1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with Security Modules. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/file.h> 47 #include <linux/init.h> 48 #include <linux/types.h> 49 #include <linux/atomic.h> 50 #include <linux/mm.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/err.h> 54 #include <linux/kthread.h> 55 #include <linux/kernel.h> 56 #include <linux/syscalls.h> 57 #include <linux/spinlock.h> 58 #include <linux/rcupdate.h> 59 #include <linux/mutex.h> 60 #include <linux/gfp.h> 61 #include <linux/pid.h> 62 #include <linux/slab.h> 63 64 #include <linux/audit.h> 65 66 #include <net/sock.h> 67 #include <net/netlink.h> 68 #include <linux/skbuff.h> 69 #ifdef CONFIG_SECURITY 70 #include <linux/security.h> 71 #endif 72 #include <linux/freezer.h> 73 #include <linux/pid_namespace.h> 74 #include <net/netns/generic.h> 75 76 #include "audit.h" 77 78 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 79 * (Initialization happens after skb_init is called.) */ 80 #define AUDIT_DISABLED -1 81 #define AUDIT_UNINITIALIZED 0 82 #define AUDIT_INITIALIZED 1 83 static int audit_initialized; 84 85 #define AUDIT_OFF 0 86 #define AUDIT_ON 1 87 #define AUDIT_LOCKED 2 88 u32 audit_enabled; 89 u32 audit_ever_enabled; 90 91 EXPORT_SYMBOL_GPL(audit_enabled); 92 93 /* Default state when kernel boots without any parameters. */ 94 static u32 audit_default; 95 96 /* If auditing cannot proceed, audit_failure selects what happens. */ 97 static u32 audit_failure = AUDIT_FAIL_PRINTK; 98 99 /* private audit network namespace index */ 100 static unsigned int audit_net_id; 101 102 /** 103 * struct audit_net - audit private network namespace data 104 * @sk: communication socket 105 */ 106 struct audit_net { 107 struct sock *sk; 108 }; 109 110 /** 111 * struct auditd_connection - kernel/auditd connection state 112 * @pid: auditd PID 113 * @portid: netlink portid 114 * @net: the associated network namespace 115 * @rcu: RCU head 116 * 117 * Description: 118 * This struct is RCU protected; you must either hold the RCU lock for reading 119 * or the associated spinlock for writing. 120 */ 121 static struct auditd_connection { 122 struct pid *pid; 123 u32 portid; 124 struct net *net; 125 struct rcu_head rcu; 126 } *auditd_conn = NULL; 127 static DEFINE_SPINLOCK(auditd_conn_lock); 128 129 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 130 * to that number per second. This prevents DoS attacks, but results in 131 * audit records being dropped. */ 132 static u32 audit_rate_limit; 133 134 /* Number of outstanding audit_buffers allowed. 135 * When set to zero, this means unlimited. */ 136 static u32 audit_backlog_limit = 64; 137 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 138 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 139 140 /* The identity of the user shutting down the audit system. */ 141 kuid_t audit_sig_uid = INVALID_UID; 142 pid_t audit_sig_pid = -1; 143 u32 audit_sig_sid = 0; 144 145 /* Records can be lost in several ways: 146 0) [suppressed in audit_alloc] 147 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 148 2) out of memory in audit_log_move [alloc_skb] 149 3) suppressed due to audit_rate_limit 150 4) suppressed due to audit_backlog_limit 151 */ 152 static atomic_t audit_lost = ATOMIC_INIT(0); 153 154 /* Hash for inode-based rules */ 155 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 156 157 static struct kmem_cache *audit_buffer_cache; 158 159 /* queue msgs to send via kauditd_task */ 160 static struct sk_buff_head audit_queue; 161 /* queue msgs due to temporary unicast send problems */ 162 static struct sk_buff_head audit_retry_queue; 163 /* queue msgs waiting for new auditd connection */ 164 static struct sk_buff_head audit_hold_queue; 165 166 /* queue servicing thread */ 167 static struct task_struct *kauditd_task; 168 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 169 170 /* waitqueue for callers who are blocked on the audit backlog */ 171 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 172 173 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 174 .mask = -1, 175 .features = 0, 176 .lock = 0,}; 177 178 static char *audit_feature_names[2] = { 179 "only_unset_loginuid", 180 "loginuid_immutable", 181 }; 182 183 184 /* Serialize requests from userspace. */ 185 DEFINE_MUTEX(audit_cmd_mutex); 186 187 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 188 * audit records. Since printk uses a 1024 byte buffer, this buffer 189 * should be at least that large. */ 190 #define AUDIT_BUFSIZ 1024 191 192 /* The audit_buffer is used when formatting an audit record. The caller 193 * locks briefly to get the record off the freelist or to allocate the 194 * buffer, and locks briefly to send the buffer to the netlink layer or 195 * to place it on a transmit queue. Multiple audit_buffers can be in 196 * use simultaneously. */ 197 struct audit_buffer { 198 struct sk_buff *skb; /* formatted skb ready to send */ 199 struct audit_context *ctx; /* NULL or associated context */ 200 gfp_t gfp_mask; 201 }; 202 203 struct audit_reply { 204 __u32 portid; 205 struct net *net; 206 struct sk_buff *skb; 207 }; 208 209 /** 210 * auditd_test_task - Check to see if a given task is an audit daemon 211 * @task: the task to check 212 * 213 * Description: 214 * Return 1 if the task is a registered audit daemon, 0 otherwise. 215 */ 216 int auditd_test_task(struct task_struct *task) 217 { 218 int rc; 219 struct auditd_connection *ac; 220 221 rcu_read_lock(); 222 ac = rcu_dereference(auditd_conn); 223 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0); 224 rcu_read_unlock(); 225 226 return rc; 227 } 228 229 /** 230 * auditd_pid_vnr - Return the auditd PID relative to the namespace 231 * 232 * Description: 233 * Returns the PID in relation to the namespace, 0 on failure. 234 */ 235 static pid_t auditd_pid_vnr(void) 236 { 237 pid_t pid; 238 const struct auditd_connection *ac; 239 240 rcu_read_lock(); 241 ac = rcu_dereference(auditd_conn); 242 if (!ac || !ac->pid) 243 pid = 0; 244 else 245 pid = pid_vnr(ac->pid); 246 rcu_read_unlock(); 247 248 return pid; 249 } 250 251 /** 252 * audit_get_sk - Return the audit socket for the given network namespace 253 * @net: the destination network namespace 254 * 255 * Description: 256 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure 257 * that a reference is held for the network namespace while the sock is in use. 258 */ 259 static struct sock *audit_get_sk(const struct net *net) 260 { 261 struct audit_net *aunet; 262 263 if (!net) 264 return NULL; 265 266 aunet = net_generic(net, audit_net_id); 267 return aunet->sk; 268 } 269 270 void audit_panic(const char *message) 271 { 272 switch (audit_failure) { 273 case AUDIT_FAIL_SILENT: 274 break; 275 case AUDIT_FAIL_PRINTK: 276 if (printk_ratelimit()) 277 pr_err("%s\n", message); 278 break; 279 case AUDIT_FAIL_PANIC: 280 panic("audit: %s\n", message); 281 break; 282 } 283 } 284 285 static inline int audit_rate_check(void) 286 { 287 static unsigned long last_check = 0; 288 static int messages = 0; 289 static DEFINE_SPINLOCK(lock); 290 unsigned long flags; 291 unsigned long now; 292 unsigned long elapsed; 293 int retval = 0; 294 295 if (!audit_rate_limit) return 1; 296 297 spin_lock_irqsave(&lock, flags); 298 if (++messages < audit_rate_limit) { 299 retval = 1; 300 } else { 301 now = jiffies; 302 elapsed = now - last_check; 303 if (elapsed > HZ) { 304 last_check = now; 305 messages = 0; 306 retval = 1; 307 } 308 } 309 spin_unlock_irqrestore(&lock, flags); 310 311 return retval; 312 } 313 314 /** 315 * audit_log_lost - conditionally log lost audit message event 316 * @message: the message stating reason for lost audit message 317 * 318 * Emit at least 1 message per second, even if audit_rate_check is 319 * throttling. 320 * Always increment the lost messages counter. 