1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with Security Modules. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/file.h> 47 #include <linux/init.h> 48 #include <linux/types.h> 49 #include <linux/atomic.h> 50 #include <linux/mm.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/err.h> 54 #include <linux/kthread.h> 55 #include <linux/kernel.h> 56 #include <linux/syscalls.h> 57 #include <linux/spinlock.h> 58 #include <linux/rcupdate.h> 59 #include <linux/mutex.h> 60 #include <linux/gfp.h> 61 62 #include <linux/audit.h> 63 64 #include <net/sock.h> 65 #include <net/netlink.h> 66 #include <linux/skbuff.h> 67 #ifdef CONFIG_SECURITY 68 #include <linux/security.h> 69 #endif 70 #include <linux/freezer.h> 71 #include <linux/pid_namespace.h> 72 #include <net/netns/generic.h> 73 74 #include "audit.h" 75 76 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 77 * (Initialization happens after skb_init is called.) */ 78 #define AUDIT_DISABLED -1 79 #define AUDIT_UNINITIALIZED 0 80 #define AUDIT_INITIALIZED 1 81 static int audit_initialized; 82 83 #define AUDIT_OFF 0 84 #define AUDIT_ON 1 85 #define AUDIT_LOCKED 2 86 u32 audit_enabled; 87 u32 audit_ever_enabled; 88 89 EXPORT_SYMBOL_GPL(audit_enabled); 90 91 /* Default state when kernel boots without any parameters. */ 92 static u32 audit_default; 93 94 /* If auditing cannot proceed, audit_failure selects what happens. */ 95 static u32 audit_failure = AUDIT_FAIL_PRINTK; 96 97 /* private audit network namespace index */ 98 static unsigned int audit_net_id; 99 100 /** 101 * struct audit_net - audit private network namespace data 102 * @sk: communication socket 103 */ 104 struct audit_net { 105 struct sock *sk; 106 }; 107 108 /** 109 * struct auditd_connection - kernel/auditd connection state 110 * @pid: auditd PID 111 * @portid: netlink portid 112 * @net: the associated network namespace 113 * @lock: spinlock to protect write access 114 * 115 * Description: 116 * This struct is RCU protected; you must either hold the RCU lock for reading 117 * or the included spinlock for writing. 118 */ 119 static struct auditd_connection { 120 int pid; 121 u32 portid; 122 struct net *net; 123 spinlock_t lock; 124 } auditd_conn; 125 126 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 127 * to that number per second. This prevents DoS attacks, but results in 128 * audit records being dropped. */ 129 static u32 audit_rate_limit; 130 131 /* Number of outstanding audit_buffers allowed. 132 * When set to zero, this means unlimited. */ 133 static u32 audit_backlog_limit = 64; 134 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 135 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 136 137 /* The identity of the user shutting down the audit system. */ 138 kuid_t audit_sig_uid = INVALID_UID; 139 pid_t audit_sig_pid = -1; 140 u32 audit_sig_sid = 0; 141 142 /* Records can be lost in several ways: 143 0) [suppressed in audit_alloc] 144 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 145 2) out of memory in audit_log_move [alloc_skb] 146 3) suppressed due to audit_rate_limit 147 4) suppressed due to audit_backlog_limit 148 */ 149 static atomic_t audit_lost = ATOMIC_INIT(0); 150 151 /* Hash for inode-based rules */ 152 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 153 154 /* The audit_freelist is a list of pre-allocated audit buffers (if more 155 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of 156 * being placed on the freelist). */ 157 static DEFINE_SPINLOCK(audit_freelist_lock); 158 static int audit_freelist_count; 159 static LIST_HEAD(audit_freelist); 160 161 /* queue msgs to send via kauditd_task */ 162 static struct sk_buff_head audit_queue; 163 static void kauditd_hold_skb(struct sk_buff *skb); 164 /* queue msgs due to temporary unicast send problems */ 165 static struct sk_buff_head audit_retry_queue; 166 /* queue msgs waiting for new auditd connection */ 167 static struct sk_buff_head audit_hold_queue; 168 169 /* queue servicing thread */ 170 static struct task_struct *kauditd_task; 171 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 172 173 /* waitqueue for callers who