xref: /openbmc/linux/kernel/audit.c (revision 4f205687)
1 /* audit.c -- Auditing support
2  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3  * System-call specific features have moved to auditsc.c
4  *
5  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6  * All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23  *
24  * Goals: 1) Integrate fully with Security Modules.
25  *	  2) Minimal run-time overhead:
26  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
27  *	     b) Small when syscall auditing is enabled and no audit record
28  *		is generated (defer as much work as possible to record
29  *		generation time):
30  *		i) context is allocated,
31  *		ii) names from getname are stored without a copy, and
32  *		iii) inode information stored from path_lookup.
33  *	  3) Ability to disable syscall auditing at boot time (audit=0).
34  *	  4) Usable by other parts of the kernel (if audit_log* is called,
35  *	     then a syscall record will be generated automatically for the
36  *	     current syscall).
37  *	  5) Netlink interface to user-space.
38  *	  6) Support low-overhead kernel-based filtering to minimize the
39  *	     information that must be passed to user-space.
40  *
41  * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/file.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/atomic.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/err.h>
54 #include <linux/kthread.h>
55 #include <linux/kernel.h>
56 #include <linux/syscalls.h>
57 
58 #include <linux/audit.h>
59 
60 #include <net/sock.h>
61 #include <net/netlink.h>
62 #include <linux/skbuff.h>
63 #ifdef CONFIG_SECURITY
64 #include <linux/security.h>
65 #endif
66 #include <linux/freezer.h>
67 #include <linux/pid_namespace.h>
68 #include <net/netns/generic.h>
69 
70 #include "audit.h"
71 
72 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
73  * (Initialization happens after skb_init is called.) */
74 #define AUDIT_DISABLED		-1
75 #define AUDIT_UNINITIALIZED	0
76 #define AUDIT_INITIALIZED	1
77 static int	audit_initialized;
78 
79 #define AUDIT_OFF	0
80 #define AUDIT_ON	1
81 #define AUDIT_LOCKED	2
82 u32		audit_enabled;
83 u32		audit_ever_enabled;
84 
85 EXPORT_SYMBOL_GPL(audit_enabled);
86 
87 /* Default state when kernel boots without any parameters. */
88 static u32	audit_default;
89 
90 /* If auditing cannot proceed, audit_failure selects what happens. */
91 static u32	audit_failure = AUDIT_FAIL_PRINTK;
92 
93 /*
94  * If audit records are to be written to the netlink socket, audit_pid
95  * contains the pid of the auditd process and audit_nlk_portid contains
96  * the portid to use to send netlink messages to that process.
97  */
98 int		audit_pid;
99 static __u32	audit_nlk_portid;
100 
101 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
102  * to that number per second.  This prevents DoS attacks, but results in
103  * audit records being dropped. */
104 static u32	audit_rate_limit;
105 
106 /* Number of outstanding audit_buffers allowed.
107  * When set to zero, this means unlimited. */
108 static u32	audit_backlog_limit = 64;
109 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
110 static u32	audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME;
111 static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
112 
113 /* The identity of the user shutting down the audit system. */
114 kuid_t		audit_sig_uid = INVALID_UID;
115 pid_t		audit_sig_pid = -1;
116 u32		audit_sig_sid = 0;
117 
118 /* Records can be lost in several ways:
119    0) [suppressed in audit_alloc]
120    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
121    2) out of memory in audit_log_move [alloc_skb]
122    3) suppressed due to audit_rate_limit
123    4) suppressed due to audit_backlog_limit
124 */
125 static atomic_t    audit_lost = ATOMIC_INIT(0);
126 
127 /* The netlink socket. */
128 static struct sock *audit_sock;
129 static int audit_net_id;
130 
131 /* Hash for inode-based rules */
132 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
133 
134 /* The audit_freelist is a list of pre-allocated audit buffers (if more
135  * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
136  * being placed on the freelist). */
137 static DEFINE_SPINLOCK(audit_freelist_lock);
138 static int	   audit_freelist_count;
139 static LIST_HEAD(audit_freelist);
140 
141 static struct sk_buff_head audit_skb_queue;
142 /* queue of skbs to send to auditd when/if it comes back */
143 static struct sk_buff_head audit_skb_hold_queue;
144 static struct task_struct *kauditd_task;
145 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
146 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
147 
148 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
149 				   .mask = -1,
150 				   .features = 0,
151 				   .lock = 0,};
152 
153 static char *audit_feature_names[2] = {
154 	"only_unset_loginuid",
155 	"loginuid_immutable",
156 };
157 
158 
159 /* Serialize requests from userspace. */
160 DEFINE_MUTEX(audit_cmd_mutex);
161 
162 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
163  * audit records.  Since printk uses a 1024 byte buffer, this buffer
164  * should be at least that large. */
165 #define AUDIT_BUFSIZ 1024
166 
167 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
168  * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
169 #define AUDIT_MAXFREE  (2*NR_CPUS)
170 
171 /* The audit_buffer is used when formatting an audit record.  The caller
172  * locks briefly to get the record off the freelist or to allocate the
173  * buffer, and locks briefly to send the buffer to the netlink layer or
174  * to place it on a transmit queue.  Multiple audit_buffers can be in
175  * use simultaneously. */
176 struct audit_buffer {
177 	struct list_head     list;
178 	struct sk_buff       *skb;	/* formatted skb ready to send */
179 	struct audit_context *ctx;	/* NULL or associated context */
180 	gfp_t		     gfp_mask;
181 };
182 
183 struct audit_reply {
184 	__u32 portid;
185 	struct net *net;
186 	struct sk_buff *skb;
187 };
188 
189 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
190 {
191 	if (ab) {
192 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
193 		nlh->nlmsg_pid = portid;
194 	}
195 }
196 
197 void audit_panic(const char *message)
198 {
199 	switch (audit_failure) {
200 	case AUDIT_FAIL_SILENT:
201 		break;
202 	case AUDIT_FAIL_PRINTK:
203 		if (printk_ratelimit())
204 			pr_err("%s\n", message);
205 		break;
206 	case AUDIT_FAIL_PANIC:
207 		/* test audit_pid since printk is always losey, why bother? */
208 		if (audit_pid)
209 			panic("audit: %s\n", message);
210 		break;
211 	}
212 }
213 
214 static inline int audit_rate_check(void)
215 {
216 	static unsigned long	last_check = 0;
217 	static int		messages   = 0;
218 	static DEFINE_SPINLOCK(lock);
219 	unsigned long		flags;
220 	unsigned long		now;
221 	unsigned long		elapsed;
222 	int			retval	   = 0;
223 
224 	if (!audit_rate_limit) return 1;
225 
226 	spin_lock_irqsave(&lock, flags);
227 	if (++messages < audit_rate_limit) {
228 		retval = 1;
229 	} else {
230 		now     = jiffies;
231 		elapsed = now - last_check;
232 		if (elapsed > HZ) {
233 			last_check = now;
234 			messages   = 0;
235 			retval     = 1;
236 		}
237 	}
238 	spin_unlock_irqrestore(&lock, flags);
239 
240 	return retval;
241 }
242 
243 /**
244  * audit_log_lost - conditionally log lost audit message event
245  * @message: the message stating reason for lost audit message
246  *
247  * Emit at least 1 message per second, even if audit_rate_check is
248  * throttling.
249  * Always increment the lost messages counter.