321 */ 322 void audit_log_lost(const char *message) 323 { 324 static unsigned long last_msg = 0; 325 static DEFINE_SPINLOCK(lock); 326 unsigned long flags; 327 unsigned long now; 328 int print; 329 330 atomic_inc(&audit_lost); 331 332 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 333 334 if (!print) { 335 spin_lock_irqsave(&lock, flags); 336 now = jiffies; 337 if (now - last_msg > HZ) { 338 print = 1; 339 last_msg = now; 340 } 341 spin_unlock_irqrestore(&lock, flags); 342 } 343 344 if (print) { 345 if (printk_ratelimit()) 346 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 347 atomic_read(&audit_lost), 348 audit_rate_limit, 349 audit_backlog_limit); 350 audit_panic(message); 351 } 352 } 353 354 static int audit_log_config_change(char *function_name, u32 new, u32 old, 355 int allow_changes) 356 { 357 struct audit_buffer *ab; 358 int rc = 0; 359 360 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 361 if (unlikely(!ab)) 362 return rc; 363 audit_log_format(ab, "%s=%u old=%u", function_name, new, old); 364 audit_log_session_info(ab); 365 rc = audit_log_task_context(ab); 366 if (rc) 367 allow_changes = 0; /* Something weird, deny request */ 368 audit_log_format(ab, " res=%d", allow_changes); 369 audit_log_end(ab); 370 return rc; 371 } 372 373 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 374 { 375 int allow_changes, rc = 0; 376 u32 old = *to_change; 377 378 /* check if we are locked */ 379 if (audit_enabled == AUDIT_LOCKED) 380 allow_changes = 0; 381 else 382 allow_changes = 1; 383 384 if (audit_enabled != AUDIT_OFF) { 385 rc = audit_log_config_change(function_name, new, old, allow_changes); 386 if (rc) 387 allow_changes = 0; 388 } 389 390 /* If we are allowed, make the change */ 391 if (allow_changes == 1) 392 *to_change = new; 393 /* Not allowed, update reason */ 394 else if (rc == 0) 395 rc = -EPERM; 396 return rc; 397 } 398 399 static int audit_set_rate_limit(u32 limit) 400 { 401 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 402 } 403 404 static int audit_set_backlog_limit(u32 limit) 405 { 406 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 407 } 408 409 static int audit_set_backlog_wait_time(u32 timeout) 410 { 411 return audit_do_config_change("audit_backlog_wait_time", 412 &audit_backlog_wait_time, timeout); 413 } 414 415 static int audit_set_enabled(u32 state) 416 { 417 int rc; 418 if (state > AUDIT_LOCKED) 419 return -EINVAL; 420 421 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 422 if (!rc) 423 audit_ever_enabled |= !!state; 424 425 return rc; 426 } 427 428 static int audit_set_failure(u32 state) 429 { 430 if (state != AUDIT_FAIL_SILENT 431 && state != AUDIT_FAIL_PRINTK 432 && state != AUDIT_FAIL_PANIC) 433 return -EINVAL; 434 435 return audit_do_config_change("audit_failure", &audit_failure, state); 436 } 437 438 /** 439 * auditd_conn_free - RCU helper to release an auditd connection struct 440 * @rcu: RCU head 441 * 442 * Description: 443 * Drop any references inside the auditd connection tracking struct and free 444 * the memory. 445 */ 446 static void auditd_conn_free(struct rcu_head *rcu) 447 { 448 struct auditd_connection *ac; 449 450 ac = container_of(rcu, struct auditd_connection, rcu); 451 put_pid(ac->pid); 452 put_net(ac->net); 453 kfree(ac); 454 } 455 456 /** 457 * auditd_set - Set/Reset the auditd connection state 458 * @pid: auditd PID 459 * @portid: auditd netlink portid 460 * @net: auditd network namespace pointer 461 * 462 * Description: 463 * This function will obtain and drop network namespace references as 464 * necessary. Returns zero on success, negative values on failure. 465 */ 466 static int auditd_set(struct pid *pid, u32 portid, struct net *net) 467 { 468 unsigned long flags; 469 struct auditd_connection *ac_old, *ac_new; 470 471 if (!pid || !net) 472 return -EINVAL; 473 474 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL); 475 if (!ac_new) 476 return -ENOMEM; 477 ac_new->pid = get_pid(pid); 478 ac_new->portid = portid; 479 ac_new->net = get_net(net); 480 481 spin_lock_irqsave(&auditd_conn_lock, flags); 482 ac_old = rcu_dereference_protected(auditd_conn, 483 lockdep_is_held(&auditd_conn_lock)); 484 rcu_assign_pointer(auditd_conn, ac_new); 485 spin_unlock_irqrestore(&auditd_conn_lock, flags); 486 487 if (ac_old) 488 call_rcu(&ac_old->rcu, auditd_conn_free); 489 490 return 0; 491 } 492 493 /** 494 * kauditd_print_skb - Print the audit record to the ring buffer 495 * @skb: audit record 496 * 497 * Whatever the reason, this packet may not make it to the auditd connection 498 * so write it via printk so the information isn't completely lost. 499 */ 500 static void kauditd_printk_skb(struct sk_buff *skb) 501 { 502 struct nlmsghdr *nlh = nlmsg_hdr(skb); 503 char *data = nlmsg_data(nlh); 504 505 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit()) 506 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 507 } 508 509 /** 510 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue 511 * @skb: audit record 512 * 513 * Description: 514 * This should only be used by the kauditd_thread when it fails to flush the 515 * hold queue. 516 */ 517 static void kauditd_rehold_skb(struct sk_buff *skb) 518 { 519 /* put the record back in the queue at the same place */ 520 skb_queue_head(&audit_hold_queue, skb); 521 } 522 523 /** 524 * kauditd_hold_skb - Queue an audit record, waiting for auditd 525 * @skb: audit record 526 * 527 * Description: 528 * Queue the audit record, waiting for an instance of auditd. When this 529 * function is called we haven't given up yet on sending the record, but things 530 * are not looking good. The first thing we want to do is try to write the 531 * record via printk and then see if we want to try and hold on to the record 532 * and queue it, if we have room. If we want to hold on to the record, but we 533 * don't have room, record a record lost message. 534 */ 535 static void kauditd_hold_skb(struct sk_buff *skb) 536 { 537 /* at this point it is uncertain if we will ever send this to auditd so 538 * try to send the message via printk before we go any further */ 539 kauditd_printk_skb(skb); 540 541 /* can we just silently drop the message? */ 542 if (!audit_default) { 543 kfree_skb(skb); 544 return; 545 } 546 547 /* if we have room, queue the message */ 548 if (!audit_backlog_limit || 549 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) { 550 skb_queue_tail(&audit_hold_queue, skb); 551 return; 552 } 553 554 /* we have no other options - drop the message */ 555 audit_log_lost("kauditd hold queue overflow"); 556 kfree_skb(skb); 557 } 558 559 /** 560 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd 561 * @skb: audit record 562 * 563 * Description: 564 * Not as serious as kauditd_hold_skb() as we still have a connected auditd, 565 * but for some reason we are having problems sending it audit records so 566 * queue the given record and attempt to resend. 567 */ 568 static void kauditd_retry_skb(struct sk_buff *skb) 569 { 570 /* NOTE: because records should only live in the retry queue for a 571 * short period of time, before either being sent or moved to the hold 572 * queue, we don't currently enforce a limit on this queue */ 573 skb_queue_tail(&audit_retry_queue, skb); 574 } 575 576 /** 577 * auditd_reset - Disconnect the auditd connection 578 * @ac: auditd connection state 579 * 580 * Description: 581 * Break the auditd/kauditd connection and move all the queued records into the 582 * hold queue in case auditd reconnects. It is important to note that the @ac 583 * pointer should never be dereferenced inside this function as it may be NULL 584 * or invalid, you can only compare the memory address! If @ac is NULL then 585 * the connection will always be reset. 586 */ 587 static void auditd_reset(const struct auditd_connection *ac) 588 { 589 unsigned long flags; 590 struct sk_buff *skb; 591 struct auditd_connection *ac_old; 592 593 /* if it isn't already broken, break the connection */ 594 spin_lock_irqsave(&auditd_conn_lock, flags); 595 ac_old = rcu_dereference_protected(auditd_conn, 596 lockdep_is_held(&auditd_conn_lock)); 597 if (ac && ac != ac_old) { 598 /* someone already registered a new auditd connection */ 599 spin_unlock_irqrestore(&auditd_conn_lock, flags); 600 return; 601 } 602 rcu_assign_pointer(auditd_conn, NULL); 603 spin_unlock_irqrestore(&auditd_conn_lock, flags); 604 605 if (ac_old) 606 call_rcu(&ac_old->rcu, auditd_conn_free); 607 608 /* flush the retry queue to the hold queue, but don't touch the main 609 * queue since we need to process that normally for multicast */ 610 while ((skb = skb_dequeue(&audit_retry_queue))) 611 kauditd_hold_skb(skb); 612 } 613 614 /** 615 * auditd_send_unicast_skb - Send a record via unicast to auditd 616 * @skb: audit record 617 * 618 * Description: 619 * Send a skb to the audit daemon, returns positive/zero values on success and 620 * negative values on failure; in all cases the skb will be consumed by this 621 * function. If the send results in -ECONNREFUSED the connection with auditd 622 * will be reset. This function may sleep so callers should not hold any locks 623 * where this would cause a problem. 