1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with Security Modules. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ 42 */ 43 44 #include <linux/init.h> 45 #include <asm/types.h> 46 #include <asm/atomic.h> 47 #include <linux/mm.h> 48 #include <linux/module.h> 49 #include <linux/slab.h> 50 #include <linux/err.h> 51 #include <linux/kthread.h> 52 53 #include <linux/audit.h> 54 55 #include <net/sock.h> 56 #include <net/netlink.h> 57 #include <linux/skbuff.h> 58 #include <linux/netlink.h> 59 #include <linux/freezer.h> 60 #include <linux/tty.h> 61 62 #include "audit.h" 63 64 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 65 * (Initialization happens after skb_init is called.) */ 66 #define AUDIT_DISABLED -1 67 #define AUDIT_UNINITIALIZED 0 68 #define AUDIT_INITIALIZED 1 69 static int audit_initialized; 70 71 #define AUDIT_OFF 0 72 #define AUDIT_ON 1 73 #define AUDIT_LOCKED 2 74 int audit_enabled; 75 int audit_ever_enabled; 76 77 EXPORT_SYMBOL_GPL(audit_enabled); 78 79 /* Default state when kernel boots without any parameters. */ 80 static int audit_default; 81 82 /* If auditing cannot proceed, audit_failure selects what happens. */ 83 static int audit_failure = AUDIT_FAIL_PRINTK; 84 85 /* 86 * If audit records are to be written to the netlink socket, audit_pid 87 * contains the pid of the auditd process and audit_nlk_pid contains 88 * the pid to use to send netlink messages to that process. 89 */ 90 int audit_pid; 91 static int audit_nlk_pid; 92 93 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 94 * to that number per second. This prevents DoS attacks, but results in 95 * audit records being dropped. */ 96 static int audit_rate_limit; 97 98 /* Number of outstanding audit_buffers allowed. */ 99 static int audit_backlog_limit = 64; 100 static int audit_backlog_wait_time = 60 * HZ; 101 static int audit_backlog_wait_overflow = 0; 102 103 /* The identity of the user shutting down the audit system. */ 104 uid_t audit_sig_uid = -1; 105 pid_t audit_sig_pid = -1; 106 u32 audit_sig_sid = 0; 107 108 /* Records can be lost in several ways: 109 0) [suppressed in audit_alloc] 110 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 111 2) out of memory in audit_log_move [alloc_skb] 112 3) suppressed due to audit_rate_limit 113 4) suppressed due to audit_backlog_limit 114 */ 115 static atomic_t audit_lost = ATOMIC_INIT(0); 116 117 /* The netlink socket. */ 118 static struct sock *audit_sock; 119 120 /* Hash for inode-based rules */ 121 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 122 123 /* The audit_freelist is a list of pre-allocated audit buffers (if more 124 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of 125 * being placed on the freelist). */ 126 static DEFINE_SPINLOCK(audit_freelist_lock); 127 static int audit_freelist_count; 128 static LIST_HEAD(audit_freelist); 129 130 static struct sk_buff_head audit_skb_queue; 131 /* queue of skbs to send to auditd when/if it comes back */ 132 static struct sk_buff_head audit_skb_hold_queue; 133 static struct task_struct *kauditd_task; 134 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 135 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 136 137 /* Serialize requests from userspace. */ 138 DEFINE_MUTEX(audit_cmd_mutex); 139 140 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 141 * audit records. Since printk uses a 1024 byte buffer, this buffer 142 * should be at least that large. */ 143 #define AUDIT_BUFSIZ 1024 144 145 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the 146 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ 147 #define AUDIT_MAXFREE (2*NR_CPUS) 148 149 /* The audit_buffer is used when formatting an audit record. The caller 150 * locks briefly to get the record off the freelist or to allocate the 151 * buffer, and locks briefly to send the buffer to the netlink layer or 152 * to place it on a transmit queue. Multiple audit_buffers can be in 153 * use simultaneously. */ 154 struct audit_buffer { 155 struct list_head list; 156 struct sk_buff *skb; /* formatted skb ready to send */ 157 struct audit_context *ctx; /* NULL or associated context */ 158 gfp_t gfp_mask; 159 }; 160 161 struct audit_reply { 162 int pid; 163 struct sk_buff *skb; 164 }; 165 166 static void audit_set_pid(struct audit_buffer *ab, pid_t pid) 167 { 168 if (ab) { 169 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 170 nlh->nlmsg_pid = pid; 171 } 172 } 173 174 void audit_panic(const char *message) 175 { 176 switch (audit_failure) 177 { 178 case AUDIT_FAIL_SILENT: 179 break; 180 case AUDIT_FAIL_PRINTK: 181 if (printk_ratelimit()) 182 printk(KERN_ERR "audit: %s\n", message); 183 break; 184 case AUDIT_FAIL_PANIC: 185 /* test audit_pid since printk is always losey, why bother? */ 186 if (audit_pid) 187 panic("audit: %s\n", message); 188 break; 189 } 190 } 191 192 static inline int audit_rate_check(void) 193 { 194 static unsigned long last_check = 0; 195 static int messages = 0; 196 static DEFINE_SPINLOCK(lock); 197 unsigned long flags; 198 unsigned long now; 199 unsigned long elapsed; 200 int retval = 0; 201 202 if (!audit_rate_limit) return 1; 203 204 spin_lock_irqsave(&lock, flags); 205 if (++messages < audit_rate_limit) { 206 retval = 1; 207 } else { 208 now = jiffies; 209 elapsed = now - last_check; 210 if (elapsed > HZ) { 211 last_check = now; 212 messages = 0; 213 retval = 1; 214 } 215 } 216 spin_unlock_irqrestore(&lock, flags); 217 218 return retval; 219 } 220 221 /** 222 * audit_log_lost - conditionally log lost audit message event 223 * @message: the message stating reason for lost audit message 224 * 225 * Emit at least 1 message per second, even if audit_rate_check is 226 * throttling. 