit_initialized = AUDIT_DISABLED; 1696 if (audit_set_enabled(audit_default)) 1697 pr_err("audit: error setting audit state (%d)\n", 1698 audit_default); 1699 1700 pr_info("%s\n", audit_default ? 1701 "enabled (after initialization)" : "disabled (until reboot)"); 1702 1703 return 1; 1704 } 1705 __setup("audit=", audit_enable); 1706 1707 /* Process kernel command-line parameter at boot time. 1708 * audit_backlog_limit=<n> */ 1709 static int __init audit_backlog_limit_set(char *str) 1710 { 1711 u32 audit_backlog_limit_arg; 1712 1713 pr_info("audit_backlog_limit: "); 1714 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1715 pr_cont("using default of %u, unable to parse %s\n", 1716 audit_backlog_limit, str); 1717 return 1; 1718 } 1719 1720 audit_backlog_limit = audit_backlog_limit_arg; 1721 pr_cont("%d\n", audit_backlog_limit); 1722 1723 return 1; 1724 } 1725 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1726 1727 static void audit_buffer_free(struct audit_buffer *ab) 1728 { 1729 if (!ab) 1730 return; 1731 1732 kfree_skb(ab->skb); 1733 kmem_cache_free(audit_buffer_cache, ab); 1734 } 1735 1736 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx, 1737 gfp_t gfp_mask, int type) 1738 { 1739 struct audit_buffer *ab; 1740 1741 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask); 1742 if (!ab) 1743 return NULL; 1744 1745 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1746 if (!ab->skb) 1747 goto err; 1748 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0)) 1749 goto err; 1750 1751 ab->ctx = ctx; 1752 ab->gfp_mask = gfp_mask; 1753 1754 return ab; 1755 1756 err: 1757 audit_buffer_free(ab); 1758 return NULL; 1759 } 1760 1761 /** 1762 * audit_serial - compute a serial number for the audit record 1763 * 1764 * Compute a serial number for the audit record. Audit records are 1765 * written to user-space as soon as they are generated, so a complete 1766 * audit record may be written in several pieces. The timestamp of the 1767 * record and this serial number are used by the user-space tools to 1768 * determine which pieces belong to the same audit record. The 1769 * (timestamp,serial) tuple is unique for each syscall and is live from 1770 * syscall entry to syscall exit. 1771 * 1772 * NOTE: Another possibility is to store the formatted records off the 1773 * audit context (for those records that have a context), and emit them 1774 * all at syscall exit. However, this could delay the reporting of 1775 * significant errors until syscall exit (or never, if the system 1776 * halts). 1777 */ 1778 unsigned int audit_serial(void) 1779 { 1780 static atomic_t serial = ATOMIC_INIT(0); 1781 1782 return atomic_inc_return(&serial); 1783 } 1784 1785 static inline void audit_get_stamp(struct audit_context *ctx, 1786 struct timespec64 *t, unsigned int *serial) 1787 { 1788 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1789 ktime_get_coarse_real_ts64(t); 1790 *serial = audit_serial(); 1791 } 1792 } 1793 1794 /** 1795 * audit_log_start - obtain an audit buffer 1796 * @ctx: audit_context (may be NULL) 1797 * @gfp_mask: type of allocation 1798 * @type: audit message type 1799 * 1800 * Returns audit_buffer pointer on success or NULL on error. 