are blocked on the audit backlog */ 174 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 175 176 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 177 .mask = -1, 178 .features = 0, 179 .lock = 0,}; 180 181 static char *audit_feature_names[2] = { 182 "only_unset_loginuid", 183 "loginuid_immutable", 184 }; 185 186 187 /* Serialize requests from userspace. */ 188 DEFINE_MUTEX(audit_cmd_mutex); 189 190 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 191 * audit records. Since printk uses a 1024 byte buffer, this buffer 192 * should be at least that large. */ 193 #define AUDIT_BUFSIZ 1024 194 195 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the 196 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ 197 #define AUDIT_MAXFREE (2*NR_CPUS) 198 199 /* The audit_buffer is used when formatting an audit record. The caller 200 * locks briefly to get the record off the freelist or to allocate the 201 * buffer, and locks briefly to send the buffer to the netlink layer or 202 * to place it on a transmit queue. Multiple audit_buffers can be in 203 * use simultaneously. */ 204 struct audit_buffer { 205 struct list_head list; 206 struct sk_buff *skb; /* formatted skb ready to send */ 207 struct audit_context *ctx; /* NULL or associated context */ 208 gfp_t gfp_mask; 209 }; 210 211 struct audit_reply { 212 __u32 portid; 213 struct net *net; 214 struct sk_buff *skb; 215 }; 216 217 /** 218 * auditd_test_task - Check to see if a given task is an audit daemon 219 * @task: the task to check 220 * 221 * Description: 222 * Return 1 if the task is a registered audit daemon, 0 otherwise. 223 */ 224 int auditd_test_task(const struct task_struct *task) 225 { 226 int rc; 227 228 rcu_read_lock(); 229 rc = (auditd_conn.pid && task->tgid == auditd_conn.pid ? 1 : 0); 230 rcu_read_unlock(); 231 232 return rc; 233 } 234 235 /** 236 * audit_get_sk - Return the audit socket for the given network namespace 237 * @net: the destination network namespace 238 * 239 * Description: 240 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure 241 * that a reference is held for the network namespace while the sock is in use. 242 */ 243 static struct sock *audit_get_sk(const struct net *net) 244 { 245 struct audit_net *aunet; 246 247 if (!net) 248 return NULL; 249 250 aunet = net_generic(net, audit_net_id); 251 return aunet->sk; 252 } 253 254 static void audit_set_portid(struct audit_buffer *ab, __u32 portid) 255 { 256 if (ab) { 257 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 258 nlh->nlmsg_pid = portid; 259 } 260 } 261 262 void audit_panic(const char *message) 263 { 264 switch (audit_failure) { 265 case AUDIT_FAIL_SILENT: 266 break; 267 case AUDIT_FAIL_PRINTK: 268 if (printk_ratelimit()) 269 pr_err("%s\n", message); 270 break; 271 case AUDIT_FAIL_PANIC: 272 panic("audit: %s\n", message); 273 break; 274 } 275 } 276 277 static inline int audit_rate_check(void) 278 { 279 static unsigned long last_check = 0; 280 static int messages = 0; 281 static DEFINE_SPINLOCK(lock); 282 unsigned long flags; 283 unsigned long now; 284 unsigned long elapsed; 285 int retval = 0; 286 287 if (!audit_rate_limit) return 1; 288 289 spin_lock_irqsave(&lock, flags); 290 if (++messages < audit_rate_limit) { 291 retval = 1; 292 } else { 293 now = jiffies; 294 elapsed = now - last_check; 295 if (elapsed > HZ) { 296 last_check = now; 297 messages = 0; 298 retval = 1; 299 } 300 } 301 spin_unlock_irqrestore(&lock, flags); 302 303 return retval; 304 } 305 306 /** 307 * audit_log_lost - conditionally log lost audit message event 308 * @message: the message stating reason for lost audit message 309 * 310 * Emit at least 1 message per second, even if audit_rate_check is 311 * throttling. 312 * Always increment the lost messages counter. 