227 * Always increment the lost messages counter. 228 */ 229 void audit_log_lost(const char *message) 230 { 231 static unsigned long last_msg = 0; 232 static DEFINE_SPINLOCK(lock); 233 unsigned long flags; 234 unsigned long now; 235 int print; 236 237 atomic_inc(&audit_lost); 238 239 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 240 241 if (!print) { 242 spin_lock_irqsave(&lock, flags); 243 now = jiffies; 244 if (now - last_msg > HZ) { 245 print = 1; 246 last_msg = now; 247 } 248 spin_unlock_irqrestore(&lock, flags); 249 } 250 251 if (print) { 252 if (printk_ratelimit()) 253 printk(KERN_WARNING 254 "audit: audit_lost=%d audit_rate_limit=%d " 255 "audit_backlog_limit=%d\n", 256 atomic_read(&audit_lost), 257 audit_rate_limit, 258 audit_backlog_limit); 259 audit_panic(message); 260 } 261 } 262 263 static int audit_log_config_change(char *function_name, int new, int old, 264 uid_t loginuid, u32 sessionid, u32 sid, 265 int allow_changes) 266 { 267 struct audit_buffer *ab; 268 int rc = 0; 269 270 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 271 audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new, 272 old, loginuid, sessionid); 273 if (sid) { 274 char *ctx = NULL; 275 u32 len; 276 277 rc = security_secid_to_secctx(sid, &ctx, &len); 278 if (rc) { 279 audit_log_format(ab, " sid=%u", sid); 280 allow_changes = 0; /* Something weird, deny request */ 281 } else { 282 audit_log_format(ab, " subj=%s", ctx); 283 security_release_secctx(ctx, len); 284 } 285 } 286 audit_log_format(ab, " res=%d", allow_changes); 287 audit_log_end(ab); 288 return rc; 289 } 290 291 static int audit_do_config_change(char *function_name, int *to_change, 292 int new, uid_t loginuid, u32 sessionid, 293 u32 sid) 294 { 295 int allow_changes, rc = 0, old = *to_change; 296 297 /* check if we are locked */ 298 if (audit_enabled == AUDIT_LOCKED) 299 allow_changes = 0; 300 else 301 allow_changes = 1; 302 303 if (audit_enabled != AUDIT_OFF) { 304 rc = audit_log_config_change(function_name, new, old, loginuid, 305 sessionid, sid, allow_changes); 306 if (rc) 307 allow_changes = 0; 308 } 309 310 /* If we are allowed, make the change */ 311 if (allow_changes == 1) 312 *to_change = new; 313 /* Not allowed, update reason */ 314 else if (rc == 0) 315 rc = -EPERM; 316 return rc; 317 } 318 319 static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sessionid, 320 u32 sid) 321 { 322 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, 323 limit, loginuid, sessionid, sid); 324 } 325 326 static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sessionid, 327 u32 sid) 328 { 329 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, 330 limit, loginuid, sessionid, sid); 331 } 332 333 static int audit_set_enabled(int state, uid_t loginuid, u32 sessionid, u32 sid) 334 { 335 int rc; 336 if (state < AUDIT_OFF || state > AUDIT_LOCKED) 337 return -EINVAL; 338 339 rc = audit_do_config_change("audit_enabled", &audit_enabled, state, 340 loginuid, sessionid, sid); 341 342 if (!rc) 343 audit_ever_enabled |= !!state; 344 345 return rc; 346 } 347 348 static int audit_set_failure(int state, uid_t loginuid, u32 sessionid, u32 sid) 349 { 350 if (state != AUDIT_FAIL_SILENT 351 && state != AUDIT_FAIL_PRINTK 352 && state != AUDIT_FAIL_PANIC) 353 return -EINVAL; 354 355 return audit_do_config_change("audit_failure", &audit_failure, state, 356 loginuid, sessionid, sid); 357 } 358 359 /* 360 * Queue skbs to be sent to auditd when/if it comes back. These skbs should 361 * already have been sent via prink/syslog and so if these messages are dropped 362 * it is not a huge concern since we already passed the audit_log_lost() 363 * notification and stuff. This is just nice to get audit messages during 364 * boot before auditd is running or messages generated while auditd is stopped. 365 * This only holds messages is audit_default is set, aka booting with audit=1 366 * or building your kernel that way. 367 */ 368 static void audit_hold_skb(struct sk_buff *skb) 369 { 370 if (audit_default && 371 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit) 372 skb_queue_tail(&audit_skb_hold_queue, skb); 373 else 374 kfree_skb(skb); 375 } 376 377 /* 378 * For one reason or another this nlh isn't getting delivered to the userspace 379 * audit daemon, just send it to printk. 