1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with Security Modules. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ 42 */ 43 44 #include <linux/init.h> 45 #include <asm/types.h> 46 #include <asm/atomic.h> 47 #include <linux/mm.h> 48 #include <linux/module.h> 49 #include <linux/err.h> 50 #include <linux/kthread.h> 51 52 #include <linux/audit.h> 53 54 #include <net/sock.h> 55 #include <net/netlink.h> 56 #include <linux/skbuff.h> 57 #include <linux/netlink.h> 58 #include <linux/inotify.h> 59 #include <linux/freezer.h> 60 #include <linux/tty.h> 61 62 #include "audit.h" 63 64 /* No auditing will take place until audit_initialized != 0. 65 * (Initialization happens after skb_init is called.) */ 66 static int audit_initialized; 67 68 #define AUDIT_OFF 0 69 #define AUDIT_ON 1 70 #define AUDIT_LOCKED 2 71 int audit_enabled; 72 int audit_ever_enabled; 73 74 /* Default state when kernel boots without any parameters. */ 75 static int audit_default; 76 77 /* If auditing cannot proceed, audit_failure selects what happens. */ 78 static int audit_failure = AUDIT_FAIL_PRINTK; 79 80 /* 81 * If audit records are to be written to the netlink socket, audit_pid 82 * contains the pid of the auditd process and audit_nlk_pid contains 83 * the pid to use to send netlink messages to that process. 84 */ 85 int audit_pid; 86 static int audit_nlk_pid; 87 88 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 89 * to that number per second. This prevents DoS attacks, but results in 90 * audit records being dropped. */ 91 static int audit_rate_limit; 92 93 /* Number of outstanding audit_buffers allowed. */ 94 static int audit_backlog_limit = 64; 95 static int audit_backlog_wait_time = 60 * HZ; 96 static int audit_backlog_wait_overflow = 0; 97 98 /* The identity of the user shutting down the audit system. */ 99 uid_t audit_sig_uid = -1; 100 pid_t audit_sig_pid = -1; 101 u32 audit_sig_sid = 0; 102 103 /* Records can be lost in several ways: 104 0) [suppressed in audit_alloc] 105 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 106 2) out of memory in audit_log_move [alloc_skb] 107 3) suppressed due to audit_rate_limit 108 4) suppressed due to audit_backlog_limit 109 */ 110 static atomic_t audit_lost = ATOMIC_INIT(0); 111 112 /* The netlink socket. */ 113 static struct sock *audit_sock; 114 115 /* Inotify handle. */ 116 struct inotify_handle *audit_ih; 117 118 /* Hash for inode-based rules */ 119 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 120 121 /* The audit_freelist is a list of pre-allocated audit buffers (if more 122 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of 123 * being placed on the freelist). */ 124 static DEFINE_SPINLOCK(audit_freelist_lock); 125 static int audit_freelist_count; 126 static LIST_HEAD(audit_freelist); 127 128 static struct sk_buff_head audit_skb_queue; 129 /* queue of skbs to send to auditd when/if it comes back */ 130 static struct sk_buff_head audit_skb_hold_queue; 131 static struct task_struct *kauditd_task; 132 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 133 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 134 135 /* Serialize requests from userspace. */ 136 static DEFINE_MUTEX(audit_cmd_mutex); 137 138 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 139 * audit records. Since printk uses a 1024 byte buffer, this buffer 140 * should be at least that large. */ 141 #define AUDIT_BUFSIZ 1024 142 143 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the 144 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ 145 #define AUDIT_MAXFREE (2*NR_CPUS) 146 147 /* The audit_buffer is used when formatting an audit record. The caller 148 * locks briefly to get the record off the freelist or to allocate the 149 * buffer, and locks briefly to send the buffer to the netlink layer or 150 * to place it on a transmit queue. Multiple audit_buffers can be in 151 * use simultaneously. */ 152 struct audit_buffer { 153 struct list_head list; 154 struct sk_buff *skb; /* formatted skb ready to send */ 155 struct audit_context *ctx; /* NULL or associated context */ 156 gfp_t gfp_mask; 157 }; 158 159 struct audit_reply { 160 int pid; 161 struct sk_buff *skb; 162 }; 163 164 static void audit_set_pid(struct audit_buffer *ab, pid_t pid) 165 { 166 if (ab) { 167 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 168 nlh->nlmsg_pid = pid; 169 } 170 } 171 172 void audit_panic(const char *message) 173 { 174 switch (audit_failure) 175 { 176 case AUDIT_FAIL_SILENT: 177 break; 178 case AUDIT_FAIL_PRINTK: 179 if (printk_ratelimit()) 180 printk(KERN_ERR "audit: %s\n", message); 181 break; 182 case AUDIT_FAIL_PANIC: 183 /* test audit_pid since printk is always losey, why bother? */ 184 if (audit_pid) 185 panic("audit: %s\n", message); 186 break; 187 } 188 } 189 190 static inline int audit_rate_check(void) 191 { 192 static unsigned long last_check = 0; 193 static int messages = 0; 194 static DEFINE_SPINLOCK(lock); 195 unsigned long flags; 196 unsigned long now; 197 unsigned long elapsed; 198 int retval = 0; 199 200 if (!audit_rate_limit) return 1; 201 202 spin_lock_irqsave(&lock, flags); 203 if (++messages < audit_rate_limit) { 204 retval = 1; 205 } else { 206 now = jiffies; 207 elapsed = now - last_check; 208 if (elapsed > HZ) { 209 last_check = now; 210 messages = 0; 211 retval = 1; 212 } 213 } 214 spin_unlock_irqrestore(&lock, flags); 215 216 return retval; 217 } 218 219 /** 220 * audit_log_lost - conditionally log lost audit message event 221 * @message: the message stating reason for lost audit message 222 * 223 * Emit at least 1 message per second, even if audit_rate_check is 224 * throttling. 