624 */ 625 static int auditd_send_unicast_skb(struct sk_buff *skb) 626 { 627 int rc; 628 u32 portid; 629 struct net *net; 630 struct sock *sk; 631 struct auditd_connection *ac; 632 633 /* NOTE: we can't call netlink_unicast while in the RCU section so 634 * take a reference to the network namespace and grab local 635 * copies of the namespace, the sock, and the portid; the 636 * namespace and sock aren't going to go away while we hold a 637 * reference and if the portid does become invalid after the RCU 638 * section netlink_unicast() should safely return an error */ 639 640 rcu_read_lock(); 641 ac = rcu_dereference(auditd_conn); 642 if (!ac) { 643 rcu_read_unlock(); 644 rc = -ECONNREFUSED; 645 goto err; 646 } 647 net = get_net(ac->net); 648 sk = audit_get_sk(net); 649 portid = ac->portid; 650 rcu_read_unlock(); 651 652 rc = netlink_unicast(sk, skb, portid, 0); 653 put_net(net); 654 if (rc < 0) 655 goto err; 656 657 return rc; 658 659 err: 660 if (ac && rc == -ECONNREFUSED) 661 auditd_reset(ac); 662 return rc; 663 } 664 665 /** 666 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues 667 * @sk: the sending sock 668 * @portid: the netlink destination 669 * @queue: the skb queue to process 670 * @retry_limit: limit on number of netlink unicast failures 671 * @skb_hook: per-skb hook for additional processing 672 * @err_hook: hook called if the skb fails the netlink unicast send 673 * 674 * Description: 675 * Run through the given queue and attempt to send the audit records to auditd, 676 * returns zero on success, negative values on failure. It is up to the caller 677 * to ensure that the @sk is valid for the duration of this function. 678 * 679 */ 680 static int kauditd_send_queue(struct sock *sk, u32 portid, 681 struct sk_buff_head *queue, 682 unsigned int retry_limit, 683 void (*skb_hook)(struct sk_buff *skb), 684 void (*err_hook)(struct sk_buff *skb)) 685 { 686 int rc = 0; 687 struct sk_buff *skb; 688 static unsigned int failed = 0; 689 690 /* NOTE: kauditd_thread takes care of all our locking, we just use 691 * the netlink info passed to us (e.g. sk and portid) */ 692 693 while ((skb = skb_dequeue(queue))) { 694 /* call the skb_hook for each skb we touch */ 695 if (skb_hook) 696 (*skb_hook)(skb); 697 698 /* can we send to anyone via unicast? */ 699 if (!sk) { 700 if (err_hook) 701 (*err_hook)(skb); 702 continue; 703 } 704 705 /* grab an extra skb reference in case of error */ 706 skb_get(skb); 707 rc = netlink_unicast(sk, skb, portid, 0); 708 if (rc < 0) { 709 /* fatal failure for our queue flush attempt? */ 710 if (++failed >= retry_limit || 711 rc == -ECONNREFUSED || rc == -EPERM) { 712 /* yes - error processing for the queue */ 713 sk = NULL; 714 if (err_hook) 715 (*err_hook)(skb); 716 if (!skb_hook) 717 goto out; 718 /* keep processing with the skb_hook */ 719 continue; 720 } else 721 /* no - requeue to preserve ordering */ 722 skb_queue_head(queue, skb); 723 } else { 724 /* it worked - drop the extra reference and continue */ 725 consume_skb(skb); 726 failed = 0; 727 } 728 } 729 730 out: 731 return (rc >= 0 ? 0 : rc); 732 } 733 734 /* 735 * kauditd_send_multicast_skb - Send a record to any multicast listeners 736 * @skb: audit record 737 * 738 * Description: 739 * Write a multicast message to anyone listening in the initial network 740 * namespace. This function doesn't consume an skb as might be expected since 741 * it has to copy it anyways. 742 */ 743 static void kauditd_send_multicast_skb(struct sk_buff *skb) 744 { 745 struct sk_buff *copy; 746 struct sock *sock = audit_get_sk(&init_net); 747 struct nlmsghdr *nlh; 748 749 /* NOTE: we are not taking an additional reference for init_net since 750 * we don't have to worry about it going away */ 751 752 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) 753 return; 754 755 /* 756 * The seemingly wasteful skb_copy() rather than bumping the refcount 757 * using skb_get() is necessary because non-standard mods are made to 758 * the skb by the original kaudit unicast socket send routine. The 759 * existing auditd daemon assumes this breakage. Fixing this would 760 * require co-ordinating a change in the established protocol between 761 * the kaudit kernel subsystem and the auditd userspace code. There is 762 * no reason for new multicast clients to continue with this 763 * non-compliance. 764 */ 765 copy = skb_copy(skb, GFP_KERNEL); 766 if (!copy) 767 return; 768 nlh = nlmsg_hdr(copy); 769 nlh->nlmsg_len = skb->len; 770 771 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL); 772 } 773 774 /** 775 * kauditd_thread - Worker thread to send audit records to userspace 776 * @dummy: unused 777 */ 778 static int kauditd_thread(void *dummy) 779 { 780 int rc; 781 u32 portid = 0; 782 struct net *net = NULL; 783 struct sock *sk = NULL; 784 struct auditd_connection *ac; 785 786 #define UNICAST_RETRIES 5 787 788 set_freezable(); 789 while (!kthread_should_stop()) { 790 /* NOTE: see the lock comments in auditd_send_unicast_skb() */ 791 rcu_read_lock(); 792 ac = rcu_dereference(auditd_conn); 793 if (!ac) { 794 rcu_read_unlock(); 795 goto main_queue; 796 } 797 net = get_net(ac->net); 798 sk = audit_get_sk(net); 799 portid = ac->portid; 800 rcu_read_unlock(); 801 802 /* attempt to flush the hold queue */ 803 rc = kauditd_send_queue(sk, portid, 804 &audit_hold_queue, UNICAST_RETRIES, 805 NULL, kauditd_rehold_skb); 806 if (ac && rc < 0) { 807 sk = NULL; 808 auditd_reset(ac); 809 goto main_queue; 810 } 811 812 /* attempt to flush the retry queue */ 813 rc = kauditd_send_queue(sk, portid, 814 &audit_retry_queue, UNICAST_RETRIES, 815 NULL, kauditd_hold_skb); 816 if (ac && rc < 0) { 817 sk = NULL; 818 auditd_reset(ac); 819 goto main_queue; 820 } 821 822 main_queue: 823 /* process the main queue - do the multicast send and attempt 824 * unicast, dump failed record sends to the retry queue; if 825 * sk == NULL due to previous failures we will just do the 826 * multicast send and move the record to the hold queue */ 827 rc = kauditd_send_queue(sk, portid, &audit_queue, 1, 828 kauditd_send_multicast_skb, 829 (sk ? 830 kauditd_retry_skb : kauditd_hold_skb)); 831 if (ac && rc < 0) 832 auditd_reset(ac); 833 sk = NULL; 834 835 /* drop our netns reference, no auditd sends past this line */ 836 if (net) { 837 put_net(net); 838 net = NULL; 839 } 840 841 /* we have processed all the queues so wake everyone */ 842 wake_up(&audit_backlog_wait); 843 844 /* NOTE: we want to wake up if there is anything on the queue, 845 * regardless of if an auditd is connected, as we need to 846 * do the multicast send and rotate records from the 847 * main queue to the retry/hold queues */ 848 wait_event_freezable(kauditd_wait, 849 (skb_queue_len(&audit_queue) ? 1 : 0)); 850 } 851 852 return 0; 853 } 854 855 int audit_send_list(void *_dest) 856 { 857 struct audit_netlink_list *dest = _dest; 858 struct sk_buff *skb; 859 struct sock *sk = audit_get_sk(dest->net); 860 861 /* wait for parent to finish and send an ACK */ 862 mutex_lock(&audit_cmd_mutex); 863 mutex_unlock(&audit_cmd_mutex); 864 865 while ((skb = __skb_dequeue(&dest->q)) != NULL) 866 netlink_unicast(sk, skb, dest->portid, 0); 867 868 put_net(dest->net); 869 kfree(dest); 870 871 return 0; 872 } 873 874 struct sk_buff *audit_make_reply(int seq, int type, int done, 875 int multi, const void *payload, int size) 876 { 877 struct sk_buff *skb; 878 struct nlmsghdr *nlh; 879 void *data; 880 int flags = multi ? NLM_F_MULTI : 0; 881 int t = done ? NLMSG_DONE : type; 882 883 skb = nlmsg_new(size, GFP_KERNEL); 884 if (!skb) 885 return NULL; 886 887 nlh = nlmsg_put(skb, 0, seq, t, size, flags); 888 if (!nlh) 889 goto out_kfree_skb; 890 data = nlmsg_data(nlh); 891 memcpy(data, payload, size); 892 return skb; 893 894 out_kfree_skb: 895 kfree_skb(skb); 896 return NULL; 897 } 898 899 static int audit_send_reply_thread(void *arg) 900 { 901 struct audit_reply *reply = (struct audit_reply *)arg; 902 struct sock *sk = audit_get_sk(reply->net); 903 904 mutex_lock(&audit_cmd_mutex); 905 mutex_unlock(&audit_cmd_mutex); 906 907 /* Ignore failure. It'll only happen if the sender goes away, 908 because our timeout is set to infinite. */ 909 netlink_unicast(sk, reply->skb, reply->portid, 0); 910 put_net(reply->net); 911 kfree(reply); 912 return 0; 913 } 914 915 /** 916 * audit_send_reply - send an audit reply message via netlink 917 * @request_skb: skb of request we are replying to (used to target the reply) 918 * @seq: sequence number 919 * @type: audit message type 920 * @done: done (last) flag 921 * @multi: multi-part message flag 922 * @payload: payload data 923 * @size: payload size 924 * 925 * Allocates an skb, builds the netlink message, and sends it to the port id. 926 * No failure notifications. 