250 */
251 void audit_log_lost(const char *message)
252 {
253 	static unsigned long	last_msg = 0;
254 	static DEFINE_SPINLOCK(lock);
255 	unsigned long		flags;
256 	unsigned long		now;
257 	int			print;
258 
259 	atomic_inc(&audit_lost);
260 
261 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
262 
263 	if (!print) {
264 		spin_lock_irqsave(&lock, flags);
265 		now = jiffies;
266 		if (now - last_msg > HZ) {
267 			print = 1;
268 			last_msg = now;
269 		}
270 		spin_unlock_irqrestore(&lock, flags);
271 	}
272 
273 	if (print) {
274 		if (printk_ratelimit())
275 			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
276 				atomic_read(&audit_lost),
277 				audit_rate_limit,
278 				audit_backlog_limit);
279 		audit_panic(message);
280 	}
281 }
282 
283 static int audit_log_config_change(char *function_name, u32 new, u32 old,
284 				   int allow_changes)
285 {
286 	struct audit_buffer *ab;
287 	int rc = 0;
288 
289 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
290 	if (unlikely(!ab))
291 		return rc;
292 	audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
293 	audit_log_session_info(ab);
294 	rc = audit_log_task_context(ab);
295 	if (rc)
296 		allow_changes = 0; /* Something weird, deny request */
297 	audit_log_format(ab, " res=%d", allow_changes);
298 	audit_log_end(ab);
299 	return rc;
300 }
301 
302 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
303 {
304 	int allow_changes, rc = 0;
305 	u32 old = *to_change;
306 
307 	/* check if we are locked */
308 	if (audit_enabled == AUDIT_LOCKED)
309 		allow_changes = 0;
310 	else
311 		allow_changes = 1;
312 
313 	if (audit_enabled != AUDIT_OFF) {
314 		rc = audit_log_config_change(function_name, new, old, allow_changes);
315 		if (rc)
316 			allow_changes = 0;
317 	}
318 
319 	/* If we are allowed, make the change */
320 	if (allow_changes == 1)
321 		*to_change = new;
322 	/* Not allowed, update reason */
323 	else if (rc == 0)
324 		rc = -EPERM;
325 	return rc;
326 }
327 
328 static int audit_set_rate_limit(u32 limit)
329 {
330 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
331 }
332 
333 static int audit_set_backlog_limit(u32 limit)
334 {
335 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
336 }
337 
338 static int audit_set_backlog_wait_time(u32 timeout)
339 {
340 	return audit_do_config_change("audit_backlog_wait_time",
341 				      &audit_backlog_wait_time_master, timeout);
342 }
343 
344 static int audit_set_enabled(u32 state)
345 {
346 	int rc;
347 	if (state > AUDIT_LOCKED)
348 		return -EINVAL;
349 
350 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
351 	if (!rc)
352 		audit_ever_enabled |= !!state;
353 
354 	return rc;
355 }
356 
357 static int audit_set_failure(u32 state)
358 {
359 	if (state != AUDIT_FAIL_SILENT
360 	    && state != AUDIT_FAIL_PRINTK
361 	    && state != AUDIT_FAIL_PANIC)
362 		return -EINVAL;
363 
364 	return audit_do_config_change("audit_failure", &audit_failure, state);
365 }
366 
367 /*
368  * Queue skbs to be sent to auditd when/if it comes back.  These skbs should
369  * already have been sent via prink/syslog and so if these messages are dropped
370  * it is not a huge concern since we already passed the audit_log_lost()
371  * notification and stuff.  This is just nice to get audit messages during
372  * boot before auditd is running or messages generated while auditd is stopped.
373  * This only holds messages is audit_default is set, aka booting with audit=1
374  * or building your kernel that way.
375  */
376 static void audit_hold_skb(struct sk_buff *skb)
377 {
378 	if (audit_default &&
379 	    (!audit_backlog_limit ||
380 	     skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
381 		skb_queue_tail(&audit_skb_hold_queue, skb);
382 	else
383 		kfree_skb(skb);
384 }
385 
386 /*
387  * For one reason or another this nlh isn't getting delivered to the userspace
388  * audit daemon, just send it to printk.
389  */
390 static void audit_printk_skb(struct sk_buff *skb)
391 {
392 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
393 	char *data = nlmsg_data(nlh);
394 
395 	if (nlh->nlmsg_type != AUDIT_EOE) {
396 		if (printk_ratelimit())
397 			pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
398 		else
399 			audit_log_lost("printk limit exceeded");
400 	}
401 
402 	audit_hold_skb(skb);
403 }
404 
405 static void kauditd_send_skb(struct sk_buff *skb)
406 {
407 	int err;
408 	int attempts = 0;
409 #define AUDITD_RETRIES 5
410 
411 restart:
412 	/* take a reference in case we can't send it and we want to hold it */
413 	skb_get(skb);
414 	err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
415 	if (err < 0) {
416 		pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n",
417 		       audit_pid, err);
418 		if (audit_pid) {
419 			if (err == -ECONNREFUSED || err == -EPERM
420 			    || ++attempts >= AUDITD_RETRIES) {
421 				char s[32];
422 
423 				snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid);
424 				audit_log_lost(s);
425 				audit_pid = 0;
426 				audit_sock = NULL;
427 			} else {
428 				pr_warn("re-scheduling(#%d) write to audit_pid=%d\n",
429 					attempts, audit_pid);
430 				set_current_state(TASK_INTERRUPTIBLE);
431 				schedule();
432 				goto restart;
433 			}
434 		}
435 		/* we might get lucky and get this in the next auditd */
436 		audit_hold_skb(skb);
437 	} else
438 		/* drop the extra reference if sent ok */
439 		consume_skb(skb);
440 }
441 
442 /*
443  * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
444  *
445  * This function doesn't consume an skb as might be expected since it has to
446  * copy it anyways.
447  */
448 static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
449 {
450 	struct sk_buff		*copy;
451 	struct audit_net	*aunet = net_generic(&init_net, audit_net_id);
452 	struct sock		*sock = aunet->nlsk;
453 
454 	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
455 		return;
456 
457 	/*
458 	 * The seemingly wasteful skb_copy() rather than bumping the refcount
459 	 * using skb_get() is necessary because non-standard mods are made to
460 	 * the skb by the original kaudit unicast socket send routine.  The
461 	 * existing auditd daemon assumes this breakage.  Fixing this would
462 	 * require co-ordinating a change in the established protocol between
463 	 * the kaudit kernel subsystem and the auditd userspace code.  There is
464 	 * no reason for new multicast clients to continue with this
465 	 * non-compliance.
466 	 */
467 	copy = skb_copy(skb, gfp_mask);
468 	if (!copy)
469 		return;
470 
471 	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
472 }
473 
474 /*
475  * flush_hold_queue - empty the hold queue if auditd appears
476  *
477  * If auditd just started, drain the queue of messages already
478  * sent to syslog/printk.  Remember loss here is ok.  We already
479  * called audit_log_lost() if it didn't go out normally.  so the
480  * race between the skb_dequeue and the next check for audit_pid
481  * doesn't matter.
482  *
483  * If you ever find kauditd to be too slow we can get a perf win
484  * by doing our own locking and keeping better track if there
485  * are messages in this queue.  I don't see the need now, but
486  * in 5 years when I want to play with this again I'll see this
487  * note and still have no friggin idea what i'm thinking today.
488  */
489 static void flush_hold_queue(void)
490 {
491 	struct sk_buff *skb;
492 
493 	if (!audit_default || !audit_pid)
494 		return;
495 
496 	skb = skb_dequeue(&audit_skb_hold_queue);
497 	if (likely(!skb))
498 		return;
499 
500 	while (skb && audit_pid) {
501 		kauditd_send_skb(skb);
502 		skb = skb_dequeue(&audit_skb_hold_queue);
503 	}
504 
505 	/*
506 	 * if auditd just disappeared but we
507 	 * dequeued an skb we need to drop ref
508 	 */
509 	consume_skb(skb);
510 }
511 
512 static int kauditd_thread(void *dummy)
513 {
514 	set_freezable();
515 	while (!kthread_should_stop()) {
516 		struct sk_buff *skb;
517 
518 		flush_hold_queue();
519 
520 		skb = skb_dequeue(&audit_skb_queue);
521 
522 		if (skb) {
523 			if (!audit_backlog_limit ||
524 			    (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit))
525 				wake_up(&audit_backlog_wait);
526 			if (audit_pid)
527 				kauditd_send_skb(skb);
528 			else
529 				audit_printk_skb(skb);
530 			continue;
531 		}
532 
533 		wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue));
534 	}
535 	return 0;
536 }
537 
538 int audit_send_list(void *_dest)
539 {
540 	struct audit_netlink_list *dest = _dest;
541 	struct sk_buff *skb;
542 	struct net *net = dest->net;
543 	struct audit_net *aunet = net_generic(net, audit_net_id);
544 
545 	/* wait for parent to finish and send an ACK */
546 	mutex_lock(&audit_cmd_mutex);
547 	mutex_unlock(&audit_cmd_mutex);
548 
549 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
550 		netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
551 
552 	put_net(net);
553 	kfree(dest);
554 
555 	return 0;
556 }
557 
558 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
559 				 int multi, const void *payload, int size)
560 {
561 	struct sk_buff	*skb;
562 	struct nlmsghdr	*nlh;
563 	void		*data;
564 	int		flags = multi ? NLM_F_MULTI : 0;
565 	int		t     = done  ? NLMSG_DONE  : type;
566 
567 	skb = nlmsg_new(size, GFP_KERNEL);
568 	if (!skb)
569 		return NULL;
570 
571 	nlh	= nlmsg_put(skb, portid, seq, t, size, flags);
572 	if (!nlh)
573 		goto out_kfree_skb;
574 	data = nlmsg_data(nlh);
575 	memcpy(data, payload, size);
576 	return skb;
577 
578 out_kfree_skb:
579 	kfree_skb(skb);
580 	return NULL;
581 }
582 
583 static int audit_send_reply_thread(void *arg)
584 {
585 	struct audit_reply *reply = (struct audit_reply *)arg;
586 	struct net *net = reply->net;
587 	struct audit_net *aunet = net_generic(net, audit_net_id);
588 
589 	mutex_lock(&audit_cmd_mutex);
590 	mutex_unlock(&audit_cmd_mutex);
591 
592 	/* Ignore failure. It'll only happen if the sender goes away,
593 	   because our timeout is set to infinite. */
594 	netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
595 	put_net(net);
596 	kfree(reply);
597 	return 0;
598 }
599 /**
600  * audit_send_reply - send an audit reply message via netlink
601  * @request_skb: skb of request we are replying to (used to target the reply)
602  * @seq: sequence number
603  * @type: audit message type
604  * @done: done (last) flag
605  * @multi: multi-part message flag
606  * @payload: payload data
607  * @size: payload size
608  *
609  * Allocates an skb, builds the netlink message, and sends it to the port id.