225 * Always increment the lost messages counter. 226 */ 227 void audit_log_lost(const char *message) 228 { 229 static unsigned long last_msg = 0; 230 static DEFINE_SPINLOCK(lock); 231 unsigned long flags; 232 unsigned long now; 233 int print; 234 235 atomic_inc(&audit_lost); 236 237 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 238 239 if (!print) { 240 spin_lock_irqsave(&lock, flags); 241 now = jiffies; 242 if (now - last_msg > HZ) { 243 print = 1; 244 last_msg = now; 245 } 246 spin_unlock_irqrestore(&lock, flags); 247 } 248 249 if (print) { 250 if (printk_ratelimit()) 251 printk(KERN_WARNING 252 "audit: audit_lost=%d audit_rate_limit=%d " 253 "audit_backlog_limit=%d\n", 254 atomic_read(&audit_lost), 255 audit_rate_limit, 256 audit_backlog_limit); 257 audit_panic(message); 258 } 259 } 260 261 static int audit_log_config_change(char *function_name, int new, int old, 262 uid_t loginuid, u32 sessionid, u32 sid, 263 int allow_changes) 264 { 265 struct audit_buffer *ab; 266 int rc = 0; 267 268 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 269 audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new, 270 old, loginuid, sessionid); 271 if (sid) { 272 char *ctx = NULL; 273 u32 len; 274 275 rc = security_secid_to_secctx(sid, &ctx, &len); 276 if (rc) { 277 audit_log_format(ab, " sid=%u", sid); 278 allow_changes = 0; /* Something weird, deny request */ 279 } else { 280 audit_log_format(ab, " subj=%s", ctx); 281 security_release_secctx(ctx, len); 282 } 283 } 284 audit_log_format(ab, " res=%d", allow_changes); 285 audit_log_end(ab); 286 return rc; 287 } 288 289 static int audit_do_config_change(char *function_name, int *to_change, 290 int new, uid_t loginuid, u32 sessionid, 291 u32 sid) 292 { 293 int allow_changes, rc = 0, old = *to_change; 294 295 /* check if we are locked */ 296 if (audit_enabled == AUDIT_LOCKED) 297 allow_changes = 0; 298 else 299 allow_changes = 1; 300 301 if (audit_enabled != AUDIT_OFF) { 302 rc = audit_log_config_change(function_name, new, old, loginuid, 303 sessionid, sid, allow_changes); 304 if (rc) 305 allow_changes = 0; 306 } 307 308 /* If we are allowed, make the change */ 309 if (allow_changes == 1) 310 *to_change = new; 311 /* Not allowed, update reason */ 312 else if (rc == 0) 313 rc = -EPERM; 314 return rc; 315 } 316 317 static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sessionid, 318 u32 sid) 319 { 320 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, 321 limit, loginuid, sessionid, sid); 322 } 323 324 static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sessionid, 325 u32 sid) 326 { 327 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, 328 limit, loginuid, sessionid, sid); 329 } 330 331 static int audit_set_enabled(int state, uid_t loginuid, u32 sessionid, u32 sid) 332 { 333 int rc; 334 if (state < AUDIT_OFF || state > AUDIT_LOCKED) 335 return -EINVAL; 336 337 rc = audit_do_config_change("audit_enabled", &audit_enabled, state, 338 loginuid, sessionid, sid); 339 340 if (!rc) 341 audit_ever_enabled |= !!state; 342 343 return rc; 344 } 345 346 static int audit_set_failure(int state, uid_t loginuid, u32 sessionid, u32 sid) 347 { 348 if (state != AUDIT_FAIL_SILENT 349 && state != AUDIT_FAIL_PRINTK 350 && state != AUDIT_FAIL_PANIC) 351 return -EINVAL; 352 353 return audit_do_config_change("audit_failure", &audit_failure, state, 354 loginuid, sessionid, sid); 355 } 356 357 /* 358 * Queue skbs to be sent to auditd when/if it comes back. These skbs should 359 * already have been sent via prink/syslog and so if these messages are dropped 360 * it is not a huge concern since we already passed the audit_log_lost() 361 * notification and stuff. This is just nice to get audit messages during 362 * boot before auditd is running or messages generated while auditd is stopped. 363 * This only holds messages is audit_default is set, aka booting with audit=1 364 * or building your kernel that way. 365 */ 366 static void audit_hold_skb(struct sk_buff *skb) 367 { 368 if (audit_default && 369 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit) 370 skb_queue_tail(&audit_skb_hold_queue, skb); 371 else 372 kfree_skb(skb); 373 } 374 375 static void kauditd_send_skb(struct sk_buff *skb) 376 { 377 int err; 378 /* take a reference in case we can't send it and we want to hold it */ 379 skb_get(skb); 380 err = netlink_unicast(audit_sock, skb, audit_nlk_pid, 0); 381 if (err < 0) { 382 BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */ 383 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid); 384 audit_log_lost("auditd dissapeared\n"); 385 audit_pid = 0; 386 /* we might get lucky and get this in the next auditd */ 387 audit_hold_skb(skb); 388 } else 389 /* drop the extra reference if sent ok */ 390 kfree_skb(skb); 391 } 392 393 static int kauditd_thread(void *dummy) 394 { 395 struct sk_buff *skb; 396 397 set_freezable(); 398 while (!kthread_should_stop()) { 399 /* 400 * if auditd just started drain the queue of messages already 401 * sent to syslog/printk. remember loss here is ok. we already 402 * called audit_log_lost() if it didn't go out normally. so the 403 * race between the skb_dequeue and the next check for audit_pid 404 * doesn't matter. 