927 */ 928 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 929 int multi, const void *payload, int size) 930 { 931 struct net *net = sock_net(NETLINK_CB(request_skb).sk); 932 struct sk_buff *skb; 933 struct task_struct *tsk; 934 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), 935 GFP_KERNEL); 936 937 if (!reply) 938 return; 939 940 skb = audit_make_reply(seq, type, done, multi, payload, size); 941 if (!skb) 942 goto out; 943 944 reply->net = get_net(net); 945 reply->portid = NETLINK_CB(request_skb).portid; 946 reply->skb = skb; 947 948 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 949 if (!IS_ERR(tsk)) 950 return; 951 kfree_skb(skb); 952 out: 953 kfree(reply); 954 } 955 956 /* 957 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 958 * control messages. 959 */ 960 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 961 { 962 int err = 0; 963 964 /* Only support initial user namespace for now. */ 965 /* 966 * We return ECONNREFUSED because it tricks userspace into thinking 967 * that audit was not configured into the kernel. Lots of users 968 * configure their PAM stack (because that's what the distro does) 969 * to reject login if unable to send messages to audit. If we return 970 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 971 * configured in and will let login proceed. If we return EPERM 972 * userspace will reject all logins. This should be removed when we 973 * support non init namespaces!! 974 */ 975 if (current_user_ns() != &init_user_ns) 976 return -ECONNREFUSED; 977 978 switch (msg_type) { 979 case AUDIT_LIST: 980 case AUDIT_ADD: 981 case AUDIT_DEL: 982 return -EOPNOTSUPP; 983 case AUDIT_GET: 984 case AUDIT_SET: 985 case AUDIT_GET_FEATURE: 986 case AUDIT_SET_FEATURE: 987 case AUDIT_LIST_RULES: 988 case AUDIT_ADD_RULE: 989 case AUDIT_DEL_RULE: 990 case AUDIT_SIGNAL_INFO: 991 case AUDIT_TTY_GET: 992 case AUDIT_TTY_SET: 993 case AUDIT_TRIM: 994 case AUDIT_MAKE_EQUIV: 995 /* Only support auditd and auditctl in initial pid namespace 996 * for now. */ 997 if (task_active_pid_ns(current) != &init_pid_ns) 998 return -EPERM; 999 1000 if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) 1001 err = -EPERM; 1002 break; 1003 case AUDIT_USER: 1004 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1005 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1006 if (!netlink_capable(skb, CAP_AUDIT_WRITE)) 1007 err = -EPERM; 1008 break; 1009 default: /* bad msg */ 1010 err = -EINVAL; 1011 } 1012 1013 return err; 1014 } 1015 1016 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type) 1017 { 1018 uid_t uid = from_kuid(&init_user_ns, current_uid()); 1019 pid_t pid = task_tgid_nr(current); 1020 1021 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 1022 *ab = NULL; 1023 return; 1024 } 1025 1026 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 1027 if (unlikely(!*ab)) 1028 return; 1029 audit_log_format(*ab, "pid=%d uid=%u", pid, uid); 1030 audit_log_session_info(*ab); 1031 audit_log_task_context(*ab); 1032 } 1033 1034 int is_audit_feature_set(int i) 1035 { 1036 return af.features & AUDIT_FEATURE_TO_MASK(i); 1037 } 1038 1039 1040 static int audit_get_feature(struct sk_buff *skb) 1041 { 1042 u32 seq; 1043 1044 seq = nlmsg_hdr(skb)->nlmsg_seq; 1045 1046 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); 1047 1048 return 0; 1049 } 1050 1051 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 1052 u32 old_lock, u32 new_lock, int res) 1053 { 1054 struct audit_buffer *ab; 1055 1056 if (audit_enabled == AUDIT_OFF) 1057 return; 1058 1059 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE); 1060 audit_log_task_info(ab, current); 1061 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 1062 audit_feature_names[which], !!old_feature, !!new_feature, 1063 !!old_lock, !!new_lock, res); 1064 audit_log_end(ab); 1065 } 1066 1067 static int audit_set_feature(struct sk_buff *skb) 1068 { 1069 struct audit_features *uaf; 1070 int i; 1071 1072 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); 1073 uaf = nlmsg_data(nlmsg_hdr(skb)); 1074 1075 /* if there is ever a version 2 we should handle that here */ 1076 1077 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1078 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1079 u32 old_feature, new_feature, old_lock, new_lock; 1080 1081 /* if we are not changing this feature, move along */ 1082 if (!(feature & uaf->mask)) 1083 continue; 1084 1085 old_feature = af.features & feature; 1086 new_feature = uaf->features & feature; 1087 new_lock = (uaf->lock | af.lock) & feature; 1088 old_lock = af.lock & feature; 1089 1090 /* are we changing a locked feature? */ 1091 if (old_lock && (new_feature != old_feature)) { 1092 audit_log_feature_change(i, old_feature, new_feature, 1093 old_lock, new_lock, 0); 1094 return -EPERM; 1095 } 1096 } 1097 /* nothing invalid, do the changes */ 1098 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1099 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1100 u32 old_feature, new_feature, old_lock, new_lock; 1101 1102 /* if we are not changing this feature, move along */ 1103 if (!(feature & uaf->mask)) 1104 continue; 1105 1106 old_feature = af.features & feature; 1107 new_feature = uaf->features & feature; 1108 old_lock = af.lock & feature; 1109 new_lock = (uaf->lock | af.lock) & feature; 1110 1111 if (new_feature != old_feature) 1112 audit_log_feature_change(i, old_feature, new_feature, 1113 old_lock, new_lock, 1); 1114 1115 if (new_feature) 1116 af.features |= feature; 1117 else 1118 af.features &= ~feature; 1119 af.lock |= new_lock; 1120 } 1121 1122 return 0; 1123 } 1124 1125 static int audit_replace(struct pid *pid) 1126 { 1127 pid_t pvnr; 1128 struct sk_buff *skb; 1129 1130 pvnr = pid_vnr(pid); 1131 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr)); 1132 if (!skb) 1133 return -ENOMEM; 1134 return auditd_send_unicast_skb(skb); 1135 } 1136 1137 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 1138 { 1139 u32 seq; 1140 void *data; 1141 int err; 1142 struct audit_buffer *ab; 1143 u16 msg_type = nlh->nlmsg_type; 1144 struct audit_sig_info *sig_data; 1145 char *ctx = NULL; 1146 u32 len; 1147 1148 err = audit_netlink_ok(skb, msg_type); 1149 if (err) 1150 return err; 1151 1152 seq = nlh->nlmsg_seq; 1153 data = nlmsg_data(nlh); 1154 1155 switch (msg_type) { 1156 case AUDIT_GET: { 1157 struct audit_status s; 1158 memset(&s, 0, sizeof(s)); 1159 s.enabled = audit_enabled; 1160 s.failure = audit_failure; 1161 /* NOTE: use pid_vnr() so the PID is relative to the current 1162 * namespace */ 1163 s.pid = auditd_pid_vnr(); 1164 s.rate_limit = audit_rate_limit; 1165 s.backlog_limit = audit_backlog_limit; 1166 s.lost = atomic_read(&audit_lost); 1167 s.backlog = skb_queue_len(&audit_queue); 1168 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; 1169 s.backlog_wait_time = audit_backlog_wait_time; 1170 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 1171 break; 1172 } 1173 case AUDIT_SET: { 1174 struct audit_status s; 1175 memset(&s, 0, sizeof(s)); 1176 /* guard against past and future API changes */ 1177 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 1178 if (s.mask & AUDIT_STATUS_ENABLED) { 1179 err = audit_set_enabled(s.enabled); 1180 if (err < 0) 1181 return err; 1182 } 1183 if (s.mask & AUDIT_STATUS_FAILURE) { 1184 err = audit_set_failure(s.failure); 1185 if (err < 0) 1186 return err; 1187 } 1188 if (s.mask & AUDIT_STATUS_PID) { 1189 /* NOTE: we are using the vnr PID functions below 1190 * because the s.pid value is relative to the 1191 * namespace of the caller; at present this 1192 * doesn't matter much since you can really only 1193 * run auditd from the initial pid namespace, but 1194 * something to keep in mind if this changes */ 1195 pid_t new_pid = s.pid; 1196 pid_t auditd_pid; 1197 struct pid *req_pid = task_tgid(current); 1198 1199 /* sanity check - PID values must match */ 1200 if (new_pid != pid_vnr(req_pid)) 1201 return -EINVAL; 1202 1203 /* test the auditd connection */ 1204 audit_replace(req_pid); 1205 1206 auditd_pid = auditd_pid_vnr(); 1207 /* only the current auditd can unregister itself */ 1208 if ((!new_pid) && (new_pid != auditd_pid)) { 1209 audit_log_config_change("audit_pid", new_pid, 1210 auditd_pid, 0); 1211 return -EACCES; 1212 } 1213 /* replacing a healthy auditd is not allowed */ 1214 if (auditd_pid && new_pid) { 1215 audit_log_config_change("audit_pid", new_pid, 1216 auditd_pid, 0); 1217 return -EEXIST; 1218 } 1219 1220 if (new_pid) { 1221 /* register a new auditd connection */ 1222 err = auditd_set(req_pid, 1223 NETLINK_CB(skb).portid, 1224 sock_net(NETLINK_CB(skb).sk)); 1225 if (audit_enabled != AUDIT_OFF) 1226 audit_log_config_change("audit_pid", 1227 new_pid, 1228 auditd_pid, 1229 err ? 