1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* audit.c -- Auditing support 3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 4 * System-call specific features have moved to auditsc.c 5 * 6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 7 * All Rights Reserved. 8 * 9 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 10 * 11 * Goals: 1) Integrate fully with Security Modules. 12 * 2) Minimal run-time overhead: 13 * a) Minimal when syscall auditing is disabled (audit_enable=0). 14 * b) Small when syscall auditing is enabled and no audit record 15 * is generated (defer as much work as possible to record 16 * generation time): 17 * i) context is allocated, 18 * ii) names from getname are stored without a copy, and 19 * iii) inode information stored from path_lookup. 20 * 3) Ability to disable syscall auditing at boot time (audit=0). 21 * 4) Usable by other parts of the kernel (if audit_log* is called, 22 * then a syscall record will be generated automatically for the 23 * current syscall). 24 * 5) Netlink interface to user-space. 25 * 6) Support low-overhead kernel-based filtering to minimize the 26 * information that must be passed to user-space. 27 * 28 * Audit userspace, documentation, tests, and bug/issue trackers: 29 * https://github.com/linux-audit 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/file.h> 35 #include <linux/init.h> 36 #include <linux/types.h> 37 #include <linux/atomic.h> 38 #include <linux/mm.h> 39 #include <linux/export.h> 40 #include <linux/slab.h> 41 #include <linux/err.h> 42 #include <linux/kthread.h> 43 #include <linux/kernel.h> 44 #include <linux/syscalls.h> 45 #include <linux/spinlock.h> 46 #include <linux/rcupdate.h> 47 #include <linux/mutex.h> 48 #include <linux/gfp.h> 49 #include <linux/pid.h> 50 51 #include <linux/audit.h> 52 53 #include <net/sock.h> 54 #include <net/netlink.h> 55 #include <linux/skbuff.h> 56 #ifdef CONFIG_SECURITY 57 #include <linux/security.h> 58 #endif 59 #include <linux/freezer.h> 60 #include <linux/pid_namespace.h> 61 #include <net/netns/generic.h> 62 63 #include "audit.h" 64 65 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 66 * (Initialization happens after skb_init is called.) */ 67 #define AUDIT_DISABLED -1 68 #define AUDIT_UNINITIALIZED 0 69 #define AUDIT_INITIALIZED 1 70 static int audit_initialized; 71 72 u32 audit_enabled = AUDIT_OFF; 73 bool audit_ever_enabled = !!AUDIT_OFF; 74 75 EXPORT_SYMBOL_GPL(audit_enabled); 76 77 /* Default state when kernel boots without any parameters. */ 78 static u32 audit_default = AUDIT_OFF; 79 80 /* If auditing cannot proceed, audit_failure selects what happens. */ 81 static u32 audit_failure = AUDIT_FAIL_PRINTK; 82 83 /* private audit network namespace index */ 84 static unsigned int audit_net_id; 85 86 /** 87 * struct audit_net - audit private network namespace data 88 * @sk: communication socket 89 */ 90 struct audit_net { 91 struct sock *sk; 92 }; 93 94 /** 95 * struct auditd_connection - kernel/auditd connection state 96 * @pid: auditd PID 97 * @portid: netlink portid 98 * @net: the associated network namespace 99 * @rcu: RCU head 100 * 101 * Description: 102 * This struct is RCU protected; you must either hold the RCU lock for reading 103 * or the associated spinlock for writing. 104 */ 105 static struct auditd_connection { 106 struct pid *pid; 107 u32 portid; 108 struct net *net; 109 struct rcu_head rcu; 110 } *auditd_conn = NULL; 111 static DEFINE_SPINLOCK(auditd_conn_lock); 112 113 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 114 * to that number per second. This prevents DoS attacks, but results in 115 * audit records being dropped. */ 116 static u32 audit_rate_limit; 117 118 /* Number of outstanding audit_buffers allowed. 119 * When set to zero, this means unlimited. */ 120 static u32 audit_backlog_limit = 64; 121 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 122 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 123 124 /* The identity of the user shutting down the audit system. */ 125 kuid_t audit_sig_uid = INVALID_UID; 126 pid_t audit_sig_pid = -1; 127 u32 audit_sig_sid = 0; 128 129 /* Records can be lost in several ways: 130 0) [suppressed in audit_alloc] 131 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 132 2) out of memory in audit_log_move [alloc_skb] 133 3) suppressed due to audit_rate_limit 134 4) suppressed due to audit_backlog_limit 135 */ 136 static atomic_t audit_lost = ATOMIC_INIT(0); 137 138 /* Hash for inode-based rules */ 139 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 140 141 static struct kmem_cache *audit_buffer_cache; 142 143 /* queue msgs to send via kauditd_task */ 144 static struct sk_buff_head audit_queue; 145 /* queue msgs due to temporary unicast send problems */ 146 static struct sk_buff_head audit_retry_queue; 147 /* queue msgs waiting for new auditd connection */ 148 static struct sk_buff_head audit_hold_queue; 149 150 /* queue servicing thread */ 151 static struct task_struct *kauditd_task; 152 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 153 154 /* waitqueue for callers who are blocked on the audit backlog */ 155 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 156 157 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 158 .mask = -1, 159 .features = 0, 160 .lock = 0,}; 161 162 static char *audit_feature_names[2] = { 163 "only_unset_loginuid", 164 "loginuid_immutable", 165 }; 166 167 /** 168 * struct audit_ctl_mutex - serialize requests from userspace 169 * @lock: the mutex used for locking 170 * @owner: the task which owns the lock 171 * 172 * Description: 173 * This is the lock struct used to ensure we only process userspace requests 174 * in an orderly fashion. We can't simply use a mutex/lock here because we 175 * need to track lock ownership so we don't end up blocking the lock owner in 176 * audit_log_start() or similar. 177 */ 178 static struct audit_ctl_mutex { 179 struct mutex lock; 180 void *owner; 181 } audit_cmd_mutex; 182 183 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 184 * audit records. Since printk uses a 1024 byte buffer, this buffer 185 * should be at least that large. */ 186 #define AUDIT_BUFSIZ 1024 187 188 /* The audit_buffer is used when formatting an audit record. The caller 189 * locks briefly to get the record off the freelist or to allocate the 190 * buffer, and locks briefly to send the buffer to the netlink layer or 191 * to place it on a transmit queue. Multiple audit_buffers can be in 192 * use simultaneously. */ 193 struct audit_buffer { 194 struct sk_buff *skb; /* formatted skb ready to send */ 195 struct audit_context *ctx; /* NULL or associated context */ 196 gfp_t gfp_mask; 197 }; 198 199 struct audit_reply { 200 __u32 portid; 201 struct net *net; 202 struct sk_buff *skb; 203 }; 204 205 /** 206 * auditd_test_task - Check to see if a given task is an audit daemon 207 * @task: the task to check 208 * 209 * Description: 210 * Return 1 if the task is a registered audit daemon, 0 otherwise. 211 */ 212 int auditd_test_task(struct task_struct *task) 213 { 214 int rc; 215 struct auditd_connection *ac; 216 217 rcu_read_lock(); 218 ac = rcu_dereference(auditd_conn); 219 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0); 220 rcu_read_unlock(); 221 222 return rc; 223 } 224 225 /** 226 * audit_ctl_lock - Take the audit control lock 227 */ 228 void audit_ctl_lock(void) 229 { 230 mutex_lock(&audit_cmd_mutex.lock); 231 audit_cmd_mutex.owner = current; 232 } 233 234 /** 235 * audit_ctl_unlock - Drop the audit control lock 236 */ 237 void audit_ctl_unlock(void) 238 { 239 audit_cmd_mutex.owner = NULL; 240 mutex_unlock(&audit_cmd_mutex.lock); 241 } 242 243 /** 244 * audit_ctl_owner_current - Test to see if the current task owns the lock 245 * 246 * Description: 247 * Return true if the current task owns the audit control lock, false if it 248 * doesn't own the lock. 249 */ 250 static bool audit_ctl_owner_current(void) 251 { 252 return (current == audit_cmd_mutex.owner); 253 } 254 255 /** 256 * auditd_pid_vnr - Return the auditd PID relative to the namespace 257 * 258 * Description: 259 * Returns the PID in relation to the namespace, 0 on failure. 