405 * 406 * if you ever find kauditd to be too slow we can get a perf win 407 * by doing our own locking and keeping better track if there 408 * are messages in this queue. I don't see the need now, but 409 * in 5 years when I want to play with this again I'll see this 410 * note and still have no friggin idea what i'm thinking today. 411 */ 412 if (audit_default && audit_pid) { 413 skb = skb_dequeue(&audit_skb_hold_queue); 414 if (unlikely(skb)) { 415 while (skb && audit_pid) { 416 kauditd_send_skb(skb); 417 skb = skb_dequeue(&audit_skb_hold_queue); 418 } 419 } 420 } 421 422 skb = skb_dequeue(&audit_skb_queue); 423 wake_up(&audit_backlog_wait); 424 if (skb) { 425 if (audit_pid) 426 kauditd_send_skb(skb); 427 else { 428 if (printk_ratelimit()) 429 printk(KERN_NOTICE "%s\n", skb->data + NLMSG_SPACE(0)); 430 else 431 audit_log_lost("printk limit exceeded\n"); 432 433 audit_hold_skb(skb); 434 } 435 } else { 436 DECLARE_WAITQUEUE(wait, current); 437 set_current_state(TASK_INTERRUPTIBLE); 438 add_wait_queue(&kauditd_wait, &wait); 439 440 if (!skb_queue_len(&audit_skb_queue)) { 441 try_to_freeze(); 442 schedule(); 443 } 444 445 __set_current_state(TASK_RUNNING); 446 remove_wait_queue(&kauditd_wait, &wait); 447 } 448 } 449 return 0; 450 } 451 452 static int audit_prepare_user_tty(pid_t pid, uid_t loginuid, u32 sessionid) 453 { 454 struct task_struct *tsk; 455 int err; 456 457 read_lock(&tasklist_lock); 458 tsk = find_task_by_vpid(pid); 459 err = -ESRCH; 460 if (!tsk) 461 goto out; 462 err = 0; 463 464 spin_lock_irq(&tsk->sighand->siglock); 465 if (!tsk->signal->audit_tty) 466 err = -EPERM; 467 spin_unlock_irq(&tsk->sighand->siglock); 468 if (err) 469 goto out; 470 471 tty_audit_push_task(tsk, loginuid, sessionid); 472 out: 473 read_unlock(&tasklist_lock); 474 return err; 475 } 476 477 int audit_send_list(void *_dest) 478 { 479 struct audit_netlink_list *dest = _dest; 480 int pid = dest->pid; 481 struct sk_buff *skb; 482 483 /* wait for parent to finish and send an ACK */ 484 mutex_lock(&audit_cmd_mutex); 485 mutex_unlock(&audit_cmd_mutex); 486 487 while ((skb = __skb_dequeue(&dest->q)) != NULL) 488 netlink_unicast(audit_sock, skb, pid, 0); 489 490 kfree(dest); 491 492 return 0; 493 } 494 495 #ifdef CONFIG_AUDIT_TREE 496 static int prune_tree_thread(void *unused) 497 { 498 mutex_lock(&audit_cmd_mutex); 499 audit_prune_trees(); 500 mutex_unlock(&audit_cmd_mutex); 501 return 0; 502 } 503 504 void audit_schedule_prune(void) 505 { 506 kthread_run(prune_tree_thread, NULL, "audit_prune_tree"); 507 } 508 #endif 509 510 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done, 511 int multi, void *payload, int size) 512 { 513 struct sk_buff *skb; 514 struct nlmsghdr *nlh; 515 int len = NLMSG_SPACE(size); 516 void *data; 517 int flags = multi ? NLM_F_MULTI : 0; 518 int t = done ? NLMSG_DONE : type; 519 520 skb = alloc_skb(len, GFP_KERNEL); 521 if (!skb) 522 return NULL; 523 524 nlh = NLMSG_PUT(skb, pid, seq, t, size); 525 nlh->nlmsg_flags = flags; 526 data = NLMSG_DATA(nlh); 527 memcpy(data, payload, size); 528 return skb; 529 530 nlmsg_failure: /* Used by NLMSG_PUT */ 531 if (skb) 532 kfree_skb(skb); 533 return NULL; 534 } 535 536 static int audit_send_reply_thread(void *arg) 537 { 538 struct audit_reply *reply = (struct audit_reply *)arg; 539 540 mutex_lock(&audit_cmd_mutex); 541 mutex_unlock(&audit_cmd_mutex); 542 543 /* Ignore failure. It'll only happen if the sender goes away, 544 because our timeout is set to infinite. */ 545 netlink_unicast(audit_sock, reply->skb, reply->pid, 0); 546 kfree(reply); 547 return 0; 548 } 549 /** 550 * audit_send_reply - send an audit reply message via netlink 551 * @pid: process id to send reply to 552 * @seq: sequence number 553 * @type: audit message type 554 * @done: done (last) flag 555 * @multi: multi-part message flag 556 * @payload: payload data 557 * @size: payload size 558 * 559 * Allocates an skb, builds the netlink message, and sends it to the pid. 560 * No failure notifications. 561 */ 562 void audit_send_reply(int pid, int seq, int type, int done, int multi, 563 void *payload, int size) 564 { 565 struct sk_buff *skb; 566 struct task_struct *tsk; 567 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), 568 GFP_KERNEL); 569 570 if (!reply) 571 return; 572 573 skb = audit_make_reply(pid, seq, type, done, multi, payload, size); 574 if (!skb) 575 goto out; 576 577 reply->pid = pid; 578 reply->skb = skb; 579 580 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 581 if (!IS_ERR(tsk)) 582 return; 583 kfree_skb(skb); 584 out: 585 kfree(reply); 586 } 587 588 /* 589 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 590 * control messages. 