0 : 1); 1230 if (err) 1231 return err; 1232 1233 /* try to process any backlog */ 1234 wake_up_interruptible(&kauditd_wait); 1235 } else { 1236 if (audit_enabled != AUDIT_OFF) 1237 audit_log_config_change("audit_pid", 1238 new_pid, 1239 auditd_pid, 1); 1240 1241 /* unregister the auditd connection */ 1242 auditd_reset(NULL); 1243 } 1244 } 1245 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 1246 err = audit_set_rate_limit(s.rate_limit); 1247 if (err < 0) 1248 return err; 1249 } 1250 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 1251 err = audit_set_backlog_limit(s.backlog_limit); 1252 if (err < 0) 1253 return err; 1254 } 1255 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 1256 if (sizeof(s) > (size_t)nlh->nlmsg_len) 1257 return -EINVAL; 1258 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 1259 return -EINVAL; 1260 err = audit_set_backlog_wait_time(s.backlog_wait_time); 1261 if (err < 0) 1262 return err; 1263 } 1264 if (s.mask == AUDIT_STATUS_LOST) { 1265 u32 lost = atomic_xchg(&audit_lost, 0); 1266 1267 audit_log_config_change("lost", 0, lost, 1); 1268 return lost; 1269 } 1270 break; 1271 } 1272 case AUDIT_GET_FEATURE: 1273 err = audit_get_feature(skb); 1274 if (err) 1275 return err; 1276 break; 1277 case AUDIT_SET_FEATURE: 1278 err = audit_set_feature(skb); 1279 if (err) 1280 return err; 1281 break; 1282 case AUDIT_USER: 1283 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1284 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1285 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 1286 return 0; 1287 1288 err = audit_filter(msg_type, AUDIT_FILTER_USER); 1289 if (err == 1) { /* match or error */ 1290 err = 0; 1291 if (msg_type == AUDIT_USER_TTY) { 1292 err = tty_audit_push(); 1293 if (err) 1294 break; 1295 } 1296 audit_log_common_recv_msg(&ab, msg_type); 1297 if (msg_type != AUDIT_USER_TTY) 1298 audit_log_format(ab, " msg='%.*s'", 1299 AUDIT_MESSAGE_TEXT_MAX, 1300 (char *)data); 1301 else { 1302 int size; 1303 1304 audit_log_format(ab, " data="); 1305 size = nlmsg_len(nlh); 1306 if (size > 0 && 1307 ((unsigned char *)data)[size - 1] == '\0') 1308 size--; 1309 audit_log_n_untrustedstring(ab, data, size); 1310 } 1311 audit_log_end(ab); 1312 } 1313 break; 1314 case AUDIT_ADD_RULE: 1315 case AUDIT_DEL_RULE: 1316 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 1317 return -EINVAL; 1318 if (audit_enabled == AUDIT_LOCKED) { 1319 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1320 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled); 1321 audit_log_end(ab); 1322 return -EPERM; 1323 } 1324 err = audit_rule_change(msg_type, seq, data, nlmsg_len(nlh)); 1325 break; 1326 case AUDIT_LIST_RULES: 1327 err = audit_list_rules_send(skb, seq); 1328 break; 1329 case AUDIT_TRIM: 1330 audit_trim_trees(); 1331 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1332 audit_log_format(ab, " op=trim res=1"); 1333 audit_log_end(ab); 1334 break; 1335 case AUDIT_MAKE_EQUIV: { 1336 void *bufp = data; 1337 u32 sizes[2]; 1338 size_t msglen = nlmsg_len(nlh); 1339 char *old, *new; 1340 1341 err = -EINVAL; 1342 if (msglen < 2 * sizeof(u32)) 1343 break; 1344 memcpy(sizes, bufp, 2 * sizeof(u32)); 1345 bufp += 2 * sizeof(u32); 1346 msglen -= 2 * sizeof(u32); 1347 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 1348 if (IS_ERR(old)) { 1349 err = PTR_ERR(old); 1350 break; 1351 } 1352 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 1353 if (IS_ERR(new)) { 1354 err = PTR_ERR(new); 1355 kfree(old); 1356 break; 1357 } 1358 /* OK, here comes... */ 1359 err = audit_tag_tree(old, new); 1360 1361 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1362 1363 audit_log_format(ab, " op=make_equiv old="); 1364 audit_log_untrustedstring(ab, old); 1365 audit_log_format(ab, " new="); 1366 audit_log_untrustedstring(ab, new); 1367 audit_log_format(ab, " res=%d", !err); 1368 audit_log_end(ab); 1369 kfree(old); 1370 kfree(new); 1371 break; 1372 } 1373 case AUDIT_SIGNAL_INFO: 1374 len = 0; 1375 if (audit_sig_sid) { 1376 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 1377 if (err) 1378 return err; 1379 } 1380 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 1381 if (!sig_data) { 1382 if (audit_sig_sid) 1383 security_release_secctx(ctx, len); 1384 return -ENOMEM; 1385 } 1386 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 1387 sig_data->pid = audit_sig_pid; 1388 if (audit_sig_sid) { 1389 memcpy(sig_data->ctx, ctx, len); 1390 security_release_secctx(ctx, len); 1391 } 1392 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 1393 sig_data, sizeof(*sig_data) + len); 1394 kfree(sig_data); 1395 break; 1396 case AUDIT_TTY_GET: { 1397 struct audit_tty_status s; 1398 unsigned int t; 1399 1400 t = READ_ONCE(current->signal->audit_tty); 1401 s.enabled = t & AUDIT_TTY_ENABLE; 1402 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1403 1404 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1405 break; 1406 } 1407 case AUDIT_TTY_SET: { 1408 struct audit_tty_status s, old; 1409 struct audit_buffer *ab; 1410 unsigned int t; 1411 1412 memset(&s, 0, sizeof(s)); 1413 /* guard against past and future API changes */ 1414 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 1415 /* check if new data is valid */ 1416 if ((s.enabled != 0 && s.enabled != 1) || 1417 (s.log_passwd != 0 && s.log_passwd != 1)) 1418 err = -EINVAL; 1419 1420 if (err) 1421 t = READ_ONCE(current->signal->audit_tty); 1422 else { 1423 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD); 1424 t = xchg(¤t->signal->audit_tty, t); 1425 } 1426 old.enabled = t & AUDIT_TTY_ENABLE; 1427 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1428 1429 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1430 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1431 " old-log_passwd=%d new-log_passwd=%d res=%d", 1432 old.enabled, s.enabled, old.log_passwd, 1433 s.log_passwd, !err); 1434 audit_log_end(ab); 1435 break; 1436 } 1437 default: 1438 err = -EINVAL; 1439 break; 1440 } 1441 1442 return err < 0 ? err : 0; 1443 } 1444 1445 /** 1446 * audit_receive - receive messages from a netlink control socket 1447 * @skb: the message buffer 1448 * 1449 * Parse the provided skb and deal with any messages that may be present, 1450 * malformed skbs are discarded. 1451 */ 1452 static void audit_receive(struct sk_buff *skb) 1453 { 1454 struct nlmsghdr *nlh; 1455 /* 1456 * len MUST be signed for nlmsg_next to be able to dec it below 0 1457 * if the nlmsg_len was not aligned 1458 */ 1459 int len; 1460 int err; 1461 1462 nlh = nlmsg_hdr(skb); 1463 len = skb->len; 1464 1465 mutex_lock(&audit_cmd_mutex); 1466 while (nlmsg_ok(nlh, len)) { 1467 err = audit_receive_msg(skb, nlh); 1468 /* if err or if this message says it wants a response */ 1469 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 1470 netlink_ack(skb, nlh, err, NULL); 1471 1472 nlh = nlmsg_next(nlh, &len); 1473 } 1474 mutex_unlock(&audit_cmd_mutex); 1475 } 1476 1477 /* Run custom bind function on netlink socket group connect or bind requests. */ 1478 static int audit_bind(struct net *net, int group) 1479 { 1480 if (!capable(CAP_AUDIT_READ)) 1481 return -EPERM; 1482 1483 return 0; 1484 } 1485 1486 static int __net_init audit_net_init(struct net *net) 1487 { 1488 struct netlink_kernel_cfg cfg = { 1489 .input = audit_receive, 1490 .bind = audit_bind, 1491 .flags = NL_CFG_F_NONROOT_RECV, 1492 .groups = AUDIT_NLGRP_MAX, 1493 }; 1494 1495 struct audit_net *aunet = net_generic(net, audit_net_id); 1496 1497 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1498 if (aunet->sk == NULL) { 1499 audit_panic("cannot initialize netlink socket in namespace"); 1500 return -ENOMEM; 1501 } 1502 aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1503 1504 return 0; 1505 } 1506 1507 static void __net_exit audit_net_exit(struct net *net) 1508 { 1509 struct audit_net *aunet = net_generic(net, audit_net_id); 1510 1511 /* NOTE: you would think that we would want to check the auditd 1512 * connection and potentially reset it here if it lives in this 1513 * namespace, but since the auditd connection tracking struct holds a 