380 */ 381 static void audit_printk_skb(struct sk_buff *skb) 382 { 383 struct nlmsghdr *nlh = nlmsg_hdr(skb); 384 char *data = NLMSG_DATA(nlh); 385 386 if (nlh->nlmsg_type != AUDIT_EOE) { 387 if (printk_ratelimit()) 388 printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, data); 389 else 390 audit_log_lost("printk limit exceeded\n"); 391 } 392 393 audit_hold_skb(skb); 394 } 395 396 static void kauditd_send_skb(struct sk_buff *skb) 397 { 398 int err; 399 /* take a reference in case we can't send it and we want to hold it */ 400 skb_get(skb); 401 err = netlink_unicast(audit_sock, skb, audit_nlk_pid, 0); 402 if (err < 0) { 403 BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */ 404 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid); 405 audit_log_lost("auditd disappeared\n"); 406 audit_pid = 0; 407 /* we might get lucky and get this in the next auditd */ 408 audit_hold_skb(skb); 409 } else 410 /* drop the extra reference if sent ok */ 411 consume_skb(skb); 412 } 413 414 static int kauditd_thread(void *dummy) 415 { 416 struct sk_buff *skb; 417 418 set_freezable(); 419 while (!kthread_should_stop()) { 420 /* 421 * if auditd just started drain the queue of messages already 422 * sent to syslog/printk. remember loss here is ok. we already 423 * called audit_log_lost() if it didn't go out normally. so the 424 * race between the skb_dequeue and the next check for audit_pid 425 * doesn't matter. 426 * 427 * if you ever find kauditd to be too slow we can get a perf win 428 * by doing our own locking and keeping better track if there 429 * are messages in this queue. I don't see the need now, but 430 * in 5 years when I want to play with this again I'll see this 431 * note and still have no friggin idea what i'm thinking today. 432 */ 433 if (audit_default && audit_pid) { 434 skb = skb_dequeue(&audit_skb_hold_queue); 435 if (unlikely(skb)) { 436 while (skb && audit_pid) { 437 kauditd_send_skb(skb); 438 skb = skb_dequeue(&audit_skb_hold_queue); 439 } 440 } 441 } 442 443 skb = skb_dequeue(&audit_skb_queue); 444 wake_up(&audit_backlog_wait); 445 if (skb) { 446 if (audit_pid) 447 kauditd_send_skb(skb); 448 else 449 audit_printk_skb(skb); 450 } else { 451 DECLARE_WAITQUEUE(wait, current); 452 set_current_state(TASK_INTERRUPTIBLE); 453 add_wait_queue(&kauditd_wait, &wait); 454 455 if (!skb_queue_len(&audit_skb_queue)) { 456 try_to_freeze(); 457 schedule(); 458 } 459 460 __set_current_state(TASK_RUNNING); 461 remove_wait_queue(&kauditd_wait, &wait); 462 } 463 } 464 return 0; 465 } 466 467 static int audit_prepare_user_tty(pid_t pid, uid_t loginuid, u32 sessionid) 468 { 469 struct task_struct *tsk; 470 int err; 471 472 rcu_read_lock(); 473 tsk = find_task_by_vpid(pid); 474 if (!tsk) { 475 rcu_read_unlock(); 476 return -ESRCH; 477 } 478 get_task_struct(tsk); 479 rcu_read_unlock(); 480 err = tty_audit_push_task(tsk, loginuid, sessionid); 481 put_task_struct(tsk); 482 return err; 483 } 484 485 int audit_send_list(void *_dest) 486 { 487 struct audit_netlink_list *dest = _dest; 488 int pid = dest->pid; 489 struct sk_buff *skb; 490 491 /* wait for parent to finish and send an ACK */ 492 mutex_lock(&audit_cmd_mutex); 493 mutex_unlock(&audit_cmd_mutex); 494 495 while ((skb = __skb_dequeue(&dest->q)) != NULL) 496 netlink_unicast(audit_sock, skb, pid, 0); 497 498 kfree(dest); 499 500 return 0; 501 } 502 503 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done, 504 int multi, const void *payload, int size) 505 { 506 struct sk_buff *skb; 507 struct nlmsghdr *nlh; 508 void *data; 509 int flags = multi ? NLM_F_MULTI : 0; 510 int t = done ? NLMSG_DONE : type; 511 512 skb = nlmsg_new(size, GFP_KERNEL); 513 if (!skb) 514 return NULL; 515 516 nlh = NLMSG_NEW(skb, pid, seq, t, size, flags); 517 data = NLMSG_DATA(nlh); 518 memcpy(data, payload, size); 519 return skb; 520 521 nlmsg_failure: /* Used by NLMSG_NEW */ 522 if (skb) 523 kfree_skb(skb); 524 return NULL; 525 } 526 527 static int audit_send_reply_thread(void *arg) 528 { 529 struct audit_reply *reply = (struct audit_reply *)arg; 530 531 mutex_lock(&audit_cmd_mutex); 532 mutex_unlock(&audit_cmd_mutex); 533 534 /* Ignore failure. It'll only happen if the sender goes away, 535 because our timeout is set to infinite. */ 536 netlink_unicast(audit_sock, reply->skb, reply->pid, 0); 537 kfree(reply); 538 return 0; 539 } 540 /** 541 * audit_send_reply - send an audit reply message via netlink 542 * @pid: process id to send reply to 543 * @seq: sequence number 544 * @type: audit message type 545 * @done: done (last) flag 546 * @multi: multi-part message flag 547 * @payload: payload data 548 * @size: payload size 549 * 550 * Allocates an skb, builds the netlink message, and sends it to the pid. 551 * No failure notifications. 552 */ 553 static void audit_send_reply(int pid, int seq, int type, int done, int multi, 554 const void *payload, int size) 555 { 556 struct sk_buff *skb; 557 struct task_struct *tsk; 558 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), 559 GFP_KERNEL); 560 561 if (!reply) 562 return; 563 564 skb = audit_make_reply(pid, seq, type, done, multi, payload, size); 565 if (!skb) 566 goto out; 567 568 reply->pid = pid; 569 reply->skb = skb; 570 571 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 572 if (!IS_ERR(tsk)) 573 return; 574 kfree_skb(skb); 575 out: 576 kfree(reply); 577 } 578 579 /* 580 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 581 * control messages. 