591 */ 592 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 593 { 594 int err = 0; 595 596 switch (msg_type) { 597 case AUDIT_GET: 598 case AUDIT_LIST: 599 case AUDIT_LIST_RULES: 600 case AUDIT_SET: 601 case AUDIT_ADD: 602 case AUDIT_ADD_RULE: 603 case AUDIT_DEL: 604 case AUDIT_DEL_RULE: 605 case AUDIT_SIGNAL_INFO: 606 case AUDIT_TTY_GET: 607 case AUDIT_TTY_SET: 608 case AUDIT_TRIM: 609 case AUDIT_MAKE_EQUIV: 610 if (security_netlink_recv(skb, CAP_AUDIT_CONTROL)) 611 err = -EPERM; 612 break; 613 case AUDIT_USER: 614 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 615 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 616 if (security_netlink_recv(skb, CAP_AUDIT_WRITE)) 617 err = -EPERM; 618 break; 619 default: /* bad msg */ 620 err = -EINVAL; 621 } 622 623 return err; 624 } 625 626 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type, 627 u32 pid, u32 uid, uid_t auid, u32 ses, 628 u32 sid) 629 { 630 int rc = 0; 631 char *ctx = NULL; 632 u32 len; 633 634 if (!audit_enabled) { 635 *ab = NULL; 636 return rc; 637 } 638 639 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 640 audit_log_format(*ab, "user pid=%d uid=%u auid=%u ses=%u", 641 pid, uid, auid, ses); 642 if (sid) { 643 rc = security_secid_to_secctx(sid, &ctx, &len); 644 if (rc) 645 audit_log_format(*ab, " ssid=%u", sid); 646 else { 647 audit_log_format(*ab, " subj=%s", ctx); 648 security_release_secctx(ctx, len); 649 } 650 } 651 652 return rc; 653 } 654 655 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 656 { 657 u32 uid, pid, seq, sid; 658 void *data; 659 struct audit_status *status_get, status_set; 660 int err; 661 struct audit_buffer *ab; 662 u16 msg_type = nlh->nlmsg_type; 663 uid_t loginuid; /* loginuid of sender */ 664 u32 sessionid; 665 struct audit_sig_info *sig_data; 666 char *ctx = NULL; 667 u32 len; 668 669 err = audit_netlink_ok(skb, msg_type); 670 if (err) 671 return err; 672 673 /* As soon as there's any sign of userspace auditd, 674 * start kauditd to talk to it */ 675 if (!kauditd_task) 676 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 677 if (IS_ERR(kauditd_task)) { 678 err = PTR_ERR(kauditd_task); 679 kauditd_task = NULL; 680 return err; 681 } 682 683 pid = NETLINK_CREDS(skb)->pid; 684 uid = NETLINK_CREDS(skb)->uid; 685 loginuid = NETLINK_CB(skb).loginuid; 686 sessionid = NETLINK_CB(skb).sessionid; 687 sid = NETLINK_CB(skb).sid; 688 seq = nlh->nlmsg_seq; 689 data = NLMSG_DATA(nlh); 690 691 switch (msg_type) { 692 case AUDIT_GET: 693 status_set.enabled = audit_enabled; 694 status_set.failure = audit_failure; 695 status_set.pid = audit_pid; 696 status_set.rate_limit = audit_rate_limit; 697 status_set.backlog_limit = audit_backlog_limit; 698 status_set.lost = atomic_read(&audit_lost); 699 status_set.backlog = skb_queue_len(&audit_skb_queue); 700 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0, 701 &status_set, sizeof(status_set)); 702 break; 703 case AUDIT_SET: 704 if (nlh->nlmsg_len < sizeof(struct audit_status)) 705 return -EINVAL; 706 status_get = (struct audit_status *)data; 707 if (status_get->mask & AUDIT_STATUS_ENABLED) { 708 err = audit_set_enabled(status_get->enabled, 709 loginuid, sessionid, sid); 710 if (err < 0) return err; 711 } 712 if (status_get->mask & AUDIT_STATUS_FAILURE) { 713 err = audit_set_failure(status_get->failure, 714 loginuid, sessionid, sid); 715 if (err < 0) return err; 716 } 717 if (status_get->mask & AUDIT_STATUS_PID) { 718 int new_pid = status_get->pid; 719 720 if (audit_enabled != AUDIT_OFF) 721 audit_log_config_change("audit_pid", new_pid, 722 audit_pid, loginuid, 723 sessionid, sid, 1); 724 725 audit_pid = new_pid; 726 audit_nlk_pid = NETLINK_CB(skb).pid; 727 } 728 if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) 729 err = audit_set_rate_limit(status_get->rate_limit, 730 loginuid, sessionid, sid); 731 if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT) 732 err = audit_set_backlog_limit(status_get->backlog_limit, 733 loginuid, sessionid, sid); 734 break; 735 case AUDIT_USER: 736 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 737 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 738 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 739 return 0; 740 741 err = audit_filter_user(&NETLINK_CB(skb)); 742 if (err == 1) { 743 err = 0; 744 if (msg_type == AUDIT_USER_TTY) { 745 err = audit_prepare_user_tty(pid, loginuid, 746 sessionid); 747 if (err) 748 break; 749 } 750 audit_log_common_recv_msg(&ab, msg_type, pid, uid, 751 loginuid, sessionid, sid); 752 753 if (msg_type != AUDIT_USER_TTY) 754 audit_log_format(ab, " msg='%.1024s'", 755 (char *)data); 756 else { 757 int size; 758 759 audit_log_format(ab, " msg="); 760 size = nlmsg_len(nlh); 761 audit_log_n_untrustedstring(ab, data, size); 762 } 763 audit_set_pid(ab, pid); 764 audit_log_end(ab); 765 } 766 break; 767 case AUDIT_ADD: 768 case AUDIT_DEL: 769 if (nlmsg_len(nlh) < sizeof(struct audit_rule)) 770 return -EINVAL; 771 if (audit_enabled == AUDIT_LOCKED) { 772 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 773 uid, loginuid, sessionid, sid); 774 775 audit_log_format(ab, " audit_enabled=%d res=0", 776 audit_enabled); 777 audit_log_end(ab); 778 return -EPERM; 779 } 780 /* fallthrough */ 781 case AUDIT_LIST: 782 err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid, 783 uid, seq, data, nlmsg_len(nlh), 784 loginuid, sessionid, sid); 785 break; 786 case AUDIT_ADD_RULE: 787 case AUDIT_DEL_RULE: 788 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 789 return -EINVAL; 790 