1514 * reference to this namespace (see auditd_set()) we are only ever 1515 * going to get here after that connection has been released */ 1516 1517 netlink_kernel_release(aunet->sk); 1518 } 1519 1520 static struct pernet_operations audit_net_ops __net_initdata = { 1521 .init = audit_net_init, 1522 .exit = audit_net_exit, 1523 .id = &audit_net_id, 1524 .size = sizeof(struct audit_net), 1525 }; 1526 1527 /* Initialize audit support at boot time. */ 1528 static int __init audit_init(void) 1529 { 1530 int i; 1531 1532 if (audit_initialized == AUDIT_DISABLED) 1533 return 0; 1534 1535 audit_buffer_cache = kmem_cache_create("audit_buffer", 1536 sizeof(struct audit_buffer), 1537 0, SLAB_PANIC, NULL); 1538 1539 skb_queue_head_init(&audit_queue); 1540 skb_queue_head_init(&audit_retry_queue); 1541 skb_queue_head_init(&audit_hold_queue); 1542 1543 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1544 INIT_LIST_HEAD(&audit_inode_hash[i]); 1545 1546 pr_info("initializing netlink subsys (%s)\n", 1547 audit_default ? "enabled" : "disabled"); 1548 register_pernet_subsys(&audit_net_ops); 1549 1550 audit_initialized = AUDIT_INITIALIZED; 1551 audit_enabled = audit_default; 1552 audit_ever_enabled |= !!audit_default; 1553 1554 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 1555 if (IS_ERR(kauditd_task)) { 1556 int err = PTR_ERR(kauditd_task); 1557 panic("audit: failed to start the kauditd thread (%d)\n", err); 1558 } 1559 1560 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, 1561 "state=initialized audit_enabled=%u res=1", 1562 audit_enabled); 1563 1564 return 0; 1565 } 1566 __initcall(audit_init); 1567 1568 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ 1569 static int __init audit_enable(char *str) 1570 { 1571 audit_default = !!simple_strtol(str, NULL, 0); 1572 if (!audit_default) 1573 audit_initialized = AUDIT_DISABLED; 1574 1575 pr_info("%s\n", audit_default ? 1576 "enabled (after initialization)" : "disabled (until reboot)"); 1577 1578 return 1; 1579 } 1580 __setup("audit=", audit_enable); 1581 1582 /* Process kernel command-line parameter at boot time. 1583 * audit_backlog_limit=<n> */ 1584 static int __init audit_backlog_limit_set(char *str) 1585 { 1586 u32 audit_backlog_limit_arg; 1587 1588 pr_info("audit_backlog_limit: "); 1589 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1590 pr_cont("using default of %u, unable to parse %s\n", 1591 audit_backlog_limit, str); 1592 return 1; 1593 } 1594 1595 audit_backlog_limit = audit_backlog_limit_arg; 1596 pr_cont("%d\n", audit_backlog_limit); 1597 1598 return 1; 1599 } 1600 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1601 1602 static void audit_buffer_free(struct audit_buffer *ab) 1603 { 1604 if (!ab) 1605 return; 1606 1607 kfree_skb(ab->skb); 1608 kmem_cache_free(audit_buffer_cache, ab); 1609 } 1610 1611 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx, 1612 gfp_t gfp_mask, int type) 1613 { 1614 struct audit_buffer *ab; 1615 1616 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask); 1617 if (!ab) 1618 return NULL; 1619 1620 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1621 if (!ab->skb) 1622 goto err; 1623 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0)) 1624 goto err; 1625 1626 ab->ctx = ctx; 1627 ab->gfp_mask = gfp_mask; 1628 1629 return ab; 1630 1631 err: 1632 audit_buffer_free(ab); 1633 return NULL; 1634 } 1635 1636 /** 1637 * audit_serial - compute a serial number for the audit record 1638 * 1639 * Compute a serial number for the audit record. Audit records are 1640 * written to user-space as soon as they are generated, so a complete 1641 * audit record may be written in several pieces. The timestamp of the 1642 * record and this serial number are used by the user-space tools to 1643 * determine which pieces belong to the same audit record. The 1644 * (timestamp,serial) tuple is unique for each syscall and is live from 1645 * syscall entry to syscall exit. 1646 * 1647 * NOTE: Another possibility is to store the formatted records off the 1648 * audit context (for those records that have a context), and emit them 1649 * all at syscall exit. However, this could delay the reporting of 1650 * significant errors until syscall exit (or never, if the system 1651 * halts). 1652 */ 1653 unsigned int audit_serial(void) 1654 { 1655 static atomic_t serial = ATOMIC_INIT(0); 1656 1657 return atomic_add_return(1, &serial); 1658 } 1659 1660 static inline void audit_get_stamp(struct audit_context *ctx, 1661 struct timespec64 *t, unsigned int *serial) 1662 { 1663 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1664 ktime_get_real_ts64(t); 1665 *serial = audit_serial(); 1666 } 1667 } 1668 1669 /** 1670 * audit_log_start - obtain an audit buffer 1671 * @ctx: audit_context (may be NULL) 1672 * @gfp_mask: type of allocation 1673 * @type: audit message type 1674 * 1675 * Returns audit_buffer pointer on success or NULL on error. 1676 * 1677 * Obtain an audit buffer. This routine does locking to obtain the 1678 * audit buffer, but then no locking is required for calls to 1679 * audit_log_*format. If the task (ctx) is a task that is currently in a 1680 * syscall, then the syscall is marked as auditable and an audit record 1681 * will be written at syscall exit. If there is no associated task, then 1682 * task context (ctx) should be NULL. 1683 */ 1684 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1685 int type) 1686 { 1687 struct audit_buffer *ab; 1688 struct timespec64 t; 1689 unsigned int uninitialized_var(serial); 1690 1691 if (audit_initialized != AUDIT_INITIALIZED) 1692 return NULL; 1693 1694 if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE))) 1695 return NULL; 1696 1697 /* NOTE: don't ever fail/sleep on these two conditions: 1698 * 1. auditd generated record - since we need auditd to drain the 1699 * queue; also, when we are checking for auditd, compare PIDs using 1700 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg() 1701 * using a PID anchored in the caller's namespace 1702 * 2. generator holding the audit_cmd_mutex - we don't want to block 1703 * while holding the mutex */ 1704 if (!(auditd_test_task(current) || 1705 (current == __mutex_owner(&audit_cmd_mutex)))) { 1706 long stime = audit_backlog_wait_time; 1707 1708 while (audit_backlog_limit && 1709 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1710 /* wake kauditd to try and flush the queue */ 1711 wake_up_interruptible(&kauditd_wait); 1712 1713 /* sleep if we are allowed and we haven't exhausted our 1714 * backlog wait limit */ 1715 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) { 1716 DECLARE_WAITQUEUE(wait, current); 1717 1718 add_wait_queue_exclusive(&audit_backlog_wait, 1719 &wait); 1720 set_current_state(TASK_UNINTERRUPTIBLE); 1721 stime = schedule_timeout(stime); 1722 remove_wait_queue(&audit_backlog_wait, &wait); 1723 } else { 1724 if (audit_rate_check() && printk_ratelimit()) 1725 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1726 skb_queue_len(&audit_queue), 1727 audit_backlog_limit); 1728 audit_log_lost("backlog limit exceeded"); 1729 return NULL; 1730 } 1731 } 1732 } 1733 1734 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1735 if (!ab) { 1736 audit_log_lost("out of memory in audit_log_start"); 1737 return NULL; 1738 } 1739 1740 audit_get_stamp(ab->ctx, &t, &serial); 1741 audit_log_format(ab, "audit(%llu.%03lu:%u): ", 1742 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial); 1743 1744 return ab; 1745 } 1746 1747 /** 1748 * audit_expand - expand skb in the audit buffer 1749 * @ab: audit_buffer 1750 * @extra: space to add at tail of the skb 1751 * 1752 * Returns 0 (no space) on failed expansion, or available space if 1753 * successful. 1754 */ 1755 static inline int audit_expand(struct audit_buffer *ab, int extra) 1756 { 1757 struct sk_buff *skb = ab->skb; 1758 int oldtail = skb_tailroom(skb); 1759 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1760 int newtail = skb_tailroom(skb); 1761 1762 if (ret < 0) { 1763 audit_log_lost("out of memory in audit_expand"); 1764 return 0; 1765 } 1766 1767 skb->truesize += newtail - oldtail; 1768 return newtail; 1769 } 1770 1771 /* 1772 * Format an audit message into the audit buffer. If there isn't enough 1773 * room in the audit buffer, more room will be allocated and vsnprint 1774 * will be called a second time. Currently, we assume that a printk 1775 * can't format message larger than 1024 bytes, so we don't either. 