582 */ 583 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 584 { 585 int err = 0; 586 587 switch (msg_type) { 588 case AUDIT_GET: 589 case AUDIT_LIST: 590 case AUDIT_LIST_RULES: 591 case AUDIT_SET: 592 case AUDIT_ADD: 593 case AUDIT_ADD_RULE: 594 case AUDIT_DEL: 595 case AUDIT_DEL_RULE: 596 case AUDIT_SIGNAL_INFO: 597 case AUDIT_TTY_GET: 598 case AUDIT_TTY_SET: 599 case AUDIT_TRIM: 600 case AUDIT_MAKE_EQUIV: 601 if (security_netlink_recv(skb, CAP_AUDIT_CONTROL)) 602 err = -EPERM; 603 break; 604 case AUDIT_USER: 605 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 606 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 607 if (security_netlink_recv(skb, CAP_AUDIT_WRITE)) 608 err = -EPERM; 609 break; 610 default: /* bad msg */ 611 err = -EINVAL; 612 } 613 614 return err; 615 } 616 617 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type, 618 u32 pid, u32 uid, uid_t auid, u32 ses, 619 u32 sid) 620 { 621 int rc = 0; 622 char *ctx = NULL; 623 u32 len; 624 625 if (!audit_enabled) { 626 *ab = NULL; 627 return rc; 628 } 629 630 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 631 audit_log_format(*ab, "user pid=%d uid=%u auid=%u ses=%u", 632 pid, uid, auid, ses); 633 if (sid) { 634 rc = security_secid_to_secctx(sid, &ctx, &len); 635 if (rc) 636 audit_log_format(*ab, " ssid=%u", sid); 637 else { 638 audit_log_format(*ab, " subj=%s", ctx); 639 security_release_secctx(ctx, len); 640 } 641 } 642 643 return rc; 644 } 645 646 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 647 { 648 u32 uid, pid, seq, sid; 649 void *data; 650 struct audit_status *status_get, status_set; 651 int err; 652 struct audit_buffer *ab; 653 u16 msg_type = nlh->nlmsg_type; 654 uid_t loginuid; /* loginuid of sender */ 655 u32 sessionid; 656 struct audit_sig_info *sig_data; 657 char *ctx = NULL; 658 u32 len; 659 660 err = audit_netlink_ok(skb, msg_type); 661 if (err) 662 return err; 663 664 /* As soon as there's any sign of userspace auditd, 665 * start kauditd to talk to it */ 666 if (!kauditd_task) 667 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 668 if (IS_ERR(kauditd_task)) { 669 err = PTR_ERR(kauditd_task); 670 kauditd_task = NULL; 671 return err; 672 } 673 674 pid = NETLINK_CREDS(skb)->pid; 675 uid = NETLINK_CREDS(skb)->uid; 676 loginuid = audit_get_loginuid(current); 677 sessionid = audit_get_sessionid(current); 678 security_task_getsecid(current, &sid); 679 seq = nlh->nlmsg_seq; 680 data = NLMSG_DATA(nlh); 681 682 switch (msg_type) { 683 case AUDIT_GET: 684 status_set.enabled = audit_enabled; 685 status_set.failure = audit_failure; 686 status_set.pid = audit_pid; 687 status_set.rate_limit = audit_rate_limit; 688 status_set.backlog_limit = audit_backlog_limit; 689 status_set.lost = atomic_read(&audit_lost); 690 status_set.backlog = skb_queue_len(&audit_skb_queue); 691 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0, 692 &status_set, sizeof(status_set)); 693 break; 694 case AUDIT_SET: 695 if (nlh->nlmsg_len < sizeof(struct audit_status)) 696 return -EINVAL; 697 status_get = (struct audit_status *)data; 698 if (status_get->mask & AUDIT_STATUS_ENABLED) { 699 err = audit_set_enabled(status_get->enabled, 700 loginuid, sessionid, sid); 701 if (err < 0) 702 return err; 703 } 704 if (status_get->mask & AUDIT_STATUS_FAILURE) { 705 err = audit_set_failure(status_get->failure, 706 loginuid, sessionid, sid); 707 if (err < 0) 708 return err; 709 } 710 if (status_get->mask & AUDIT_STATUS_PID) { 711 int new_pid = status_get->pid; 712 713 if (audit_enabled != AUDIT_OFF) 714 audit_log_config_change("audit_pid", new_pid, 715 audit_pid, loginuid, 716 sessionid, sid, 1); 717 718 audit_pid = new_pid; 719 audit_nlk_pid = NETLINK_CB(skb).pid; 720 } 721 if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) { 722 err = audit_set_rate_limit(status_get->rate_limit, 723 loginuid, sessionid, sid); 724 if (err < 0) 725 return err; 726 } 727 if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT) 728 err = audit_set_backlog_limit(status_get->backlog_limit, 729 loginuid, sessionid, sid); 730 break; 731 case AUDIT_USER: 732 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 733 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 734 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 735 return 0; 736 737 err = audit_filter_user(&NETLINK_CB(skb)); 738 if (err == 1) { 739 err = 0; 740 if (msg_type == AUDIT_USER_TTY) { 741 err = audit_prepare_user_tty(pid, loginuid, 742 sessionid); 743 if (err) 744 break; 745 } 746 audit_log_common_recv_msg(&ab, msg_type, pid, uid, 747 loginuid, sessionid, sid); 748 749 if (msg_type != AUDIT_USER_TTY) 750 audit_log_format(ab, " msg='%.1024s'", 751 (char *)data); 752 else { 753 int size; 754 755 audit_log_format(ab, " msg="); 756 size = nlmsg_len(nlh); 757 if (size > 0 && 758 ((unsigned char *)data)[size - 1] == '\0') 759 size--; 760 audit_log_n_untrustedstring(ab, data, size); 761 } 762 audit_set_pid(ab, pid); 763 audit_log_end(ab); 764 } 765 break; 766 case AUDIT_ADD: 767 case AUDIT_DEL: 768 if (nlmsg_len(nlh) < sizeof(struct audit_rule)) 769 return -EINVAL; 770 if (audit_enabled == AUDIT_LOCKED) { 771 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 772 uid, loginuid, sessionid, sid); 773 774 audit_log_format(ab, " audit_enabled=%d res=0", 775 audit_enabled); 776 audit_log_end(ab); 777 return -EPERM; 778 } 779 /* fallthrough */ 780 case AUDIT_LIST: 781 err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid, 782 uid, seq, data, nlmsg_len(nlh), 783 loginuid, sessionid, sid); 784 break; 785 case AUDIT_ADD_RULE: 786 case AUDIT_DEL_RULE: 787 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 