if (audit_enabled == AUDIT_LOCKED) { 791 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 792 uid, loginuid, sessionid, sid); 793 794 audit_log_format(ab, " audit_enabled=%d res=0", 795 audit_enabled); 796 audit_log_end(ab); 797 return -EPERM; 798 } 799 /* fallthrough */ 800 case AUDIT_LIST_RULES: 801 err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid, 802 uid, seq, data, nlmsg_len(nlh), 803 loginuid, sessionid, sid); 804 break; 805 case AUDIT_TRIM: 806 audit_trim_trees(); 807 808 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 809 uid, loginuid, sessionid, sid); 810 811 audit_log_format(ab, " op=trim res=1"); 812 audit_log_end(ab); 813 break; 814 case AUDIT_MAKE_EQUIV: { 815 void *bufp = data; 816 u32 sizes[2]; 817 size_t msglen = nlmsg_len(nlh); 818 char *old, *new; 819 820 err = -EINVAL; 821 if (msglen < 2 * sizeof(u32)) 822 break; 823 memcpy(sizes, bufp, 2 * sizeof(u32)); 824 bufp += 2 * sizeof(u32); 825 msglen -= 2 * sizeof(u32); 826 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 827 if (IS_ERR(old)) { 828 err = PTR_ERR(old); 829 break; 830 } 831 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 832 if (IS_ERR(new)) { 833 err = PTR_ERR(new); 834 kfree(old); 835 break; 836 } 837 /* OK, here comes... */ 838 err = audit_tag_tree(old, new); 839 840 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 841 uid, loginuid, sessionid, sid); 842 843 audit_log_format(ab, " op=make_equiv old="); 844 audit_log_untrustedstring(ab, old); 845 audit_log_format(ab, " new="); 846 audit_log_untrustedstring(ab, new); 847 audit_log_format(ab, " res=%d", !err); 848 audit_log_end(ab); 849 kfree(old); 850 kfree(new); 851 break; 852 } 853 case AUDIT_SIGNAL_INFO: 854 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 855 if (err) 856 return err; 857 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 858 if (!sig_data) { 859 security_release_secctx(ctx, len); 860 return -ENOMEM; 861 } 862 sig_data->uid = audit_sig_uid; 863 sig_data->pid = audit_sig_pid; 864 memcpy(sig_data->ctx, ctx, len); 865 security_release_secctx(ctx, len); 866 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, 867 0, 0, sig_data, sizeof(*sig_data) + len); 868 kfree(sig_data); 869 break; 870 case AUDIT_TTY_GET: { 871 struct audit_tty_status s; 872 struct task_struct *tsk; 873 874 read_lock(&tasklist_lock); 875 tsk = find_task_by_vpid(pid); 876 if (!tsk) 877 err = -ESRCH; 878 else { 879 spin_lock_irq(&tsk->sighand->siglock); 880 s.enabled = tsk->signal->audit_tty != 0; 881 spin_unlock_irq(&tsk->sighand->siglock); 882 } 883 read_unlock(&tasklist_lock); 884 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_TTY_GET, 0, 0, 885 &s, sizeof(s)); 886 break; 887 } 888 case AUDIT_TTY_SET: { 889 struct audit_tty_status *s; 890 struct task_struct *tsk; 891 892 if (nlh->nlmsg_len < sizeof(struct audit_tty_status)) 893 return -EINVAL; 894 s = data; 895 if (s->enabled != 0 && s->enabled != 1) 896 return -EINVAL; 897 read_lock(&tasklist_lock); 898 tsk = find_task_by_vpid(pid); 899 if (!tsk) 900 err = -ESRCH; 901 else { 902 spin_lock_irq(&tsk->sighand->siglock); 903 tsk->signal->audit_tty = s->enabled != 0; 904 spin_unlock_irq(&tsk->sighand->siglock); 905 } 906 read_unlock(&tasklist_lock); 907 break; 908 } 909 default: 910 err = -EINVAL; 911 break; 912 } 913 914 return err < 0 ? err : 0; 915 } 916 917 /* 918 * Get message from skb (based on rtnetlink_rcv_skb). Each message is 919 * processed by audit_receive_msg. Malformed skbs with wrong length are 920 * discarded silently. 921 */ 922 static void audit_receive_skb(struct sk_buff *skb) 923 { 924 int err; 925 struct nlmsghdr *nlh; 926 u32 rlen; 927 928 while (skb->len >= NLMSG_SPACE(0)) { 929 nlh = nlmsg_hdr(skb); 930 if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len) 931 return; 932 rlen = NLMSG_ALIGN(nlh->nlmsg_len); 933 if (rlen > skb->len) 934 rlen = skb->len; 935 if ((err = audit_receive_msg(skb, nlh))) { 936 netlink_ack(skb, nlh, err); 937 } else if (nlh->nlmsg_flags & NLM_F_ACK) 938 netlink_ack(skb, nlh, 0); 939 skb_pull(skb, rlen); 940 } 941 } 942 943 /* Receive messages from netlink socket. */ 944 static void audit_receive(struct sk_buff *skb) 945 { 946 mutex_lock(&audit_cmd_mutex); 947 audit_receive_skb(skb); 948 mutex_unlock(&audit_cmd_mutex); 949 } 950 951 #ifdef CONFIG_AUDITSYSCALL 952 static const struct inotify_operations audit_inotify_ops = { 953 .handle_event = audit_handle_ievent, 954 .destroy_watch = audit_free_parent, 955 }; 956 #endif 957 958 /* Initialize audit support at boot time. */ 959 static int __init audit_init(void) 960 { 961 int i; 962 963 printk(KERN_INFO "audit: initializing netlink socket (%s)\n", 964 audit_default ? "enabled" : "disabled"); 965 audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0, 966 audit_receive, NULL, THIS_MODULE); 967 if (!audit_sock) 968 audit_panic("cannot initialize netlink socket"); 969 else 970 audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 971 972 skb_queue_head_init(&audit_skb_queue); 973 skb_queue_head_init(&audit_skb_hold_queue); 974 audit_initialized = 1; 975 audit_enabled = audit_default; 976 audit_ever_enabled |= !!audit_default; 977 978 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); 979 980 #ifdef CONFIG_AUDITSYSCALL 981 