xref: /openbmc/linux/kernel/audit.c (revision 4bb1e4e7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* audit.c -- Auditing support
3  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4  * System-call specific features have moved to auditsc.c
5  *
6  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7  * All Rights Reserved.
8  *
9  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
10  *
11  * Goals: 1) Integrate fully with Security Modules.
12  *	  2) Minimal run-time overhead:
13  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
14  *	     b) Small when syscall auditing is enabled and no audit record
15  *		is generated (defer as much work as possible to record
16  *		generation time):
17  *		i) context is allocated,
18  *		ii) names from getname are stored without a copy, and
19  *		iii) inode information stored from path_lookup.
20  *	  3) Ability to disable syscall auditing at boot time (audit=0).
21  *	  4) Usable by other parts of the kernel (if audit_log* is called,
22  *	     then a syscall record will be generated automatically for the
23  *	     current syscall).
24  *	  5) Netlink interface to user-space.
25  *	  6) Support low-overhead kernel-based filtering to minimize the
26  *	     information that must be passed to user-space.
27  *
28  * Audit userspace, documentation, tests, and bug/issue trackers:
29  * 	https://github.com/linux-audit
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/file.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/atomic.h>
38 #include <linux/mm.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/err.h>
42 #include <linux/kthread.h>
43 #include <linux/kernel.h>
44 #include <linux/syscalls.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/mutex.h>
48 #include <linux/gfp.h>
49 #include <linux/pid.h>
50 
51 #include <linux/audit.h>
52 
53 #include <net/sock.h>
54 #include <net/netlink.h>
55 #include <linux/skbuff.h>
56 #ifdef CONFIG_SECURITY
57 #include <linux/security.h>
58 #endif
59 #include <linux/freezer.h>
60 #include <linux/pid_namespace.h>
61 #include <net/netns/generic.h>
62 
63 #include "audit.h"
64 
65 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
66  * (Initialization happens after skb_init is called.) */
67 #define AUDIT_DISABLED		-1
68 #define AUDIT_UNINITIALIZED	0
69 #define AUDIT_INITIALIZED	1
70 static int	audit_initialized;
71 
72 u32		audit_enabled = AUDIT_OFF;
73 bool		audit_ever_enabled = !!AUDIT_OFF;
74 
75 EXPORT_SYMBOL_GPL(audit_enabled);
76 
77 /* Default state when kernel boots without any parameters. */
78 static u32	audit_default = AUDIT_OFF;
79 
80 /* If auditing cannot proceed, audit_failure selects what happens. */
81 static u32	audit_failure = AUDIT_FAIL_PRINTK;
82 
83 /* private audit network namespace index */
84 static unsigned int audit_net_id;
85 
86 /**
87  * struct audit_net - audit private network namespace data
88  * @sk: communication socket
89  */
90 struct audit_net {
91 	struct sock *sk;
92 };
93 
94 /**
95  * struct auditd_connection - kernel/auditd connection state
96  * @pid: auditd PID
97  * @portid: netlink portid
98  * @net: the associated network namespace
99  * @rcu: RCU head
100  *
101  * Description:
102  * This struct is RCU protected; you must either hold the RCU lock for reading
103  * or the associated spinlock for writing.
104  */
105 static struct auditd_connection {
106 	struct pid *pid;
107 	u32 portid;
108 	struct net *net;
109 	struct rcu_head rcu;
110 } *auditd_conn = NULL;
111 static DEFINE_SPINLOCK(auditd_conn_lock);
112 
113 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
114  * to that number per second.  This prevents DoS attacks, but results in
115  * audit records being dropped. */
116 static u32	audit_rate_limit;
117 
118 /* Number of outstanding audit_buffers allowed.
119  * When set to zero, this means unlimited. */
120 static u32	audit_backlog_limit = 64;
121 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
122 static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
123 
124 /* The identity of the user shutting down the audit system. */
125 kuid_t		audit_sig_uid = INVALID_UID;
126 pid_t		audit_sig_pid = -1;
127 u32		audit_sig_sid = 0;
128 
129 /* Records can be lost in several ways:
130    0) [suppressed in audit_alloc]
131    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
132    2) out of memory in audit_log_move [alloc_skb]
133    3) suppressed due to audit_rate_limit
134    4) suppressed due to audit_backlog_limit
135 */
136 static atomic_t	audit_lost = ATOMIC_INIT(0);
137 
138 /* Hash for inode-based rules */
139 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
140 
141 static struct kmem_cache *audit_buffer_cache;
142 
143 /* queue msgs to send via kauditd_task */
144 static struct sk_buff_head audit_queue;
145 /* queue msgs due to temporary unicast send problems */
146 static struct sk_buff_head audit_retry_queue;
147 /* queue msgs waiting for new auditd connection */
148 static struct sk_buff_head audit_hold_queue;
149 
150 /* queue servicing thread */
151 static struct task_struct *kauditd_task;
152 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
153 
154 /* waitqueue for callers who are blocked on the audit backlog */
155 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
156 
157 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
158 				   .mask = -1,
159 				   .features = 0,
160 				   .lock = 0,};
161 
162 static char *audit_feature_names[2] = {
163 	"only_unset_loginuid",
164 	"loginuid_immutable",
165 };
166 
167 /**
168  * struct audit_ctl_mutex - serialize requests from userspace
169  * @lock: the mutex used for locking
170  * @owner: the task which owns the lock
171  *
172  * Description:
173  * This is the lock struct used to ensure we only process userspace requests
174  * in an orderly fashion.  We can't simply use a mutex/lock here because we
175  * need to track lock ownership so we don't end up blocking the lock owner in
176  * audit_log_start() or similar.
177  */
178 static struct audit_ctl_mutex {
179 	struct mutex lock;
180 	void *owner;
181 } audit_cmd_mutex;
182 
183 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
184  * audit records.  Since printk uses a 1024 byte buffer, this buffer
185  * should be at least that large. */
186 #define AUDIT_BUFSIZ 1024
187 
188 /* The audit_buffer is used when formatting an audit record.  The caller
189  * locks briefly to get the record off the freelist or to allocate the
190  * buffer, and locks briefly to send the buffer to the netlink layer or
191  * to place it on a transmit queue.  Multiple audit_buffers can be in
192  * use simultaneously. */
193 struct audit_buffer {
194 	struct sk_buff       *skb;	/* formatted skb ready to send */
195 	struct audit_context *ctx;	/* NULL or associated context */
196 	gfp_t		     gfp_mask;
197 };
198 
199 struct audit_reply {
200 	__u32 portid;
201 	struct net *net;
202 	struct sk_buff *skb;
203 };
204 
205 /**
206  * auditd_test_task - Check to see if a given task is an audit daemon
207  * @task: the task to check
208  *
209  * Description:
210  * Return 1 if the task is a registered audit daemon, 0 otherwise.
211  */
212 int auditd_test_task(struct task_struct *task)
213 {
214 	int rc;
215 	struct auditd_connection *ac;
216 
217 	rcu_read_lock();
218 	ac = rcu_dereference(auditd_conn);
219 	rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
220 	rcu_read_unlock();
221 
222 	return rc;
223 }
224 
225 /**
226  * audit_ctl_lock - Take the audit control lock
227  */
228 void audit_ctl_lock(void)
229 {
230 	mutex_lock(&audit_cmd_mutex.lock);
231 	audit_cmd_mutex.owner = current;
232 }
233 
234 /**
235  * audit_ctl_unlock - Drop the audit control lock
236  */
237 void audit_ctl_unlock(void)
238 {
239 	audit_cmd_mutex.owner = NULL;
240 	mutex_unlock(&audit_cmd_mutex.lock);
241 }
242 
243 /**
244  * audit_ctl_owner_current - Test to see if the current task owns the lock
245  *
246  * Description:
247  * Return true if the current task owns the audit control lock, false if it
248  * doesn't own the lock.
249  */
250 static bool audit_ctl_owner_current(void)
251 {
252 	return (current == audit_cmd_mutex.owner);
253 }
254 
255 /**
256  * auditd_pid_vnr - Return the auditd PID relative to the namespace
257  *
258  * Description:
259  * Returns the PID in relation to the namespace, 0 on failure.
260  */
261 static pid_t auditd_pid_vnr(void)
262 {
263 	pid_t pid;
264 	const struct auditd_connection *ac;
265 
266 	rcu_read_lock();
267 	ac = rcu_dereference(auditd_conn);
268 	if (!ac || !ac->pid)
269 		pid = 0;
270 	else
271 		pid = pid_vnr(ac->pid);
272 	rcu_read_unlock();
273 
274 	return pid;
275 }
276 
277 /**
278  * audit_get_sk - Return the audit socket for the given network namespace
279  * @net: the destination network namespace
280  *
281  * Description:
282  * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
283  * that a reference is held for the network namespace while the sock is in use.