788 return -EINVAL; 789 if (audit_enabled == AUDIT_LOCKED) { 790 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 791 uid, loginuid, sessionid, sid); 792 793 audit_log_format(ab, " audit_enabled=%d res=0", 794 audit_enabled); 795 audit_log_end(ab); 796 return -EPERM; 797 } 798 /* fallthrough */ 799 case AUDIT_LIST_RULES: 800 err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid, 801 uid, seq, data, nlmsg_len(nlh), 802 loginuid, sessionid, sid); 803 break; 804 case AUDIT_TRIM: 805 audit_trim_trees(); 806 807 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 808 uid, loginuid, sessionid, sid); 809 810 audit_log_format(ab, " op=trim res=1"); 811 audit_log_end(ab); 812 break; 813 case AUDIT_MAKE_EQUIV: { 814 void *bufp = data; 815 u32 sizes[2]; 816 size_t msglen = nlmsg_len(nlh); 817 char *old, *new; 818 819 err = -EINVAL; 820 if (msglen < 2 * sizeof(u32)) 821 break; 822 memcpy(sizes, bufp, 2 * sizeof(u32)); 823 bufp += 2 * sizeof(u32); 824 msglen -= 2 * sizeof(u32); 825 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 826 if (IS_ERR(old)) { 827 err = PTR_ERR(old); 828 break; 829 } 830 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 831 if (IS_ERR(new)) { 832 err = PTR_ERR(new); 833 kfree(old); 834 break; 835 } 836 /* OK, here comes... */ 837 err = audit_tag_tree(old, new); 838 839 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 840 uid, loginuid, sessionid, sid); 841 842 audit_log_format(ab, " op=make_equiv old="); 843 audit_log_untrustedstring(ab, old); 844 audit_log_format(ab, " new="); 845 audit_log_untrustedstring(ab, new); 846 audit_log_format(ab, " res=%d", !err); 847 audit_log_end(ab); 848 kfree(old); 849 kfree(new); 850 break; 851 } 852 case AUDIT_SIGNAL_INFO: 853 len = 0; 854 if (audit_sig_sid) { 855 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 856 if (err) 857 return err; 858 } 859 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 860 if (!sig_data) { 861 if (audit_sig_sid) 862 security_release_secctx(ctx, len); 863 return -ENOMEM; 864 } 865 sig_data->uid = audit_sig_uid; 866 sig_data->pid = audit_sig_pid; 867 if (audit_sig_sid) { 868 memcpy(sig_data->ctx, ctx, len); 869 security_release_secctx(ctx, len); 870 } 871 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, 872 0, 0, sig_data, sizeof(*sig_data) + len); 873 kfree(sig_data); 874 break; 875 case AUDIT_TTY_GET: { 876 struct audit_tty_status s; 877 struct task_struct *tsk; 878 unsigned long flags; 879 880 rcu_read_lock(); 881 tsk = find_task_by_vpid(pid); 882 if (tsk && lock_task_sighand(tsk, &flags)) { 883 s.enabled = tsk->signal->audit_tty != 0; 884 unlock_task_sighand(tsk, &flags); 885 } else 886 err = -ESRCH; 887 rcu_read_unlock(); 888 889 if (!err) 890 audit_send_reply(NETLINK_CB(skb).pid, seq, 891 AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 892 break; 893 } 894 case AUDIT_TTY_SET: { 895 struct audit_tty_status *s; 896 struct task_struct *tsk; 897 unsigned long flags; 898 899 if (nlh->nlmsg_len < sizeof(struct audit_tty_status)) 900 return -EINVAL; 901 s = data; 902 if (s->enabled != 0 && s->enabled != 1) 903 return -EINVAL; 904 rcu_read_lock(); 905 tsk = find_task_by_vpid(pid); 906 if (tsk && lock_task_sighand(tsk, &flags)) { 907 tsk->signal->audit_tty = s->enabled != 0; 908 unlock_task_sighand(tsk, &flags); 909 } else 910 err = -ESRCH; 911 rcu_read_unlock(); 912 break; 913 } 914 default: 915 err = -EINVAL; 916 break; 917 } 918 919 return err < 0 ? err : 0; 920 } 921 922 /* 923 * Get message from skb. Each message is processed by audit_receive_msg. 924 * Malformed skbs with wrong length are discarded silently. 925 */ 926 static void audit_receive_skb(struct sk_buff *skb) 927 { 928 struct nlmsghdr *nlh; 929 /* 930 * len MUST be signed for NLMSG_NEXT to be able to dec it below 0 931 * if the nlmsg_len was not aligned 932 */ 933 int len; 934 int err; 935 936 nlh = nlmsg_hdr(skb); 937 len = skb->len; 938 939 while (NLMSG_OK(nlh, len)) { 940 err = audit_receive_msg(skb, nlh); 941 /* if err or if this message says it wants a response */ 942 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 943 netlink_ack(skb, nlh, err); 944 945 nlh = NLMSG_NEXT(nlh, len); 946 } 947 } 948 949 /* Receive messages from netlink socket. */ 950 static void audit_receive(struct sk_buff *skb) 951 { 952 mutex_lock(&audit_cmd_mutex); 953 audit_receive_skb(skb); 954 mutex_unlock(&audit_cmd_mutex); 955 } 956 957 /* Initialize audit support at boot time. */ 958 static int __init audit_init(void) 959 { 960 int i; 961 962 if (audit_initialized == AUDIT_DISABLED) 963 return 0; 964 965 printk(KERN_INFO "audit: initializing netlink socket (%s)\n", 966 audit_default ? "enabled" : "disabled"); 967 audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0, 968 audit_receive, NULL, THIS_MODULE); 969 if (!audit_sock) 970 audit_panic("cannot initialize netlink socket"); 971 else 972 audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 973 974 skb_queue_head_init(&audit_skb_queue); 975 skb_queue_head_init(&audit_skb_hold_queue); 976 audit_initialized = AUDIT_INITIALIZED; 977 audit_enabled = audit_default; 978 audit_ever_enabled |= !!audit_default; 979 980 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); 981 982 