audit_ih = inotify_init(&audit_inotify_ops); 982 if (IS_ERR(audit_ih)) 983 audit_panic("cannot initialize inotify handle"); 984 #endif 985 986 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 987 INIT_LIST_HEAD(&audit_inode_hash[i]); 988 989 return 0; 990 } 991 __initcall(audit_init); 992 993 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ 994 static int __init audit_enable(char *str) 995 { 996 audit_default = !!simple_strtol(str, NULL, 0); 997 printk(KERN_INFO "audit: %s%s\n", 998 audit_default ? "enabled" : "disabled", 999 audit_initialized ? "" : " (after initialization)"); 1000 if (audit_initialized) { 1001 audit_enabled = audit_default; 1002 audit_ever_enabled |= !!audit_default; 1003 } 1004 return 1; 1005 } 1006 1007 __setup("audit=", audit_enable); 1008 1009 static void audit_buffer_free(struct audit_buffer *ab) 1010 { 1011 unsigned long flags; 1012 1013 if (!ab) 1014 return; 1015 1016 if (ab->skb) 1017 kfree_skb(ab->skb); 1018 1019 spin_lock_irqsave(&audit_freelist_lock, flags); 1020 if (audit_freelist_count > AUDIT_MAXFREE) 1021 kfree(ab); 1022 else { 1023 audit_freelist_count++; 1024 list_add(&ab->list, &audit_freelist); 1025 } 1026 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1027 } 1028 1029 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, 1030 gfp_t gfp_mask, int type) 1031 { 1032 unsigned long flags; 1033 struct audit_buffer *ab = NULL; 1034 struct nlmsghdr *nlh; 1035 1036 spin_lock_irqsave(&audit_freelist_lock, flags); 1037 if (!list_empty(&audit_freelist)) { 1038 ab = list_entry(audit_freelist.next, 1039 struct audit_buffer, list); 1040 list_del(&ab->list); 1041 --audit_freelist_count; 1042 } 1043 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1044 1045 if (!ab) { 1046 ab = kmalloc(sizeof(*ab), gfp_mask); 1047 if (!ab) 1048 goto err; 1049 } 1050 1051 ab->skb = alloc_skb(AUDIT_BUFSIZ, gfp_mask); 1052 if (!ab->skb) 1053 goto err; 1054 1055 ab->ctx = ctx; 1056 ab->gfp_mask = gfp_mask; 1057 nlh = (struct nlmsghdr *)skb_put(ab->skb, NLMSG_SPACE(0)); 1058 nlh->nlmsg_type = type; 1059 nlh->nlmsg_flags = 0; 1060 nlh->nlmsg_pid = 0; 1061 nlh->nlmsg_seq = 0; 1062 return ab; 1063 err: 1064 audit_buffer_free(ab); 1065 return NULL; 1066 } 1067 1068 /** 1069 * audit_serial - compute a serial number for the audit record 1070 * 1071 * Compute a serial number for the audit record. Audit records are 1072 * written to user-space as soon as they are generated, so a complete 1073 * audit record may be written in several pieces. The timestamp of the 1074 * record and this serial number are used by the user-space tools to 1075 * determine which pieces belong to the same audit record. The 1076 * (timestamp,serial) tuple is unique for each syscall and is live from 1077 * syscall entry to syscall exit. 1078 * 1079 * NOTE: Another possibility is to store the formatted records off the 1080 * audit context (for those records that have a context), and emit them 1081 * all at syscall exit. However, this could delay the reporting of 1082 * significant errors until syscall exit (or never, if the system 1083 * halts). 1084 */ 1085 unsigned int audit_serial(void) 1086 { 1087 static DEFINE_SPINLOCK(serial_lock); 1088 static unsigned int serial = 0; 1089 1090 unsigned long flags; 1091 unsigned int ret; 1092 1093 spin_lock_irqsave(&serial_lock, flags); 1094 do { 1095 ret = ++serial; 1096 } while (unlikely(!ret)); 1097 spin_unlock_irqrestore(&serial_lock, flags); 1098 1099 return ret; 1100 } 1101 1102 static inline void audit_get_stamp(struct audit_context *ctx, 1103 struct timespec *t, unsigned int *serial) 1104 { 1105 if (ctx) 1106 auditsc_get_stamp(ctx, t, serial); 1107 else { 1108 *t = CURRENT_TIME; 1109 *serial = audit_serial(); 1110 } 1111 } 1112 1113 /* Obtain an audit buffer. This routine does locking to obtain the 1114 * audit buffer, but then no locking is required for calls to 1115 * audit_log_*format. If the tsk is a task that is currently in a 1116 * syscall, then the syscall is marked as auditable and an audit record 1117 * will be written at syscall exit. If there is no associated task, tsk 1118 * should be NULL. */ 1119 1120 /** 1121 * audit_log_start - obtain an audit buffer 1122 * @ctx: audit_context (may be NULL) 1123 * @gfp_mask: type of allocation 1124 * @type: audit message type 1125 * 1126 * Returns audit_buffer pointer on success or NULL on error. 1127 * 1128 * Obtain an audit buffer. This routine does locking to obtain the 1129 * audit buffer, but then no locking is required for calls to 1130 * audit_log_*format. If the task (ctx) is a task that is currently in a 1131 * syscall, then the syscall is marked as auditable and an audit record 1132 * will be written at syscall exit. If there is no associated task, then 1133 * task context (ctx) should be NULL. 1134 */ 1135 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1136 int type) 1137 { 1138 struct audit_buffer *ab = NULL; 1139 struct timespec t; 1140 unsigned int uninitialized_var(serial); 1141 int reserve; 1142 unsigned long timeout_start = jiffies; 1143 1144 if (!audit_initialized) 1145 return NULL; 1146 1147 if (unlikely(audit_filter_type(type))) 1148 return NULL; 1149 1150 if (gfp_mask & __GFP_WAIT) 1151 reserve = 0; 1152 else 1153 reserve = 5; /* Allow