1801 * 1802 * Obtain an audit buffer. This routine does locking to obtain the 1803 * audit buffer, but then no locking is required for calls to 1804 * audit_log_*format. If the task (ctx) is a task that is currently in a 1805 * syscall, then the syscall is marked as auditable and an audit record 1806 * will be written at syscall exit. If there is no associated task, then 1807 * task context (ctx) should be NULL. 1808 */ 1809 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1810 int type) 1811 { 1812 struct audit_buffer *ab; 1813 struct timespec64 t; 1814 unsigned int serial; 1815 1816 if (audit_initialized != AUDIT_INITIALIZED) 1817 return NULL; 1818 1819 if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE))) 1820 return NULL; 1821 1822 /* NOTE: don't ever fail/sleep on these two conditions: 1823 * 1. auditd generated record - since we need auditd to drain the 1824 * queue; also, when we are checking for auditd, compare PIDs using 1825 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg() 1826 * using a PID anchored in the caller's namespace 1827 * 2. generator holding the audit_cmd_mutex - we don't want to block 1828 * while holding the mutex */ 1829 if (!(auditd_test_task(current) || audit_ctl_owner_current())) { 1830 long stime = audit_backlog_wait_time; 1831 1832 while (audit_backlog_limit && 1833 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1834 /* wake kauditd to try and flush the queue */ 1835 wake_up_interruptible(&kauditd_wait); 1836 1837 /* sleep if we are allowed and we haven't exhausted our 1838 * backlog wait limit */ 1839 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) { 1840 long rtime = stime; 1841 1842 DECLARE_WAITQUEUE(wait, current); 1843 1844 add_wait_queue_exclusive(&audit_backlog_wait, 1845 &wait); 1846 set_current_state(TASK_UNINTERRUPTIBLE); 1847 stime = schedule_timeout(rtime); 1848 atomic_add(rtime - stime, &audit_backlog_wait_time_actual); 1849 remove_wait_queue(&audit_backlog_wait, &wait); 1850 } else { 1851 if (audit_rate_check() && printk_ratelimit()) 1852 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1853 skb_queue_len(&audit_queue), 1854 audit_backlog_limit); 1855 audit_log_lost("backlog limit exceeded"); 1856 return NULL; 1857 } 1858 } 1859 } 1860 1861 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1862 if (!ab) { 1863 audit_log_lost("out of memory in audit_log_start"); 1864 return NULL; 1865 } 1866 1867 audit_get_stamp(ab->ctx, &t, &serial); 1868 /* cancel dummy context to enable supporting records */ 1869 if (ctx) 1870 ctx->dummy = 0; 1871 audit_log_format(ab, "audit(%llu.%03lu:%u): ", 1872 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial); 1873 1874 return ab; 1875 } 1876 1877 /** 1878 * audit_expand - expand skb in the audit buffer 1879 * @ab: audit_buffer 1880 * @extra: space to add at tail of the skb 1881 * 1882 * Returns 0 (no space) on failed expansion, or available space if 1883 * successful. 1884 */ 1885 static inline int audit_expand(struct audit_buffer *ab, int extra) 1886 { 1887 struct sk_buff *skb = ab->skb; 1888 int oldtail = skb_tailroom(skb); 1889 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1890 int newtail = skb_tailroom(skb); 1891 1892 if (ret < 0) { 1893 audit_log_lost("out of memory in audit_expand"); 1894 return 0; 1895 } 1896 1897 skb->truesize += newtail - oldtail; 1898 return newtail; 1899 } 1900 1901 /* 1902 * Format an audit message into the audit buffer. If there isn't enough 1903 * room in the audit buffer, more room will be allocated and vsnprint 1904 * will be called a second time. Currently, we assume that a printk 1905 * can't format message larger than 1024 bytes, so we don't either. 