284  */
285 static struct sock *audit_get_sk(const struct net *net)
286 {
287 	struct audit_net *aunet;
288 
289 	if (!net)
290 		return NULL;
291 
292 	aunet = net_generic(net, audit_net_id);
293 	return aunet->sk;
294 }
295 
296 void audit_panic(const char *message)
297 {
298 	switch (audit_failure) {
299 	case AUDIT_FAIL_SILENT:
300 		break;
301 	case AUDIT_FAIL_PRINTK:
302 		if (printk_ratelimit())
303 			pr_err("%s\n", message);
304 		break;
305 	case AUDIT_FAIL_PANIC:
306 		panic("audit: %s\n", message);
307 		break;
308 	}
309 }
310 
311 static inline int audit_rate_check(void)
312 {
313 	static unsigned long	last_check = 0;
314 	static int		messages   = 0;
315 	static DEFINE_SPINLOCK(lock);
316 	unsigned long		flags;
317 	unsigned long		now;
318 	unsigned long		elapsed;
319 	int			retval	   = 0;
320 
321 	if (!audit_rate_limit) return 1;
322 
323 	spin_lock_irqsave(&lock, flags);
324 	if (++messages < audit_rate_limit) {
325 		retval = 1;
326 	} else {
327 		now     = jiffies;
328 		elapsed = now - last_check;
329 		if (elapsed > HZ) {
330 			last_check = now;
331 			messages   = 0;
332 			retval     = 1;
333 		}
334 	}
335 	spin_unlock_irqrestore(&lock, flags);
336 
337 	return retval;
338 }
339 
340 /**
341  * audit_log_lost - conditionally log lost audit message event
342  * @message: the message stating reason for lost audit message
343  *
344  * Emit at least 1 message per second, even if audit_rate_check is
345  * throttling.
346  * Always increment the lost messages counter.
347 */
348 void audit_log_lost(const char *message)
349 {
350 	static unsigned long	last_msg = 0;
351 	static DEFINE_SPINLOCK(lock);
352 	unsigned long		flags;
353 	unsigned long		now;
354 	int			print;
355 
356 	atomic_inc(&audit_lost);
357 
358 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
359 
360 	if (!print) {
361 		spin_lock_irqsave(&lock, flags);
362 		now = jiffies;
363 		if (now - last_msg > HZ) {
364 			print = 1;
365 			last_msg = now;
366 		}
367 		spin_unlock_irqrestore(&lock, flags);
368 	}
369 
370 	if (print) {
371 		if (printk_ratelimit())
372 			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
373 				atomic_read(&audit_lost),
374 				audit_rate_limit,
375 				audit_backlog_limit);
376 		audit_panic(message);
377 	}
378 }
379 
380 static int audit_log_config_change(char *function_name, u32 new, u32 old,
381 				   int allow_changes)
382 {
383 	struct audit_buffer *ab;
384 	int rc = 0;
385 
386 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
387 	if (unlikely(!ab))
388 		return rc;
389 	audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
390 	audit_log_session_info(ab);
391 	rc = audit_log_task_context(ab);
392 	if (rc)
393 		allow_changes = 0; /* Something weird, deny request */
394 	audit_log_format(ab, " res=%d", allow_changes);
395 	audit_log_end(ab);
396 	return rc;
397 }
398 
399 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
400 {
401 	int allow_changes, rc = 0;
402 	u32 old = *to_change;
403 
404 	/* check if we are locked */
405 	if (audit_enabled == AUDIT_LOCKED)
406 		allow_changes = 0;
407 	else
408 		allow_changes = 1;
409 
410 	if (audit_enabled != AUDIT_OFF) {
411 		rc = audit_log_config_change(function_name, new, old, allow_changes);
412 		if (rc)
413 			allow_changes = 0;
414 	}
415 
416 	/* If we are allowed, make the change */
417 	if (allow_changes == 1)
418 		*to_change = new;
419 	/* Not allowed, update reason */
420 	else if (rc == 0)
421 		rc = -EPERM;
422 	return rc;
423 }
424 
425 static int audit_set_rate_limit(u32 limit)
426 {
427 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
428 }
429 
430 static int audit_set_backlog_limit(u32 limit)
431 {
432 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
433 }
434 
435 static int audit_set_backlog_wait_time(u32 timeout)
436 {
437 	return audit_do_config_change("audit_backlog_wait_time",
438 				      &audit_backlog_wait_time, timeout);
439 }
440 
441 static int audit_set_enabled(u32 state)
442 {
443 	int rc;
444 	if (state > AUDIT_LOCKED)
445 		return -EINVAL;
446 
447 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
448 	if (!rc)
449 		audit_ever_enabled |= !!state;
450 
451 	return rc;
452 }
453 
454 static int audit_set_failure(u32 state)
455 {
456 	if (state != AUDIT_FAIL_SILENT
457 	    && state != AUDIT_FAIL_PRINTK
458 	    && state != AUDIT_FAIL_PANIC)
459 		return -EINVAL;
460 
461 	return audit_do_config_change("audit_failure", &audit_failure, state);
462 }
463 
464 /**
465  * auditd_conn_free - RCU helper to release an auditd connection struct
466  * @rcu: RCU head
467  *
468  * Description:
469  * Drop any references inside the auditd connection tracking struct and free
470  * the memory.
471  */
472 static void auditd_conn_free(struct rcu_head *rcu)
473 {
474 	struct auditd_connection *ac;
475 
476 	ac = container_of(rcu, struct auditd_connection, rcu);
477 	put_pid(ac->pid);
478 	put_net(ac->net);
479 	kfree(ac);
480 }
481 
482 /**
483  * auditd_set - Set/Reset the auditd connection state
484  * @pid: auditd PID
485  * @portid: auditd netlink portid
486  * @net: auditd network namespace pointer
487  *
488  * Description:
489  * This function will obtain and drop network namespace references as
490  * necessary.  Returns zero on success, negative values on failure.
491  */
492 static int auditd_set(struct pid *pid, u32 portid, struct net *net)
493 {
494 	unsigned long flags;
495 	struct auditd_connection *ac_old, *ac_new;
496 
497 	if (!pid || !net)
498 		return -EINVAL;
499 
500 	ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
501 	if (!ac_new)
502 		return -ENOMEM;
503 	ac_new->pid = get_pid(pid);
504 	ac_new->portid = portid;
505 	ac_new->net = get_net(net);
506 
507 	spin_lock_irqsave(&auditd_conn_lock, flags);
508 	ac_old = rcu_dereference_protected(auditd_conn,
509 					   lockdep_is_held(&auditd_conn_lock));
510 	rcu_assign_pointer(auditd_conn, ac_new);
511 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
512 
513 	if (ac_old)
514 		call_rcu(&ac_old->rcu, auditd_conn_free);
515 
516 	return 0;
517 }
518 
519 /**
520  * kauditd_print_skb - Print the audit record to the ring buffer
521  * @skb: audit record
522  *
523  * Whatever the reason, this packet may not make it to the auditd connection
524  * so write it via printk so the information isn't completely lost.
525  */
526 static void kauditd_printk_skb(struct sk_buff *skb)
527 {
528 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
529 	char *data = nlmsg_data(nlh);
530 
531 	if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
532 		pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
533 }
534 
535 /**
536  * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
537  * @skb: audit record
538  *
539  * Description:
540  * This should only be used by the kauditd_thread when it fails to flush the
541  * hold queue.
542  */
543 static void kauditd_rehold_skb(struct sk_buff *skb)
544 {
545 	/* put the record back in the queue at the same place */
546 	skb_queue_head(&audit_hold_queue, skb);
547 }
548 
549 /**
550  * kauditd_hold_skb - Queue an audit record, waiting for auditd
551  * @skb: audit record
552  *
553  * Description:
554  * Queue the audit record, waiting for an instance of auditd.  When this
555  * function is called we haven't given up yet on sending the record, but things
556  * are not looking good.  The first thing we want to do is try to write the
557  * record via printk and then see if we want to try and hold on to the record
558  * and queue it, if we have room.  If we want to hold on to the record, but we
559  * don't have room, record a record lost message.
560  */
561 static void kauditd_hold_skb(struct sk_buff *skb)
562 {
563 	/* at this point it is uncertain if we will ever send this to auditd so
564 	 * try to send the message via printk before we go any further */
565 	kauditd_printk_skb(skb);
566 
567 	/* can we just silently drop the message? */
568 	if (!audit_default) {
569 		kfree_skb(skb);
570 		return;
571 	}
572 
573 	/* if we have room, queue the message */
574 	if (!audit_backlog_limit ||
575 	    skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
576 		skb_queue_tail(&audit_hold_queue, skb);
577 		return;
578 	}
579 
580 	/* we have no other options - drop the message */
581 	audit_log_lost("kauditd hold queue overflow");
582 	kfree_skb(skb);
583 }
584 
585 /**
586  * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
587  * @skb: audit record
588  *
589  * Description:
590  * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
591  * but for some reason we are having problems sending it audit records so
592  * queue the given record and attempt to resend.
593  */
594 static void kauditd_retry_skb(struct sk_buff *skb)
595 {
596 	/* NOTE: because records should only live in the retry queue for a
597 	 * short period of time, before either being sent or moved to the hold
598 	 * queue, we don't currently enforce a limit on this queue */
599 	skb_queue_tail(&audit_retry_queue, skb);
600 }
601 
602 /**
603  * auditd_reset - Disconnect the auditd connection
604  * @ac: auditd connection state
605  *
606  * Description:
607  * Break the auditd/kauditd connection and move all the queued records into the
608  * hold queue in case auditd reconnects.  It is important to note that the @ac
609  * pointer should never be dereferenced inside this function as it may be NULL
610  * or invalid, you can only compare the memory address!  If @ac is NULL then
611  * the connection will always be reset.