610  * No failure notifications.
611  */
612 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
613 			     int multi, const void *payload, int size)
614 {
615 	u32 portid = NETLINK_CB(request_skb).portid;
616 	struct net *net = sock_net(NETLINK_CB(request_skb).sk);
617 	struct sk_buff *skb;
618 	struct task_struct *tsk;
619 	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
620 					    GFP_KERNEL);
621 
622 	if (!reply)
623 		return;
624 
625 	skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
626 	if (!skb)
627 		goto out;
628 
629 	reply->net = get_net(net);
630 	reply->portid = portid;
631 	reply->skb = skb;
632 
633 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
634 	if (!IS_ERR(tsk))
635 		return;
636 	kfree_skb(skb);
637 out:
638 	kfree(reply);
639 }
640 
641 /*
642  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
643  * control messages.
644  */
645 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
646 {
647 	int err = 0;
648 
649 	/* Only support initial user namespace for now. */
650 	/*
651 	 * We return ECONNREFUSED because it tricks userspace into thinking
652 	 * that audit was not configured into the kernel.  Lots of users
653 	 * configure their PAM stack (because that's what the distro does)
654 	 * to reject login if unable to send messages to audit.  If we return
655 	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
656 	 * configured in and will let login proceed.  If we return EPERM
657 	 * userspace will reject all logins.  This should be removed when we
658 	 * support non init namespaces!!
659 	 */
660 	if (current_user_ns() != &init_user_ns)
661 		return -ECONNREFUSED;
662 
663 	switch (msg_type) {
664 	case AUDIT_LIST:
665 	case AUDIT_ADD:
666 	case AUDIT_DEL:
667 		return -EOPNOTSUPP;
668 	case AUDIT_GET:
669 	case AUDIT_SET:
670 	case AUDIT_GET_FEATURE:
671 	case AUDIT_SET_FEATURE:
672 	case AUDIT_LIST_RULES:
673 	case AUDIT_ADD_RULE:
674 	case AUDIT_DEL_RULE:
675 	case AUDIT_SIGNAL_INFO:
676 	case AUDIT_TTY_GET:
677 	case AUDIT_TTY_SET:
678 	case AUDIT_TRIM:
679 	case AUDIT_MAKE_EQUIV:
680 		/* Only support auditd and auditctl in initial pid namespace
681 		 * for now. */
682 		if (task_active_pid_ns(current) != &init_pid_ns)
683 			return -EPERM;
684 
685 		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
686 			err = -EPERM;
687 		break;
688 	case AUDIT_USER:
689 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
690 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
691 		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
692 			err = -EPERM;
693 		break;
694 	default:  /* bad msg */
695 		err = -EINVAL;
696 	}
697 
698 	return err;
699 }
700 
701 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
702 {
703 	uid_t uid = from_kuid(&init_user_ns, current_uid());
704 	pid_t pid = task_tgid_nr(current);
705 
706 	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
707 		*ab = NULL;
708 		return;
709 	}
710 
711 	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
712 	if (unlikely(!*ab))
713 		return;
714 	audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
715 	audit_log_session_info(*ab);
716 	audit_log_task_context(*ab);
717 }
718 
719 int is_audit_feature_set(int i)
720 {
721 	return af.features & AUDIT_FEATURE_TO_MASK(i);
722 }
723 
724 
725 static int audit_get_feature(struct sk_buff *skb)
726 {
727 	u32 seq;
728 
729 	seq = nlmsg_hdr(skb)->nlmsg_seq;
730 
731 	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
732 
733 	return 0;
734 }
735 
736 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
737 				     u32 old_lock, u32 new_lock, int res)
738 {
739 	struct audit_buffer *ab;
740 
741 	if (audit_enabled == AUDIT_OFF)
742 		return;
743 
744 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
745 	audit_log_task_info(ab, current);
746 	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
747 			 audit_feature_names[which], !!old_feature, !!new_feature,
748 			 !!old_lock, !!new_lock, res);
749 	audit_log_end(ab);
750 }
751 
752 static int audit_set_feature(struct sk_buff *skb)
753 {
754 	struct audit_features *uaf;
755 	int i;
756 
757 	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
758 	uaf = nlmsg_data(nlmsg_hdr(skb));
759 
760 	/* if there is ever a version 2 we should handle that here */
761 
762 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
763 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
764 		u32 old_feature, new_feature, old_lock, new_lock;
765 
766 		/* if we are not changing this feature, move along */
767 		if (!(feature & uaf->mask))
768 			continue;
769 
770 		old_feature = af.features & feature;
771 		new_feature = uaf->features & feature;
772 		new_lock = (uaf->lock | af.lock) & feature;
773 		old_lock = af.lock & feature;
774 
775 		/* are we changing a locked feature? */
776 		if (old_lock && (new_feature != old_feature)) {
777 			audit_log_feature_change(i, old_feature, new_feature,
778 						 old_lock, new_lock, 0);
779 			return -EPERM;
780 		}
781 	}
782 	/* nothing invalid, do the changes */
783 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
784 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
785 		u32 old_feature, new_feature, old_lock, new_lock;
786 
787 		/* if we are not changing this feature, move along */
788 		if (!(feature & uaf->mask))
789 			continue;
790 
791 		old_feature = af.features & feature;
792 		new_feature = uaf->features & feature;
793 		old_lock = af.lock & feature;
794 		new_lock = (uaf->lock | af.lock) & feature;
795 
796 		if (new_feature != old_feature)
797 			audit_log_feature_change(i, old_feature, new_feature,
798 						 old_lock, new_lock, 1);
799 
800 		if (new_feature)
801 			af.features |= feature;
802 		else
803 			af.features &= ~feature;
804 		af.lock |= new_lock;
805 	}
806 
807 	return 0;
808 }
809 
810 static int audit_replace(pid_t pid)
811 {
812 	struct sk_buff *skb = audit_make_reply(0, 0, AUDIT_REPLACE, 0, 0,
813 					       &pid, sizeof(pid));
814 
815 	if (!skb)
816 		return -ENOMEM;
817 	return netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
818 }
819 
820 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
821 {
822 	u32			seq;
823 	void			*data;
824 	int			err;
825 	struct audit_buffer	*ab;
826 	u16			msg_type = nlh->nlmsg_type;
827 	struct audit_sig_info   *sig_data;
828 	char			*ctx = NULL;
829 	u32			len;
830 
831 	err = audit_netlink_ok(skb, msg_type);
832 	if (err)
833 		return err;
834 
835 	/* As soon as there's any sign of userspace auditd,
836 	 * start kauditd to talk to it */
837 	if (!kauditd_task) {
838 		kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
839 		if (IS_ERR(kauditd_task)) {
840 			err = PTR_ERR(kauditd_task);
841 			kauditd_task = NULL;
842 			return err;
843 		}
844 	}
845 	seq  = nlh->nlmsg_seq;
846 	data = nlmsg_data(nlh);
847 
848 	switch (msg_type) {
849 	case AUDIT_GET: {
850 		struct audit_status	s;
851 		memset(&s, 0, sizeof(s));
852 		s.enabled		= audit_enabled;
853 		s.failure		= audit_failure;
854 		s.pid			= audit_pid;
855 		s.rate_limit		= audit_rate_limit;
856 		s.backlog_limit		= audit_backlog_limit;
857 		s.lost			= atomic_read(&audit_lost);
858 		s.backlog		= skb_queue_len(&audit_skb_queue);
859 		s.feature_bitmap	= AUDIT_FEATURE_BITMAP_ALL;
860 		s.backlog_wait_time	= audit_backlog_wait_time_master;