1906 */ 1907 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1908 va_list args) 1909 { 1910 int len, avail; 1911 struct sk_buff *skb; 1912 va_list args2; 1913 1914 if (!ab) 1915 return; 1916 1917 BUG_ON(!ab->skb); 1918 skb = ab->skb; 1919 avail = skb_tailroom(skb); 1920 if (avail == 0) { 1921 avail = audit_expand(ab, AUDIT_BUFSIZ); 1922 if (!avail) 1923 goto out; 1924 } 1925 va_copy(args2, args); 1926 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1927 if (len >= avail) { 1928 /* The printk buffer is 1024 bytes long, so if we get 1929 * here and AUDIT_BUFSIZ is at least 1024, then we can 1930 * log everything that printk could have logged. */ 1931 avail = audit_expand(ab, 1932 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1933 if (!avail) 1934 goto out_va_end; 1935 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1936 } 1937 if (len > 0) 1938 skb_put(skb, len); 1939 out_va_end: 1940 va_end(args2); 1941 out: 1942 return; 1943 } 1944 1945 /** 1946 * audit_log_format - format a message into the audit buffer. 1947 * @ab: audit_buffer 1948 * @fmt: format string 1949 * @...: optional parameters matching @fmt string 1950 * 1951 * All the work is done in audit_log_vformat. 1952 */ 1953 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1954 { 1955 va_list args; 1956 1957 if (!ab) 1958 return; 1959 va_start(args, fmt); 1960 audit_log_vformat(ab, fmt, args); 1961 va_end(args); 1962 } 1963 1964 /** 1965 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb 1966 * @ab: the audit_buffer 1967 * @buf: buffer to convert to hex 1968 * @len: length of @buf to be converted 1969 * 1970 * No return value; failure to expand is silently ignored. 1971 * 1972 * This function will take the passed buf and convert it into a string of 1973 * ascii hex digits. The new string is placed onto the skb. 1974 */ 1975 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1976 size_t len) 1977 { 1978 int i, avail, new_len; 1979 unsigned char *ptr; 1980 struct sk_buff *skb; 1981 1982 if (!ab) 1983 return; 1984 1985 BUG_ON(!ab->skb); 1986 skb = ab->skb; 1987 avail = skb_tailroom(skb); 1988 new_len = len<<1; 1989 if (new_len >= avail) { 1990 /* Round the buffer request up to the next multiple */ 1991 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1992 avail = audit_expand(ab, new_len); 1993 if (!avail) 1994 return; 1995 } 1996 1997 ptr = skb_tail_pointer(skb); 1998 for (i = 0; i < len; i++) 1999 ptr = hex_byte_pack_upper(ptr, buf[i]); 2000 *ptr = 0; 2001 skb_put(skb, len << 1); /* new string is twice the old string */ 2002 } 2003 2004 /* 2005 * Format a string of no more than slen characters into the audit buffer, 2006 * enclosed in quote marks. 2007 */ 2008 void audit_log_n_string(struct audit_buffer *ab, const char *string, 2009 size_t slen) 2010 { 2011 int avail, new_len; 2012 unsigned char *ptr; 2013 struct sk_buff *skb; 2014 2015 if (!ab) 2016 return; 2017 2018 BUG_ON(!ab->skb); 2019 skb = ab->skb; 2020 avail = skb_tailroom(skb); 2021 new_len = slen + 3; /* enclosing quotes + null terminator */ 2022 if (new_len > avail) { 2023 avail = audit_expand(ab, new_len); 2024 if (!avail) 2025 return; 2026 } 2027 ptr = skb_tail_pointer(skb); 2028 *ptr++ = '"'; 2029 memcpy(ptr, string, slen); 2030 ptr += slen; 2031 *ptr++ = '"'; 2032 *ptr = 0; 2033 skb_put(skb, slen + 2); /* don't include null terminator */ 2034 } 2035 2036 /** 2037 * audit_string_contains_control - does a string need to be logged in hex 2038 * @string: string to be checked 2039 * @len: max length of the string to check 2040 */ 2041 bool audit_string_contains_control(const char *string, size_t len) 2042 { 2043 const unsigned char *p; 2044 for (p = string; p < (const unsigned char *)string + len; p++) { 2045 if (*p == '"' || *p < 0x21 || *p > 0x7e) 2046 return true; 2047 } 2048 return false; 2049 } 2050 2051 /** 2052 * audit_log_n_untrustedstring - log a string that may contain random characters 2053 * @ab: audit_buffer 2054 * @len: length of string (not including trailing null) 2055 * @string: string to be logged 2056 * 2057 * This code will escape a string that is passed to it if the string 2058 * contains a control character, unprintable character, double quote mark, 2059 * or a space. Unescaped strings will start and end with a double quote mark. 2060 * Strings that are escaped are printed in hex (2 digits per char). 