612  */
613 static void auditd_reset(const struct auditd_connection *ac)
614 {
615 	unsigned long flags;
616 	struct sk_buff *skb;
617 	struct auditd_connection *ac_old;
618 
619 	/* if it isn't already broken, break the connection */
620 	spin_lock_irqsave(&auditd_conn_lock, flags);
621 	ac_old = rcu_dereference_protected(auditd_conn,
622 					   lockdep_is_held(&auditd_conn_lock));
623 	if (ac && ac != ac_old) {
624 		/* someone already registered a new auditd connection */
625 		spin_unlock_irqrestore(&auditd_conn_lock, flags);
626 		return;
627 	}
628 	rcu_assign_pointer(auditd_conn, NULL);
629 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
630 
631 	if (ac_old)
632 		call_rcu(&ac_old->rcu, auditd_conn_free);
633 
634 	/* flush the retry queue to the hold queue, but don't touch the main
635 	 * queue since we need to process that normally for multicast */
636 	while ((skb = skb_dequeue(&audit_retry_queue)))
637 		kauditd_hold_skb(skb);
638 }
639 
640 /**
641  * auditd_send_unicast_skb - Send a record via unicast to auditd
642  * @skb: audit record
643  *
644  * Description:
645  * Send a skb to the audit daemon, returns positive/zero values on success and
646  * negative values on failure; in all cases the skb will be consumed by this
647  * function.  If the send results in -ECONNREFUSED the connection with auditd
648  * will be reset.  This function may sleep so callers should not hold any locks
649  * where this would cause a problem.
650  */
651 static int auditd_send_unicast_skb(struct sk_buff *skb)
652 {
653 	int rc;
654 	u32 portid;
655 	struct net *net;
656 	struct sock *sk;
657 	struct auditd_connection *ac;
658 
659 	/* NOTE: we can't call netlink_unicast while in the RCU section so
660 	 *       take a reference to the network namespace and grab local
661 	 *       copies of the namespace, the sock, and the portid; the
662 	 *       namespace and sock aren't going to go away while we hold a
663 	 *       reference and if the portid does become invalid after the RCU
664 	 *       section netlink_unicast() should safely return an error */
665 
666 	rcu_read_lock();
667 	ac = rcu_dereference(auditd_conn);
668 	if (!ac) {
669 		rcu_read_unlock();
670 		kfree_skb(skb);
671 		rc = -ECONNREFUSED;
672 		goto err;
673 	}
674 	net = get_net(ac->net);
675 	sk = audit_get_sk(net);
676 	portid = ac->portid;
677 	rcu_read_unlock();
678 
679 	rc = netlink_unicast(sk, skb, portid, 0);
680 	put_net(net);
681 	if (rc < 0)
682 		goto err;
683 
684 	return rc;
685 
686 err:
687 	if (ac && rc == -ECONNREFUSED)
688 		auditd_reset(ac);
689 	return rc;
690 }
691 
692 /**
693  * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
694  * @sk: the sending sock
695  * @portid: the netlink destination
696  * @queue: the skb queue to process
697  * @retry_limit: limit on number of netlink unicast failures
698  * @skb_hook: per-skb hook for additional processing
699  * @err_hook: hook called if the skb fails the netlink unicast send
700  *
701  * Description:
702  * Run through the given queue and attempt to send the audit records to auditd,
703  * returns zero on success, negative values on failure.  It is up to the caller
704  * to ensure that the @sk is valid for the duration of this function.
705  *
706  */
707 static int kauditd_send_queue(struct sock *sk, u32 portid,
708 			      struct sk_buff_head *queue,
709 			      unsigned int retry_limit,
710 			      void (*skb_hook)(struct sk_buff *skb),
711 			      void (*err_hook)(struct sk_buff *skb))
712 {
713 	int rc = 0;
714 	struct sk_buff *skb;
715 	static unsigned int failed = 0;
716 
717 	/* NOTE: kauditd_thread takes care of all our locking, we just use
718 	 *       the netlink info passed to us (e.g. sk and portid) */
719 
720 	while ((skb = skb_dequeue(queue))) {
721 		/* call the skb_hook for each skb we touch */
722 		if (skb_hook)
723 			(*skb_hook)(skb);
724 
725 		/* can we send to anyone via unicast? */
726 		if (!sk) {
727 			if (err_hook)
728 				(*err_hook)(skb);
729 			continue;
730 		}
731 
732 		/* grab an extra skb reference in case of error */
733 		skb_get(skb);
734 		rc = netlink_unicast(sk, skb, portid, 0);
735 		if (rc < 0) {
736 			/* fatal failure for our queue flush attempt? */
737 			if (++failed >= retry_limit ||
738 			    rc == -ECONNREFUSED || rc == -EPERM) {
739 				/* yes - error processing for the queue */
740 				sk = NULL;
741 				if (err_hook)
742 					(*err_hook)(skb);
743 				if (!skb_hook)
744 					goto out;
745 				/* keep processing with the skb_hook */
746 				continue;
747 			} else
748 				/* no - requeue to preserve ordering */
749 				skb_queue_head(queue, skb);
750 		} else {
751 			/* it worked - drop the extra reference and continue */
752 			consume_skb(skb);
753 			failed = 0;
754 		}
755 	}
756 
757 out:
758 	return (rc >= 0 ? 0 : rc);
759 }
760 
761 /*
762  * kauditd_send_multicast_skb - Send a record to any multicast listeners
763  * @skb: audit record
764  *
765  * Description:
766  * Write a multicast message to anyone listening in the initial network
767  * namespace.  This function doesn't consume an skb as might be expected since
768  * it has to copy it anyways.
769  */
770 static void kauditd_send_multicast_skb(struct sk_buff *skb)
771 {
772 	struct sk_buff *copy;
773 	struct sock *sock = audit_get_sk(&init_net);
774 	struct nlmsghdr *nlh;
775 
776 	/* NOTE: we are not taking an additional reference for init_net since
777 	 *       we don't have to worry about it going away */
778 
779 	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
780 		return;
781 
782 	/*
783 	 * The seemingly wasteful skb_copy() rather than bumping the refcount
784 	 * using skb_get() is necessary because non-standard mods are made to
785 	 * the skb by the original kaudit unicast socket send routine.  The
786 	 * existing auditd daemon assumes this breakage.  Fixing this would
787 	 * require co-ordinating a change in the established protocol between
788 	 * the kaudit kernel subsystem and the auditd userspace code.  There is
789 	 * no reason for new multicast clients to continue with this
790 	 * non-compliance.
791 	 */
792 	copy = skb_copy(skb, GFP_KERNEL);
793 	if (!copy)
794 		return;
795 	nlh = nlmsg_hdr(copy);
796 	nlh->nlmsg_len = skb->len;
797 
798 	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
799 }
800 
801 /**
802  * kauditd_thread - Worker thread to send audit records to userspace
803  * @dummy: unused
804  */
805 static int kauditd_thread(void *dummy)
806 {
807 	int rc;
808 	u32 portid = 0;
809 	struct net *net = NULL;
810 	struct sock *sk = NULL;
811 	struct auditd_connection *ac;
812 
813 #define UNICAST_RETRIES 5
814 
815 	set_freezable();
816 	while (!kthread_should_stop()) {
817 		/* NOTE: see the lock comments in auditd_send_unicast_skb() */
818 		rcu_read_lock();
819 		ac = rcu_dereference(auditd_conn);
820 		if (!ac) {
821 			rcu_read_unlock();
822 			goto main_queue;
823 		}
824 		net = get_net(ac->net);
825 		sk = audit_get_sk(net);
826 		portid = ac->portid;
827 		rcu_read_unlock();
828 
829 		/* attempt to flush the hold queue */
830 		rc = kauditd_send_queue(sk, portid,
831 					&audit_hold_queue, UNICAST_RETRIES,
832 					NULL, kauditd_rehold_skb);
833 		if (rc < 0) {
834 			sk = NULL;
835 			auditd_reset(ac);
836 			goto main_queue;
837 		}
838 
839 		/* attempt to flush the retry queue */
840 		rc = kauditd_send_queue(sk, portid,
841 					&audit_retry_queue, UNICAST_RETRIES,
842 					NULL, kauditd_hold_skb);
843 		if (rc < 0) {
844 			sk = NULL;
845 			auditd_reset(ac);
846 			goto main_queue;
847 		}
848 
849 main_queue:
850 		/* process the main queue - do the multicast send and attempt
851 		 * unicast, dump failed record sends to the retry queue; if
852 		 * sk == NULL due to previous failures we will just do the
853 		 * multicast send and move the record to the hold queue */
854 		rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
855 					kauditd_send_multicast_skb,
856 					(sk ?
857 					 kauditd_retry_skb : kauditd_hold_skb));
858 		if (ac && rc < 0)
859 			auditd_reset(ac);
860 		sk = NULL;
861 
862 		/* drop our netns reference, no auditd sends past this line */
863 		if (net) {
864 			put_net(net);
865 			net = NULL;
866 		}
867 
868 		/* we have processed all the queues so wake everyone */
869 		wake_up(&audit_backlog_wait);
870 
871 		/* NOTE: we want to wake up if there is anything on the queue,
872 		 *       regardless of if an auditd is connected, as we need to
873 		 *       do the multicast send and rotate records from the
874 		 *       main queue to the retry/hold queues */
875 		wait_event_freezable(kauditd_wait,
876 				     (skb_queue_len(&audit_queue) ? 1 : 0));
877 	}
878 
879 	return 0;
880 }
881 
882 int audit_send_list(void *_dest)
883 {
884 	struct audit_netlink_list *dest = _dest;
885 	struct sk_buff *skb;
886 	struct sock *sk = audit_get_sk(dest->net);
887 
888 	/* wait for parent to finish and send an ACK */
889 	audit_ctl_lock();
890 	audit_ctl_unlock();
891 
892 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
893 		netlink_unicast(sk, skb, dest->portid, 0);
894 
895 	put_net(dest->net);
896 	kfree(dest);
897 
898 	return 0;
899 }
900 
901 struct sk_buff *audit_make_reply(int seq, int type, int done,
902 				 int multi, const void *payload, int size)
903 {
904 	struct sk_buff	*skb;
905 	struct nlmsghdr	*nlh;
906 	void		*data;
907 	int		flags = multi ? NLM_F_MULTI : 0;
908 	int		t     = done  ? NLMSG_DONE  : type;
909 
910 	skb = nlmsg_new(size, GFP_KERNEL);
911 	if (!skb)
912 		return NULL;
913 
914 	nlh	= nlmsg_put(skb, 0, seq, t, size, flags);
915 	if (!nlh)
916 		goto out_kfree_skb;
917 	data = nlmsg_data(nlh);
918 	memcpy(data, payload, size);
919 	return skb;
920 
921 out_kfree_skb:
922 	kfree_skb(skb);
923 	return NULL;
924 }
925 
926 static int audit_send_reply_thread(void *arg)
927 {
928 	struct audit_reply *reply = (struct audit_reply *)arg;
929 	struct sock *sk = audit_get_sk(reply->net);
930 
931 	audit_ctl_lock();
932 	audit_ctl_unlock();
933 
934 	/* Ignore failure. It'll only happen if the sender goes away,
935 	   because our timeout is set to infinite. */
936 	netlink_unicast(sk, reply->skb, reply->portid, 0);
937 	put_net(reply->net);
938 	kfree(reply);
939 	return 0;
940 }
941 
942 /**
943  * audit_send_reply - send an audit reply message via netlink
944  * @request_skb: skb of request we are replying to (used to target the reply)
945  * @seq: sequence number
946  * @type: audit message type
947  * @done: done (last) flag
948  * @multi: multi-part message flag
949  * @payload: payload data
950  * @size: payload size
951  *
952  * Allocates an skb, builds the netlink message, and sends it to the port id.