atomic callers to go up to five 1154 entries over the normal backlog limit */ 1155 1156 while (audit_backlog_limit 1157 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) { 1158 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time 1159 && time_before(jiffies, timeout_start + audit_backlog_wait_time)) { 1160 1161 /* Wait for auditd to drain the queue a little */ 1162 DECLARE_WAITQUEUE(wait, current); 1163 set_current_state(TASK_INTERRUPTIBLE); 1164 add_wait_queue(&audit_backlog_wait, &wait); 1165 1166 if (audit_backlog_limit && 1167 skb_queue_len(&audit_skb_queue) > audit_backlog_limit) 1168 schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies); 1169 1170 __set_current_state(TASK_RUNNING); 1171 remove_wait_queue(&audit_backlog_wait, &wait); 1172 continue; 1173 } 1174 if (audit_rate_check() && printk_ratelimit()) 1175 printk(KERN_WARNING 1176 "audit: audit_backlog=%d > " 1177 "audit_backlog_limit=%d\n", 1178 skb_queue_len(&audit_skb_queue), 1179 audit_backlog_limit); 1180 audit_log_lost("backlog limit exceeded"); 1181 audit_backlog_wait_time = audit_backlog_wait_overflow; 1182 wake_up(&audit_backlog_wait); 1183 return NULL; 1184 } 1185 1186 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1187 if (!ab) { 1188 audit_log_lost("out of memory in audit_log_start"); 1189 return NULL; 1190 } 1191 1192 audit_get_stamp(ab->ctx, &t, &serial); 1193 1194 audit_log_format(ab, "audit(%lu.%03lu:%u): ", 1195 t.tv_sec, t.tv_nsec/1000000, serial); 1196 return ab; 1197 } 1198 1199 /** 1200 * audit_expand - expand skb in the audit buffer 1201 * @ab: audit_buffer 1202 * @extra: space to add at tail of the skb 1203 * 1204 * Returns 0 (no space) on failed expansion, or available space if 1205 * successful. 1206 */ 1207 static inline int audit_expand(struct audit_buffer *ab, int extra) 1208 { 1209 struct sk_buff *skb = ab->skb; 1210 int oldtail = skb_tailroom(skb); 1211 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1212 int newtail = skb_tailroom(skb); 1213 1214 if (ret < 0) { 1215 audit_log_lost("out of memory in audit_expand"); 1216 return 0; 1217 } 1218 1219 skb->truesize += newtail - oldtail; 1220 return newtail; 1221 } 1222 1223 /* 1224 * Format an audit message into the audit buffer. If there isn't enough 1225 * room in the audit buffer, more room will be allocated and vsnprint 1226 * will be called a second time. Currently, we assume that a printk 1227 * can't format message larger than 1024 bytes, so we don't either. 1228 */ 1229 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1230 va_list args) 1231 { 1232 int len, avail; 1233 struct sk_buff *skb; 1234 va_list args2; 1235 1236 if (!ab) 1237 return; 1238 1239 BUG_ON(!ab->skb); 1240 skb = ab->skb; 1241 avail = skb_tailroom(skb); 1242 if (avail == 0) { 1243 avail = audit_expand(ab, AUDIT_BUFSIZ); 1244 if (!avail) 1245 goto out; 1246 } 1247 va_copy(args2, args); 1248 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1249 if (len >= avail) { 1250 /* The printk buffer is 1024 bytes long, so if we get 1251 * here and AUDIT_BUFSIZ is at least 1024, then we can 1252 * log everything that printk could have logged. */ 1253 avail = audit_expand(ab, 1254 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1255 if (!avail) 1256 goto out; 1257 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1258 } 1259 va_end(args2); 1260 if (len > 0) 1261 skb_put(skb, len); 1262 out: 1263 return; 1264 } 1265 1266 /** 1267 * audit_log_format - format a message into the audit buffer. 1268 * @ab: audit_buffer 1269 * @fmt: format string 1270 * @...: optional parameters matching @fmt string 1271 * 1272 * All the work is done in audit_log_vformat. 1273 */ 1274 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1275 { 1276 va_list args; 1277 1278 if (!ab) 1279 return; 1280 va_start(args, fmt); 1281 audit_log_vformat(ab, fmt, args); 1282 va_end(args); 1283 } 1284 1285 /** 1286 * audit_log_hex - convert a buffer to hex and append it to the audit skb 1287 * @ab: the audit_buffer 1288 * @buf: buffer to convert to hex 1289 * @len: length of @buf to be converted 1290 * 1291 * No return value; failure to expand is silently ignored. 1292 * 1293 * This function will take the passed buf and convert it into a string of 1294 * ascii hex digits. The new string is placed onto the skb. 1295 */ 1296 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1297 size_t len) 1298 { 1299 int i, avail, new_len; 1300 unsigned char *ptr; 1301 struct sk_buff *skb; 1302 static const unsigned char *hex = "0123456789ABCDEF"; 1303 1304 if (!ab) 1305 return; 1306 1307 BUG_ON(!ab->skb); 1308 skb = ab->skb; 1309 avail = skb_tailroom(skb); 1310 new_len = len<<1; 1311 if (new_len >= avail) { 1312 /* Round the buffer request up to the next multiple */ 1313 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1314 avail = audit_expand(ab, new_len); 1315 if (!avail) 1316 return; 1317 } 1318 1319 ptr = skb_tail_pointer(skb); 1320 for (i=0; i<len; i++) { 1321 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */ 1322 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */ 1323 } 1324 *ptr = 0; 1325 skb_put(skb, len << 1); /* new string is twice the old string */ 1326 } 1327 1328 /* 1329 * Format a string of no more than slen characters into the audit buffer, 1330 * enclosed in quote marks. 