260 */ 261 static pid_t auditd_pid_vnr(void) 262 { 263 pid_t pid; 264 const struct auditd_connection *ac; 265 266 rcu_read_lock(); 267 ac = rcu_dereference(auditd_conn); 268 if (!ac || !ac->pid) 269 pid = 0; 270 else 271 pid = pid_vnr(ac->pid); 272 rcu_read_unlock(); 273 274 return pid; 275 } 276 277 /** 278 * audit_get_sk - Return the audit socket for the given network namespace 279 * @net: the destination network namespace 280 * 281 * Description: 282 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure 283 * that a reference is held for the network namespace while the sock is in use. 284 */ 285 static struct sock *audit_get_sk(const struct net *net) 286 { 287 struct audit_net *aunet; 288 289 if (!net) 290 return NULL; 291 292 aunet = net_generic(net, audit_net_id); 293 return aunet->sk; 294 } 295 296 void audit_panic(const char *message) 297 { 298 switch (audit_failure) { 299 case AUDIT_FAIL_SILENT: 300 break; 301 case AUDIT_FAIL_PRINTK: 302 if (printk_ratelimit()) 303 pr_err("%s\n", message); 304 break; 305 case AUDIT_FAIL_PANIC: 306 panic("audit: %s\n", message); 307 break; 308 } 309 } 310 311 static inline int audit_rate_check(void) 312 { 313 static unsigned long last_check = 0; 314 static int messages = 0; 315 static DEFINE_SPINLOCK(lock); 316 unsigned long flags; 317 unsigned long now; 318 unsigned long elapsed; 319 int retval = 0; 320 321 if (!audit_rate_limit) return 1; 322 323 spin_lock_irqsave(&lock, flags); 324 if (++messages < audit_rate_limit) { 325 retval = 1; 326 } else { 327 now = jiffies; 328 elapsed = now - last_check; 329 if (elapsed > HZ) { 330 last_check = now; 331 messages = 0; 332 retval = 1; 333 } 334 } 335 spin_unlock_irqrestore(&lock, flags); 336 337 return retval; 338 } 339 340 /** 341 * audit_log_lost - conditionally log lost audit message event 342 * @message: the message stating reason for lost audit message 343 * 344 * Emit at least 1 message per second, even if audit_rate_check is 345 * throttling. 346 * Always increment the lost messages counter. 347 */ 348 void audit_log_lost(const char *message) 349 { 350 static unsigned long last_msg = 0; 351 static DEFINE_SPINLOCK(lock); 352 unsigned long flags; 353 unsigned long now; 354 int print; 355 356 atomic_inc(&audit_lost); 357 358 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 359 360 if (!print) { 361 spin_lock_irqsave(&lock, flags); 362 now = jiffies; 363 if (now - last_msg > HZ) { 364 print = 1; 365 last_msg = now; 366 } 367 spin_unlock_irqrestore(&lock, flags); 368 } 369 370 if (print) { 371 if (printk_ratelimit()) 372 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 373 atomic_read(&audit_lost), 374 audit_rate_limit, 375 audit_backlog_limit); 376 audit_panic(message); 377 } 378 } 379 380 static int audit_log_config_change(char *function_name, u32 new, u32 old, 381 int allow_changes) 382 { 383 struct audit_buffer *ab; 384 int rc = 0; 385 386 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE); 387 if (unlikely(!ab)) 388 return rc; 389 audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old); 390 audit_log_session_info(ab); 391 rc = audit_log_task_context(ab); 392 if (rc) 393 allow_changes = 0; /* Something weird, deny request */ 394 audit_log_format(ab, " res=%d", allow_changes); 395 audit_log_end(ab); 396 return rc; 397 } 398 399 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 400 { 401 int allow_changes, rc = 0; 402 u32 old = *to_change; 403 404 /* check if we are locked */ 405 if (audit_enabled == AUDIT_LOCKED) 406 allow_changes = 0; 407 else 408 allow_changes = 1; 409 410 if (audit_enabled != AUDIT_OFF) { 411 rc = audit_log_config_change(function_name, new, old, allow_changes); 412 if (rc) 413 allow_changes = 0; 414 } 415 416 /* If we are allowed, make the change */ 417 if (allow_changes == 1) 418 *to_change = new; 419 /* Not allowed, update reason */ 420 else if (rc == 0) 421 rc = -EPERM; 422 return rc; 423 } 424 425 static int audit_set_rate_limit(u32 limit) 426 { 427 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 428 } 429 430 static int audit_set_backlog_limit(u32 limit) 431 { 432 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 433 } 434 435 static int audit_set_backlog_wait_time(u32 timeout) 436 { 437 return audit_do_config_change("audit_backlog_wait_time", 438 &audit_backlog_wait_time, timeout); 439 } 440 441 static int audit_set_enabled(u32 state) 442 { 443 int rc; 444 if (state > AUDIT_LOCKED) 445 return -EINVAL; 446 447 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 448 if (!rc) 449 audit_ever_enabled |= !!state; 450 451 return rc; 452 } 453 454 static int audit_set_failure(u32 state) 455 { 456 if (state != AUDIT_FAIL_SILENT 457 && state != AUDIT_FAIL_PRINTK 458 && state != AUDIT_FAIL_PANIC) 459 return -EINVAL; 460 461 return audit_do_config_change("audit_failure", &audit_failure, state); 462 } 463 464 /** 465 * auditd_conn_free - RCU helper to release an auditd connection struct 466 * @rcu: RCU head 467 * 468 * Description: 469 * Drop any references inside the auditd connection tracking struct and free 470 * the memory. 471 */ 472 static void auditd_conn_free(struct rcu_head *rcu) 473 { 474 struct auditd_connection *ac; 475 476 ac = container_of(rcu, struct auditd_connection, rcu); 477 put_pid(ac->pid); 478 put_net(ac->net); 479 kfree(ac); 480 } 481 482 /** 483 * auditd_set - Set/Reset the auditd connection state 484 * @pid: auditd PID 485 * @portid: auditd netlink portid 486 * @net: auditd network namespace pointer 487 * 488 * Description: 489 * This function will obtain and drop network namespace references as 490 * necessary. Returns zero on success, negative values on failure. 491 */ 492 static int auditd_set(struct pid *pid, u32 portid, struct net *net) 493 { 494 unsigned long flags; 495 struct auditd_connection *ac_old, *ac_new; 496 497 if (!pid || !net) 498 return -EINVAL; 499 500 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL); 501 if (!ac_new) 502 return -ENOMEM; 503 ac_new->pid = get_pid(pid); 504 ac_new->portid = portid; 505 ac_new->net = get_net(net); 506 507 spin_lock_irqsave(&auditd_conn_lock, flags); 508 ac_old = rcu_dereference_protected(auditd_conn, 509 lockdep_is_held(&auditd_conn_lock)); 510 rcu_assign_pointer(auditd_conn, ac_new); 511 spin_unlock_irqrestore(&auditd_conn_lock, flags); 512 513 if (ac_old) 514 call_rcu(&ac_old->rcu, auditd_conn_free); 515 516 return 0; 517 } 518 519 /** 520 * kauditd_print_skb - Print the audit record to the ring buffer 521 * @skb: audit record 522 * 523 * Whatever the reason, this packet may not make it to the auditd connection 524 * so write it via printk so the information isn't completely lost. 525 */ 526 static void kauditd_printk_skb(struct sk_buff *skb) 527 { 528 struct nlmsghdr *nlh = nlmsg_hdr(skb); 529 char *data = nlmsg_data(nlh); 530 531 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit()) 532 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 533 } 534 535 /** 536 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue 537 * @skb: audit record 538 * 539 * Description: 540 * This should only be used by the kauditd_thread when it fails to flush the 541 * hold queue. 542 */ 543 static void kauditd_rehold_skb(struct sk_buff *skb) 544 { 545 /* put the record back in the queue at the same place */ 546 skb_queue_head(&audit_hold_queue, skb); 547 } 548 549 /** 550 * kauditd_hold_skb - Queue an audit record, waiting for auditd 551 * @skb: audit record 552 * 553 * Description: 554 * Queue the audit record, waiting for an instance of auditd. When this 555 * function is called we haven't given up yet on sending the record, but things 556 * are not looking good. The first thing we want to do is try to write the 557 * record via printk and then see if we want to try and hold on to the record 558 * and queue it, if we have room. If we want to hold on to the record, but we 559 * don't have room, record a record lost message. 560 */ 561 static void kauditd_hold_skb(struct sk_buff *skb) 562 { 563 /* at this point it is uncertain if we will ever send this to auditd so 564 * try to send the message via printk before we go any further */ 565 kauditd_printk_skb(skb); 566 567 /* can we just silently drop the message? */ 568 if (!audit_default) { 569 kfree_skb(skb); 570 return; 571 } 572 573 /* if we have room, queue the message */ 574 if (!audit_backlog_limit || 575 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) { 576 skb_queue_tail(&audit_hold_queue, skb); 577 return; 578 } 579 580 /* we have no other options - drop the message */ 581 audit_log_lost("kauditd hold queue overflow"); 582 kfree_skb(skb); 583 } 584 585 /** 586 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd 587 * @skb: audit record 588 * 589 * Description: 590 * Not as serious as kauditd_hold_skb() as we still have a connected auditd, 591 * but for some reason we are having problems sending it audit records so 592 * queue the given record and attempt to resend. 