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 983 INIT_LIST_HEAD(&audit_inode_hash[i]); 984 985 return 0; 986 } 987 __initcall(audit_init); 988 989 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ 990 static int __init audit_enable(char *str) 991 { 992 audit_default = !!simple_strtol(str, NULL, 0); 993 if (!audit_default) 994 audit_initialized = AUDIT_DISABLED; 995 996 printk(KERN_INFO "audit: %s", audit_default ? "enabled" : "disabled"); 997 998 if (audit_initialized == AUDIT_INITIALIZED) { 999 audit_enabled = audit_default; 1000 audit_ever_enabled |= !!audit_default; 1001 } else if (audit_initialized == AUDIT_UNINITIALIZED) { 1002 printk(" (after initialization)"); 1003 } else { 1004 printk(" (until reboot)"); 1005 } 1006 printk("\n"); 1007 1008 return 1; 1009 } 1010 1011 __setup("audit=", audit_enable); 1012 1013 static void audit_buffer_free(struct audit_buffer *ab) 1014 { 1015 unsigned long flags; 1016 1017 if (!ab) 1018 return; 1019 1020 if (ab->skb) 1021 kfree_skb(ab->skb); 1022 1023 spin_lock_irqsave(&audit_freelist_lock, flags); 1024 if (audit_freelist_count > AUDIT_MAXFREE) 1025 kfree(ab); 1026 else { 1027 audit_freelist_count++; 1028 list_add(&ab->list, &audit_freelist); 1029 } 1030 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1031 } 1032 1033 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, 1034 gfp_t gfp_mask, int type) 1035 { 1036 unsigned long flags; 1037 struct audit_buffer *ab = NULL; 1038 struct nlmsghdr *nlh; 1039 1040 spin_lock_irqsave(&audit_freelist_lock, flags); 1041 if (!list_empty(&audit_freelist)) { 1042 ab = list_entry(audit_freelist.next, 1043 struct audit_buffer, list); 1044 list_del(&ab->list); 1045 --audit_freelist_count; 1046 } 1047 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1048 1049 if (!ab) { 1050 ab = kmalloc(sizeof(*ab), gfp_mask); 1051 if (!ab) 1052 goto err; 1053 } 1054 1055 ab->ctx = ctx; 1056 ab->gfp_mask = gfp_mask; 1057 1058 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1059 if (!ab->skb) 1060 goto nlmsg_failure; 1061 1062 nlh = NLMSG_NEW(ab->skb, 0, 0, type, 0, 0); 1063 1064 return ab; 1065 1066 nlmsg_failure: /* Used by NLMSG_NEW */ 1067 kfree_skb(ab->skb); 1068 ab->skb = NULL; 1069 err: 1070 audit_buffer_free(ab); 1071 return NULL; 1072 } 1073 1074 /** 1075 * audit_serial - compute a serial number for the audit record 1076 * 1077 * Compute a serial number for the audit record. Audit records are 1078 * written to user-space as soon as they are generated, so a complete 1079 * audit record may be written in several pieces. The timestamp of the 1080 * record and this serial number are used by the user-space tools to 1081 * determine which pieces belong to the same audit record. The 1082 * (timestamp,serial) tuple is unique for each syscall and is live from 1083 * syscall entry to syscall exit. 1084 * 1085 * NOTE: Another possibility is to store the formatted records off the 1086 * audit context (for those records that have a context), and emit them 1087 * all at syscall exit. However, this could delay the reporting of 1088 * significant errors until syscall exit (or never, if the system 1089 * halts). 1090 */ 1091 unsigned int audit_serial(void) 1092 { 1093 static DEFINE_SPINLOCK(serial_lock); 1094 static unsigned int serial = 0; 1095 1096 unsigned long flags; 1097 unsigned int ret; 1098 1099 spin_lock_irqsave(&serial_lock, flags); 1100 do { 1101 ret = ++serial; 1102 } while (unlikely(!ret)); 1103 spin_unlock_irqrestore(&serial_lock, flags); 1104 1105 return ret; 1106 } 1107 1108 static inline void audit_get_stamp(struct audit_context *ctx, 1109 struct timespec *t, unsigned int *serial) 1110 { 1111 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1112 *t = CURRENT_TIME; 1113 *serial = audit_serial(); 1114 } 1115 } 1116 1117 /* Obtain an audit buffer. This routine does locking to obtain the 1118 * audit buffer, but then no locking is required for calls to 1119 * audit_log_*format. If the tsk is a task that is currently in a 1120 * syscall, then the syscall is marked as auditable and an audit record 1121 * will be written at syscall exit. If there is no associated task, tsk 1122 * should be NULL. */ 1123 1124 /** 1125 * audit_log_start - obtain an audit buffer 1126 * @ctx: audit_context (may be NULL) 1127 * @gfp_mask: type of allocation 1128 * @type: audit message type 1129 * 1130 * Returns audit_buffer pointer on success or NULL on error. 1131 * 1132 * Obtain an audit buffer. This routine does locking to obtain the 1133 * audit buffer, but then no locking is required for calls to 1134 * audit_log_*format. If the task (ctx) is a task that is currently in a 1135 * syscall, then the syscall is marked as auditable and an audit record 1136 * will be written at syscall exit. If there is no associated task, then 1137 * task context (ctx) should be NULL. 1138 */ 1139 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1140 int type) 1141 { 1142 struct audit_buffer *ab = NULL; 1143 struct timespec t; 1144 unsigned int uninitialized_var(serial); 1145 int reserve; 1146 unsigned long timeout_start = jiffies; 1147 1148 if (audit_initialized != AUDIT_INITIALIZED) 1149 return NULL; 1150 1151 if (unlikely(audit_filter_type(type))) 1152 return NULL; 1153 1154 if (gfp_mask & __GFP_WAIT) 1155 reserve = 0; 