313 */ 314 void audit_log_lost(const char *message) 315 { 316 static unsigned long last_msg = 0; 317 static DEFINE_SPINLOCK(lock); 318 unsigned long flags; 319 unsigned long now; 320 int print; 321 322 atomic_inc(&audit_lost); 323 324 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 325 326 if (!print) { 327 spin_lock_irqsave(&lock, flags); 328 now = jiffies; 329 if (now - last_msg > HZ) { 330 print = 1; 331 last_msg = now; 332 } 333 spin_unlock_irqrestore(&lock, flags); 334 } 335 336 if (print) { 337 if (printk_ratelimit()) 338 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 339 atomic_read(&audit_lost), 340 audit_rate_limit, 341 audit_backlog_limit); 342 audit_panic(message); 343 } 344 } 345 346 static int audit_log_config_change(char *function_name, u32 new, u32 old, 347 int allow_changes) 348 { 349 struct audit_buffer *ab; 350 int rc = 0; 351 352 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 353 if (unlikely(!ab)) 354 return rc; 355 audit_log_format(ab, "%s=%u old=%u", function_name, new, old); 356 audit_log_session_info(ab); 357 rc = audit_log_task_context(ab); 358 if (rc) 359 allow_changes = 0; /* Something weird, deny request */ 360 audit_log_format(ab, " res=%d", allow_changes); 361 audit_log_end(ab); 362 return rc; 363 } 364 365 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 366 { 367 int allow_changes, rc = 0; 368 u32 old = *to_change; 369 370 /* check if we are locked */ 371 if (audit_enabled == AUDIT_LOCKED) 372 allow_changes = 0; 373 else 374 allow_changes = 1; 375 376 if (audit_enabled != AUDIT_OFF) { 377 rc = audit_log_config_change(function_name, new, old, allow_changes); 378 if (rc) 379 allow_changes = 0; 380 } 381 382 /* If we are allowed, make the change */ 383 if (allow_changes == 1) 384 *to_change = new; 385 /* Not allowed, update reason */ 386 else if (rc == 0) 387 rc = -EPERM; 388 return rc; 389 } 390 391 static int audit_set_rate_limit(u32 limit) 392 { 393 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 394 } 395 396 static int audit_set_backlog_limit(u32 limit) 397 { 398 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 399 } 400 401 static int audit_set_backlog_wait_time(u32 timeout) 402 { 403 return audit_do_config_change("audit_backlog_wait_time", 404 &audit_backlog_wait_time, timeout); 405 } 406 407 static int audit_set_enabled(u32 state) 408 { 409 int rc; 410 if (state > AUDIT_LOCKED) 411 return -EINVAL; 412 413 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 414 if (!rc) 415 audit_ever_enabled |= !!state; 416 417 return rc; 418 } 419 420 static int audit_set_failure(u32 state) 421 { 422 if (state != AUDIT_FAIL_SILENT 423 && state != AUDIT_FAIL_PRINTK 424 && state != AUDIT_FAIL_PANIC) 425 return -EINVAL; 426 427 return audit_do_config_change("audit_failure", &audit_failure, state); 428 } 429 430 /** 431 * auditd_set - Set/Reset the auditd connection state 432 * @pid: auditd PID 433 * @portid: auditd netlink portid 434 * @net: auditd network namespace pointer 435 * 436 * Description: 437 * This function will obtain and drop network namespace references as 438 * necessary. 439 */ 440 static void auditd_set(int pid, u32 portid, struct net *net) 441 { 442 unsigned long flags; 443 444 spin_lock_irqsave(&auditd_conn.lock, flags); 445 auditd_conn.pid = pid; 446 auditd_conn.portid = portid; 447 if (auditd_conn.net) 448 put_net(auditd_conn.net); 449 if (net) 450 auditd_conn.net = get_net(net); 451 else 452 auditd_conn.net = NULL; 453 spin_unlock_irqrestore(&auditd_conn.lock, flags); 454 } 455 456 /** 457 * auditd_reset - Disconnect the auditd connection 458 * 459 * Description: 460 * Break the auditd/kauditd connection and move all the queued records into the 461 * hold queue in case auditd reconnects. 462 */ 463 static void auditd_reset(void) 464 { 465 struct sk_buff *skb; 466 467 /* if it isn't already broken, break the connection */ 468 rcu_read_lock(); 469 if (auditd_conn.pid) 470 auditd_set(0, 0, NULL); 471 rcu_read_unlock(); 472 473 /* flush all of the main and retry queues to the hold queue */ 474 while ((skb = skb_dequeue(&audit_retry_queue))) 475 kauditd_hold_skb(skb); 476 while ((skb = skb_dequeue(&audit_queue))) 477 kauditd_hold_skb(skb); 478 } 479 480 /** 481 * kauditd_print_skb - Print the audit record to the ring buffer 482 * @skb: audit record 483 * 484 * Whatever the reason, this packet may not make it to the auditd connection 485 * so write it via printk so the information isn't completely lost. 486 */ 487 static void kauditd_printk_skb(struct sk_buff *skb) 488 { 489 struct nlmsghdr *nlh = nlmsg_hdr(skb); 490 char *data = nlmsg_data(nlh); 491 492 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit()) 493 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 494 } 495 496 /** 497 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue 498 * @skb: audit record 499 * 500 * Description: 501 * This should only be used by the kauditd_thread when it fails to flush the 502 * hold queue. 