593 */ 594 static void kauditd_retry_skb(struct sk_buff *skb) 595 { 596 /* NOTE: because records should only live in the retry queue for a 597 * short period of time, before either being sent or moved to the hold 598 * queue, we don't currently enforce a limit on this queue */ 599 skb_queue_tail(&audit_retry_queue, skb); 600 } 601 602 /** 603 * auditd_reset - Disconnect the auditd connection 604 * @ac: auditd connection state 605 * 606 * Description: 607 * Break the auditd/kauditd connection and move all the queued records into the 608 * hold queue in case auditd reconnects. It is important to note that the @ac 609 * pointer should never be dereferenced inside this function as it may be NULL 610 * or invalid, you can only compare the memory address! If @ac is NULL then 611 * the connection will always be reset. 612 */ 613 static void auditd_reset(const struct auditd_connection *ac) 614 { 615 unsigned long flags; 616 struct sk_buff *skb; 617 struct auditd_connection *ac_old; 618 619 /* if it isn't already broken, break the connection */ 620 spin_lock_irqsave(&auditd_conn_lock, flags); 621 ac_old = rcu_dereference_protected(auditd_conn, 622 lockdep_is_held(&auditd_conn_lock)); 623 if (ac && ac != ac_old) { 624 /* someone already registered a new auditd connection */ 625 spin_unlock_irqrestore(&auditd_conn_lock, flags); 626 return; 627 } 628 rcu_assign_pointer(auditd_conn, NULL); 629 spin_unlock_irqrestore(&auditd_conn_lock, flags); 630 631 if (ac_old) 632 call_rcu(&ac_old->rcu, auditd_conn_free); 633 634 /* flush the retry queue to the hold queue, but don't touch the main 635 * queue since we need to process that normally for multicast */ 636 while ((skb = skb_dequeue(&audit_retry_queue))) 637 kauditd_hold_skb(skb); 638 } 639 640 /** 641 * auditd_send_unicast_skb - Send a record via unicast to auditd 642 * @skb: audit record 643 * 644 * Description: 645 * Send a skb to the audit daemon, returns positive/zero values on success and 646 * negative values on failure; in all cases the skb will be consumed by this 647 * function. If the send results in -ECONNREFUSED the connection with auditd 648 * will be reset. This function may sleep so callers should not hold any locks 649 * where this would cause a problem. 650 */ 651 static int auditd_send_unicast_skb(struct sk_buff *skb) 652 { 653 int rc; 654 u32 portid; 655 struct net *net; 656 struct sock *sk; 657 struct auditd_connection *ac; 658 659 /* NOTE: we can't call netlink_unicast while in the RCU section so 660 * take a reference to the network namespace and grab local 661 * copies of the namespace, the sock, and the portid; the 662 * namespace and sock aren't going to go away while we hold a 663 * reference and if the portid does become invalid after the RCU 664 * section netlink_unicast() should safely return an error */ 665 666 rcu_read_lock(); 667 ac = rcu_dereference(auditd_conn); 668 if (!ac) { 669 rcu_read_unlock(); 670 kfree_skb(skb); 671 rc = -ECONNREFUSED; 672 goto err; 673 } 674 net = get_net(ac->net); 675 sk = audit_get_sk(net); 676 portid = ac->portid; 677 rcu_read_unlock(); 678 679 rc = netlink_unicast(sk, skb, portid, 0); 680 put_net(net); 681 if (rc < 0) 682 goto err; 683 684 return rc; 685 686 err: 687 if (ac && rc == -ECONNREFUSED) 688 auditd_reset(ac); 689 return rc; 690 } 691 692 /** 693 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues 694 * @sk: the sending sock 695 * @portid: the netlink destination 696 * @queue: the skb queue to process 697 * @retry_limit: limit on number of netlink unicast failures 698 * @skb_hook: per-skb hook for additional processing 699 * @err_hook: hook called if the skb fails the netlink unicast send 700 * 701 * Description: 702 * Run through the given queue and attempt to send the audit records to auditd, 703 * returns zero on success, negative values on failure. It is up to the caller 704 * to ensure that the @sk is valid for the duration of this function. 705 * 706 */ 707 static int kauditd_send_queue(struct sock *sk, u32 portid, 708 struct sk_buff_head *queue, 709 unsigned int retry_limit, 710 void (*skb_hook)(struct sk_buff *skb), 711 void (*err_hook)(struct sk_buff *skb)) 712 { 713 int rc = 0; 714 struct sk_buff *skb; 715 static unsigned int failed = 0; 716 717 /* NOTE: kauditd_thread takes care of all our locking, we just use 718 * the netlink info passed to us (e.g. sk and portid) */ 719 720 while ((skb = skb_dequeue(queue))) { 721 /* call the skb_hook for each skb we touch */ 722 if (skb_hook) 723 (*skb_hook)(skb); 724 725 /* can we send to anyone via unicast? */ 726 if (!sk) { 727 if (err_hook) 728 (*err_hook)(skb); 729 continue; 730 } 731 732 /* grab an extra skb reference in case of error */ 733 skb_get(skb); 734 rc = netlink_unicast(sk, skb, portid, 0); 735 if (rc < 0) { 736 /* fatal failure for our queue flush attempt? */ 737 if (++failed >= retry_limit || 738 rc == -ECONNREFUSED || rc == -EPERM) { 739 /* yes - error processing for the queue */ 740 sk = NULL; 741 if (err_hook) 742 (*err_hook)(skb); 743 if (!skb_hook) 744 goto out; 745 /* keep processing with the skb_hook */ 746 continue; 747 } else 748 /* no - requeue to preserve ordering */ 749 skb_queue_head(queue, skb); 750 } else { 751 /* it worked - drop the extra reference and continue */ 752 consume_skb(skb); 753 failed = 0; 754 } 755 } 756 757 out: 758 return (rc >= 0 ? 0 : rc); 759 } 760 761 /* 762 * kauditd_send_multicast_skb - Send a record to any multicast listeners 763 * @skb: audit record 764 * 765 * Description: 766 * Write a multicast message to anyone listening in the initial network 767 * namespace. This function doesn't consume an skb as might be expected since 768 * it has to copy it anyways. 769 */ 770 static void kauditd_send_multicast_skb(struct sk_buff *skb) 771 { 772 struct sk_buff *copy; 773 struct sock *sock = audit_get_sk(&init_net); 774 struct nlmsghdr *nlh; 775 776 /* NOTE: we are not taking an additional reference for init_net since 777 * we don't have to worry about it going away */ 778 779 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) 780 return; 781 782 /* 783 * The seemingly wasteful skb_copy() rather than bumping the refcount 784 * using skb_get() is necessary because non-standard mods are made to 785 * the skb by the original kaudit unicast socket send routine. The 786 * existing auditd daemon assumes this breakage. Fixing this would 787 * require co-ordinating a change in the established protocol between 788 * the kaudit kernel subsystem and the auditd userspace code. There is 789 * no reason for new multicast clients to continue with this 790 * non-compliance. 791 */ 792 copy = skb_copy(skb, GFP_KERNEL); 793 if (!copy) 794 return; 795 nlh = nlmsg_hdr(copy); 796 nlh->nlmsg_len = skb->len; 797 798 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL); 799 } 800 801 /** 802 * kauditd_thread - Worker thread to send audit records to userspace 803 * @dummy: unused 804 */ 805 static int kauditd_thread(void *dummy) 806 { 807 int rc; 808 u32 portid = 0; 809 struct net *net = NULL; 810 struct sock *sk = NULL; 811 struct auditd_connection *ac; 812 813 #define UNICAST_RETRIES 5 814 815 set_freezable(); 816 while (!kthread_should_stop()) { 817 /* NOTE: see the lock comments in auditd_send_unicast_skb() */ 818 rcu_read_lock(); 819 ac = rcu_dereference(auditd_conn); 820 if (!ac) { 821 rcu_read_unlock(); 822 goto main_queue; 823 } 824 net = get_net(ac->net); 825 sk = audit_get_sk(net); 826 portid = ac->portid; 827 rcu_read_unlock(); 828 829 /* attempt to flush the hold queue */ 830 rc = kauditd_send_queue(sk, portid, 831 &audit_hold_queue, UNICAST_RETRIES, 832 NULL, kauditd_rehold_skb); 833 if (rc < 0) { 834 sk = NULL; 835 auditd_reset(ac); 836 goto main_queue; 837 } 838 839 /* attempt to flush the retry queue */ 840 rc = kauditd_send_queue(sk, portid, 841 &audit_retry_queue, UNICAST_RETRIES, 842 NULL, kauditd_hold_skb); 843 if (rc < 0) { 844 sk = NULL; 845 auditd_reset(ac); 846 goto main_queue; 847 } 848 849 main_queue: 850 /* process the main queue - do the multicast send and attempt 851 * unicast, dump failed record sends to the retry queue; if 852 * sk == NULL due to previous failures we will just do the 853 * multicast send and move the record to the hold queue */ 854 rc = kauditd_send_queue(sk, portid, &audit_queue, 1, 855 kauditd_send_multicast_skb, 856 (sk ? 857 kauditd_retry_skb : kauditd_hold_skb)); 858 if (ac && rc < 0) 859 auditd_reset(ac); 860 sk = NULL; 861 862 /* drop our netns reference, no auditd sends past this line */ 863 if (net) { 864 put_net(net); 865 net = NULL; 866 } 867 868 /* we have processed all the queues so wake everyone */ 869 wake_up(&audit_backlog_wait); 870 871 /* NOTE: we want to wake up if there is anything on the queue, 872 * regardless of if an auditd is connected, as we need to 873 * do the multicast send and rotate records from the 874 * main queue to the retry/hold queues */ 875 wait_event_freezable(kauditd_wait, 876 (skb_queue_len(&audit_queue) ? 