861 		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
862 		break;
863 	}
864 	case AUDIT_SET: {
865 		struct audit_status	s;
866 		memset(&s, 0, sizeof(s));
867 		/* guard against past and future API changes */
868 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
869 		if (s.mask & AUDIT_STATUS_ENABLED) {
870 			err = audit_set_enabled(s.enabled);
871 			if (err < 0)
872 				return err;
873 		}
874 		if (s.mask & AUDIT_STATUS_FAILURE) {
875 			err = audit_set_failure(s.failure);
876 			if (err < 0)
877 				return err;
878 		}
879 		if (s.mask & AUDIT_STATUS_PID) {
880 			int new_pid = s.pid;
881 			pid_t requesting_pid = task_tgid_vnr(current);
882 
883 			if ((!new_pid) && (requesting_pid != audit_pid)) {
884 				audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
885 				return -EACCES;
886 			}
887 			if (audit_pid && new_pid &&
888 			    audit_replace(requesting_pid) != -ECONNREFUSED) {
889 				audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
890 				return -EEXIST;
891 			}
892 			if (audit_enabled != AUDIT_OFF)
893 				audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
894 			audit_pid = new_pid;
895 			audit_nlk_portid = NETLINK_CB(skb).portid;
896 			audit_sock = skb->sk;
897 		}
898 		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
899 			err = audit_set_rate_limit(s.rate_limit);
900 			if (err < 0)
901 				return err;
902 		}
903 		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
904 			err = audit_set_backlog_limit(s.backlog_limit);
905 			if (err < 0)
906 				return err;
907 		}
908 		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
909 			if (sizeof(s) > (size_t)nlh->nlmsg_len)
910 				return -EINVAL;
911 			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
912 				return -EINVAL;
913 			err = audit_set_backlog_wait_time(s.backlog_wait_time);
914 			if (err < 0)
915 				return err;
916 		}
917 		break;
918 	}
919 	case AUDIT_GET_FEATURE:
920 		err = audit_get_feature(skb);
921 		if (err)
922 			return err;
923 		break;
924 	case AUDIT_SET_FEATURE:
925 		err = audit_set_feature(skb);
926 		if (err)
927 			return err;
928 		break;
929 	case AUDIT_USER:
930 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
931 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
932 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
933 			return 0;
934 
935 		err = audit_filter_user(msg_type);
936 		if (err == 1) { /* match or error */
937 			err = 0;
938 			if (msg_type == AUDIT_USER_TTY) {
939 				err = tty_audit_push();
940 				if (err)
941 					break;
942 			}
943 			mutex_unlock(&audit_cmd_mutex);
944 			audit_log_common_recv_msg(&ab, msg_type);
945 			if (msg_type != AUDIT_USER_TTY)
946 				audit_log_format(ab, " msg='%.*s'",
947 						 AUDIT_MESSAGE_TEXT_MAX,
948 						 (char *)data);
949 			else {
950 				int size;
951 
952 				audit_log_format(ab, " data=");
953 				size = nlmsg_len(nlh);
954 				if (size > 0 &&
955 				    ((unsigned char *)data)[size - 1] == '\0')
956 					size--;
957 				audit_log_n_untrustedstring(ab, data, size);
958 			}
959 			audit_set_portid(ab, NETLINK_CB(skb).portid);
960 			audit_log_end(ab);
961 			mutex_lock(&audit_cmd_mutex);
962 		}
963 		break;
964 	case AUDIT_ADD_RULE:
965 	case AUDIT_DEL_RULE:
966 		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
967 			return -EINVAL;
968 		if (audit_enabled == AUDIT_LOCKED) {
969 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
970 			audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
971 			audit_log_end(ab);
972 			return -EPERM;
973 		}
974 		err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
975 					   seq, data, nlmsg_len(nlh));
976 		break;
977 	case AUDIT_LIST_RULES:
978 		err = audit_list_rules_send(skb, seq);
979 		break;
980 	case AUDIT_TRIM:
981 		audit_trim_trees();
982 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
983 		audit_log_format(ab, " op=trim res=1");
984 		audit_log_end(ab);
985 		break;
986 	case AUDIT_MAKE_EQUIV: {
987 		void *bufp = data;
988 		u32 sizes[2];
989 		size_t msglen = nlmsg_len(nlh);
990 		char *old, *new;
991 
992 		err = -EINVAL;
993 		if (msglen < 2 * sizeof(u32))
994 			break;
995 		memcpy(sizes, bufp, 2 * sizeof(u32));
996 		bufp += 2 * sizeof(u32);
997 		msglen -= 2 * sizeof(u32);
998 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
999 		if (IS_ERR(old)) {
1000 			err = PTR_ERR(old);
1001 			break;
1002 		}
1003 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1004 		if (IS_ERR(new)) {
1005 			err = PTR_ERR(new);
1006 			kfree(old);
1007 			break;
1008 		}
1009 		/* OK, here comes... */
1010 		err = audit_tag_tree(old, new);
1011 
1012 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1013 
1014 		audit_log_format(ab, " op=make_equiv old=");
1015 		audit_log_untrustedstring(ab, old);
1016 		audit_log_format(ab, " new=");
1017 		audit_log_untrustedstring(ab, new);
1018 		audit_log_format(ab, " res=%d", !err);
1019 		audit_log_end(ab);
1020 		kfree(old);
1021 		kfree(new);
1022 		break;
1023 	}
1024 	case AUDIT_SIGNAL_INFO:
1025 		len = 0;
1026 		if (audit_sig_sid) {
1027 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1028 			if (err)
1029 				return err;
1030 		}
1031 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1032 		if (!sig_data) {
1033 			if (audit_sig_sid)
1034 				security_release_secctx(ctx, len);
1035 			return -ENOMEM;
1036 		}
1037 		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1038 		sig_data->pid = audit_sig_pid;
1039 		if (audit_sig_sid) {
1040 			memcpy(sig_data->ctx, ctx, len);
1041 			security_release_secctx(ctx, len);
1042 		}
1043 		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1044 				 sig_data, sizeof(*sig_data) + len);
1045 		kfree(sig_data);
1046 		break;
1047 	case AUDIT_TTY_GET: {
1048 		struct audit_tty_status s;
1049 		unsigned int t;
1050 
1051 		t = READ_ONCE(current->signal->audit_tty);
1052 		s.enabled = t & AUDIT_TTY_ENABLE;
1053 		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1054 
1055 		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1056 		break;
1057 	}
1058 	case AUDIT_TTY_SET: {
1059 		struct audit_tty_status s, old;
1060 		struct audit_buffer	*ab;
1061 		unsigned int t;
1062 
1063 		memset(&s, 0, sizeof(s));
1064 		/* guard against past and future API changes */
1065 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1066 		/* check if new data is valid */
1067 		if ((s.enabled != 0 && s.enabled != 1) ||
1068 		    (s.log_passwd != 0 && s.log_passwd != 1))
1069 			err = -EINVAL;
1070 
1071 		if (err)
1072 			t = READ_ONCE(current->signal->audit_tty);
1073 		else {
1074 			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1075 			t = xchg(&current->signal->audit_tty, t);
1076 		}
1077 		old.enabled = t & AUDIT_TTY_ENABLE;
1078 		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1079 
1080 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1081 		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1082 				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1083 				 old.enabled, s.enabled, old.log_passwd,
1084 				 s.log_passwd, !err);
1085 		audit_log_end(ab);
1086 		break;
1087 	}
1088 	default:
1089 		err = -EINVAL;
1090 		break;
1091 	}
1092 
1093 	return err < 0 ? err : 0;
1094 }
1095 
1096 /*
1097  * Get message from skb.  Each message is processed by audit_receive_msg.