1776 */ 1777 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1778 va_list args) 1779 { 1780 int len, avail; 1781 struct sk_buff *skb; 1782 va_list args2; 1783 1784 if (!ab) 1785 return; 1786 1787 BUG_ON(!ab->skb); 1788 skb = ab->skb; 1789 avail = skb_tailroom(skb); 1790 if (avail == 0) { 1791 avail = audit_expand(ab, AUDIT_BUFSIZ); 1792 if (!avail) 1793 goto out; 1794 } 1795 va_copy(args2, args); 1796 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1797 if (len >= avail) { 1798 /* The printk buffer is 1024 bytes long, so if we get 1799 * here and AUDIT_BUFSIZ is at least 1024, then we can 1800 * log everything that printk could have logged. */ 1801 avail = audit_expand(ab, 1802 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1803 if (!avail) 1804 goto out_va_end; 1805 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1806 } 1807 if (len > 0) 1808 skb_put(skb, len); 1809 out_va_end: 1810 va_end(args2); 1811 out: 1812 return; 1813 } 1814 1815 /** 1816 * audit_log_format - format a message into the audit buffer. 1817 * @ab: audit_buffer 1818 * @fmt: format string 1819 * @...: optional parameters matching @fmt string 1820 * 1821 * All the work is done in audit_log_vformat. 1822 */ 1823 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1824 { 1825 va_list args; 1826 1827 if (!ab) 1828 return; 1829 va_start(args, fmt); 1830 audit_log_vformat(ab, fmt, args); 1831 va_end(args); 1832 } 1833 1834 /** 1835 * audit_log_hex - convert a buffer to hex and append it to the audit skb 1836 * @ab: the audit_buffer 1837 * @buf: buffer to convert to hex 1838 * @len: length of @buf to be converted 1839 * 1840 * No return value; failure to expand is silently ignored. 1841 * 1842 * This function will take the passed buf and convert it into a string of 1843 * ascii hex digits. The new string is placed onto the skb. 1844 */ 1845 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1846 size_t len) 1847 { 1848 int i, avail, new_len; 1849 unsigned char *ptr; 1850 struct sk_buff *skb; 1851 1852 if (!ab) 1853 return; 1854 1855 BUG_ON(!ab->skb); 1856 skb = ab->skb; 1857 avail = skb_tailroom(skb); 1858 new_len = len<<1; 1859 if (new_len >= avail) { 1860 /* Round the buffer request up to the next multiple */ 1861 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1862 avail = audit_expand(ab, new_len); 1863 if (!avail) 1864 return; 1865 } 1866 1867 ptr = skb_tail_pointer(skb); 1868 for (i = 0; i < len; i++) 1869 ptr = hex_byte_pack_upper(ptr, buf[i]); 1870 *ptr = 0; 1871 skb_put(skb, len << 1); /* new string is twice the old string */ 1872 } 1873 1874 /* 1875 * Format a string of no more than slen characters into the audit buffer, 1876 * enclosed in quote marks. 1877 */ 1878 void audit_log_n_string(struct audit_buffer *ab, const char *string, 1879 size_t slen) 1880 { 1881 int avail, new_len; 1882 unsigned char *ptr; 1883 struct sk_buff *skb; 1884 1885 if (!ab) 1886 return; 1887 1888 BUG_ON(!ab->skb); 1889 skb = ab->skb; 1890 avail = skb_tailroom(skb); 1891 new_len = slen + 3; /* enclosing quotes + null terminator */ 1892 if (new_len > avail) { 1893 avail = audit_expand(ab, new_len); 1894 if (!avail) 1895 return; 1896 } 1897 ptr = skb_tail_pointer(skb); 1898 *ptr++ = '"'; 1899 memcpy(ptr, string, slen); 1900 ptr += slen; 1901 *ptr++ = '"'; 1902 *ptr = 0; 1903 skb_put(skb, slen + 2); /* don't include null terminator */ 1904 } 1905 1906 /** 1907 * audit_string_contains_control - does a string need to be logged in hex 1908 * @string: string to be checked 1909 * @len: max length of the string to check 1910 */ 1911 bool audit_string_contains_control(const char *string, size_t len) 1912 { 1913 const unsigned char *p; 1914 for (p = string; p < (const unsigned char *)string + len; p++) { 1915 if (*p == '"' || *p < 0x21 || *p > 0x7e) 1916 return true; 1917 } 1918 return false; 1919 } 1920 1921 /** 1922 * audit_log_n_untrustedstring - log a string that may contain random characters 1923 * @ab: audit_buffer 1924 * @len: length of string (not including trailing null) 1925 * @string: string to be logged 1926 * 1927 * This code will escape a string that is passed to it if the string 1928 * contains a control character, unprintable character, double quote mark, 1929 * or a space. Unescaped strings will start and end with a double quote mark. 1930 * Strings that are escaped are printed in hex (2 digits per char). 1931 * 1932 * The caller specifies the number of characters in the string to log, which may 1933 * or may not be the entire string. 1934 */ 1935 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 1936 size_t len) 1937 { 1938 if (audit_string_contains_control(string, len)) 1939 audit_log_n_hex(ab, string, len); 1940 else 1941 audit_log_n_string(ab, string, len); 1942 } 1943 1944 /** 1945 * audit_log_untrustedstring - log a string that may contain random characters 1946 * @ab: audit_buffer 1947 * @string: string to be logged 1948 * 1949 * Same as audit_log_n_untrustedstring(), except that strlen is used to 1950 * determine string length. 1951 */ 1952 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 1953 { 1954 audit_log_n_untrustedstring(ab, string, strlen(string)); 1955 } 1956 1957 /* This is a helper-function to print the escaped d_path */ 1958 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 1959 const struct path *path) 1960 { 1961 char *p, *pathname; 1962 1963 if (prefix) 1964 audit_log_format(ab, "%s", prefix); 1965 1966 /* We will allow 11 spaces for ' (deleted)' to be appended */ 1967 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 1968 if (!pathname) { 1969 audit_log_string(ab, "<no_memory>"); 1970 return; 1971 } 1972 p = d_path(path, pathname, PATH_MAX+11); 1973 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 1974 /* FIXME: can we save some information here? */ 1975 audit_log_string(ab, "<too_long>"); 1976 } else 1977 audit_log_untrustedstring(ab, p); 1978 kfree(pathname); 1979 } 1980 1981 void audit_log_session_info(struct audit_buffer *ab) 1982 { 1983 unsigned int sessionid = audit_get_sessionid(current); 1984 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 1985 1986 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid); 1987 } 1988 1989 void audit_log_key(struct audit_buffer *ab, char *key) 1990 { 1991 audit_log_format(ab, " key="); 1992 if (key) 1993 audit_log_untrustedstring(ab, key); 1994 else 1995 audit_log_format(ab, "(null)"); 1996 } 1997 1998 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) 1999 { 2000 int i; 2001 2002 audit_log_format(ab, " %s=", prefix); 2003 CAP_FOR_EACH_U32(i) { 2004 audit_log_format(ab, "%08x", 2005 cap->cap[CAP_LAST_U32 - i]); 2006 } 2007 } 2008 2009 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 2010 { 2011 audit_log_cap(ab, "cap_fp", &name->fcap.permitted); 2012 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable); 2013 audit_log_format(ab, " cap_fe=%d cap_fver=%x", 2014 name->fcap.fE, name->fcap_ver); 2015 } 2016 2017 static inline int audit_copy_fcaps(struct audit_names *name, 2018 const struct dentry *dentry) 2019 { 2020 struct cpu_vfs_cap_data caps; 2021 int rc; 2022 2023 if (!dentry) 2024 return 0; 2025 2026 rc = get_vfs_caps_from_disk(dentry, &caps); 2027 if (rc) 2028 return rc; 2029 2030 name->fcap.permitted = caps.permitted; 2031 name->fcap.inheritable = caps.inheritable; 2032 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2033 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 2034 VFS_CAP_REVISION_SHIFT; 2035 2036 return 0; 2037 } 2038 2039 /* Copy inode data into an audit_names. */ 2040 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, 2041 struct inode *inode) 2042 { 2043 name->ino = inode->i_ino; 2044 name->dev = inode->i_sb->s_dev; 2045 name->mode = inode->i_mode; 2046 name->uid = inode->i_uid; 2047 name->gid = inode->i_gid; 2048 name->rdev = inode->i_rdev; 2049 security_inode_getsecid(inode, &name->osid); 2050 audit_copy_fcaps(name, dentry); 2051 } 2052 2053 /** 2054 * audit_log_name - produce AUDIT_PATH record from struct audit_names 2055 * @context: audit_context for the task 2056 * @n: audit_names structure with reportable details 2057 * @path: optional path to report instead of audit_names->name 2058 * @record_num: record number to report when handling a list of names 2059 * @call_panic: optional pointer to int that will be updated if secid fails 2060 */ 2061 void audit_log_name(struct audit_context *context, struct audit_names *n, 2062 const struct path *path, int record_num, int *call_panic) 2063 { 2064 struct audit_buffer *ab; 2065 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 