1 : 0)); 877 } 878 879 return 0; 880 } 881 882 int audit_send_list(void *_dest) 883 { 884 struct audit_netlink_list *dest = _dest; 885 struct sk_buff *skb; 886 struct sock *sk = audit_get_sk(dest->net); 887 888 /* wait for parent to finish and send an ACK */ 889 audit_ctl_lock(); 890 audit_ctl_unlock(); 891 892 while ((skb = __skb_dequeue(&dest->q)) != NULL) 893 netlink_unicast(sk, skb, dest->portid, 0); 894 895 put_net(dest->net); 896 kfree(dest); 897 898 return 0; 899 } 900 901 struct sk_buff *audit_make_reply(int seq, int type, int done, 902 int multi, const void *payload, int size) 903 { 904 struct sk_buff *skb; 905 struct nlmsghdr *nlh; 906 void *data; 907 int flags = multi ? NLM_F_MULTI : 0; 908 int t = done ? NLMSG_DONE : type; 909 910 skb = nlmsg_new(size, GFP_KERNEL); 911 if (!skb) 912 return NULL; 913 914 nlh = nlmsg_put(skb, 0, seq, t, size, flags); 915 if (!nlh) 916 goto out_kfree_skb; 917 data = nlmsg_data(nlh); 918 memcpy(data, payload, size); 919 return skb; 920 921 out_kfree_skb: 922 kfree_skb(skb); 923 return NULL; 924 } 925 926 static int audit_send_reply_thread(void *arg) 927 { 928 struct audit_reply *reply = (struct audit_reply *)arg; 929 struct sock *sk = audit_get_sk(reply->net); 930 931 audit_ctl_lock(); 932 audit_ctl_unlock(); 933 934 /* Ignore failure. It'll only happen if the sender goes away, 935 because our timeout is set to infinite. */ 936 netlink_unicast(sk, reply->skb, reply->portid, 0); 937 put_net(reply->net); 938 kfree(reply); 939 return 0; 940 } 941 942 /** 943 * audit_send_reply - send an audit reply message via netlink 944 * @request_skb: skb of request we are replying to (used to target the reply) 945 * @seq: sequence number 946 * @type: audit message type 947 * @done: done (last) flag 948 * @multi: multi-part message flag 949 * @payload: payload data 950 * @size: payload size 951 * 952 * Allocates an skb, builds the netlink message, and sends it to the port id. 953 * No failure notifications. 954 */ 955 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 956 int multi, const void *payload, int size) 957 { 958 struct net *net = sock_net(NETLINK_CB(request_skb).sk); 959 struct sk_buff *skb; 960 struct task_struct *tsk; 961 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), 962 GFP_KERNEL); 963 964 if (!reply) 965 return; 966 967 skb = audit_make_reply(seq, type, done, multi, payload, size); 968 if (!skb) 969 goto out; 970 971 reply->net = get_net(net); 972 reply->portid = NETLINK_CB(request_skb).portid; 973 reply->skb = skb; 974 975 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 976 if (!IS_ERR(tsk)) 977 return; 978 kfree_skb(skb); 979 out: 980 kfree(reply); 981 } 982 983 /* 984 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 985 * control messages. 986 */ 987 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 988 { 989 int err = 0; 990 991 /* Only support initial user namespace for now. */ 992 /* 993 * We return ECONNREFUSED because it tricks userspace into thinking 994 * that audit was not configured into the kernel. Lots of users 995 * configure their PAM stack (because that's what the distro does) 996 * to reject login if unable to send messages to audit. If we return 997 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 998 * configured in and will let login proceed. If we return EPERM 999 * userspace will reject all logins. This should be removed when we 1000 * support non init namespaces!! 1001 */ 1002 if (current_user_ns() != &init_user_ns) 1003 return -ECONNREFUSED; 1004 1005 switch (msg_type) { 1006 case AUDIT_LIST: 1007 case AUDIT_ADD: 1008 case AUDIT_DEL: 1009 return -EOPNOTSUPP; 1010 case AUDIT_GET: 1011 case AUDIT_SET: 1012 case AUDIT_GET_FEATURE: 1013 case AUDIT_SET_FEATURE: 1014 case AUDIT_LIST_RULES: 1015 case AUDIT_ADD_RULE: 1016 case AUDIT_DEL_RULE: 1017 case AUDIT_SIGNAL_INFO: 1018 case AUDIT_TTY_GET: 1019 case AUDIT_TTY_SET: 1020 case AUDIT_TRIM: 1021 case AUDIT_MAKE_EQUIV: 1022 /* Only support auditd and auditctl in initial pid namespace 1023 * for now. */ 1024 if (task_active_pid_ns(current) != &init_pid_ns) 1025 return -EPERM; 1026 1027 if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) 1028 err = -EPERM; 1029 break; 1030 case AUDIT_USER: 1031 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1032 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1033 if (!netlink_capable(skb, CAP_AUDIT_WRITE)) 1034 err = -EPERM; 1035 break; 1036 default: /* bad msg */ 1037 err = -EINVAL; 1038 } 1039 1040 return err; 1041 } 1042 1043 static void audit_log_common_recv_msg(struct audit_context *context, 1044 struct audit_buffer **ab, u16 msg_type) 1045 { 1046 uid_t uid = from_kuid(&init_user_ns, current_uid()); 1047 pid_t pid = task_tgid_nr(current); 1048 1049 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 1050 *ab = NULL; 1051 return; 1052 } 1053 1054 *ab = audit_log_start(context, GFP_KERNEL, msg_type); 1055 if (unlikely(!*ab)) 1056 return; 1057 audit_log_format(*ab, "pid=%d uid=%u ", pid, uid); 1058 audit_log_session_info(*ab); 1059 audit_log_task_context(*ab); 1060 } 1061 1062 static inline void audit_log_user_recv_msg(struct audit_buffer **ab, 1063 u16 msg_type) 1064 { 1065 audit_log_common_recv_msg(NULL, ab, msg_type); 1066 } 1067 1068 int is_audit_feature_set(int i) 1069 { 1070 return af.features & AUDIT_FEATURE_TO_MASK(i); 1071 } 1072 1073 1074 static int audit_get_feature(struct sk_buff *skb) 1075 { 1076 u32 seq; 1077 1078 seq = nlmsg_hdr(skb)->nlmsg_seq; 1079 1080 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); 1081 1082 return 0; 1083 } 1084 1085 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 1086 u32 old_lock, u32 new_lock, int res) 1087 { 1088 struct audit_buffer *ab; 1089 1090 if (audit_enabled == AUDIT_OFF) 1091 return; 1092 1093 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE); 1094 if (!ab) 1095 return; 1096 audit_log_task_info(ab); 1097 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 1098 audit_feature_names[which], !!old_feature, !!new_feature, 1099 !!old_lock, !!new_lock, res); 1100 audit_log_end(ab); 1101 } 1102 1103 static int audit_set_feature(struct sk_buff *skb) 1104 { 1105 struct audit_features *uaf; 1106 int i; 1107 1108 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); 1109 uaf = nlmsg_data(nlmsg_hdr(skb)); 1110 1111 /* if there is ever a version 2 we should handle that here */ 1112 1113 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1114 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1115 u32 old_feature, new_feature, old_lock, new_lock; 1116 1117 /* if we are not changing this feature, move along */ 1118 if (!(feature & uaf->mask)) 1119 continue; 1120 1121 old_feature = af.features & feature; 1122 new_feature = uaf->features & feature; 1123 new_lock = (uaf->lock | af.lock) & feature; 1124 old_lock = af.lock & feature; 1125 1126 /* are we changing a locked feature? */ 1127 if (old_lock && (new_feature != old_feature)) { 1128 audit_log_feature_change(i, old_feature, new_feature, 1129 old_lock, new_lock, 0); 1130 return -EPERM; 1131 } 1132 } 1133 /* nothing invalid, do the changes */ 1134 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1135 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1136 u32 old_feature, new_feature, old_lock, new_lock; 1137 1138 /* if we are not changing this feature, move along */ 1139 if (!