1098  * Malformed skbs with wrong length are discarded silently.
1099  */
1100 static void audit_receive_skb(struct sk_buff *skb)
1101 {
1102 	struct nlmsghdr *nlh;
1103 	/*
1104 	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1105 	 * if the nlmsg_len was not aligned
1106 	 */
1107 	int len;
1108 	int err;
1109 
1110 	nlh = nlmsg_hdr(skb);
1111 	len = skb->len;
1112 
1113 	while (nlmsg_ok(nlh, len)) {
1114 		err = audit_receive_msg(skb, nlh);
1115 		/* if err or if this message says it wants a response */
1116 		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1117 			netlink_ack(skb, nlh, err);
1118 
1119 		nlh = nlmsg_next(nlh, &len);
1120 	}
1121 }
1122 
1123 /* Receive messages from netlink socket. */
1124 static void audit_receive(struct sk_buff  *skb)
1125 {
1126 	mutex_lock(&audit_cmd_mutex);
1127 	audit_receive_skb(skb);
1128 	mutex_unlock(&audit_cmd_mutex);
1129 }
1130 
1131 /* Run custom bind function on netlink socket group connect or bind requests. */
1132 static int audit_bind(struct net *net, int group)
1133 {
1134 	if (!capable(CAP_AUDIT_READ))
1135 		return -EPERM;
1136 
1137 	return 0;
1138 }
1139 
1140 static int __net_init audit_net_init(struct net *net)
1141 {
1142 	struct netlink_kernel_cfg cfg = {
1143 		.input	= audit_receive,
1144 		.bind	= audit_bind,
1145 		.flags	= NL_CFG_F_NONROOT_RECV,
1146 		.groups	= AUDIT_NLGRP_MAX,
1147 	};
1148 
1149 	struct audit_net *aunet = net_generic(net, audit_net_id);
1150 
1151 	aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1152 	if (aunet->nlsk == NULL) {
1153 		audit_panic("cannot initialize netlink socket in namespace");
1154 		return -ENOMEM;
1155 	}
1156 	aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1157 	return 0;
1158 }
1159 
1160 static void __net_exit audit_net_exit(struct net *net)
1161 {
1162 	struct audit_net *aunet = net_generic(net, audit_net_id);
1163 	struct sock *sock = aunet->nlsk;
1164 	if (sock == audit_sock) {
1165 		audit_pid = 0;
1166 		audit_sock = NULL;
1167 	}
1168 
1169 	RCU_INIT_POINTER(aunet->nlsk, NULL);
1170 	synchronize_net();
1171 	netlink_kernel_release(sock);
1172 }
1173 
1174 static struct pernet_operations audit_net_ops __net_initdata = {
1175 	.init = audit_net_init,
1176 	.exit = audit_net_exit,
1177 	.id = &audit_net_id,
1178 	.size = sizeof(struct audit_net),
1179 };
1180 
1181 /* Initialize audit support at boot time. */
1182 static int __init audit_init(void)
1183 {
1184 	int i;
1185 
1186 	if (audit_initialized == AUDIT_DISABLED)
1187 		return 0;
1188 
1189 	pr_info("initializing netlink subsys (%s)\n",
1190 		audit_default ? "enabled" : "disabled");
1191 	register_pernet_subsys(&audit_net_ops);
1192 
1193 	skb_queue_head_init(&audit_skb_queue);
1194 	skb_queue_head_init(&audit_skb_hold_queue);
1195 	audit_initialized = AUDIT_INITIALIZED;
1196 	audit_enabled = audit_default;
1197 	audit_ever_enabled |= !!audit_default;
1198 
1199 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1200 
1201 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1202 		INIT_LIST_HEAD(&audit_inode_hash[i]);
1203 
1204 	return 0;
1205 }
1206 __initcall(audit_init);
1207 
1208 /* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
1209 static int __init audit_enable(char *str)
1210 {
1211 	audit_default = !!simple_strtol(str, NULL, 0);
1212 	if (!audit_default)
1213 		audit_initialized = AUDIT_DISABLED;
1214 
1215 	pr_info("%s\n", audit_default ?
1216 		"enabled (after initialization)" : "disabled (until reboot)");
1217 
1218 	return 1;
1219 }
1220 __setup("audit=", audit_enable);
1221 
1222 /* Process kernel command-line parameter at boot time.
1223  * audit_backlog_limit=<n> */
1224 static int __init audit_backlog_limit_set(char *str)
1225 {
1226 	u32 audit_backlog_limit_arg;
1227 
1228 	pr_info("audit_backlog_limit: ");
1229 	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1230 		pr_cont("using default of %u, unable to parse %s\n",
1231 			audit_backlog_limit, str);
1232 		return 1;
1233 	}
1234 
1235 	audit_backlog_limit = audit_backlog_limit_arg;
1236 	pr_cont("%d\n", audit_backlog_limit);
1237 
1238 	return 1;
1239 }
1240 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1241 
1242 static void audit_buffer_free(struct audit_buffer *ab)
1243 {
1244 	unsigned long flags;
1245 
1246 	if (!ab)
1247 		return;
1248 
1249 	kfree_skb(ab->skb);
1250 	spin_lock_irqsave(&audit_freelist_lock, flags);
1251 	if (audit_freelist_count > AUDIT_MAXFREE)
1252 		kfree(ab);
1253 	else {
1254 		audit_freelist_count++;
1255 		list_add(&ab->list, &audit_freelist);
1256 	}
1257 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1258 }
1259 
1260 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1261 						gfp_t gfp_mask, int type)
1262 {
1263 	unsigned long flags;
1264 	struct audit_buffer *ab = NULL;
1265 	struct nlmsghdr *nlh;
1266 
1267 	spin_lock_irqsave(&audit_freelist_lock, flags);
1268 	if (!list_empty(&audit_freelist)) {
1269 		ab = list_entry(audit_freelist.next,
1270 				struct audit_buffer, list);
1271 		list_del(&ab->list);
1272 		--audit_freelist_count;
1273 	}
1274 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1275 
1276 	if (!ab) {
1277 		ab = kmalloc(sizeof(*ab), gfp_mask);
1278 		if (!ab)
1279 			goto err;
1280 	}
1281 
1282 	ab->ctx = ctx;
1283 	ab->gfp_mask = gfp_mask;
1284 
1285 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1286 	if (!ab->skb)
1287 		goto err;
1288 
1289 	nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1290 	if (!nlh)
1291 		goto out_kfree_skb;
1292 
1293 	return ab;
1294 
1295 out_kfree_skb:
1296 	kfree_skb(ab->skb);
1297 	ab->skb = NULL;
1298 err:
1299 	audit_buffer_free(ab);
1300 	return NULL;
1301 }
1302 
1303 /**
1304  * audit_serial - compute a serial number for the audit record
1305  *
1306  * Compute a serial number for the audit record.  Audit records are
1307  * written to user-space as soon as they are generated, so a complete
1308  * audit record may be written in several pieces.  The timestamp of the
1309  * record and this serial number are used by the user-space tools to
1310  * determine which pieces belong to the same audit record.  The
1311  * (timestamp,serial) tuple is unique for each syscall and is live from
1312  * syscall entry to syscall exit.
1313  *
1314  * NOTE: Another possibility is to store the formatted records off the
1315  * audit context (for those records that have a context), and emit them
1316  * all at syscall exit.  However, this could delay the reporting of
1317  * significant errors until syscall exit (or never, if the system
1318  * halts).