2061 * 2062 * The caller specifies the number of characters in the string to log, which may 2063 * or may not be the entire string. 2064 */ 2065 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 2066 size_t len) 2067 { 2068 if (audit_string_contains_control(string, len)) 2069 audit_log_n_hex(ab, string, len); 2070 else 2071 audit_log_n_string(ab, string, len); 2072 } 2073 2074 /** 2075 * audit_log_untrustedstring - log a string that may contain random characters 2076 * @ab: audit_buffer 2077 * @string: string to be logged 2078 * 2079 * Same as audit_log_n_untrustedstring(), except that strlen is used to 2080 * determine string length. 2081 */ 2082 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 2083 { 2084 audit_log_n_untrustedstring(ab, string, strlen(string)); 2085 } 2086 2087 /* This is a helper-function to print the escaped d_path */ 2088 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 2089 const struct path *path) 2090 { 2091 char *p, *pathname; 2092 2093 if (prefix) 2094 audit_log_format(ab, "%s", prefix); 2095 2096 /* We will allow 11 spaces for ' (deleted)' to be appended */ 2097 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 2098 if (!pathname) { 2099 audit_log_format(ab, "\"<no_memory>\""); 2100 return; 2101 } 2102 p = d_path(path, pathname, PATH_MAX+11); 2103 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 2104 /* FIXME: can we save some information here? */ 2105 audit_log_format(ab, "\"<too_long>\""); 2106 } else 2107 audit_log_untrustedstring(ab, p); 2108 kfree(pathname); 2109 } 2110 2111 void audit_log_session_info(struct audit_buffer *ab) 2112 { 2113 unsigned int sessionid = audit_get_sessionid(current); 2114 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 2115 2116 audit_log_format(ab, "auid=%u ses=%u", auid, sessionid); 2117 } 2118 2119 void audit_log_key(struct audit_buffer *ab, char *key) 2120 { 2121 audit_log_format(ab, " key="); 2122 if (key) 2123 audit_log_untrustedstring(ab, key); 2124 else 2125 audit_log_format(ab, "(null)"); 2126 } 2127 2128 int audit_log_task_context(struct audit_buffer *ab) 2129 { 2130 char *ctx = NULL; 2131 unsigned len; 2132 int error; 2133 u32 sid; 2134 2135 security_task_getsecid(current, &sid); 2136 if (!sid) 2137 return 0; 2138 2139 error = security_secid_to_secctx(sid, &ctx, &len); 2140 if (error) { 2141 if (error != -EINVAL) 2142 goto error_path; 2143 return 0; 2144 } 2145 2146 audit_log_format(ab, " subj=%s", ctx); 2147 security_release_secctx(ctx, len); 2148 return 0; 2149 2150 error_path: 2151 audit_panic("error in audit_log_task_context"); 2152 return error; 2153 } 2154 EXPORT_SYMBOL(audit_log_task_context); 2155 2156 void audit_log_d_path_exe(struct audit_buffer *ab, 2157 struct mm_struct *mm) 2158 { 2159 struct file *exe_file; 2160 2161 if (!mm) 2162 goto out_null; 2163 2164 exe_file = get_mm_exe_file(mm); 2165 if (!exe_file) 2166 goto out_null; 2167 2168 audit_log_d_path(ab, " exe=", &exe_file->f_path); 2169 fput(exe_file); 2170 return; 2171 out_null: 2172 audit_log_format(ab, " exe=(null)"); 2173 } 2174 2175 struct tty_struct *audit_get_tty(void) 2176 { 2177 struct tty_struct *tty = NULL; 2178 unsigned long flags; 2179 2180 spin_lock_irqsave(¤t->sighand->siglock, flags); 2181 if (current->signal) 2182 tty = tty_kref_get(current->signal->tty); 2183 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 2184 return tty; 