953  * No failure notifications.
954  */
955 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
956 			     int multi, const void *payload, int size)
957 {
958 	struct net *net = sock_net(NETLINK_CB(request_skb).sk);
959 	struct sk_buff *skb;
960 	struct task_struct *tsk;
961 	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
962 					    GFP_KERNEL);
963 
964 	if (!reply)
965 		return;
966 
967 	skb = audit_make_reply(seq, type, done, multi, payload, size);
968 	if (!skb)
969 		goto out;
970 
971 	reply->net = get_net(net);
972 	reply->portid = NETLINK_CB(request_skb).portid;
973 	reply->skb = skb;
974 
975 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
976 	if (!IS_ERR(tsk))
977 		return;
978 	kfree_skb(skb);
979 out:
980 	kfree(reply);
981 }
982 
983 /*
984  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
985  * control messages.
986  */
987 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
988 {
989 	int err = 0;
990 
991 	/* Only support initial user namespace for now. */
992 	/*
993 	 * We return ECONNREFUSED because it tricks userspace into thinking
994 	 * that audit was not configured into the kernel.  Lots of users
995 	 * configure their PAM stack (because that's what the distro does)
996 	 * to reject login if unable to send messages to audit.  If we return
997 	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
998 	 * configured in and will let login proceed.  If we return EPERM
999 	 * userspace will reject all logins.  This should be removed when we
1000 	 * support non init namespaces!!
1001 	 */
1002 	if (current_user_ns() != &init_user_ns)
1003 		return -ECONNREFUSED;
1004 
1005 	switch (msg_type) {
1006 	case AUDIT_LIST:
1007 	case AUDIT_ADD:
1008 	case AUDIT_DEL:
1009 		return -EOPNOTSUPP;
1010 	case AUDIT_GET:
1011 	case AUDIT_SET:
1012 	case AUDIT_GET_FEATURE:
1013 	case AUDIT_SET_FEATURE:
1014 	case AUDIT_LIST_RULES:
1015 	case AUDIT_ADD_RULE:
1016 	case AUDIT_DEL_RULE:
1017 	case AUDIT_SIGNAL_INFO:
1018 	case AUDIT_TTY_GET:
1019 	case AUDIT_TTY_SET:
1020 	case AUDIT_TRIM:
1021 	case AUDIT_MAKE_EQUIV:
1022 		/* Only support auditd and auditctl in initial pid namespace
1023 		 * for now. */
1024 		if (task_active_pid_ns(current) != &init_pid_ns)
1025 			return -EPERM;
1026 
1027 		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1028 			err = -EPERM;
1029 		break;
1030 	case AUDIT_USER:
1031 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1032 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1033 		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1034 			err = -EPERM;
1035 		break;
1036 	default:  /* bad msg */
1037 		err = -EINVAL;
1038 	}
1039 
1040 	return err;
1041 }
1042 
1043 static void audit_log_common_recv_msg(struct audit_context *context,
1044 					struct audit_buffer **ab, u16 msg_type)
1045 {
1046 	uid_t uid = from_kuid(&init_user_ns, current_uid());
1047 	pid_t pid = task_tgid_nr(current);
1048 
1049 	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1050 		*ab = NULL;
1051 		return;
1052 	}
1053 
1054 	*ab = audit_log_start(context, GFP_KERNEL, msg_type);
1055 	if (unlikely(!*ab))
1056 		return;
1057 	audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1058 	audit_log_session_info(*ab);
1059 	audit_log_task_context(*ab);
1060 }
1061 
1062 static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1063 					   u16 msg_type)
1064 {
1065 	audit_log_common_recv_msg(NULL, ab, msg_type);
1066 }
1067 
1068 int is_audit_feature_set(int i)
1069 {
1070 	return af.features & AUDIT_FEATURE_TO_MASK(i);
1071 }
1072 
1073 
1074 static int audit_get_feature(struct sk_buff *skb)
1075 {
1076 	u32 seq;
1077 
1078 	seq = nlmsg_hdr(skb)->nlmsg_seq;
1079 
1080 	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1081 
1082 	return 0;
1083 }
1084 
1085 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1086 				     u32 old_lock, u32 new_lock, int res)
1087 {
1088 	struct audit_buffer *ab;
1089 
1090 	if (audit_enabled == AUDIT_OFF)
1091 		return;
1092 
1093 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1094 	if (!ab)
1095 		return;
1096 	audit_log_task_info(ab);
1097 	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1098 			 audit_feature_names[which], !!old_feature, !!new_feature,
1099 			 !!old_lock, !!new_lock, res);
1100 	audit_log_end(ab);
1101 }
1102 
1103 static int audit_set_feature(struct sk_buff *skb)
1104 {
1105 	struct audit_features *uaf;
1106 	int i;
1107 
1108 	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1109 	uaf = nlmsg_data(nlmsg_hdr(skb));
1110 
1111 	/* if there is ever a version 2 we should handle that here */
1112 
1113 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1114 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1115 		u32 old_feature, new_feature, old_lock, new_lock;
1116 
1117 		/* if we are not changing this feature, move along */
1118 		if (!(feature & uaf->mask))
1119 			continue;
1120 
1121 		old_feature = af.features & feature;
1122 		new_feature = uaf->features & feature;
1123 		new_lock = (uaf->lock | af.lock) & feature;
1124 		old_lock = af.lock & feature;
1125 
1126 		/* are we changing a locked feature? */
1127 		if (old_lock && (new_feature != old_feature)) {
1128 			audit_log_feature_change(i, old_feature, new_feature,
1129 						 old_lock, new_lock, 0);
1130 			return -EPERM;
1131 		}
1132 	}
1133 	/* nothing invalid, do the changes */
1134 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1135 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1136 		u32 old_feature, new_feature, old_lock, new_lock;
1137 
1138 		/* if we are not changing this feature, move along */
1139 		if (!(feature & uaf->mask))
1140 			continue;
1141 
1142 		old_feature = af.features & feature;
1143 		new_feature = uaf->features & feature;
1144 		old_lock = af.lock & feature;
1145 		new_lock = (uaf->lock | af.lock) & feature;
1146 
1147 		if (new_feature != old_feature)
1148 			audit_log_feature_change(i, old_feature, new_feature,
1149 						 old_lock, new_lock, 1);
1150 
1151 		if (new_feature)
1152 			af.features |= feature;
1153 		else
1154 			af.features &= ~feature;
1155 		af.lock |= new_lock;
1156 	}
1157 
1158 	return 0;
1159 }
1160 
1161 static int audit_replace(struct pid *pid)
1162 {
1163 	pid_t pvnr;
1164 	struct sk_buff *skb;
1165 
1166 	pvnr = pid_vnr(pid);
1167 	skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1168 	if (!skb)
1169 		return -ENOMEM;
1170 	return auditd_send_unicast_skb(skb);
1171 }
1172 
1173 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1174 {
1175 	u32			seq;
1176 	void			*data;
1177 	int			err;
1178 	struct audit_buffer	*ab;
1179 	u16			msg_type = nlh->nlmsg_type;
1180 	struct audit_sig_info   *sig_data;
1181 	char			*ctx = NULL;
1182 	u32			len;
1183 
1184 	err = audit_netlink_ok(skb, msg_type);
1185 	if (err)
1186 		return err;
1187 
1188 	seq  = nlh->nlmsg_seq;
1189 	data = nlmsg_data(nlh);
1190 
1191 	switch (msg_type) {
1192 	case AUDIT_GET: {
1193 		struct audit_status	s;
1194 		memset(&s, 0, sizeof(s));
1195 		s.enabled		= audit_enabled;
1196 		s.failure		= audit_failure;
1197 		/* NOTE: use pid_vnr() so the PID is relative to the current
1198 		 *       namespace */
1199 		s.pid			= auditd_pid_vnr();
1200 		s.rate_limit		= audit_rate_limit;
1201 		s.backlog_limit		= audit_backlog_limit;
1202 		s.lost			= atomic_read(&audit_lost);
1203 		s.backlog		= skb_queue_len(&audit_queue);
1204 		s.feature_bitmap	= AUDIT_FEATURE_BITMAP_ALL;
1205 		s.backlog_wait_time	= audit_backlog_wait_time;
1206 		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1207 		break;
1208 	}
1209 	case AUDIT_SET: {
1210 		struct audit_status	s;
1211 		memset(&s, 0, sizeof(s));
1212 		/* guard against past and future API changes */
1213 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1214 		if (s.mask & AUDIT_STATUS_ENABLED) {
1215 			err = audit_set_enabled(s.enabled);
1216 			if (err < 0)
1217 				return err;
1218 		}
1219 		if (s.mask & AUDIT_STATUS_FAILURE) {
1220 			err = audit_set_failure(s.failure);
1221 			if (err < 0)
1222 				return err;
1223 		}
1224 		if (s.mask & AUDIT_STATUS_PID) {
1225 			/* NOTE: we are using the vnr PID functions below
1226 			 *       because the s.pid value is relative to the
1227 			 *       namespace of the caller; at present this
1228 			 *       doesn't matter much since you can really only