1156 else 1157 reserve = 5; /* Allow atomic callers to go up to five 1158 entries over the normal backlog limit */ 1159 1160 while (audit_backlog_limit 1161 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) { 1162 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time 1163 && time_before(jiffies, timeout_start + audit_backlog_wait_time)) { 1164 1165 /* Wait for auditd to drain the queue a little */ 1166 DECLARE_WAITQUEUE(wait, current); 1167 set_current_state(TASK_INTERRUPTIBLE); 1168 add_wait_queue(&audit_backlog_wait, &wait); 1169 1170 if (audit_backlog_limit && 1171 skb_queue_len(&audit_skb_queue) > audit_backlog_limit) 1172 schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies); 1173 1174 __set_current_state(TASK_RUNNING); 1175 remove_wait_queue(&audit_backlog_wait, &wait); 1176 continue; 1177 } 1178 if (audit_rate_check() && printk_ratelimit()) 1179 printk(KERN_WARNING 1180 "audit: audit_backlog=%d > " 1181 "audit_backlog_limit=%d\n", 1182 skb_queue_len(&audit_skb_queue), 1183 audit_backlog_limit); 1184 audit_log_lost("backlog limit exceeded"); 1185 audit_backlog_wait_time = audit_backlog_wait_overflow; 1186 wake_up(&audit_backlog_wait); 1187 return NULL; 1188 } 1189 1190 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1191 if (!ab) { 1192 audit_log_lost("out of memory in audit_log_start"); 1193 return NULL; 1194 } 1195 1196 audit_get_stamp(ab->ctx, &t, &serial); 1197 1198 audit_log_format(ab, "audit(%lu.%03lu:%u): ", 1199 t.tv_sec, t.tv_nsec/1000000, serial); 1200 return ab; 1201 } 1202 1203 /** 1204 * audit_expand - expand skb in the audit buffer 1205 * @ab: audit_buffer 1206 * @extra: space to add at tail of the skb 1207 * 1208 * Returns 0 (no space) on failed expansion, or available space if 1209 * successful. 1210 */ 1211 static inline int audit_expand(struct audit_buffer *ab, int extra) 1212 { 1213 struct sk_buff *skb = ab->skb; 1214 int oldtail = skb_tailroom(skb); 1215 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1216 int newtail = skb_tailroom(skb); 1217 1218 if (ret < 0) { 1219 audit_log_lost("out of memory in audit_expand"); 1220 return 0; 1221 } 1222 1223 skb->truesize += newtail - oldtail; 1224 return newtail; 1225 } 1226 1227 /* 1228 * Format an audit message into the audit buffer. If there isn't enough 1229 * room in the audit buffer, more room will be allocated and vsnprint 1230 * will be called a second time. Currently, we assume that a printk 1231 * can't format message larger than 1024 bytes, so we don't either. 1232 */ 1233 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1234 va_list args) 1235 { 1236 int len, avail; 1237 struct sk_buff *skb; 1238 va_list args2; 1239 1240 if (!ab) 1241 return; 1242 1243 BUG_ON(!ab->skb); 1244 skb = ab->skb; 1245 avail = skb_tailroom(skb); 1246 if (avail == 0) { 1247 avail = audit_expand(ab, AUDIT_BUFSIZ); 1248 if (!avail) 1249 goto out; 1250 } 1251 va_copy(args2, args); 1252 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1253 if (len >= avail) { 1254 /* The printk buffer is 1024 bytes long, so if we get 1255 * here and AUDIT_BUFSIZ is at least 1024, then we can 1256 * log everything that printk could have logged. */ 1257 avail = audit_expand(ab, 1258 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1259 if (!avail) 1260 goto out; 1261 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1262 } 1263 va_end(args2); 1264 if (len > 0) 1265 skb_put(skb, len); 1266 out: 1267 return; 1268 } 1269 1270 /** 1271 * audit_log_format - format a message into the audit buffer. 1272 * @ab: audit_buffer 1273 * @fmt: format string 1274 * @...: optional parameters matching @fmt string 1275 * 1276 * All the work is done in audit_log_vformat. 1277 */ 1278 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1279 { 1280 va_list args; 1281 1282 if (!ab) 1283 return; 1284 va_start(args, fmt); 1285 audit_log_vformat(ab, fmt, args); 1286 va_end(args); 1287 } 1288 1289 /** 1290 * audit_log_hex - convert a buffer to hex and append it to the audit skb 1291 * @ab: the audit_buffer 1292 * @buf: buffer to convert to hex 1293 * @len: length of @buf to be converted 1294 * 1295 * No return value; failure to expand is silently ignored. 1296 * 1297 * This function will take the passed buf and convert it into a string of 1298 * ascii hex digits. The new string is placed onto the skb. 1299 */ 1300 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1301 size_t len) 1302 { 1303 int i, avail, new_len; 1304 unsigned char *ptr; 1305 struct sk_buff *skb; 1306 static const unsigned char *hex = "0123456789ABCDEF"; 1307 1308 if (!ab) 1309 return; 1310 1311 BUG_ON(!ab->skb); 1312 skb = ab->skb; 1313 avail = skb_tailroom(skb); 1314 new_len = len<<1; 1315 if (new_len >= avail) { 1316 /* Round the buffer request up to the next multiple */ 1317 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1318 avail = audit_expand(ab, new_len); 1319 if (!avail) 1320 return; 1321 } 1322 1323 ptr = skb_tail_pointer(skb); 1324 for (i=0; i<len; i++) { 1325 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */ 1326 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */ 1327 } 1328 *ptr = 0; 1329 skb_put(skb, len << 1); /* new string is twice the old string */ 1330 } 1331 1332 /* 1333 * Format a string of no more than slen characters into the audit buffer, 1334 * enclosed in quote marks. 