2185 } 2186 2187 void audit_put_tty(struct tty_struct *tty) 2188 { 2189 tty_kref_put(tty); 2190 } 2191 2192 void audit_log_task_info(struct audit_buffer *ab) 2193 { 2194 const struct cred *cred; 2195 char comm[sizeof(current->comm)]; 2196 struct tty_struct *tty; 2197 2198 if (!ab) 2199 return; 2200 2201 cred = current_cred(); 2202 tty = audit_get_tty(); 2203 audit_log_format(ab, 2204 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 2205 " euid=%u suid=%u fsuid=%u" 2206 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 2207 task_ppid_nr(current), 2208 task_tgid_nr(current), 2209 from_kuid(&init_user_ns, audit_get_loginuid(current)), 2210 from_kuid(&init_user_ns, cred->uid), 2211 from_kgid(&init_user_ns, cred->gid), 2212 from_kuid(&init_user_ns, cred->euid), 2213 from_kuid(&init_user_ns, cred->suid), 2214 from_kuid(&init_user_ns, cred->fsuid), 2215 from_kgid(&init_user_ns, cred->egid), 2216 from_kgid(&init_user_ns, cred->sgid), 2217 from_kgid(&init_user_ns, cred->fsgid), 2218 tty ? tty_name(tty) : "(none)", 2219 audit_get_sessionid(current)); 2220 audit_put_tty(tty); 2221 audit_log_format(ab, " comm="); 2222 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2223 audit_log_d_path_exe(ab, current->mm); 2224 audit_log_task_context(ab); 2225 } 2226 EXPORT_SYMBOL(audit_log_task_info); 2227 2228 /** 2229 * audit_log_path_denied - report a path restriction denial 2230 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc) 2231 * @operation: specific operation name 2232 */ 2233 void audit_log_path_denied(int type, const char *operation) 2234 { 2235 struct audit_buffer *ab; 2236 2237 if (!audit_enabled || audit_dummy_context()) 2238 return; 2239 2240 /* Generate log with subject, operation, outcome. */ 2241 ab = audit_log_start(audit_context(), GFP_KERNEL, type); 2242 if (!ab) 2243 return; 2244 audit_log_format(ab, "op=%s", operation); 2245 audit_log_task_info(ab); 2246 audit_log_format(ab, " res=0"); 2247 audit_log_end(ab); 2248 } 2249 2250 /* global counter which is incremented every time something logs in */ 2251 static atomic_t session_id = ATOMIC_INIT(0); 2252 2253 static int audit_set_loginuid_perm(kuid_t loginuid) 2254 { 2255 /* if we are unset, we don't need privs */ 2256 if (!audit_loginuid_set(current)) 2257 return 0; 2258 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/ 2259 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE)) 2260 return -EPERM; 2261 /* it is set, you need permission */ 2262 if (!capable(CAP_AUDIT_CONTROL)) 2263 return -EPERM; 2264 /* reject if this is not an unset and we don't allow that */ 2265 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) 2266 && uid_valid(loginuid)) 2267 return -EPERM; 2268 return 0; 2269 } 2270 2271 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid, 2272 unsigned int oldsessionid, 2273 unsigned int sessionid, int rc) 2274 { 2275 struct audit_buffer *ab; 2276 uid_t uid, oldloginuid, loginuid; 2277 struct tty_struct *tty; 2278 2279 if (!audit_enabled) 2280 return; 2281 2282 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN); 2283 if (!ab) 2284 return; 2285 2286 uid = from_kuid(&init_user_ns, task_uid(current)); 2287 oldloginuid = from_kuid(&init_user_ns, koldloginuid); 2288 loginuid = from_kuid(&init_user_ns, kloginuid); 2289 tty = audit_get_tty(); 2290 2291 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid); 2292 audit_log_task_context(ab); 2293 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d", 2294 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)", 2295 oldsessionid, sessionid, !rc); 2296 audit_put_tty(tty); 2297 audit_log_end(ab); 2298 } 2299 2300 /** 2301 * audit_set_loginuid - set current task's loginuid 2302 * @loginuid: loginuid value 2303 * 2304 * Returns 0. 