1229 			 *       run auditd from the initial pid namespace, but
1230 			 *       something to keep in mind if this changes */
1231 			pid_t new_pid = s.pid;
1232 			pid_t auditd_pid;
1233 			struct pid *req_pid = task_tgid(current);
1234 
1235 			/* Sanity check - PID values must match. Setting
1236 			 * pid to 0 is how auditd ends auditing. */
1237 			if (new_pid && (new_pid != pid_vnr(req_pid)))
1238 				return -EINVAL;
1239 
1240 			/* test the auditd connection */
1241 			audit_replace(req_pid);
1242 
1243 			auditd_pid = auditd_pid_vnr();
1244 			if (auditd_pid) {
1245 				/* replacing a healthy auditd is not allowed */
1246 				if (new_pid) {
1247 					audit_log_config_change("audit_pid",
1248 							new_pid, auditd_pid, 0);
1249 					return -EEXIST;
1250 				}
1251 				/* only current auditd can unregister itself */
1252 				if (pid_vnr(req_pid) != auditd_pid) {
1253 					audit_log_config_change("audit_pid",
1254 							new_pid, auditd_pid, 0);
1255 					return -EACCES;
1256 				}
1257 			}
1258 
1259 			if (new_pid) {
1260 				/* register a new auditd connection */
1261 				err = auditd_set(req_pid,
1262 						 NETLINK_CB(skb).portid,
1263 						 sock_net(NETLINK_CB(skb).sk));
1264 				if (audit_enabled != AUDIT_OFF)
1265 					audit_log_config_change("audit_pid",
1266 								new_pid,
1267 								auditd_pid,
1268 								err ? 0 : 1);
1269 				if (err)
1270 					return err;
1271 
1272 				/* try to process any backlog */
1273 				wake_up_interruptible(&kauditd_wait);
1274 			} else {
1275 				if (audit_enabled != AUDIT_OFF)
1276 					audit_log_config_change("audit_pid",
1277 								new_pid,
1278 								auditd_pid, 1);
1279 
1280 				/* unregister the auditd connection */
1281 				auditd_reset(NULL);
1282 			}
1283 		}
1284 		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1285 			err = audit_set_rate_limit(s.rate_limit);
1286 			if (err < 0)
1287 				return err;
1288 		}
1289 		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1290 			err = audit_set_backlog_limit(s.backlog_limit);
1291 			if (err < 0)
1292 				return err;
1293 		}
1294 		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1295 			if (sizeof(s) > (size_t)nlh->nlmsg_len)
1296 				return -EINVAL;
1297 			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1298 				return -EINVAL;
1299 			err = audit_set_backlog_wait_time(s.backlog_wait_time);
1300 			if (err < 0)
1301 				return err;
1302 		}
1303 		if (s.mask == AUDIT_STATUS_LOST) {
1304 			u32 lost = atomic_xchg(&audit_lost, 0);
1305 
1306 			audit_log_config_change("lost", 0, lost, 1);
1307 			return lost;
1308 		}
1309 		break;
1310 	}
1311 	case AUDIT_GET_FEATURE:
1312 		err = audit_get_feature(skb);
1313 		if (err)
1314 			return err;
1315 		break;
1316 	case AUDIT_SET_FEATURE:
1317 		err = audit_set_feature(skb);
1318 		if (err)
1319 			return err;
1320 		break;
1321 	case AUDIT_USER:
1322 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1323 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1324 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1325 			return 0;
1326 
1327 		err = audit_filter(msg_type, AUDIT_FILTER_USER);
1328 		if (err == 1) { /* match or error */
1329 			err = 0;
1330 			if (msg_type == AUDIT_USER_TTY) {
1331 				err = tty_audit_push();
1332 				if (err)
1333 					break;
1334 			}
1335 			audit_log_user_recv_msg(&ab, msg_type);
1336 			if (msg_type != AUDIT_USER_TTY)
1337 				audit_log_format(ab, " msg='%.*s'",
1338 						 AUDIT_MESSAGE_TEXT_MAX,
1339 						 (char *)data);
1340 			else {
1341 				int size;
1342 
1343 				audit_log_format(ab, " data=");
1344 				size = nlmsg_len(nlh);
1345 				if (size > 0 &&
1346 				    ((unsigned char *)data)[size - 1] == '\0')
1347 					size--;
1348 				audit_log_n_untrustedstring(ab, data, size);
1349 			}
1350 			audit_log_end(ab);
1351 		}
1352 		break;
1353 	case AUDIT_ADD_RULE:
1354 	case AUDIT_DEL_RULE:
1355 		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
1356 			return -EINVAL;
1357 		if (audit_enabled == AUDIT_LOCKED) {
1358 			audit_log_common_recv_msg(audit_context(), &ab,
1359 						  AUDIT_CONFIG_CHANGE);
1360 			audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1361 					 msg_type == AUDIT_ADD_RULE ?
1362 						"add_rule" : "remove_rule",
1363 					 audit_enabled);
1364 			audit_log_end(ab);
1365 			return -EPERM;
1366 		}
1367 		err = audit_rule_change(msg_type, seq, data, nlmsg_len(nlh));
1368 		break;
1369 	case AUDIT_LIST_RULES:
1370 		err = audit_list_rules_send(skb, seq);
1371 		break;
1372 	case AUDIT_TRIM:
1373 		audit_trim_trees();
1374 		audit_log_common_recv_msg(audit_context(), &ab,
1375 					  AUDIT_CONFIG_CHANGE);
1376 		audit_log_format(ab, " op=trim res=1");
1377 		audit_log_end(ab);
1378 		break;
1379 	case AUDIT_MAKE_EQUIV: {
1380 		void *bufp = data;
1381 		u32 sizes[2];
1382 		size_t msglen = nlmsg_len(nlh);
1383 		char *old, *new;
1384 
1385 		err = -EINVAL;
1386 		if (msglen < 2 * sizeof(u32))
1387 			break;
1388 		memcpy(sizes, bufp, 2 * sizeof(u32));
1389 		bufp += 2 * sizeof(u32);
1390 		msglen -= 2 * sizeof(u32);
1391 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1392 		if (IS_ERR(old)) {
1393 			err = PTR_ERR(old);
1394 			break;
1395 		}
1396 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1397 		if (IS_ERR(new)) {
1398 			err = PTR_ERR(new);
1399 			kfree(old);
1400 			break;
1401 		}
1402 		/* OK, here comes... */
1403 		err = audit_tag_tree(old, new);
1404 
1405 		audit_log_common_recv_msg(audit_context(), &ab,
1406 					  AUDIT_CONFIG_CHANGE);
1407 		audit_log_format(ab, " op=make_equiv old=");
1408 		audit_log_untrustedstring(ab, old);
1409 		audit_log_format(ab, " new=");
1410 		audit_log_untrustedstring(ab, new);
1411 		audit_log_format(ab, " res=%d", !err);
1412 		audit_log_end(ab);
1413 		kfree(old);
1414 		kfree(new);
1415 		break;
1416 	}
1417 	case AUDIT_SIGNAL_INFO:
1418 		len = 0;
1419 		if (audit_sig_sid) {
1420 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1421 			if (err)
1422 				return err;
1423 		}
1424 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1425 		if (!sig_data) {
1426 			if (audit_sig_sid)
1427 				security_release_secctx(ctx, len);
1428 			return -ENOMEM;
1429 		}
1430 		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1431 		sig_data->pid = audit_sig_pid;
1432 		if (audit_sig_sid) {
1433 			memcpy(sig_data->ctx, ctx, len);
1434 			security_release_secctx(ctx, len);
1435 		}
1436 		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1437 				 sig_data, sizeof(*sig_data) + len);
1438 		kfree(sig_data);
1439 		break;
1440 	case AUDIT_TTY_GET: {
1441 		struct audit_tty_status s;
1442 		unsigned int t;
1443 
1444 		t = READ_ONCE(current->signal->audit_tty);
1445 		s.enabled = t & AUDIT_TTY_ENABLE;
1446 		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1447 
1448 		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1449 		break;
1450 	}
1451 	case AUDIT_TTY_SET: {
1452 		struct audit_tty_status s, old;
1453 		struct audit_buffer	*ab;
1454 		unsigned int t;
1455 
1456 		memset(&s, 0, sizeof(s));
1457 		/* guard against past and future API changes */
1458 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1459 		/* check if new data is valid */
1460 		if ((s.enabled != 0 && s.enabled != 1) ||
1461 		    (s.log_passwd != 0 && s.log_passwd != 1))
1462 			err = -EINVAL;
1463 
1464 		if (err)
1465 			t = READ_ONCE(current->signal->audit_tty);
1466 		else {
1467 			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1468 			t = xchg(&current->signal->audit_tty, t);
1469 		}
1470 		old.enabled = t & AUDIT_TTY_ENABLE;
1471 		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1472 
1473 		audit_log_common_recv_msg(audit_context(), &ab,
1474 					  AUDIT_CONFIG_CHANGE);
1475 		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1476 				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1477 				 old.enabled, s.enabled, old.log_passwd,
1478 				 s.log_passwd, !err);
1479 		audit_log_end(ab);
1480 		break;
1481 	}
1482 	default:
1483 		err = -EINVAL;
1484 		break;
1485 	}
1486 
1487 	return err < 0 ? err : 0;
1488 }
1489 
1490 /**
1491  * audit_receive - receive messages from a netlink control socket
1492  * @skb: the message buffer
1493  *
1494  * Parse the provided skb and deal with any messages that may be present,
1495  * malformed skbs are discarded.