(feature & uaf->mask)) 1140 continue; 1141 1142 old_feature = af.features & feature; 1143 new_feature = uaf->features & feature; 1144 old_lock = af.lock & feature; 1145 new_lock = (uaf->lock | af.lock) & feature; 1146 1147 if (new_feature != old_feature) 1148 audit_log_feature_change(i, old_feature, new_feature, 1149 old_lock, new_lock, 1); 1150 1151 if (new_feature) 1152 af.features |= feature; 1153 else 1154 af.features &= ~feature; 1155 af.lock |= new_lock; 1156 } 1157 1158 return 0; 1159 } 1160 1161 static int audit_replace(struct pid *pid) 1162 { 1163 pid_t pvnr; 1164 struct sk_buff *skb; 1165 1166 pvnr = pid_vnr(pid); 1167 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr)); 1168 if (!skb) 1169 return -ENOMEM; 1170 return auditd_send_unicast_skb(skb); 1171 } 1172 1173 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 1174 { 1175 u32 seq; 1176 void *data; 1177 int err; 1178 struct audit_buffer *ab; 1179 u16 msg_type = nlh->nlmsg_type; 1180 struct audit_sig_info *sig_data; 1181 char *ctx = NULL; 1182 u32 len; 1183 1184 err = audit_netlink_ok(skb, msg_type); 1185 if (err) 1186 return err; 1187 1188 seq = nlh->nlmsg_seq; 1189 data = nlmsg_data(nlh); 1190 1191 switch (msg_type) { 1192 case AUDIT_GET: { 1193 struct audit_status s; 1194 memset(&s, 0, sizeof(s)); 1195 s.enabled = audit_enabled; 1196 s.failure = audit_failure; 1197 /* NOTE: use pid_vnr() so the PID is relative to the current 1198 * namespace */ 1199 s.pid = auditd_pid_vnr(); 1200 s.rate_limit = audit_rate_limit; 1201 s.backlog_limit = audit_backlog_limit; 1202 s.lost = atomic_read(&audit_lost); 1203 s.backlog = skb_queue_len(&audit_queue); 1204 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; 1205 s.backlog_wait_time = audit_backlog_wait_time; 1206 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 1207 break; 1208 } 1209 case AUDIT_SET: { 1210 struct audit_status s; 1211 memset(&s, 0, sizeof(s)); 1212 /* guard against past and future API changes */ 1213 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 1214 if (s.mask & AUDIT_STATUS_ENABLED) { 1215 err = audit_set_enabled(s.enabled); 1216 if (err < 0) 1217 return err; 1218 } 1219 if (s.mask & AUDIT_STATUS_FAILURE) { 1220 err = audit_set_failure(s.failure); 1221 if (err < 0) 1222 return err; 1223 } 1224 if (s.mask & AUDIT_STATUS_PID) { 1225 /* NOTE: we are using the vnr PID functions below 1226 * because the s.pid value is relative to the 1227 * namespace of the caller; at present this 1228 * doesn't matter much since you can really only 1229 * run auditd from the initial pid namespace, but 1230 * something to keep in mind if this changes */ 1231 pid_t new_pid = s.pid; 1232 pid_t auditd_pid; 1233 struct pid *req_pid = task_tgid(current); 1234 1235 /* Sanity check - PID values must match. Setting 1236 * pid to 0 is how auditd ends auditing. */ 1237 if (new_pid && (new_pid != pid_vnr(req_pid))) 1238 return -EINVAL; 1239 1240 /* test the auditd connection */ 1241 audit_replace(req_pid); 1242 1243 auditd_pid = auditd_pid_vnr(); 1244 if (auditd_pid) { 1245 /* replacing a healthy auditd is not allowed */ 1246 if (new_pid) { 1247 audit_log_config_change("audit_pid", 1248 new_pid, auditd_pid, 0); 1249 return -EEXIST; 1250 } 1251 /* only current auditd can unregister itself */ 1252 if (pid_vnr(req_pid) != auditd_pid) { 1253 audit_log_config_change("audit_pid", 1254 new_pid, auditd_pid, 0); 1255 return -EACCES; 1256 } 1257 } 1258 1259 if (new_pid) { 1260 /* register a new auditd connection */ 1261 err = auditd_set(req_pid, 1262 NETLINK_CB(skb).portid, 1263 sock_net(NETLINK_CB(skb).sk)); 1264 if (audit_enabled != AUDIT_OFF) 1265 audit_log_config_change("audit_pid", 1266 new_pid, 1267 auditd_pid, 1268 err ? 0 : 1); 1269 if (err) 1270 return err; 1271 1272 /* try to process any backlog */ 1273 wake_up_interruptible(&kauditd_wait); 1274 } else { 1275 if (audit_enabled != AUDIT_OFF) 1276 audit_log_config_change("audit_pid", 1277 new_pid, 1278 auditd_pid, 1); 1279 1280 /* unregister the auditd connection */ 1281 auditd_reset(NULL); 1282 } 1283 } 1284 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 1285 err = audit_set_rate_limit(s.rate_limit); 1286 if (err < 0) 1287 return err; 1288 } 1289 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 1290 err = audit_set_backlog_limit(s.backlog_limit); 1291 if (err < 0) 1292 return err; 1293 } 1294 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 1295 if (sizeof(s) > (size_t)nlh->nlmsg_len) 1296 return -EINVAL; 1297 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 1298 return -EINVAL; 1299 err = audit_set_backlog_wait_time(s.backlog_wait_time); 1300 if (err < 0) 1301 return err; 1302 } 1303 if (s.mask == AUDIT_STATUS_LOST) { 1304 u32 lost = atomic_xchg(&audit_lost, 0); 1305 1306 audit_log_config_change("lost", 0, lost, 1); 1307 return lost; 1308 } 1309 break; 1310 } 1311 case AUDIT_GET_FEATURE: 1312 err = audit_get_feature(skb); 1313 if (err) 1314 return err; 1315 break; 1316 case AUDIT_SET_FEATURE: 1317 err = audit_set_feature(skb); 1318 if (err) 1319 return err; 1320 break; 1321 case AUDIT_USER: 1322 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1323 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1324 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 1325 return 0; 1326 1327 err = audit_filter(msg_type, AUDIT_FILTER_USER); 1328 if (err == 1) { /* match or error */ 1329 err = 0; 1330 if (msg_type == AUDIT_USER_TTY) { 1331 err = tty_audit_push(); 1332 if (err) 1333 break; 1334 } 1335 audit_log_user_recv_msg(&ab, msg_type); 1336 if (msg_type != AUDIT_USER_TTY) 1337 audit_log_format(ab, " msg='%.*s'", 1338 AUDIT_MESSAGE_TEXT_MAX, 1339 (char *)data); 1340 else { 1341 int size; 1342 1343 audit_log_format(ab, " data="); 1344 size = nlmsg_len(nlh); 1345 if (size > 0 && 1346 ((unsigned char *)data)[size - 1] == '\0') 1347 size--; 1348 audit_log_n_untrustedstring(ab, data, size); 1349 } 1350 audit_log_end(ab); 1351 } 1352 break; 1353 case AUDIT_ADD_RULE: 1354 case AUDIT_DEL_RULE: 1355 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 1356 return -EINVAL; 1357 if (audit_enabled == AUDIT_LOCKED) { 1358 audit_log_common_recv_msg(audit_context(), &ab, 1359 AUDIT_CONFIG_CHANGE); 1360 audit_log_format(ab, " op=%s audit_enabled=%d res=0", 1361 msg_type == AUDIT_ADD_RULE ? 1362 "add_rule" : "remove_rule", 1363 audit_enabled); 1364 audit_log_end(ab); 1365 return -EPERM; 1366 } 1367 err = audit_rule_change(msg_type, seq, data, nlmsg_len(nlh)); 1368 break; 1369 case AUDIT_LIST_RULES: 1370 err = audit_list_rules_send(skb, seq); 1371 break; 1372 case AUDIT_TRIM: 1373 audit_trim_trees(); 1374 audit_log_common_recv_msg(audit_context(), &ab, 1375 AUDIT_CONFIG_CHANGE); 1376 audit_log_format(ab, " op=trim res=1"); 1377 audit_log_end(ab); 1378 break; 1379 case AUDIT_MAKE_EQUIV: { 1380 void *bufp = data; 1381 u32 sizes[2]; 1382 size_t msglen = nlmsg_len(nlh); 1383 char *old, *new; 1384 1385 err = -EINVAL; 1386 if (msglen < 2 * sizeof(u32)) 1387 break; 1388 memcpy(sizes, bufp, 2 * sizeof(u32)); 1389 bufp += 2 * sizeof(u32); 1390 msglen -= 2 * sizeof(u32); 1391 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 1392 if (IS_ERR(old)) { 1393 err = PTR_ERR(old); 1394 break; 1395 } 1396 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 1397 if (IS_ERR(new)) { 1398 err = PTR_ERR(new); 1399 kfree(old); 1400 break; 1401 } 1402 /* OK, here comes... */ 1403 err = audit_tag_tree(old, new); 1404 1405 audit_log_common_recv_msg(audit_context(), &ab, 1406 AUDIT_CONFIG_CHANGE); 1407 audit_log_format(ab, " op=make_equiv old="); 1408 audit_log_untrustedstring(ab, old); 1409 audit_log_format(ab, " new="); 1410 audit_log_untrustedstring(ab, new); 1411 audit_log_format(ab, " res=%d", !err); 1412 audit_log_end(ab); 1413 kfree(old); 1414 kfree(new); 1415 break; 1416 } 1417 case AUDIT_SIGNAL_INFO: 1418 len = 0; 1419 if (audit_sig_sid) { 1420 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 1421 if (err) 1422 return err; 1423 } 1424 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 1425 if (!sig_data) { 1426 if (audit_sig_sid) 1427 security_release_secctx(ctx, len); 1428 return -ENOMEM; 1429 } 1430 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 1431 sig_data->pid = audit_sig_pid; 1432 if (audit_sig_sid) { 1433 memcpy(sig_data->ctx, ctx, len); 1434 security_release_secctx(ctx, len); 1435 } 1436 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 1437 sig_data, sizeof(*sig_data) + len); 1438 kfree(sig_data); 1439 break; 1440 case AUDIT_TTY_GET: { 1441 struct audit_tty_status s; 1442 unsigned int t; 1443 1444 t = READ_ONCE(current->signal->audit_tty); 1445 s.enabled = t & AUDIT_TTY_ENABLE; 1446 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1447 1448 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1449 break; 1450 } 1451 case AUDIT_TTY_SET: { 1452 struct audit_tty_status s, old; 1453 struct audit_buffer *ab; 1454 unsigned int t; 1455 1456 memset(&s, 0, sizeof(s)); 1457 /* guard against past and future API changes */ 1458 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 1459 /* check if new data is valid */ 1460 if ((s.enabled != 0 && s.enabled != 1) || 1461 (s.log_passwd != 0 && s.log_passwd != 1)) 1462 err = -EINVAL; 1463 1464 if (err) 1465 t = READ_ONCE(current->signal->audit_tty); 1466 else { 1467 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD); 1468 t = xchg(¤t->signal->audit_tty, t); 1469 } 1470 old.enabled = t & AUDIT_TTY_ENABLE; 1471 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1472 1473 audit_log_common_recv_msg(audit_context(), &ab, 1474 AUDIT_CONFIG_CHANGE); 1475 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1476 " old-log_passwd=%d new-log_passwd=%d res=%d", 1477 old.enabled, s.enabled, old.log_passwd, 1478 s.log_passwd, !err); 1479 audit_log_end(ab); 1480 break; 1481 } 1482 default: 1483 err = -EINVAL; 1484 break; 1485 } 1486 1487 return err < 0 ? err : 0; 1488 } 1489 1490 /** 1491 * audit_receive - receive messages from a netlink control socket 1492 * @skb: the message buffer 1493 * 1494 * Parse the provided skb and deal with any messages that may be present, 1495 * malformed skbs are discarded. 