1319  */
1320 unsigned int audit_serial(void)
1321 {
1322 	static atomic_t serial = ATOMIC_INIT(0);
1323 
1324 	return atomic_add_return(1, &serial);
1325 }
1326 
1327 static inline void audit_get_stamp(struct audit_context *ctx,
1328 				   struct timespec *t, unsigned int *serial)
1329 {
1330 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1331 		*t = CURRENT_TIME;
1332 		*serial = audit_serial();
1333 	}
1334 }
1335 
1336 /*
1337  * Wait for auditd to drain the queue a little
1338  */
1339 static long wait_for_auditd(long sleep_time)
1340 {
1341 	DECLARE_WAITQUEUE(wait, current);
1342 
1343 	if (audit_backlog_limit &&
1344 	    skb_queue_len(&audit_skb_queue) > audit_backlog_limit) {
1345 		add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1346 		set_current_state(TASK_UNINTERRUPTIBLE);
1347 		sleep_time = schedule_timeout(sleep_time);
1348 		remove_wait_queue(&audit_backlog_wait, &wait);
1349 	}
1350 
1351 	return sleep_time;
1352 }
1353 
1354 /**
1355  * audit_log_start - obtain an audit buffer
1356  * @ctx: audit_context (may be NULL)
1357  * @gfp_mask: type of allocation
1358  * @type: audit message type
1359  *
1360  * Returns audit_buffer pointer on success or NULL on error.
1361  *
1362  * Obtain an audit buffer.  This routine does locking to obtain the
1363  * audit buffer, but then no locking is required for calls to
1364  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1365  * syscall, then the syscall is marked as auditable and an audit record
1366  * will be written at syscall exit.  If there is no associated task, then
1367  * task context (ctx) should be NULL.
1368  */
1369 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1370 				     int type)
1371 {
1372 	struct audit_buffer	*ab	= NULL;
1373 	struct timespec		t;
1374 	unsigned int		uninitialized_var(serial);
1375 	int reserve = 5; /* Allow atomic callers to go up to five
1376 			    entries over the normal backlog limit */
1377 	unsigned long timeout_start = jiffies;
1378 
1379 	if (audit_initialized != AUDIT_INITIALIZED)
1380 		return NULL;
1381 
1382 	if (unlikely(audit_filter_type(type)))
1383 		return NULL;
1384 
1385 	if (gfp_mask & __GFP_DIRECT_RECLAIM) {
1386 		if (audit_pid && audit_pid == current->tgid)
1387 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
1388 		else
1389 			reserve = 0;
1390 	}
1391 
1392 	while (audit_backlog_limit
1393 	       && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1394 		if (gfp_mask & __GFP_DIRECT_RECLAIM && audit_backlog_wait_time) {
1395 			long sleep_time;
1396 
1397 			sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1398 			if (sleep_time > 0) {
1399 				sleep_time = wait_for_auditd(sleep_time);
1400 				if (sleep_time > 0)
1401 					continue;
1402 			}
1403 		}
1404 		if (audit_rate_check() && printk_ratelimit())
1405 			pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1406 				skb_queue_len(&audit_skb_queue),
1407 				audit_backlog_limit);
1408 		audit_log_lost("backlog limit exceeded");
1409 		audit_backlog_wait_time = 0;
1410 		wake_up(&audit_backlog_wait);
1411 		return NULL;
1412 	}
1413 
1414 	if (!reserve && !audit_backlog_wait_time)
1415 		audit_backlog_wait_time = audit_backlog_wait_time_master;
1416 
1417 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1418 	if (!ab) {
1419 		audit_log_lost("out of memory in audit_log_start");
1420 		return NULL;
1421 	}
1422 
1423 	audit_get_stamp(ab->ctx, &t, &serial);
1424 
1425 	audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1426 			 t.tv_sec, t.tv_nsec/1000000, serial);
1427 	return ab;
1428 }
1429 
1430 /**
1431  * audit_expand - expand skb in the audit buffer
1432  * @ab: audit_buffer
1433  * @extra: space to add at tail of the skb
1434  *
1435  * Returns 0 (no space) on failed expansion, or available space if
1436  * successful.
1437  */
1438 static inline int audit_expand(struct audit_buffer *ab, int extra)
1439 {
1440 	struct sk_buff *skb = ab->skb;
1441 	int oldtail = skb_tailroom(skb);
1442 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1443 	int newtail = skb_tailroom(skb);
1444 
1445 	if (ret < 0) {
1446 		audit_log_lost("out of memory in audit_expand");
1447 		return 0;
1448 	}
1449 
1450 	skb->truesize += newtail - oldtail;
1451 	return newtail;
1452 }
1453 
1454 /*
1455  * Format an audit message into the audit buffer.  If there isn't enough
1456  * room in the audit buffer, more room will be allocated and vsnprint
1457  * will be called a second time.  Currently, we assume that a printk
1458  * can't format message larger than 1024 bytes, so we don't either.
1459  */
1460 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1461 			      va_list args)
1462 {
1463 	int len, avail;
1464 	struct sk_buff *skb;
1465 	va_list args2;
1466 
1467 	if (!ab)
1468 		return;
1469 
1470 	BUG_ON(!ab->skb);
1471 	skb = ab->skb;
1472 	avail = skb_tailroom(skb);
1473 	if (avail == 0) {
1474 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1475 		if (!avail)
1476 			goto out;
1477 	}
1478 	va_copy(args2, args);
1479 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1480 	if (len >= avail) {
1481 		/* The printk buffer is 1024 bytes long, so if we get
1482 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1483 		 * log everything that printk could have logged. */
1484 		avail = audit_expand(ab,
1485 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1486 		if (!avail)
1487 			goto out_va_end;
1488 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1489 	}
1490 	if (len > 0)
1491 		skb_put(skb, len);
1492 out_va_end:
1493 	va_end(args2);
1494 out:
1495 	return;
1496 }
1497 
1498 /**
1499  * audit_log_format - format a message into the audit buffer.
1500  * @ab: audit_buffer
1501  * @fmt: format string
1502  * @...: optional parameters matching @fmt string
1503  *
1504  * All the work is done in audit_log_vformat.
1505  */
1506 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1507 {
1508 	va_list args;
1509 
1510 	if (!ab)
1511 		return;
1512 	va_start(args, fmt);
1513 	audit_log_vformat(ab, fmt, args);
1514 	va_end(args);
1515 }
1516 
1517 /**
1518  * audit_log_hex - convert a buffer to hex and append it to the audit skb
1519  * @ab: the audit_buffer
1520  * @buf: buffer to convert to hex
1521  * @len: length of @buf to be converted
1522  *
1523  * No return value; failure to expand is silently ignored.
1524  *
1525  * This function will take the passed buf and convert it into a string of
1526  * ascii hex digits. The new string is placed onto the skb.
1527  */
1528 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1529 		size_t len)
1530 {
1531 	int i, avail, new_len;
1532 	unsigned char *ptr;
1533 	struct sk_buff *skb;
1534 
1535 	if (!ab)
1536 		return;
1537 
1538 	BUG_ON(!ab->skb);
1539 	skb = ab->skb;
1540 	avail = skb_tailroom(skb);
1541 	new_len = len<<1;
1542 	if (new_len >= avail) {
1543 		/* Round the buffer request up to the next multiple */
1544 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1545 		avail = audit_expand(ab, new_len);
1546 		if (!avail)
1547 			return;
1548 	}
1549 
1550 	ptr = skb_tail_pointer(skb);
1551 	for (i = 0; i < len; i++)
1552 		ptr = hex_byte_pack_upper(ptr, buf[i]);
1553 	*ptr = 0;
1554 	skb_put(skb, len << 1); /* new string is twice the old string */
1555 }
1556 
1557 /*
1558  * Format a string of no more than slen characters into the audit buffer,
1559  * enclosed in quote marks.
1560  */
1561 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1562 			size_t slen)
1563 {
1564 	int avail, new_len;
1565 	unsigned char *ptr;
1566 	struct sk_buff *skb;
1567 
1568 	if (!ab)
1569 		return;
1570 
1571 	BUG_ON(!ab->skb);
1572 	skb = ab->skb;
1573 	avail = skb_tailroom(skb);
1574 	new_len = slen + 3;	/* enclosing quotes + null terminator */
1575 	if (new_len > avail) {
1576 		avail = audit_expand(ab, new_len);
1577 		if (!avail)
1578 			return;
1579 	}
1580 	ptr = skb_tail_pointer(skb);
1581 	*ptr++ = '"';
1582 	memcpy(ptr, string, slen);
1583 	ptr += slen;
1584 	*ptr++ = '"';
1585 	*ptr = 0;
1586 	skb_put(skb, slen + 2);	/* don't include null terminator */
1587 }
1588 
1589 /**
1590  * audit_string_contains_control - does a string need to be logged in hex
1591  * @string: string to be checked
1592  * @len: max length of the string to check
1593  */
1594 bool audit_string_contains_control(const char *string, size_t len)
1595 {
1596 	const unsigned char *p;
1597 	for (p = string; p < (const unsigned char *)string + len; p++) {
1598 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1599 			return true;
1600 	}
1601 	return false;
1602 }
1603 
1604 /**
1605  * audit_log_n_untrustedstring - log a string that may contain random characters
1606  * @ab: audit_buffer
1607  * @len: length of string (not including trailing null)
1608  * @string: string to be logged
1609  *
1610  * This code will escape a string that is passed to it if the string
1611  * contains a control character, unprintable character, double quote mark,
1612  * or a space. Unescaped strings will start and end with a double quote mark.