1496  */
1497 static void audit_receive(struct sk_buff  *skb)
1498 {
1499 	struct nlmsghdr *nlh;
1500 	/*
1501 	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1502 	 * if the nlmsg_len was not aligned
1503 	 */
1504 	int len;
1505 	int err;
1506 
1507 	nlh = nlmsg_hdr(skb);
1508 	len = skb->len;
1509 
1510 	audit_ctl_lock();
1511 	while (nlmsg_ok(nlh, len)) {
1512 		err = audit_receive_msg(skb, nlh);
1513 		/* if err or if this message says it wants a response */
1514 		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1515 			netlink_ack(skb, nlh, err, NULL);
1516 
1517 		nlh = nlmsg_next(nlh, &len);
1518 	}
1519 	audit_ctl_unlock();
1520 }
1521 
1522 /* Run custom bind function on netlink socket group connect or bind requests. */
1523 static int audit_bind(struct net *net, int group)
1524 {
1525 	if (!capable(CAP_AUDIT_READ))
1526 		return -EPERM;
1527 
1528 	return 0;
1529 }
1530 
1531 static int __net_init audit_net_init(struct net *net)
1532 {
1533 	struct netlink_kernel_cfg cfg = {
1534 		.input	= audit_receive,
1535 		.bind	= audit_bind,
1536 		.flags	= NL_CFG_F_NONROOT_RECV,
1537 		.groups	= AUDIT_NLGRP_MAX,
1538 	};
1539 
1540 	struct audit_net *aunet = net_generic(net, audit_net_id);
1541 
1542 	aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1543 	if (aunet->sk == NULL) {
1544 		audit_panic("cannot initialize netlink socket in namespace");
1545 		return -ENOMEM;
1546 	}
1547 	aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1548 
1549 	return 0;
1550 }
1551 
1552 static void __net_exit audit_net_exit(struct net *net)
1553 {
1554 	struct audit_net *aunet = net_generic(net, audit_net_id);
1555 
1556 	/* NOTE: you would think that we would want to check the auditd
1557 	 * connection and potentially reset it here if it lives in this
1558 	 * namespace, but since the auditd connection tracking struct holds a
1559 	 * reference to this namespace (see auditd_set()) we are only ever
1560 	 * going to get here after that connection has been released */
1561 
1562 	netlink_kernel_release(aunet->sk);
1563 }
1564 
1565 static struct pernet_operations audit_net_ops __net_initdata = {
1566 	.init = audit_net_init,
1567 	.exit = audit_net_exit,
1568 	.id = &audit_net_id,
1569 	.size = sizeof(struct audit_net),
1570 };
1571 
1572 /* Initialize audit support at boot time. */
1573 static int __init audit_init(void)
1574 {
1575 	int i;
1576 
1577 	if (audit_initialized == AUDIT_DISABLED)
1578 		return 0;
1579 
1580 	audit_buffer_cache = kmem_cache_create("audit_buffer",
1581 					       sizeof(struct audit_buffer),
1582 					       0, SLAB_PANIC, NULL);
1583 
1584 	skb_queue_head_init(&audit_queue);
1585 	skb_queue_head_init(&audit_retry_queue);
1586 	skb_queue_head_init(&audit_hold_queue);
1587 
1588 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1589 		INIT_LIST_HEAD(&audit_inode_hash[i]);
1590 
1591 	mutex_init(&audit_cmd_mutex.lock);
1592 	audit_cmd_mutex.owner = NULL;
1593 
1594 	pr_info("initializing netlink subsys (%s)\n",
1595 		audit_default ? "enabled" : "disabled");
1596 	register_pernet_subsys(&audit_net_ops);
1597 
1598 	audit_initialized = AUDIT_INITIALIZED;
1599 
1600 	kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1601 	if (IS_ERR(kauditd_task)) {
1602 		int err = PTR_ERR(kauditd_task);
1603 		panic("audit: failed to start the kauditd thread (%d)\n", err);
1604 	}
1605 
1606 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1607 		"state=initialized audit_enabled=%u res=1",
1608 		 audit_enabled);
1609 
1610 	return 0;
1611 }
1612 postcore_initcall(audit_init);
1613 
1614 /*
1615  * Process kernel command-line parameter at boot time.
1616  * audit={0|off} or audit={1|on}.
1617  */
1618 static int __init audit_enable(char *str)
1619 {
1620 	if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1621 		audit_default = AUDIT_OFF;
1622 	else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1623 		audit_default = AUDIT_ON;
1624 	else {
1625 		pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1626 		audit_default = AUDIT_ON;
1627 	}
1628 
1629 	if (audit_default == AUDIT_OFF)
1630 		audit_initialized = AUDIT_DISABLED;
1631 	if (audit_set_enabled(audit_default))
1632 		pr_err("audit: error setting audit state (%d)\n",
1633 		       audit_default);
1634 
1635 	pr_info("%s\n", audit_default ?
1636 		"enabled (after initialization)" : "disabled (until reboot)");
1637 
1638 	return 1;
1639 }
1640 __setup("audit=", audit_enable);
1641 
1642 /* Process kernel command-line parameter at boot time.
1643  * audit_backlog_limit=<n> */
1644 static int __init audit_backlog_limit_set(char *str)
1645 {
1646 	u32 audit_backlog_limit_arg;
1647 
1648 	pr_info("audit_backlog_limit: ");
1649 	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1650 		pr_cont("using default of %u, unable to parse %s\n",
1651 			audit_backlog_limit, str);
1652 		return 1;
1653 	}
1654 
1655 	audit_backlog_limit = audit_backlog_limit_arg;
1656 	pr_cont("%d\n", audit_backlog_limit);
1657 
1658 	return 1;
1659 }
1660 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1661 
1662 static void audit_buffer_free(struct audit_buffer *ab)
1663 {
1664 	if (!ab)
1665 		return;
1666 
1667 	kfree_skb(ab->skb);
1668 	kmem_cache_free(audit_buffer_cache, ab);
1669 }
1670 
1671 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1672 					       gfp_t gfp_mask, int type)
1673 {
1674 	struct audit_buffer *ab;
1675 
1676 	ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1677 	if (!ab)
1678 		return NULL;
1679 
1680 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1681 	if (!ab->skb)
1682 		goto err;
1683 	if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1684 		goto err;
1685 
1686 	ab->ctx = ctx;
1687 	ab->gfp_mask = gfp_mask;
1688 
1689 	return ab;
1690 
1691 err:
1692 	audit_buffer_free(ab);
1693 	return NULL;
1694 }
1695 
1696 /**
1697  * audit_serial - compute a serial number for the audit record
1698  *
1699  * Compute a serial number for the audit record.  Audit records are
1700  * written to user-space as soon as they are generated, so a complete
1701  * audit record may be written in several pieces.  The timestamp of the
1702  * record and this serial number are used by the user-space tools to
1703  * determine which pieces belong to the same audit record.  The
1704  * (timestamp,serial) tuple is unique for each syscall and is live from
1705  * syscall entry to syscall exit.
1706  *
1707  * NOTE: Another possibility is to store the formatted records off the
1708  * audit context (for those records that have a context), and emit them
1709  * all at syscall exit.  However, this could delay the reporting of
1710  * significant errors until syscall exit (or never, if the system
1711  * halts).
1712  */
1713 unsigned int audit_serial(void)
1714 {
1715 	static atomic_t serial = ATOMIC_INIT(0);
1716 
1717 	return atomic_add_return(1, &serial);
1718 }
1719 
1720 static inline void audit_get_stamp(struct audit_context *ctx,
1721 				   struct timespec64 *t, unsigned int *serial)
1722 {
1723 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1724 		ktime_get_coarse_real_ts64(t);
1725 		*serial = audit_serial();
1726 	}
1727 }
1728 
1729 /**
1730  * audit_log_start - obtain an audit buffer
1731  * @ctx: audit_context (may be NULL)
1732  * @gfp_mask: type of allocation
1733  * @type: audit message type
1734  *
1735  * Returns audit_buffer pointer on success or NULL on error.
1736  *
1737  * Obtain an audit buffer.  This routine does locking to obtain the
1738  * audit buffer, but then no locking is required for calls to
1739  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1740  * syscall, then the syscall is marked as auditable and an audit record
1741  * will be written at syscall exit.  If there is no associated task, then
1742  * task context (ctx) should be NULL.