1496 */ 1497 static void audit_receive(struct sk_buff *skb) 1498 { 1499 struct nlmsghdr *nlh; 1500 /* 1501 * len MUST be signed for nlmsg_next to be able to dec it below 0 1502 * if the nlmsg_len was not aligned 1503 */ 1504 int len; 1505 int err; 1506 1507 nlh = nlmsg_hdr(skb); 1508 len = skb->len; 1509 1510 audit_ctl_lock(); 1511 while (nlmsg_ok(nlh, len)) { 1512 err = audit_receive_msg(skb, nlh); 1513 /* if err or if this message says it wants a response */ 1514 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 1515 netlink_ack(skb, nlh, err, NULL); 1516 1517 nlh = nlmsg_next(nlh, &len); 1518 } 1519 audit_ctl_unlock(); 1520 } 1521 1522 /* Run custom bind function on netlink socket group connect or bind requests. */ 1523 static int audit_bind(struct net *net, int group) 1524 { 1525 if (!capable(CAP_AUDIT_READ)) 1526 return -EPERM; 1527 1528 return 0; 1529 } 1530 1531 static int __net_init audit_net_init(struct net *net) 1532 { 1533 struct netlink_kernel_cfg cfg = { 1534 .input = audit_receive, 1535 .bind = audit_bind, 1536 .flags = NL_CFG_F_NONROOT_RECV, 1537 .groups = AUDIT_NLGRP_MAX, 1538 }; 1539 1540 struct audit_net *aunet = net_generic(net, audit_net_id); 1541 1542 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1543 if (aunet->sk == NULL) { 1544 audit_panic("cannot initialize netlink socket in namespace"); 1545 return -ENOMEM; 1546 } 1547 aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1548 1549 return 0; 1550 } 1551 1552 static void __net_exit audit_net_exit(struct net *net) 1553 { 1554 struct audit_net *aunet = net_generic(net, audit_net_id); 1555 1556 /* NOTE: you would think that we would want to check the auditd 1557 * connection and potentially reset it here if it lives in this 1558 * namespace, but since the auditd connection tracking struct holds a 1559 * reference to this namespace (see auditd_set()) we are only ever 1560 * going to get here after that connection has been released */ 1561 1562 netlink_kernel_release(aunet->sk); 1563 } 1564 1565 static struct pernet_operations audit_net_ops __net_initdata = { 1566 .init = audit_net_init, 1567 .exit = audit_net_exit, 1568 .id = &audit_net_id, 1569 .size = sizeof(struct audit_net), 1570 }; 1571 1572 /* Initialize audit support at boot time. */ 1573 static int __init audit_init(void) 1574 { 1575 int i; 1576 1577 if (audit_initialized == AUDIT_DISABLED) 1578 return 0; 1579 1580 audit_buffer_cache = kmem_cache_create("audit_buffer", 1581 sizeof(struct audit_buffer), 1582 0, SLAB_PANIC, NULL); 1583 1584 skb_queue_head_init(&audit_queue); 1585 skb_queue_head_init(&audit_retry_queue); 1586 skb_queue_head_init(&audit_hold_queue); 1587 1588 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1589 INIT_LIST_HEAD(&audit_inode_hash[i]); 1590 1591 mutex_init(&audit_cmd_mutex.lock); 1592 audit_cmd_mutex.owner = NULL; 1593 1594 pr_info("initializing netlink subsys (%s)\n", 1595 audit_default ? "enabled" : "disabled"); 1596 register_pernet_subsys(&audit_net_ops); 1597 1598 audit_initialized = AUDIT_INITIALIZED; 1599 1600 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 1601 if (IS_ERR(kauditd_task)) { 1602 int err = PTR_ERR(kauditd_task); 1603 panic("audit: failed to start the kauditd thread (%d)\n", err); 1604 } 1605 1606 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, 1607 "state=initialized audit_enabled=%u res=1", 1608 audit_enabled); 1609 1610 return 0; 1611 } 1612 postcore_initcall(audit_init); 1613 1614 /* 1615 * Process kernel command-line parameter at boot time. 1616 * audit={0|off} or audit={1|on}. 1617 */ 1618 static int __init audit_enable(char *str) 1619 { 1620 if (!strcasecmp(str, "off") || !strcmp(str, "0")) 1621 audit_default = AUDIT_OFF; 1622 else if (!strcasecmp(str, "on") || !strcmp(str, "1")) 1623 audit_default = AUDIT_ON; 1624 else { 1625 pr_err("audit: invalid 'audit' parameter value (%s)\n", str); 1626 audit_default = AUDIT_ON; 1627 } 1628 1629 if (audit_default == AUDIT_OFF) 1630 audit_initialized = AUDIT_DISABLED; 1631 if (audit_set_enabled(audit_default)) 1632 pr_err("audit: error setting audit state (%d)\n", 1633 audit_default); 1634 1635 pr_info("%s\n", audit_default ? 1636 "enabled (after initialization)" : "disabled (until reboot)"); 1637 1638 return 1; 1639 } 1640 __setup("audit=", audit_enable); 1641 1642 /* Process kernel command-line parameter at boot time. 1643 * audit_backlog_limit=<n> */ 1644 static int __init audit_backlog_limit_set(char *str) 1645 { 1646 u32 audit_backlog_limit_arg; 1647 1648 pr_info("audit_backlog_limit: "); 1649 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1650 pr_cont("using default of %u, unable to parse %s\n", 1651 audit_backlog_limit, str); 1652 return 1; 1653 } 1654 1655 audit_backlog_limit = audit_backlog_limit_arg; 1656 pr_cont("%d\n", audit_backlog_limit); 1657 1658 return 1; 1659 } 1660 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1661 1662 static void audit_buffer_free(struct audit_buffer *ab) 1663 { 1664 if (!ab) 1665 return; 1666 1667 kfree_skb(ab->skb); 1668 kmem_cache_free(audit_buffer_cache, ab); 1669 } 1670 1671 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx, 1672 gfp_t gfp_mask, int type) 1673 { 1674 struct audit_buffer *ab; 1675 1676 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask); 1677 if (!ab) 1678 return NULL; 1679 1680 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1681 if (!ab->skb) 1682 goto err; 1683 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0)) 1684 goto err; 1685 1686 ab->ctx = ctx; 1687 ab->gfp_mask = gfp_mask; 1688 1689 return ab; 1690 1691 err: 1692 audit_buffer_free(ab); 1693 return NULL; 1694 } 1695 1696 /** 1697 * audit_serial - compute a serial number for the audit record 1698 * 1699 * Compute a serial number for the audit record. Audit records are 1700 * written to user-space as soon as they are generated, so a complete 1701 * audit record may be written in several pieces. The timestamp of the 1702 * record and this serial number are used by the user-space tools to 1703 * determine which pieces belong to the same audit record. The 1704 * (timestamp,serial) tuple is unique for each syscall and is live from 1705 * syscall entry to syscall exit. 1706 * 1707 * NOTE: Another possibility is to store the formatted records off the 1708 * audit context (for those records that have a context), and emit them 1709 * all at syscall exit. However, this could delay the reporting of 1710 * significant errors until syscall exit (or never, if the system 1711 * halts). 1712 */ 1713 unsigned int audit_serial(void) 1714 { 1715 static atomic_t serial = ATOMIC_INIT(0); 1716 1717 return atomic_add_return(1, &serial); 1718 } 1719 1720 static inline void audit_get_stamp(struct audit_context *ctx, 1721 struct timespec64 *t, unsigned int *serial) 1722 { 1723 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1724 ktime_get_coarse_real_ts64(t); 1725 *serial = audit_serial(); 1726 } 1727 } 1728 1729 /** 1730 * audit_log_start - obtain an audit buffer 1731 * @ctx: audit_context (may be NULL) 1732 * @gfp_mask: type of allocation 1733 * @type: audit message type 1734 * 1735 * Returns audit_buffer pointer on success or NULL on error. 1736 * 1737 * Obtain an audit buffer. This routine does locking to obtain the 1738 * audit buffer, but then no locking is required for calls to 1739 * audit_log_*format. If the task (ctx) is a task that is currently in a 1740 * syscall, then the syscall is marked as auditable and an audit record 1741 * will be written at syscall exit. If there is no associated task, then 1742 * task context (ctx) should be NULL. 1743 */ 1744 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1745 int type) 1746 { 1747 struct audit_buffer *ab; 1748 struct timespec64 t; 1749 unsigned int uninitialized_var(serial); 1750 1751 if (audit_initialized != AUDIT_INITIALIZED) 1752 return NULL; 1753 1754 if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE))) 1755 return NULL; 1756 1757 /* NOTE: don't ever fail/sleep on these two conditions: 1758 * 1. auditd generated record - since we need auditd to drain the 1759 * queue; also, when we are checking for auditd, compare PIDs using 1760 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg() 1761 * using a PID anchored in the caller's namespace 1762 * 2. generator holding the audit_cmd_mutex - we don't want to block 1763 * while holding the mutex */ 1764 if (!