1335 */ 1336 void audit_log_n_string(struct audit_buffer *ab, const char *string, 1337 size_t slen) 1338 { 1339 int avail, new_len; 1340 unsigned char *ptr; 1341 struct sk_buff *skb; 1342 1343 if (!ab) 1344 return; 1345 1346 BUG_ON(!ab->skb); 1347 skb = ab->skb; 1348 avail = skb_tailroom(skb); 1349 new_len = slen + 3; /* enclosing quotes + null terminator */ 1350 if (new_len > avail) { 1351 avail = audit_expand(ab, new_len); 1352 if (!avail) 1353 return; 1354 } 1355 ptr = skb_tail_pointer(skb); 1356 *ptr++ = '"'; 1357 memcpy(ptr, string, slen); 1358 ptr += slen; 1359 *ptr++ = '"'; 1360 *ptr = 0; 1361 skb_put(skb, slen + 2); /* don't include null terminator */ 1362 } 1363 1364 /** 1365 * audit_string_contains_control - does a string need to be logged in hex 1366 * @string: string to be checked 1367 * @len: max length of the string to check 1368 */ 1369 int audit_string_contains_control(const char *string, size_t len) 1370 { 1371 const unsigned char *p; 1372 for (p = string; p < (const unsigned char *)string + len; p++) { 1373 if (*p == '"' || *p < 0x21 || *p > 0x7e) 1374 return 1; 1375 } 1376 return 0; 1377 } 1378 1379 /** 1380 * audit_log_n_untrustedstring - log a string that may contain random characters 1381 * @ab: audit_buffer 1382 * @len: length of string (not including trailing null) 1383 * @string: string to be logged 1384 * 1385 * This code will escape a string that is passed to it if the string 1386 * contains a control character, unprintable character, double quote mark, 1387 * or a space. Unescaped strings will start and end with a double quote mark. 1388 * Strings that are escaped are printed in hex (2 digits per char). 1389 * 1390 * The caller specifies the number of characters in the string to log, which may 1391 * or may not be the entire string. 1392 */ 1393 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 1394 size_t len) 1395 { 1396 if (audit_string_contains_control(string, len)) 1397 audit_log_n_hex(ab, string, len); 1398 else 1399 audit_log_n_string(ab, string, len); 1400 } 1401 1402 /** 1403 * audit_log_untrustedstring - log a string that may contain random characters 1404 * @ab: audit_buffer 1405 * @string: string to be logged 1406 * 1407 * Same as audit_log_n_untrustedstring(), except that strlen is used to 1408 * determine string length. 1409 */ 1410 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 1411 { 1412 audit_log_n_untrustedstring(ab, string, strlen(string)); 1413 } 1414 1415 /* This is a helper-function to print the escaped d_path */ 1416 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 1417 struct path *path) 1418 { 1419 char *p, *pathname; 1420 1421 if (prefix) 1422 audit_log_format(ab, " %s", prefix); 1423 1424 /* We will allow 11 spaces for ' (deleted)' to be appended */ 1425 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 1426 if (!pathname) { 1427 audit_log_string(ab, "<no_memory>"); 1428 return; 1429 } 1430 p = d_path(path, pathname, PATH_MAX+11); 1431 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 1432 /* FIXME: can we save some information here? */ 1433 audit_log_string(ab, "<too_long>"); 1434 } else 1435 audit_log_untrustedstring(ab, p); 1436 kfree(pathname); 1437 } 1438 1439 void audit_log_key(struct audit_buffer *ab, char *key) 1440 { 1441 audit_log_format(ab, " key="); 1442 if (key) 1443 audit_log_untrustedstring(ab, key); 1444 else 1445 audit_log_format(ab, "(null)"); 1446 } 1447 1448 /** 1449 * audit_log_end - end one audit record 1450 * @ab: the audit_buffer 1451 * 1452 * The netlink_* functions cannot be called inside an irq context, so 1453 * the audit buffer is placed on a queue and a tasklet is scheduled to 1454 * remove them from the queue outside the irq context. May be called in 1455 * any context. 1456 */ 1457 void audit_log_end(struct audit_buffer *ab) 1458 { 1459 if (!ab) 1460 return; 1461 if (!audit_rate_check()) { 1462 audit_log_lost("rate limit exceeded"); 1463 } else { 1464 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 1465 nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0); 1466 1467 if (audit_pid) { 1468 skb_queue_tail(&audit_skb_queue, ab->skb); 1469 wake_up_interruptible(&kauditd_wait); 1470 } else { 1471 audit_printk_skb(ab->skb); 1472 } 1473 ab->skb = NULL; 1474 } 1475 audit_buffer_free(ab); 1476 } 1477 1478 /** 1479 * audit_log - Log an audit record 1480 * @ctx: audit context 1481 * @gfp_mask: type of allocation 1482 * @type: audit message type 1483 * @fmt: format string to use 1484 * @...: variable parameters matching the format string 1485 * 1486 * This is a convenience function that calls audit_log_start, 1487 * audit_log_vformat, and audit_log_end. It may be called 1488 * in any context. 1489 */ 1490 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 1491 const char *fmt, ...) 1492 { 1493 struct audit_buffer *ab; 1494 va_list args; 1495 1496 ab = audit_log_start(ctx, gfp_mask, type); 1497 if (ab) { 1498 va_start(args, fmt); 1499 audit_log_vformat(ab, fmt, args); 1500 va_end(args); 1501 audit_log_end(ab); 1502 } 1503 } 1504 1505 EXPORT_SYMBOL(audit_log_start); 1506 EXPORT_SYMBOL(audit_log_end); 1507 EXPORT_SYMBOL(audit_log_format); 1508 EXPORT_SYMBOL(audit_log); 1509