1743  */
1744 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1745 				     int type)
1746 {
1747 	struct audit_buffer *ab;
1748 	struct timespec64 t;
1749 	unsigned int uninitialized_var(serial);
1750 
1751 	if (audit_initialized != AUDIT_INITIALIZED)
1752 		return NULL;
1753 
1754 	if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1755 		return NULL;
1756 
1757 	/* NOTE: don't ever fail/sleep on these two conditions:
1758 	 * 1. auditd generated record - since we need auditd to drain the
1759 	 *    queue; also, when we are checking for auditd, compare PIDs using
1760 	 *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1761 	 *    using a PID anchored in the caller's namespace
1762 	 * 2. generator holding the audit_cmd_mutex - we don't want to block
1763 	 *    while holding the mutex */
1764 	if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1765 		long stime = audit_backlog_wait_time;
1766 
1767 		while (audit_backlog_limit &&
1768 		       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1769 			/* wake kauditd to try and flush the queue */
1770 			wake_up_interruptible(&kauditd_wait);
1771 
1772 			/* sleep if we are allowed and we haven't exhausted our
1773 			 * backlog wait limit */
1774 			if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1775 				DECLARE_WAITQUEUE(wait, current);
1776 
1777 				add_wait_queue_exclusive(&audit_backlog_wait,
1778 							 &wait);
1779 				set_current_state(TASK_UNINTERRUPTIBLE);
1780 				stime = schedule_timeout(stime);
1781 				remove_wait_queue(&audit_backlog_wait, &wait);
1782 			} else {
1783 				if (audit_rate_check() && printk_ratelimit())
1784 					pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1785 						skb_queue_len(&audit_queue),
1786 						audit_backlog_limit);
1787 				audit_log_lost("backlog limit exceeded");
1788 				return NULL;
1789 			}
1790 		}
1791 	}
1792 
1793 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1794 	if (!ab) {
1795 		audit_log_lost("out of memory in audit_log_start");
1796 		return NULL;
1797 	}
1798 
1799 	audit_get_stamp(ab->ctx, &t, &serial);
1800 	audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1801 			 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1802 
1803 	return ab;
1804 }
1805 
1806 /**
1807  * audit_expand - expand skb in the audit buffer
1808  * @ab: audit_buffer
1809  * @extra: space to add at tail of the skb
1810  *
1811  * Returns 0 (no space) on failed expansion, or available space if
1812  * successful.
1813  */
1814 static inline int audit_expand(struct audit_buffer *ab, int extra)
1815 {
1816 	struct sk_buff *skb = ab->skb;
1817 	int oldtail = skb_tailroom(skb);
1818 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1819 	int newtail = skb_tailroom(skb);
1820 
1821 	if (ret < 0) {
1822 		audit_log_lost("out of memory in audit_expand");
1823 		return 0;
1824 	}
1825 
1826 	skb->truesize += newtail - oldtail;
1827 	return newtail;
1828 }
1829 
1830 /*
1831  * Format an audit message into the audit buffer.  If there isn't enough
1832  * room in the audit buffer, more room will be allocated and vsnprint
1833  * will be called a second time.  Currently, we assume that a printk
1834  * can't format message larger than 1024 bytes, so we don't either.
1835  */
1836 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1837 			      va_list args)
1838 {
1839 	int len, avail;
1840 	struct sk_buff *skb;
1841 	va_list args2;
1842 
1843 	if (!ab)
1844 		return;
1845 
1846 	BUG_ON(!ab->skb);
1847 	skb = ab->skb;
1848 	avail = skb_tailroom(skb);
1849 	if (avail == 0) {
1850 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1851 		if (!avail)
1852 			goto out;
1853 	}
1854 	va_copy(args2, args);
1855 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1856 	if (len >= avail) {
1857 		/* The printk buffer is 1024 bytes long, so if we get
1858 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1859 		 * log everything that printk could have logged. */
1860 		avail = audit_expand(ab,
1861 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1862 		if (!avail)
1863 			goto out_va_end;
1864 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1865 	}
1866 	if (len > 0)
1867 		skb_put(skb, len);
1868 out_va_end:
1869 	va_end(args2);
1870 out:
1871 	return;
1872 }
1873 
1874 /**
1875  * audit_log_format - format a message into the audit buffer.
1876  * @ab: audit_buffer
1877  * @fmt: format string
1878  * @...: optional parameters matching @fmt string
1879  *
1880  * All the work is done in audit_log_vformat.
1881  */
1882 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1883 {
1884 	va_list args;
1885 
1886 	if (!ab)
1887 		return;
1888 	va_start(args, fmt);
1889 	audit_log_vformat(ab, fmt, args);
1890 	va_end(args);
1891 }
1892 
1893 /**
1894  * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
1895  * @ab: the audit_buffer
1896  * @buf: buffer to convert to hex
1897  * @len: length of @buf to be converted
1898  *
1899  * No return value; failure to expand is silently ignored.
1900  *
1901  * This function will take the passed buf and convert it into a string of
1902  * ascii hex digits. The new string is placed onto the skb.
1903  */
1904 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1905 		size_t len)
1906 {
1907 	int i, avail, new_len;
1908 	unsigned char *ptr;
1909 	struct sk_buff *skb;
1910 
1911 	if (!ab)
1912 		return;
1913 
1914 	BUG_ON(!ab->skb);
1915 	skb = ab->skb;
1916 	avail = skb_tailroom(skb);
1917 	new_len = len<<1;
1918 	if (new_len >= avail) {
1919 		/* Round the buffer request up to the next multiple */
1920 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1921 		avail = audit_expand(ab, new_len);
1922 		if (!avail)
1923 			return;
1924 	}
1925 
1926 	ptr = skb_tail_pointer(skb);
1927 	for (i = 0; i < len; i++)
1928 		ptr = hex_byte_pack_upper(ptr, buf[i]);
1929 	*ptr = 0;
1930 	skb_put(skb, len << 1); /* new string is twice the old string */
1931 }
1932 
1933 /*
1934  * Format a string of no more than slen characters into the audit buffer,
1935  * enclosed in quote marks.
1936  */
1937 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1938 			size_t slen)
1939 {
1940 	int avail, new_len;
1941 	unsigned char *ptr;
1942 	struct sk_buff *skb;
1943 
1944 	if (!ab)
1945 		return;
1946 
1947 	BUG_ON(!ab->skb);
1948 	skb = ab->skb;
1949 	avail = skb_tailroom(skb);
1950 	new_len = slen + 3;	/* enclosing quotes + null terminator */
1951 	if (new_len > avail) {
1952 		avail = audit_expand(ab, new_len);
1953 		if (!avail)
1954 			return;
1955 	}
1956 	ptr = skb_tail_pointer(skb);
1957 	*ptr++ = '"';
1958 	memcpy(ptr, string, slen);
1959 	ptr += slen;
1960 	*ptr++ = '"';
1961 	*ptr = 0;
1962 	skb_put(skb, slen + 2);	/* don't include null terminator */
1963 }
1964 
1965 /**
1966  * audit_string_contains_control - does a string need to be logged in hex
1967  * @string: string to be checked
1968  * @len: max length of the string to check
1969  */
1970 bool audit_string_contains_control(const char *string, size_t len)
1971 {
1972 	const unsigned char *p;
1973 	for (p = string; p < (const unsigned char *)string + len; p++) {
1974 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1975 			return true;
1976 	}
1977 	return false;
1978 }
1979 
1980 /**
1981  * audit_log_n_untrustedstring - log a string that may contain random characters
1982  * @ab: audit_buffer
1983  * @len: length of string (not including trailing null)
1984  * @string: string to be logged
1985  *
1986  * This code will escape a string that is passed to it if the string
1987  * contains a control character, unprintable character, double quote mark,
1988  * or a space. Unescaped strings will start and end with a double quote mark.
1989  * Strings that are escaped are printed in hex (2 digits per char).
1990  *
1991  * The caller specifies the number of characters in the string to log, which may
1992  * or may not be the entire string.
1993  */
1994 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1995 				 size_t len)
1996 {
1997 	if (audit_string_contains_control(string, len))
1998 		audit_log_n_hex(ab, string, len);
1999 	else
2000 		audit_log_n_string(ab, string, len);
2001 }
2002 
2003 /**
2004  * audit_log_untrustedstring - log a string that may contain random characters
2005  * @ab: audit_buffer
2006  * @string: string to be logged
2007  *
2008  * Same as audit_log_n_untrustedstring(), except that strlen is used to
2009  * determine string length.