1331 */ 1332 void audit_log_n_string(struct audit_buffer *ab, const char *string, 1333 size_t slen) 1334 { 1335 int avail, new_len; 1336 unsigned char *ptr; 1337 struct sk_buff *skb; 1338 1339 if (!ab) 1340 return; 1341 1342 BUG_ON(!ab->skb); 1343 skb = ab->skb; 1344 avail = skb_tailroom(skb); 1345 new_len = slen + 3; /* enclosing quotes + null terminator */ 1346 if (new_len > avail) { 1347 avail = audit_expand(ab, new_len); 1348 if (!avail) 1349 return; 1350 } 1351 ptr = skb_tail_pointer(skb); 1352 *ptr++ = '"'; 1353 memcpy(ptr, string, slen); 1354 ptr += slen; 1355 *ptr++ = '"'; 1356 *ptr = 0; 1357 skb_put(skb, slen + 2); /* don't include null terminator */ 1358 } 1359 1360 /** 1361 * audit_string_contains_control - does a string need to be logged in hex 1362 * @string: string to be checked 1363 * @len: max length of the string to check 1364 */ 1365 int audit_string_contains_control(const char *string, size_t len) 1366 { 1367 const unsigned char *p; 1368 for (p = string; p < (const unsigned char *)string + len && *p; p++) { 1369 if (*p == '"' || *p < 0x21 || *p > 0x7f) 1370 return 1; 1371 } 1372 return 0; 1373 } 1374 1375 /** 1376 * audit_log_n_untrustedstring - log a string that may contain random characters 1377 * @ab: audit_buffer 1378 * @len: length of string (not including trailing null) 1379 * @string: string to be logged 1380 * 1381 * This code will escape a string that is passed to it if the string 1382 * contains a control character, unprintable character, double quote mark, 1383 * or a space. Unescaped strings will start and end with a double quote mark. 1384 * Strings that are escaped are printed in hex (2 digits per char). 1385 * 1386 * The caller specifies the number of characters in the string to log, which may 1387 * or may not be the entire string. 1388 */ 1389 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 1390 size_t len) 1391 { 1392 if (audit_string_contains_control(string, len)) 1393 audit_log_n_hex(ab, string, len); 1394 else 1395 audit_log_n_string(ab, string, len); 1396 } 1397 1398 /** 1399 * audit_log_untrustedstring - log a string that may contain random characters 1400 * @ab: audit_buffer 1401 * @string: string to be logged 1402 * 1403 * Same as audit_log_n_untrustedstring(), except that strlen is used to 1404 * determine string length. 1405 */ 1406 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 1407 { 1408 audit_log_n_untrustedstring(ab, string, strlen(string)); 1409 } 1410 1411 /* This is a helper-function to print the escaped d_path */ 1412 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 1413 struct path *path) 1414 { 1415 char *p, *pathname; 1416 1417 if (prefix) 1418 audit_log_format(ab, " %s", prefix); 1419 1420 /* We will allow 11 spaces for ' (deleted)' to be appended */ 1421 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 1422 if (!pathname) { 1423 audit_log_format(ab, "<no memory>"); 1424 return; 1425 } 1426 p = d_path(path, pathname, PATH_MAX+11); 1427 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 1428 /* FIXME: can we save some information here? */ 1429 audit_log_format(ab, "<too long>"); 1430 } else 1431 audit_log_untrustedstring(ab, p); 1432 kfree(pathname); 1433 } 1434 1435 /** 1436 * audit_log_end - end one audit record 1437 * @ab: the audit_buffer 1438 * 1439 * The netlink_* functions cannot be called inside an irq context, so 1440 * the audit buffer is placed on a queue and a tasklet is scheduled to 1441 * remove them from the queue outside the irq context. May be called in 1442 * any context. 1443 */ 1444 void audit_log_end(struct audit_buffer *ab) 1445 { 1446 if (!ab) 1447 return; 1448 if (!audit_rate_check()) { 1449 audit_log_lost("rate limit exceeded"); 1450 } else { 1451 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 1452 nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0); 1453 1454 if (audit_pid) { 1455 skb_queue_tail(&audit_skb_queue, ab->skb); 1456 wake_up_interruptible(&kauditd_wait); 1457 } else { 1458 if (nlh->nlmsg_type != AUDIT_EOE) { 1459 if (printk_ratelimit()) { 1460 printk(KERN_NOTICE "type=%d %s\n", 1461 nlh->nlmsg_type, 1462 ab->skb->data + NLMSG_SPACE(0)); 1463 } else 1464 audit_log_lost("printk limit exceeded\n"); 1465 } 1466 audit_hold_skb(ab->skb); 1467 } 1468 ab->skb = NULL; 1469 } 1470 audit_buffer_free(ab); 1471 } 1472 1473 /** 1474 * audit_log - Log an audit record 1475 * @ctx: audit context 1476 * @gfp_mask: type of allocation 1477 * @type: audit message type 1478 * @fmt: format string to use 1479 * @...: variable parameters matching the format string 1480 * 1481 * This is a convenience function that calls audit_log_start, 1482 * audit_log_vformat, and audit_log_end. It may be called 1483 * in any context. 1484 */ 1485 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 1486 const char *fmt, ...) 1487 { 1488 struct audit_buffer *ab; 1489 va_list args; 1490 1491 ab = audit_log_start(ctx, gfp_mask, type); 1492 if (ab) { 1493 va_start(args, fmt); 1494 audit_log_vformat(ab, fmt, args); 1495 va_end(args); 1496 audit_log_end(ab); 1497 } 1498 } 1499 1500 EXPORT_SYMBOL(audit_log_start); 1501 EXPORT_SYMBOL(audit_log_end); 1502 EXPORT_SYMBOL(audit_log_format); 1503 EXPORT_SYMBOL(audit_log); 1504