1613  * Strings that are escaped are printed in hex (2 digits per char).
1614  *
1615  * The caller specifies the number of characters in the string to log, which may
1616  * or may not be the entire string.
1617  */
1618 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1619 				 size_t len)
1620 {
1621 	if (audit_string_contains_control(string, len))
1622 		audit_log_n_hex(ab, string, len);
1623 	else
1624 		audit_log_n_string(ab, string, len);
1625 }
1626 
1627 /**
1628  * audit_log_untrustedstring - log a string that may contain random characters
1629  * @ab: audit_buffer
1630  * @string: string to be logged
1631  *
1632  * Same as audit_log_n_untrustedstring(), except that strlen is used to
1633  * determine string length.
1634  */
1635 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1636 {
1637 	audit_log_n_untrustedstring(ab, string, strlen(string));
1638 }
1639 
1640 /* This is a helper-function to print the escaped d_path */
1641 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1642 		      const struct path *path)
1643 {
1644 	char *p, *pathname;
1645 
1646 	if (prefix)
1647 		audit_log_format(ab, "%s", prefix);
1648 
1649 	/* We will allow 11 spaces for ' (deleted)' to be appended */
1650 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1651 	if (!pathname) {
1652 		audit_log_string(ab, "<no_memory>");
1653 		return;
1654 	}
1655 	p = d_path(path, pathname, PATH_MAX+11);
1656 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1657 		/* FIXME: can we save some information here? */
1658 		audit_log_string(ab, "<too_long>");
1659 	} else
1660 		audit_log_untrustedstring(ab, p);
1661 	kfree(pathname);
1662 }
1663 
1664 void audit_log_session_info(struct audit_buffer *ab)
1665 {
1666 	unsigned int sessionid = audit_get_sessionid(current);
1667 	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1668 
1669 	audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1670 }
1671 
1672 void audit_log_key(struct audit_buffer *ab, char *key)
1673 {
1674 	audit_log_format(ab, " key=");
1675 	if (key)
1676 		audit_log_untrustedstring(ab, key);
1677 	else
1678 		audit_log_format(ab, "(null)");
1679 }
1680 
1681 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1682 {
1683 	int i;
1684 
1685 	audit_log_format(ab, " %s=", prefix);
1686 	CAP_FOR_EACH_U32(i) {
1687 		audit_log_format(ab, "%08x",
1688 				 cap->cap[CAP_LAST_U32 - i]);
1689 	}
1690 }
1691 
1692 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1693 {
1694 	kernel_cap_t *perm = &name->fcap.permitted;
1695 	kernel_cap_t *inh = &name->fcap.inheritable;
1696 	int log = 0;
1697 
1698 	if (!cap_isclear(*perm)) {
1699 		audit_log_cap(ab, "cap_fp", perm);
1700 		log = 1;
1701 	}
1702 	if (!cap_isclear(*inh)) {
1703 		audit_log_cap(ab, "cap_fi", inh);
1704 		log = 1;
1705 	}
1706 
1707 	if (log)
1708 		audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1709 				 name->fcap.fE, name->fcap_ver);
1710 }
1711 
1712 static inline int audit_copy_fcaps(struct audit_names *name,
1713 				   const struct dentry *dentry)
1714 {
1715 	struct cpu_vfs_cap_data caps;
1716 	int rc;
1717 
1718 	if (!dentry)
1719 		return 0;
1720 
1721 	rc = get_vfs_caps_from_disk(dentry, &caps);
1722 	if (rc)
1723 		return rc;
1724 
1725 	name->fcap.permitted = caps.permitted;
1726 	name->fcap.inheritable = caps.inheritable;
1727 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1728 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1729 				VFS_CAP_REVISION_SHIFT;
1730 
1731 	return 0;
1732 }
1733 
1734 /* Copy inode data into an audit_names. */
1735 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1736 		      struct inode *inode)
1737 {
1738 	name->ino   = inode->i_ino;
1739 	name->dev   = inode->i_sb->s_dev;
1740 	name->mode  = inode->i_mode;
1741 	name->uid   = inode->i_uid;
1742 	name->gid   = inode->i_gid;
1743 	name->rdev  = inode->i_rdev;
1744 	security_inode_getsecid(inode, &name->osid);
1745 	audit_copy_fcaps(name, dentry);
1746 }
1747 
1748 /**
1749  * audit_log_name - produce AUDIT_PATH record from struct audit_names
1750  * @context: audit_context for the task
1751  * @n: audit_names structure with reportable details
1752  * @path: optional path to report instead of audit_names->name
1753  * @record_num: record number to report when handling a list of names
1754  * @call_panic: optional pointer to int that will be updated if secid fails
1755  */
1756 void audit_log_name(struct audit_context *context, struct audit_names *n,
1757 		    struct path *path, int record_num, int *call_panic)
1758 {
1759 	struct audit_buffer *ab;
1760 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1761 	if (!ab)
1762 		return;
1763 
1764 	audit_log_format(ab, "item=%d", record_num);
1765 
1766 	if (path)
1767 		audit_log_d_path(ab, " name=", path);
1768 	else if (n->name) {
1769 		switch (n->name_len) {
1770 		case AUDIT_NAME_FULL:
1771 			/* log the full path */
1772 			audit_log_format(ab, " name=");
1773 			audit_log_untrustedstring(ab, n->name->name);
1774 			break;
1775 		case 0:
1776 			/* name was specified as a relative path and the
1777 			 * directory component is the cwd */
1778 			audit_log_d_path(ab, " name=", &context->pwd);
1779 			break;
1780 		default:
1781 			/* log the name's directory component */
1782 			audit_log_format(ab, " name=");
1783 			audit_log_n_untrustedstring(ab, n->name->name,
1784 						    n->name_len);
1785 		}
1786 	} else
1787 		audit_log_format(ab, " name=(null)");
1788 
1789 	if (n->ino != AUDIT_INO_UNSET)
1790 		audit_log_format(ab, " inode=%lu"
1791 				 " dev=%02x:%02x mode=%#ho"
1792 				 " ouid=%u ogid=%u rdev=%02x:%02x",
1793 				 n->ino,
1794 				 MAJOR(n->dev),
1795 				 MINOR(n->dev),
1796 				 n->mode,
1797 				 from_kuid(&init_user_ns, n->uid),
1798 				 from_kgid(&init_user_ns, n->gid),
1799 				 MAJOR(n->rdev),
1800 				 MINOR(n->rdev));
1801 	if (n->osid != 0) {
1802 		char *ctx = NULL;
1803 		u32 len;
1804 		if (security_secid_to_secctx(
1805 			n->osid, &ctx, &len)) {
1806 			audit_log_format(ab, " osid=%u", n->osid);
1807 			if (call_panic)
1808 				*call_panic = 2;
1809 		} else {
1810 			audit_log_format(ab, " obj=%s", ctx);
1811 			security_release_secctx(ctx, len);
1812 		}
1813 	}
1814 
1815 	/* log the audit_names record type */
1816 	audit_log_format(ab, " nametype=");
1817 	switch(n->type) {
1818 	case AUDIT_TYPE_NORMAL:
1819 		audit_log_format(ab, "NORMAL");
1820 		break;
1821 	case AUDIT_TYPE_PARENT:
1822 		audit_log_format(ab, "PARENT");
1823 		break;
1824 	case AUDIT_TYPE_CHILD_DELETE:
1825 		audit_log_format(ab, "DELETE");
1826 		break;
1827 	case AUDIT_TYPE_CHILD_CREATE:
1828 		audit_log_format(ab, "CREATE");
1829 		break;
1830 	default:
1831 		audit_log_format(ab, "UNKNOWN");
1832 		break;
1833 	}
1834 
1835 	audit_log_fcaps(ab, n);
1836 	audit_log_end(ab);
1837 }
1838 
1839 int audit_log_task_context(struct audit_buffer *ab)
1840 {
1841 	char *ctx = NULL;
1842 	unsigned len;
1843 	int error;
1844 	u32 sid;
1845 