(auditd_test_task(current) || audit_ctl_owner_current())) { 1765 long stime = audit_backlog_wait_time; 1766 1767 while (audit_backlog_limit && 1768 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1769 /* wake kauditd to try and flush the queue */ 1770 wake_up_interruptible(&kauditd_wait); 1771 1772 /* sleep if we are allowed and we haven't exhausted our 1773 * backlog wait limit */ 1774 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) { 1775 DECLARE_WAITQUEUE(wait, current); 1776 1777 add_wait_queue_exclusive(&audit_backlog_wait, 1778 &wait); 1779 set_current_state(TASK_UNINTERRUPTIBLE); 1780 stime = schedule_timeout(stime); 1781 remove_wait_queue(&audit_backlog_wait, &wait); 1782 } else { 1783 if (audit_rate_check() && printk_ratelimit()) 1784 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1785 skb_queue_len(&audit_queue), 1786 audit_backlog_limit); 1787 audit_log_lost("backlog limit exceeded"); 1788 return NULL; 1789 } 1790 } 1791 } 1792 1793 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1794 if (!ab) { 1795 audit_log_lost("out of memory in audit_log_start"); 1796 return NULL; 1797 } 1798 1799 audit_get_stamp(ab->ctx, &t, &serial); 1800 audit_log_format(ab, "audit(%llu.%03lu:%u): ", 1801 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial); 1802 1803 return ab; 1804 } 1805 1806 /** 1807 * audit_expand - expand skb in the audit buffer 1808 * @ab: audit_buffer 1809 * @extra: space to add at tail of the skb 1810 * 1811 * Returns 0 (no space) on failed expansion, or available space if 1812 * successful. 1813 */ 1814 static inline int audit_expand(struct audit_buffer *ab, int extra) 1815 { 1816 struct sk_buff *skb = ab->skb; 1817 int oldtail = skb_tailroom(skb); 1818 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1819 int newtail = skb_tailroom(skb); 1820 1821 if (ret < 0) { 1822 audit_log_lost("out of memory in audit_expand"); 1823 return 0; 1824 } 1825 1826 skb->truesize += newtail - oldtail; 1827 return newtail; 1828 } 1829 1830 /* 1831 * Format an audit message into the audit buffer. If there isn't enough 1832 * room in the audit buffer, more room will be allocated and vsnprint 1833 * will be called a second time. Currently, we assume that a printk 1834 * can't format message larger than 1024 bytes, so we don't either. 1835 */ 1836 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1837 va_list args) 1838 { 1839 int len, avail; 1840 struct sk_buff *skb; 1841 va_list args2; 1842 1843 if (!ab) 1844 return; 1845 1846 BUG_ON(!ab->skb); 1847 skb = ab->skb; 1848 avail = skb_tailroom(skb); 1849 if (avail == 0) { 1850 avail = audit_expand(ab, AUDIT_BUFSIZ); 1851 if (!avail) 1852 goto out; 1853 } 1854 va_copy(args2, args); 1855 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1856 if (len >= avail) { 1857 /* The printk buffer is 1024 bytes long, so if we get 1858 * here and AUDIT_BUFSIZ is at least 1024, then we can 1859 * log everything that printk could have logged. */ 1860 avail = audit_expand(ab, 1861 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1862 if (!avail) 1863 goto out_va_end; 1864 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1865 } 1866 if (len > 0) 1867 skb_put(skb, len); 1868 out_va_end: 1869 va_end(args2); 1870 out: 1871 return; 1872 } 1873 1874 /** 1875 * audit_log_format - format a message into the audit buffer. 1876 * @ab: audit_buffer 1877 * @fmt: format string 1878 * @...: optional parameters matching @fmt string 1879 * 1880 * All the work is done in audit_log_vformat. 1881 */ 1882 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1883 { 1884 va_list args; 1885 1886 if (!ab) 1887 return; 1888 va_start(args, fmt); 1889 audit_log_vformat(ab, fmt, args); 1890 va_end(args); 1891 } 1892 1893 /** 1894 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb 1895 * @ab: the audit_buffer 1896 * @buf: buffer to convert to hex 1897 * @len: length of @buf to be converted 1898 * 1899 * No return value; failure to expand is silently ignored. 1900 * 1901 * This function will take the passed buf and convert it into a string of 1902 * ascii hex digits. The new string is placed onto the skb. 1903 */ 1904 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1905 size_t len) 1906 { 1907 int i, avail, new_len; 1908 unsigned char *ptr; 1909 struct sk_buff *skb; 1910 1911 if (!ab) 1912 return; 1913 1914 BUG_ON(!ab->skb); 1915 skb = ab->skb; 1916 avail = skb_tailroom(skb); 1917 new_len = len<<1; 1918 if (new_len >= avail) { 1919 /* Round the buffer request up to the next multiple */ 1920 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1921 avail = audit_expand(ab, new_len); 1922 if (!avail) 1923 return; 1924 } 1925 1926 ptr = skb_tail_pointer(skb); 1927 for (i = 0; i < len; i++) 1928 ptr = hex_byte_pack_upper(ptr, buf[i]); 1929 *ptr = 0; 1930 skb_put(skb, len << 1); /* new string is twice the old string */ 1931 } 1932 1933 /* 1934 * Format a string of no more than slen characters into the audit buffer, 1935 * enclosed in quote marks. 1936 */ 1937 void audit_log_n_string(struct audit_buffer *ab, const char *string, 1938 size_t slen) 1939 { 1940 int avail, new_len; 1941 unsigned char *ptr; 1942 struct sk_buff *skb; 1943 1944 if (!ab) 1945 return; 1946 1947 BUG_ON(!ab->skb); 1948 skb = ab->skb; 1949 avail = skb_tailroom(skb); 1950 new_len = slen + 3; /* enclosing quotes + null terminator */ 1951 if (new_len > avail) { 1952 avail = audit_expand(ab, new_len); 1953 if (!avail) 1954 return; 1955 } 1956 ptr = skb_tail_pointer(skb); 1957 *ptr++ = '"'; 1958 memcpy(ptr, string, slen); 1959 ptr += slen; 1960 *ptr++ = '"'; 1961 *ptr = 0; 1962 skb_put(skb, slen + 2); /* don't include null terminator */ 1963 } 1964 1965 /** 1966 * audit_string_contains_control - does a string need to be logged in hex 1967 * @string: string to be checked 1968 * @len: max length of the string to check 1969 */ 1970 bool audit_string_contains_control(const char *string, size_t len) 1971 { 1972 const unsigned char *p; 1973 for (p = string; p < (const unsigned char *)string + len; p++) { 1974 if (*p == '"' || *p < 0x21 || *p > 0x7e) 1975 return true; 1976 } 1977 return false; 1978 } 1979 1980 /** 1981 * audit_log_n_untrustedstring - log a string that may contain random characters 1982 * @ab: audit_buffer 1983 * @len: length of string (not including trailing null) 1984 * @string: string to be logged 1985 * 1986 * This code will escape a string that is passed to it if the string 1987 * contains a control character, unprintable character, double quote mark, 1988 * or a space. Unescaped strings will start and end with a double quote mark. 1989 * Strings that are escaped are printed in hex (2 digits per char). 1990 * 1991 * The caller specifies the number of characters in the string to log, which may 1992 * or may not be the entire string. 1993 */ 1994 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 1995 size_t len) 1996 { 1997 if (audit_string_contains_control(string, len)) 1998 audit_log_n_hex(ab, string, len); 1999 else 2000 audit_log_n_string(ab, string, len); 2001 } 2002 2003 /** 2004 * audit_log_untrustedstring - log a string that may contain random characters 2005 * @ab: audit_buffer 2006 * @string: string to be logged 2007 * 2008 * Same as audit_log_n_untrustedstring(), except that strlen is used to 2009 * determine string length. 2010 */ 2011 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 2012 { 2013 audit_log_n_untrustedstring(ab, string, strlen(string)); 2014 } 2015 2016 /* This is a helper-function to print the escaped d_path */ 2017 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 2018 const struct path *path) 2019 { 2020 char *p, *pathname; 2021 2022 if (prefix) 2023 audit_log_format(ab, "%s", prefix); 2024 2025 /* We will allow 11 spaces for ' (deleted)' to be appended */ 2026 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 2027 if (!pathname) { 2028 audit_log_string(ab, "<no_memory>"); 2029 return; 2030 } 2031 p = d_path(path, pathname, PATH_MAX+11); 2032 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 2033 /* FIXME: can we save some information here? */ 2034 audit_log_string(ab, "<too_long>"); 2035 } else 2036 audit_log_untrustedstring(ab, p); 2037 kfree(pathname); 2038 } 2039 2040 void audit_log_session_info(struct audit_buffer *ab) 2041 { 2042 unsigned int sessionid = audit_get_sessionid(current); 2043 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 2044 2045 audit_log_format(ab, "auid=%u ses=%u", auid, sessionid); 2046 } 2047 2048 void audit_log_key(struct audit_buffer *ab, char *key) 2049 { 2050 audit_log_format(ab, " key="); 2051 if (key) 2052 audit_log_untrustedstring(ab, key); 2053 else 2054 audit_log_format(ab, "(null)"); 2055 } 