2066 if (!ab) 2067 return; 2068 2069 audit_log_format(ab, "item=%d", record_num); 2070 2071 if (path) 2072 audit_log_d_path(ab, " name=", path); 2073 else if (n->name) { 2074 switch (n->name_len) { 2075 case AUDIT_NAME_FULL: 2076 /* log the full path */ 2077 audit_log_format(ab, " name="); 2078 audit_log_untrustedstring(ab, n->name->name); 2079 break; 2080 case 0: 2081 /* name was specified as a relative path and the 2082 * directory component is the cwd */ 2083 audit_log_d_path(ab, " name=", &context->pwd); 2084 break; 2085 default: 2086 /* log the name's directory component */ 2087 audit_log_format(ab, " name="); 2088 audit_log_n_untrustedstring(ab, n->name->name, 2089 n->name_len); 2090 } 2091 } else 2092 audit_log_format(ab, " name=(null)"); 2093 2094 if (n->ino != AUDIT_INO_UNSET) 2095 audit_log_format(ab, " inode=%lu" 2096 " dev=%02x:%02x mode=%#ho" 2097 " ouid=%u ogid=%u rdev=%02x:%02x", 2098 n->ino, 2099 MAJOR(n->dev), 2100 MINOR(n->dev), 2101 n->mode, 2102 from_kuid(&init_user_ns, n->uid), 2103 from_kgid(&init_user_ns, n->gid), 2104 MAJOR(n->rdev), 2105 MINOR(n->rdev)); 2106 if (n->osid != 0) { 2107 char *ctx = NULL; 2108 u32 len; 2109 if (security_secid_to_secctx( 2110 n->osid, &ctx, &len)) { 2111 audit_log_format(ab, " osid=%u", n->osid); 2112 if (call_panic) 2113 *call_panic = 2; 2114 } else { 2115 audit_log_format(ab, " obj=%s", ctx); 2116 security_release_secctx(ctx, len); 2117 } 2118 } 2119 2120 /* log the audit_names record type */ 2121 audit_log_format(ab, " nametype="); 2122 switch(n->type) { 2123 case AUDIT_TYPE_NORMAL: 2124 audit_log_format(ab, "NORMAL"); 2125 break; 2126 case AUDIT_TYPE_PARENT: 2127 audit_log_format(ab, "PARENT"); 2128 break; 2129 case AUDIT_TYPE_CHILD_DELETE: 2130 audit_log_format(ab, "DELETE"); 2131 break; 2132 case AUDIT_TYPE_CHILD_CREATE: 2133 audit_log_format(ab, "CREATE"); 2134 break; 2135 default: 2136 audit_log_format(ab, "UNKNOWN"); 2137 break; 2138 } 2139 2140 audit_log_fcaps(ab, n); 2141 audit_log_end(ab); 2142 } 2143 2144 int audit_log_task_context(struct audit_buffer *ab) 2145 { 2146 char *ctx = NULL; 2147 unsigned len; 2148 int error; 2149 u32 sid; 2150 2151 security_task_getsecid(current, &sid); 2152 if (!sid) 2153 return 0; 2154 2155 error = security_secid_to_secctx(sid, &ctx, &len); 2156 if (error) { 2157 if (error != -EINVAL) 2158 goto error_path; 2159 return 0; 2160 } 2161 2162 audit_log_format(ab, " subj=%s", ctx); 2163 security_release_secctx(ctx, len); 2164 return 0; 2165 2166 error_path: 2167 audit_panic("error in audit_log_task_context"); 2168 return error; 2169 } 2170 EXPORT_SYMBOL(audit_log_task_context); 2171 2172 void audit_log_d_path_exe(struct audit_buffer *ab, 2173 struct mm_struct *mm) 2174 { 2175 struct file *exe_file; 2176 2177 if (!mm) 2178 goto out_null; 2179 2180 exe_file = get_mm_exe_file(mm); 2181 if (!exe_file) 2182 goto out_null; 2183 2184 audit_log_d_path(ab, " exe=", &exe_file->f_path); 2185 fput(exe_file); 2186 return; 2187 out_null: 2188 audit_log_format(ab, " exe=(null)"); 2189 } 2190 2191 struct tty_struct *audit_get_tty(struct task_struct *tsk) 2192 { 2193 struct tty_struct *tty = NULL; 2194 unsigned long flags; 2195 2196 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2197 if (tsk->signal) 2198 tty = tty_kref_get(tsk->signal->tty); 2199 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2200 return tty; 2201 } 2202 2203 void audit_put_tty(struct tty_struct *tty) 2204 { 2205 tty_kref_put(tty); 2206 } 2207 2208 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) 2209 { 2210 const struct cred *cred; 2211 char comm[sizeof(tsk->comm)]; 2212 struct tty_struct *tty; 2213 2214 if (!ab) 2215 return; 2216 2217 /* tsk == current */ 2218 cred = current_cred(); 2219 tty = audit_get_tty(tsk); 2220 audit_log_format(ab, 2221 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 2222 " euid=%u suid=%u fsuid=%u" 2223 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 2224 task_ppid_nr(tsk), 2225 task_tgid_nr(tsk), 2226 from_kuid(&init_user_ns, audit_get_loginuid(tsk)), 2227 from_kuid(&init_user_ns, cred->uid), 2228 from_kgid(&init_user_ns, cred->gid), 2229 from_kuid(&init_user_ns, cred->euid), 2230 from_kuid(&init_user_ns, cred->suid), 2231 from_kuid(&init_user_ns, cred->fsuid), 2232 from_kgid(&init_user_ns, cred->egid), 2233 from_kgid(&init_user_ns, cred->sgid), 2234 from_kgid(&init_user_ns, cred->fsgid), 2235 tty ? tty_name(tty) : "(none)", 2236 audit_get_sessionid(tsk)); 2237 audit_put_tty(tty); 2238 audit_log_format(ab, " comm="); 2239 audit_log_untrustedstring(ab, get_task_comm(comm, tsk)); 2240 audit_log_d_path_exe(ab, tsk->mm); 2241 audit_log_task_context(ab); 2242 } 2243 EXPORT_SYMBOL(audit_log_task_info); 2244 2245 /** 2246 * audit_log_link_denied - report a link restriction denial 2247 * @operation: specific link operation 2248 * @link: the path that triggered the restriction 2249 */ 2250 void audit_log_link_denied(const char *operation, const struct path *link) 2251 { 2252 struct audit_buffer *ab; 2253 struct audit_names *name; 2254 2255 name = kzalloc(sizeof(*name), GFP_NOFS); 2256 if (!name) 2257 return; 2258 2259 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */ 2260 ab = audit_log_start(current->audit_context, GFP_KERNEL, 2261 AUDIT_ANOM_LINK); 2262 if (!ab) 2263 goto out; 2264 audit_log_format(ab, "op=%s", operation); 2265 audit_log_task_info(ab, current); 2266 audit_log_format(ab, " res=0"); 2267 audit_log_end(ab); 2268 2269 /* Generate AUDIT_PATH record with object. */ 2270 name->type = AUDIT_TYPE_NORMAL; 2271 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry)); 2272 audit_log_name(current->audit_context, name, link, 0, NULL); 2273 out: 2274 kfree(name); 2275 } 2276 2277 /** 2278 * audit_log_end - end one audit record 2279 * @ab: the audit_buffer 2280 * 2281 * We can not do a netlink send inside an irq context because it blocks (last 2282 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a 2283 * queue and a tasklet is scheduled to remove them from the queue outside the 2284 * irq context. May be called in any context. 2285 */ 2286 void audit_log_end(struct audit_buffer *ab) 2287 { 2288 struct sk_buff *skb; 2289 struct nlmsghdr *nlh; 2290 2291 if (!ab) 2292 return; 2293 2294 if (audit_rate_check()) { 2295 skb = ab->skb; 2296 ab->skb = NULL; 2297 2298 /* setup the netlink header, see the comments in 2299 * kauditd_send_multicast_skb() for length quirks */ 2300 nlh = nlmsg_hdr(skb); 2301 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN; 2302 2303 /* queue the netlink packet and poke the kauditd thread */ 2304 skb_queue_tail(&audit_queue, skb); 2305 wake_up_interruptible(&kauditd_wait); 2306 } else 2307 audit_log_lost("rate limit exceeded"); 2308 2309 audit_buffer_free(ab); 2310 } 2311 2312 /** 2313 * audit_log - Log an audit record 2314 * @ctx: audit context 2315 * @gfp_mask: type of allocation 2316 * @type: audit message type 2317 * @fmt: format string to use 2318 * @...: variable parameters matching the format string 2319 * 2320 * This is a convenience function that calls audit_log_start, 2321 * audit_log_vformat, and audit_log_end. It may be called 2322 * in any context. 2323 */ 2324 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 2325 const char *fmt, ...) 2326 { 2327 struct audit_buffer *ab; 2328 va_list args; 2329 2330 ab = audit_log_start(ctx, gfp_mask, type); 2331 if (ab) { 2332 va_start(args, fmt); 2333 audit_log_vformat(ab, fmt, args); 2334 va_end(args); 2335 audit_log_end(ab); 2336 } 2337 } 2338 2339 #ifdef CONFIG_SECURITY 2340 /** 2341 * audit_log_secctx - Converts and logs SELinux context 2342 * @ab: audit_buffer 2343 * @secid: security number 2344 * 2345 * This is a helper function that calls security_secid_to_secctx to convert 2346 * secid to secctx and then adds the (converted) SELinux context to the audit 2347 * log by calling audit_log_format, thus also preventing leak of internal secid 2348 * to userspace. If secid cannot be converted audit_panic is called. 2349 */ 2350 void audit_log_secctx(struct audit_buffer *ab, u32 secid) 2351 { 2352 u32 len; 2353 char *secctx; 2354 2355 if (security_secid_to_secctx(secid, &secctx, &len)) { 2356 audit_panic("Cannot convert secid to context"); 2357 } else { 2358 audit_log_format(ab, " obj=%s", secctx); 2359 security_release_secctx(secctx, len); 2360 } 2361 } 2362 EXPORT_SYMBOL(audit_log_secctx); 2363 #endif 2364 2365 EXPORT_SYMBOL(audit_log_start); 2366 EXPORT_SYMBOL(audit_log_end); 2367 EXPORT_SYMBOL(audit_log_format); 2368 EXPORT_SYMBOL(audit_log); 2369