2010  */
2011 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2012 {
2013 	audit_log_n_untrustedstring(ab, string, strlen(string));
2014 }
2015 
2016 /* This is a helper-function to print the escaped d_path */
2017 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2018 		      const struct path *path)
2019 {
2020 	char *p, *pathname;
2021 
2022 	if (prefix)
2023 		audit_log_format(ab, "%s", prefix);
2024 
2025 	/* We will allow 11 spaces for ' (deleted)' to be appended */
2026 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2027 	if (!pathname) {
2028 		audit_log_string(ab, "<no_memory>");
2029 		return;
2030 	}
2031 	p = d_path(path, pathname, PATH_MAX+11);
2032 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2033 		/* FIXME: can we save some information here? */
2034 		audit_log_string(ab, "<too_long>");
2035 	} else
2036 		audit_log_untrustedstring(ab, p);
2037 	kfree(pathname);
2038 }
2039 
2040 void audit_log_session_info(struct audit_buffer *ab)
2041 {
2042 	unsigned int sessionid = audit_get_sessionid(current);
2043 	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2044 
2045 	audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2046 }
2047 
2048 void audit_log_key(struct audit_buffer *ab, char *key)
2049 {
2050 	audit_log_format(ab, " key=");
2051 	if (key)
2052 		audit_log_untrustedstring(ab, key);
2053 	else
2054 		audit_log_format(ab, "(null)");
2055 }
2056 
2057 int audit_log_task_context(struct audit_buffer *ab)
2058 {
2059 	char *ctx = NULL;
2060 	unsigned len;
2061 	int error;
2062 	u32 sid;
2063 
2064 	security_task_getsecid(current, &sid);
2065 	if (!sid)
2066 		return 0;
2067 
2068 	error = security_secid_to_secctx(sid, &ctx, &len);
2069 	if (error) {
2070 		if (error != -EINVAL)
2071 			goto error_path;
2072 		return 0;
2073 	}
2074 
2075 	audit_log_format(ab, " subj=%s", ctx);
2076 	security_release_secctx(ctx, len);
2077 	return 0;
2078 
2079 error_path:
2080 	audit_panic("error in audit_log_task_context");
2081 	return error;
2082 }
2083 EXPORT_SYMBOL(audit_log_task_context);
2084 
2085 void audit_log_d_path_exe(struct audit_buffer *ab,
2086 			  struct mm_struct *mm)
2087 {
2088 	struct file *exe_file;
2089 
2090 	if (!mm)
2091 		goto out_null;
2092 
2093 	exe_file = get_mm_exe_file(mm);
2094 	if (!exe_file)
2095 		goto out_null;
2096 
2097 	audit_log_d_path(ab, " exe=", &exe_file->f_path);
2098 	fput(exe_file);
2099 	return;
2100 out_null:
2101 	audit_log_format(ab, " exe=(null)");
2102 }
2103 
2104 struct tty_struct *audit_get_tty(void)
2105 {
2106 	struct tty_struct *tty = NULL;
2107 	unsigned long flags;
2108 
2109 	spin_lock_irqsave(&current->sighand->siglock, flags);
2110 	if (current->signal)
2111 		tty = tty_kref_get(current->signal->tty);
2112 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
2113 	return tty;
2114 }
2115 
2116 void audit_put_tty(struct tty_struct *tty)
2117 {
2118 	tty_kref_put(tty);
2119 }
2120 
2121 void audit_log_task_info(struct audit_buffer *ab)
2122 {
2123 	const struct cred *cred;
2124 	char comm[sizeof(current->comm)];
2125 	struct tty_struct *tty;
2126 
2127 	if (!ab)
2128 		return;
2129 
2130 	cred = current_cred();
2131 	tty = audit_get_tty();
2132 	audit_log_format(ab,
2133 			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2134 			 " euid=%u suid=%u fsuid=%u"
2135 			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2136 			 task_ppid_nr(current),
2137 			 task_tgid_nr(current),
2138 			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2139 			 from_kuid(&init_user_ns, cred->uid),
2140 			 from_kgid(&init_user_ns, cred->gid),
2141 			 from_kuid(&init_user_ns, cred->euid),
2142 			 from_kuid(&init_user_ns, cred->suid),
2143 			 from_kuid(&init_user_ns, cred->fsuid),
2144 			 from_kgid(&init_user_ns, cred->egid),
2145 			 from_kgid(&init_user_ns, cred->sgid),
2146 			 from_kgid(&init_user_ns, cred->fsgid),
2147 			 tty ? tty_name(tty) : "(none)",
2148 			 audit_get_sessionid(current));
2149 	audit_put_tty(tty);
2150 	audit_log_format(ab, " comm=");
2151 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2152 	audit_log_d_path_exe(ab, current->mm);
2153 	audit_log_task_context(ab);
2154 }
2155 EXPORT_SYMBOL(audit_log_task_info);
2156 
2157 /**
2158  * audit_log_path_denied - report a path restriction denial
2159  * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2160  * @operation: specific operation name
2161  */
2162 void audit_log_path_denied(int type, const char *operation)
2163 {
2164 	struct audit_buffer *ab;
2165 
2166 	if (!audit_enabled || audit_dummy_context())
2167 		return;
2168 
2169 	/* Generate log with subject, operation, outcome. */
2170 	ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2171 	if (!ab)
2172 		return;
2173 	audit_log_format(ab, "op=%s", operation);
2174 	audit_log_task_info(ab);
2175 	audit_log_format(ab, " res=0");
2176 	audit_log_end(ab);
2177 }
2178 
2179 /* global counter which is incremented every time something logs in */
2180 static atomic_t session_id = ATOMIC_INIT(0);
2181 
2182 static int audit_set_loginuid_perm(kuid_t loginuid)
2183 {
2184 	/* if we are unset, we don't need privs */
2185 	if (!audit_loginuid_set(current))
2186 		return 0;
2187 	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2188 	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2189 		return -EPERM;
2190 	/* it is set, you need permission */
2191 	if (!capable(CAP_AUDIT_CONTROL))
2192 		return -EPERM;
2193 	/* reject if this is not an unset and we don't allow that */
2194 	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2195 				 && uid_valid(loginuid))
2196 		return -EPERM;
2197 	return 0;
2198 }
2199 
2200 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2201 				   unsigned int oldsessionid,
2202 				   unsigned int sessionid, int rc)
2203 {
2204 	struct audit_buffer *ab;
2205 	uid_t uid, oldloginuid, loginuid;
2206 	struct tty_struct *tty;
2207 
2208 	if (!audit_enabled)
2209 		return;
2210 
2211 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2212 	if (!ab)
2213 		return;
2214 
2215 	uid = from_kuid(&init_user_ns, task_uid(current));
2216 	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2217 	loginuid = from_kuid(&init_user_ns, kloginuid),
2218 	tty = audit_get_tty();
2219 
2220 	audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2221 	audit_log_task_context(ab);
2222 	audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2223 			 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2224 			 oldsessionid, sessionid, !rc);
2225 	audit_put_tty(tty);
2226 	audit_log_end(ab);
2227 }
2228 
2229 /**
2230  * audit_set_loginuid - set current task's loginuid
2231  * @loginuid: loginuid value
2232  *
2233  * Returns 0.
2234  *
2235  * Called (set) from fs/proc/base.c::proc_loginuid_write().
2236  */
2237 int audit_set_loginuid(kuid_t loginuid)
2238 {
2239 	unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2240 	kuid_t oldloginuid;
2241 	int rc;
2242 
2243 	oldloginuid = audit_get_loginuid(current);
2244 	oldsessionid = audit_get_sessionid(current);
2245 
2246 	rc = audit_set_loginuid_perm(loginuid);
2247 	if (rc)
2248 		goto out;
2249 
2250 	/* are we setting or clearing? */
2251 	if (uid_valid(loginuid)) {
2252 		sessionid = (unsigned int)atomic_inc_return(&session_id);
2253 		if (unlikely(sessionid == AUDIT_SID_UNSET))
2254 			sessionid = (unsigned int)atomic_inc_return(&session_id);
2255 	}
2256 
2257 	current->sessionid = sessionid;
2258 	current->loginuid = loginuid;
2259 out:
2260 	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2261 	return rc;
2262 }
2263 
2264 /**
2265  * audit_signal_info - record signal info for shutting down audit subsystem
2266  * @sig: signal value
2267  * @t: task being signaled
2268  *
2269  * If the audit subsystem is being terminated, record the task (pid)
2270  * and uid that is doing that.
2271  */
2272 int audit_signal_info(int sig, struct task_struct *t)
2273 {
2274 	kuid_t uid = current_uid(), auid;
2275 
2276 	if (auditd_test_task(t) &&
2277 	    (sig == SIGTERM || sig == SIGHUP ||
2278 	     sig == SIGUSR1 || sig == SIGUSR2)) {
2279 		audit_sig_pid = task_tgid_nr(current);
2280 		auid = audit_get_loginuid(current);
2281 		if (uid_valid(auid))
2282 			audit_sig_uid = auid;
2283 		else
2284 			audit_sig_uid = uid;
2285 		security_task_getsecid(current, &audit_sig_sid);
2286 	}
2287 
2288 	return audit_signal_info_syscall(t);
2289 }
2290 
2291 /**
2292  * audit_log_end - end one audit record
2293  * @ab: the audit_buffer
2294  *
2295  * We can not do a netlink send inside an irq context because it blocks (last
2296  * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2297  * queue and a tasklet is scheduled to remove them from the queue outside the
2298  * irq context.  May be called in any context.
2299  */
2300 void audit_log_end(struct audit_buffer *ab)
2301 {
2302 	struct sk_buff *skb;
2303 	struct nlmsghdr *nlh;
2304 
2305 	if (!ab)
2306 		return;
2307 
2308 	if (audit_rate_check()) {
2309 		skb = ab->skb;
2310 		ab->skb = NULL;
2311 
2312 		/* setup the netlink header, see the comments in
2313 		 * kauditd_send_multicast_skb() for length quirks */
2314 		nlh = nlmsg_hdr(skb);
2315 		nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2316 
2317 		/* queue the netlink packet and poke the kauditd thread */
2318 		skb_queue_tail(&audit_queue, skb);
2319 		wake_up_interruptible(&kauditd_wait);
2320 	} else
2321 		audit_log_lost("rate limit exceeded");
2322 
2323 	audit_buffer_free(ab);
2324 }
2325 
2326 /**
2327  * audit_log - Log an audit record
2328  * @ctx: audit context
2329  * @gfp_mask: type of allocation
2330  * @type: audit message type
2331  * @fmt: format string to use
2332  * @...: variable parameters matching the format string
2333  *
2334  * This is a convenience function that calls audit_log_start,
2335  * audit_log_vformat, and audit_log_end.  It may be called
2336  * in any context.
2337  */
2338 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2339 	       const char *fmt, ...)
2340 {
2341 	struct audit_buffer *ab;
2342 	va_list args;
2343 
2344 	ab = audit_log_start(ctx, gfp_mask, type);
2345 	if (ab) {
2346 		va_start(args, fmt);
2347 		audit_log_vformat(ab, fmt, args);
2348 		va_end(args);
2349 		audit_log_end(ab);
2350 	}
2351 }
2352 
2353 EXPORT_SYMBOL(audit_log_start);
2354 EXPORT_SYMBOL(audit_log_end);
2355 EXPORT_SYMBOL(audit_log_format);
2356 EXPORT_SYMBOL(audit_log);
2357