2056 2057 int audit_log_task_context(struct audit_buffer *ab) 2058 { 2059 char *ctx = NULL; 2060 unsigned len; 2061 int error; 2062 u32 sid; 2063 2064 security_task_getsecid(current, &sid); 2065 if (!sid) 2066 return 0; 2067 2068 error = security_secid_to_secctx(sid, &ctx, &len); 2069 if (error) { 2070 if (error != -EINVAL) 2071 goto error_path; 2072 return 0; 2073 } 2074 2075 audit_log_format(ab, " subj=%s", ctx); 2076 security_release_secctx(ctx, len); 2077 return 0; 2078 2079 error_path: 2080 audit_panic("error in audit_log_task_context"); 2081 return error; 2082 } 2083 EXPORT_SYMBOL(audit_log_task_context); 2084 2085 void audit_log_d_path_exe(struct audit_buffer *ab, 2086 struct mm_struct *mm) 2087 { 2088 struct file *exe_file; 2089 2090 if (!mm) 2091 goto out_null; 2092 2093 exe_file = get_mm_exe_file(mm); 2094 if (!exe_file) 2095 goto out_null; 2096 2097 audit_log_d_path(ab, " exe=", &exe_file->f_path); 2098 fput(exe_file); 2099 return; 2100 out_null: 2101 audit_log_format(ab, " exe=(null)"); 2102 } 2103 2104 struct tty_struct *audit_get_tty(void) 2105 { 2106 struct tty_struct *tty = NULL; 2107 unsigned long flags; 2108 2109 spin_lock_irqsave(¤t->sighand->siglock, flags); 2110 if (current->signal) 2111 tty = tty_kref_get(current->signal->tty); 2112 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 2113 return tty; 2114 } 2115 2116 void audit_put_tty(struct tty_struct *tty) 2117 { 2118 tty_kref_put(tty); 2119 } 2120 2121 void audit_log_task_info(struct audit_buffer *ab) 2122 { 2123 const struct cred *cred; 2124 char comm[sizeof(current->comm)]; 2125 struct tty_struct *tty; 2126 2127 if (!ab) 2128 return; 2129 2130 cred = current_cred(); 2131 tty = audit_get_tty(); 2132 audit_log_format(ab, 2133 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 2134 " euid=%u suid=%u fsuid=%u" 2135 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 2136 task_ppid_nr(current), 2137 task_tgid_nr(current), 2138 from_kuid(&init_user_ns, audit_get_loginuid(current)), 2139 from_kuid(&init_user_ns, cred->uid), 2140 from_kgid(&init_user_ns, cred->gid), 2141 from_kuid(&init_user_ns, cred->euid), 2142 from_kuid(&init_user_ns, cred->suid), 2143 from_kuid(&init_user_ns, cred->fsuid), 2144 from_kgid(&init_user_ns, cred->egid), 2145 from_kgid(&init_user_ns, cred->sgid), 2146 from_kgid(&init_user_ns, cred->fsgid), 2147 tty ? tty_name(tty) : "(none)", 2148 audit_get_sessionid(current)); 2149 audit_put_tty(tty); 2150 audit_log_format(ab, " comm="); 2151 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2152 audit_log_d_path_exe(ab, current->mm); 2153 audit_log_task_context(ab); 2154 } 2155 EXPORT_SYMBOL(audit_log_task_info); 2156 2157 /** 2158 * audit_log_path_denied - report a path restriction denial 2159 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc) 2160 * @operation: specific operation name 2161 */ 2162 void audit_log_path_denied(int type, const char *operation) 2163 { 2164 struct audit_buffer *ab; 2165 2166 if (!audit_enabled || audit_dummy_context()) 2167 return; 2168 2169 /* Generate log with subject, operation, outcome. */ 2170 ab = audit_log_start(audit_context(), GFP_KERNEL, type); 2171 if (!ab) 2172 return; 2173 audit_log_format(ab, "op=%s", operation); 2174 audit_log_task_info(ab); 2175 audit_log_format(ab, " res=0"); 2176 audit_log_end(ab); 2177 } 2178 2179 /* global counter which is incremented every time something logs in */ 2180 static atomic_t session_id = ATOMIC_INIT(0); 2181 2182 static int audit_set_loginuid_perm(kuid_t loginuid) 2183 { 2184 /* if we are unset, we don't need privs */ 2185 if (!audit_loginuid_set(current)) 2186 return 0; 2187 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/ 2188 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE)) 2189 return -EPERM; 2190 /* it is set, you need permission */ 2191 if (!capable(CAP_AUDIT_CONTROL)) 2192 return -EPERM; 2193 /* reject if this is not an unset and we don't allow that */ 2194 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) 2195 && uid_valid(loginuid)) 2196 return -EPERM; 2197 return 0; 2198 } 2199 2200 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid, 2201 unsigned int oldsessionid, 2202 unsigned int sessionid, int rc) 2203 { 2204 struct audit_buffer *ab; 2205 uid_t uid, oldloginuid, loginuid; 2206 struct tty_struct *tty; 2207 2208 if (!audit_enabled) 2209 return; 2210 2211 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN); 2212 if (!ab) 2213 return; 2214 2215 uid = from_kuid(&init_user_ns, task_uid(current)); 2216 oldloginuid = from_kuid(&init_user_ns, koldloginuid); 2217 loginuid = from_kuid(&init_user_ns, kloginuid), 2218 tty = audit_get_tty(); 2219 2220 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid); 2221 audit_log_task_context(ab); 2222 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d", 2223 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)", 2224 oldsessionid, sessionid, !rc); 2225 audit_put_tty(tty); 2226 audit_log_end(ab); 2227 } 2228 2229 /** 2230 * audit_set_loginuid - set current task's loginuid 2231 * @loginuid: loginuid value 2232 * 2233 * Returns 0. 2234 * 2235 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2236 */ 2237 int audit_set_loginuid(kuid_t loginuid) 2238 { 2239 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET; 2240 kuid_t oldloginuid; 2241 int rc; 2242 2243 oldloginuid = audit_get_loginuid(current); 2244 oldsessionid = audit_get_sessionid(current); 2245 2246 rc = audit_set_loginuid_perm(loginuid); 2247 if (rc) 2248 goto out; 2249 2250 /* are we setting or clearing? */ 2251 if (uid_valid(loginuid)) { 2252 sessionid = (unsigned int)atomic_inc_return(&session_id); 2253 if (unlikely(sessionid == AUDIT_SID_UNSET)) 2254 sessionid = (unsigned int)atomic_inc_return(&session_id); 2255 } 2256 2257 current->sessionid = sessionid; 2258 current->loginuid = loginuid; 2259 out: 2260 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc); 2261 return rc; 2262 } 2263 2264 /** 2265 * audit_signal_info - record signal info for shutting down audit subsystem 2266 * @sig: signal value 2267 * @t: task being signaled 2268 * 2269 * If the audit subsystem is being terminated, record the task (pid) 2270 * and uid that is doing that. 2271 */ 2272 int audit_signal_info(int sig, struct task_struct *t) 2273 { 2274 kuid_t uid = current_uid(), auid; 2275 2276 if (auditd_test_task(t) && 2277 (sig == SIGTERM || sig == SIGHUP || 2278 sig == SIGUSR1 || sig == SIGUSR2)) { 2279 audit_sig_pid = task_tgid_nr(current); 2280 auid = audit_get_loginuid(current); 2281 if (uid_valid(auid)) 2282 audit_sig_uid = auid; 2283 else 2284 audit_sig_uid = uid; 2285 security_task_getsecid(current, &audit_sig_sid); 2286 } 2287 2288 return audit_signal_info_syscall(t); 2289 } 2290 2291 /** 2292 * audit_log_end - end one audit record 2293 * @ab: the audit_buffer 2294 * 2295 * We can not do a netlink send inside an irq context because it blocks (last 2296 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a 2297 * queue and a tasklet is scheduled to remove them from the queue outside the 2298 * irq context. May be called in any context. 2299 */ 2300 void audit_log_end(struct audit_buffer *ab) 2301 { 2302 struct sk_buff *skb; 2303 struct nlmsghdr *nlh; 2304 2305 if (!ab) 2306 return; 2307 2308 if (audit_rate_check()) { 2309 skb = ab->skb; 2310 ab->skb = NULL; 2311 2312 /* setup the netlink header, see the comments in 2313 * kauditd_send_multicast_skb() for length quirks */ 2314 nlh = nlmsg_hdr(skb); 2315 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN; 2316 2317 /* queue the netlink packet and poke the kauditd thread */ 2318 skb_queue_tail(&audit_queue, skb); 2319 wake_up_interruptible(&kauditd_wait); 2320 } else 2321 audit_log_lost("rate limit exceeded"); 2322 2323 audit_buffer_free(ab); 2324 } 2325 2326 /** 2327 * audit_log - Log an audit record 2328 * @ctx: audit context 2329 * @gfp_mask: type of allocation 2330 * @type: audit message type 2331 * @fmt: format string to use 2332 * @...: variable parameters matching the format string 2333 * 2334 * This is a convenience function that calls audit_log_start, 2335 * audit_log_vformat, and audit_log_end. It may be called 2336 * in any context. 2337 */ 2338 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 2339 const char *fmt, ...) 2340 { 2341 struct audit_buffer *ab; 2342 va_list args; 2343 2344 ab = audit_log_start(ctx, gfp_mask, type); 2345 if (ab) { 2346 va_start(args, fmt); 2347 audit_log_vformat(ab, fmt, args); 2348 va_end(args); 2349 audit_log_end(ab); 2350 } 2351 } 2352 2353 EXPORT_SYMBOL(audit_log_start); 2354 EXPORT_SYMBOL(audit_log_end); 2355 EXPORT_SYMBOL(audit_log_format); 2356 EXPORT_SYMBOL(audit_log); 2357