1846 	security_task_getsecid(current, &sid);
1847 	if (!sid)
1848 		return 0;
1849 
1850 	error = security_secid_to_secctx(sid, &ctx, &len);
1851 	if (error) {
1852 		if (error != -EINVAL)
1853 			goto error_path;
1854 		return 0;
1855 	}
1856 
1857 	audit_log_format(ab, " subj=%s", ctx);
1858 	security_release_secctx(ctx, len);
1859 	return 0;
1860 
1861 error_path:
1862 	audit_panic("error in audit_log_task_context");
1863 	return error;
1864 }
1865 EXPORT_SYMBOL(audit_log_task_context);
1866 
1867 void audit_log_d_path_exe(struct audit_buffer *ab,
1868 			  struct mm_struct *mm)
1869 {
1870 	struct file *exe_file;
1871 
1872 	if (!mm)
1873 		goto out_null;
1874 
1875 	exe_file = get_mm_exe_file(mm);
1876 	if (!exe_file)
1877 		goto out_null;
1878 
1879 	audit_log_d_path(ab, " exe=", &exe_file->f_path);
1880 	fput(exe_file);
1881 	return;
1882 out_null:
1883 	audit_log_format(ab, " exe=(null)");
1884 }
1885 
1886 struct tty_struct *audit_get_tty(struct task_struct *tsk)
1887 {
1888 	struct tty_struct *tty = NULL;
1889 	unsigned long flags;
1890 
1891 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
1892 	if (tsk->signal)
1893 		tty = tty_kref_get(tsk->signal->tty);
1894 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1895 	return tty;
1896 }
1897 
1898 void audit_put_tty(struct tty_struct *tty)
1899 {
1900 	tty_kref_put(tty);
1901 }
1902 
1903 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1904 {
1905 	const struct cred *cred;
1906 	char comm[sizeof(tsk->comm)];
1907 	struct tty_struct *tty;
1908 
1909 	if (!ab)
1910 		return;
1911 
1912 	/* tsk == current */
1913 	cred = current_cred();
1914 	tty = audit_get_tty(tsk);
1915 	audit_log_format(ab,
1916 			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1917 			 " euid=%u suid=%u fsuid=%u"
1918 			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1919 			 task_ppid_nr(tsk),
1920 			 task_pid_nr(tsk),
1921 			 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1922 			 from_kuid(&init_user_ns, cred->uid),
1923 			 from_kgid(&init_user_ns, cred->gid),
1924 			 from_kuid(&init_user_ns, cred->euid),
1925 			 from_kuid(&init_user_ns, cred->suid),
1926 			 from_kuid(&init_user_ns, cred->fsuid),
1927 			 from_kgid(&init_user_ns, cred->egid),
1928 			 from_kgid(&init_user_ns, cred->sgid),
1929 			 from_kgid(&init_user_ns, cred->fsgid),
1930 			 tty ? tty_name(tty) : "(none)",
1931 			 audit_get_sessionid(tsk));
1932 	audit_put_tty(tty);
1933 	audit_log_format(ab, " comm=");
1934 	audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1935 	audit_log_d_path_exe(ab, tsk->mm);
1936 	audit_log_task_context(ab);
1937 }
1938 EXPORT_SYMBOL(audit_log_task_info);
1939 
1940 /**
1941  * audit_log_link_denied - report a link restriction denial
1942  * @operation: specific link operation
1943  * @link: the path that triggered the restriction
1944  */
1945 void audit_log_link_denied(const char *operation, struct path *link)
1946 {
1947 	struct audit_buffer *ab;
1948 	struct audit_names *name;
1949 
1950 	name = kzalloc(sizeof(*name), GFP_NOFS);
1951 	if (!name)
1952 		return;
1953 
1954 	/* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1955 	ab = audit_log_start(current->audit_context, GFP_KERNEL,
1956 			     AUDIT_ANOM_LINK);
1957 	if (!ab)
1958 		goto out;
1959 	audit_log_format(ab, "op=%s", operation);
1960 	audit_log_task_info(ab, current);
1961 	audit_log_format(ab, " res=0");
1962 	audit_log_end(ab);
1963 
1964 	/* Generate AUDIT_PATH record with object. */
1965 	name->type = AUDIT_TYPE_NORMAL;
1966 	audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
1967 	audit_log_name(current->audit_context, name, link, 0, NULL);
1968 out:
1969 	kfree(name);
1970 }
1971 
1972 /**
1973  * audit_log_end - end one audit record
1974  * @ab: the audit_buffer
1975  *
1976  * netlink_unicast() cannot be called inside an irq context because it blocks
1977  * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1978  * on a queue and a tasklet is scheduled to remove them from the queue outside
1979  * the irq context.  May be called in any context.
1980  */
1981 void audit_log_end(struct audit_buffer *ab)
1982 {
1983 	if (!ab)
1984 		return;
1985 	if (!audit_rate_check()) {
1986 		audit_log_lost("rate limit exceeded");
1987 	} else {
1988 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1989 
1990 		nlh->nlmsg_len = ab->skb->len;
1991 		kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
1992 
1993 		/*
1994 		 * The original kaudit unicast socket sends up messages with
1995 		 * nlmsg_len set to the payload length rather than the entire
1996 		 * message length.  This breaks the standard set by netlink.
1997 		 * The existing auditd daemon assumes this breakage.  Fixing
1998 		 * this would require co-ordinating a change in the established
1999 		 * protocol between the kaudit kernel subsystem and the auditd
2000 		 * userspace code.
2001 		 */
2002 		nlh->nlmsg_len -= NLMSG_HDRLEN;
2003 
2004 		if (audit_pid) {
2005 			skb_queue_tail(&audit_skb_queue, ab->skb);
2006 			wake_up_interruptible(&kauditd_wait);
2007 		} else {
2008 			audit_printk_skb(ab->skb);
2009 		}
2010 		ab->skb = NULL;
2011 	}
2012 	audit_buffer_free(ab);
2013 }
2014 
2015 /**
2016  * audit_log - Log an audit record
2017  * @ctx: audit context
2018  * @gfp_mask: type of allocation
2019  * @type: audit message type
2020  * @fmt: format string to use
2021  * @...: variable parameters matching the format string
2022  *
2023  * This is a convenience function that calls audit_log_start,
2024  * audit_log_vformat, and audit_log_end.  It may be called
2025  * in any context.
2026  */
2027 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2028 	       const char *fmt, ...)
2029 {
2030 	struct audit_buffer *ab;
2031 	va_list args;
2032 
2033 	ab = audit_log_start(ctx, gfp_mask, type);
2034 	if (ab) {
2035 		va_start(args, fmt);
2036 		audit_log_vformat(ab, fmt, args);
2037 		va_end(args);
2038 		audit_log_end(ab);
2039 	}
2040 }
2041 
2042 #ifdef CONFIG_SECURITY
2043 /**
2044  * audit_log_secctx - Converts and logs SELinux context
2045  * @ab: audit_buffer
2046  * @secid: security number
2047  *
2048  * This is a helper function that calls security_secid_to_secctx to convert
2049  * secid to secctx and then adds the (converted) SELinux context to the audit
2050  * log by calling audit_log_format, thus also preventing leak of internal secid
2051  * to userspace. If secid cannot be converted audit_panic is called.
2052  */
2053 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2054 {
2055 	u32 len;
2056 	char *secctx;
2057 
2058 	if (security_secid_to_secctx(secid, &secctx, &len)) {
2059 		audit_panic("Cannot convert secid to context");
2060 	} else {
2061 		audit_log_format(ab, " obj=%s", secctx);
2062 		security_release_secctx(secctx, len);
2063 	}
2064 }
2065 EXPORT_SYMBOL(audit_log_secctx);
2066 #endif
2067 
2068 EXPORT_SYMBOL(audit_log_start);
2069 EXPORT_SYMBOL(audit_log_end);
2070 EXPORT_SYMBOL(audit_log_format);
2071 EXPORT_SYMBOL(audit_log);
2072