2305 * 2306 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2307 */ 2308 int audit_set_loginuid(kuid_t loginuid) 2309 { 2310 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET; 2311 kuid_t oldloginuid; 2312 int rc; 2313 2314 oldloginuid = audit_get_loginuid(current); 2315 oldsessionid = audit_get_sessionid(current); 2316 2317 rc = audit_set_loginuid_perm(loginuid); 2318 if (rc) 2319 goto out; 2320 2321 /* are we setting or clearing? */ 2322 if (uid_valid(loginuid)) { 2323 sessionid = (unsigned int)atomic_inc_return(&session_id); 2324 if (unlikely(sessionid == AUDIT_SID_UNSET)) 2325 sessionid = (unsigned int)atomic_inc_return(&session_id); 2326 } 2327 2328 current->sessionid = sessionid; 2329 current->loginuid = loginuid; 2330 out: 2331 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc); 2332 return rc; 2333 } 2334 2335 /** 2336 * audit_signal_info - record signal info for shutting down audit subsystem 2337 * @sig: signal value 2338 * @t: task being signaled 2339 * 2340 * If the audit subsystem is being terminated, record the task (pid) 2341 * and uid that is doing that. 2342 */ 2343 int audit_signal_info(int sig, struct task_struct *t) 2344 { 2345 kuid_t uid = current_uid(), auid; 2346 2347 if (auditd_test_task(t) && 2348 (sig == SIGTERM || sig == SIGHUP || 2349 sig == SIGUSR1 || sig == SIGUSR2)) { 2350 audit_sig_pid = task_tgid_nr(current); 2351 auid = audit_get_loginuid(current); 2352 if (uid_valid(auid)) 2353 audit_sig_uid = auid; 2354 else 2355 audit_sig_uid = uid; 2356 security_task_getsecid(current, &audit_sig_sid); 2357 } 2358 2359 return audit_signal_info_syscall(t); 2360 } 2361 2362 /** 2363 * audit_log_end - end one audit record 2364 * @ab: the audit_buffer 2365 * 2366 * We can not do a netlink send inside an irq context because it blocks (last 2367 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a 2368 * queue and a kthread is scheduled to remove them from the queue outside the 2369 * irq context. May be called in any context. 2370 */ 2371 void audit_log_end(struct audit_buffer *ab) 2372 { 2373 struct sk_buff *skb; 2374 struct nlmsghdr *nlh; 2375 2376 if (!ab) 2377 return; 2378 2379 if (audit_rate_check()) { 2380 skb = ab->skb; 2381 ab->skb = NULL; 2382 2383 /* setup the netlink header, see the comments in 2384 * kauditd_send_multicast_skb() for length quirks */ 2385 nlh = nlmsg_hdr(skb); 2386 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN; 2387 2388 /* queue the netlink packet and poke the kauditd thread */ 2389 skb_queue_tail(&audit_queue, skb); 2390 wake_up_interruptible(&kauditd_wait); 2391 } else 2392 audit_log_lost("rate limit exceeded"); 2393 2394 audit_buffer_free(ab); 2395 } 2396 2397 /** 2398 * audit_log - Log an audit record 2399 * @ctx: audit context 2400 * @gfp_mask: type of allocation 2401 * @type: audit message type 2402 * @fmt: format string to use 2403 * @...: variable parameters matching the format string 2404 * 2405 * This is a convenience function that calls audit_log_start, 2406 * audit_log_vformat, and audit_log_end. It may be called 2407 * in any context. 2408 */ 2409 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 2410 const char *fmt, ...) 2411 { 2412 struct audit_buffer *ab; 2413 va_list args; 2414 2415 ab = audit_log_start(ctx, gfp_mask, type); 2416 if (ab) { 2417 va_start(args, fmt); 2418 audit_log_vformat(ab, fmt, args); 2419 va_end(args); 2420 audit_log_end(ab); 2421 } 2422 } 2423 2424 EXPORT_SYMBOL(audit_log_start); 2425 EXPORT_SYMBOL(audit_log_end); 2426 EXPORT_SYMBOL(audit_log_format); 2427 EXPORT_SYMBOL(audit_log); 2428