503 */ 504 static void kauditd_rehold_skb(struct sk_buff *skb) 505 { 506 /* put the record back in the queue at the same place */ 507 skb_queue_head(&audit_hold_queue, skb); 508 509 /* fail the auditd connection */ 510 auditd_reset(); 511 } 512 513 /** 514 * kauditd_hold_skb - Queue an audit record, waiting for auditd 515 * @skb: audit record 516 * 517 * Description: 518 * Queue the audit record, waiting for an instance of auditd. When this 519 * function is called we haven't given up yet on sending the record, but things 520 * are not looking good. The first thing we want to do is try to write the 521 * record via printk and then see if we want to try and hold on to the record 522 * and queue it, if we have room. If we want to hold on to the record, but we 523 * don't have room, record a record lost message. 524 */ 525 static void kauditd_hold_skb(struct sk_buff *skb) 526 { 527 /* at this point it is uncertain if we will ever send this to auditd so 528 * try to send the message via printk before we go any further */ 529 kauditd_printk_skb(skb); 530 531 /* can we just silently drop the message? */ 532 if (!audit_default) { 533 kfree_skb(skb); 534 return; 535 } 536 537 /* if we have room, queue the message */ 538 if (!audit_backlog_limit || 539 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) { 540 skb_queue_tail(&audit_hold_queue, skb); 541 return; 542 } 543 544 /* we have no other options - drop the message */ 545 audit_log_lost("kauditd hold queue overflow"); 546 kfree_skb(skb); 547 548 /* fail the auditd connection */ 549 auditd_reset(); 550 } 551 552 /** 553 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd 554 * @skb: audit record 555 * 556 * Description: 557 * Not as serious as kauditd_hold_skb() as we still have a connected auditd, 558 * but for some reason we are having problems sending it audit records so 559 * queue the given record and attempt to resend. 560 */ 561 static void kauditd_retry_skb(struct sk_buff *skb) 562 { 563 /* NOTE: because records should only live in the retry queue for a 564 * short period of time, before either being sent or moved to the hold 565 * queue, we don't currently enforce a limit on this queue */ 566 skb_queue_tail(&audit_retry_queue, skb); 567 } 568 569 /** 570 * auditd_send_unicast_skb - Send a record via unicast to auditd 571 * @skb: audit record 572 * 573 * Description: 574 * Send a skb to the audit daemon, returns positive/zero values on success and 575 * negative values on failure; in all cases the skb will be consumed by this 576 * function. If the send results in -ECONNREFUSED the connection with auditd 577 * will be reset. This function may sleep so callers should not hold any locks 578 * where this would cause a problem. 579 */ 580 static int auditd_send_unicast_skb(struct sk_buff *skb) 581 { 582 int rc; 583 u32 portid; 584 struct net *net; 585 struct sock *sk; 586 587 /* NOTE: we can't call netlink_unicast while in the RCU section so 588 * take a reference to the network namespace and grab local 589 * copies of the namespace, the sock, and the portid; the 590 * namespace and sock aren't going to go away while we hold a 591 * reference and if the portid does become invalid after the RCU 592 * section netlink_unicast() should safely return an error */ 593 594 rcu_read_lock(); 595 if (!auditd_conn.pid) { 596 rcu_read_unlock(); 597 rc = -ECONNREFUSED; 598 goto err; 599 } 600 net = auditd_conn.net; 601 get_net(net); 602 sk = audit_get_sk(net); 603 portid = auditd_conn.portid; 604 rcu_read_unlock(); 605 606 rc = netlink_unicast(sk, skb, portid, 0); 607 put_net(net); 608 if (rc < 0) 609 goto err; 610 611 return rc; 612 613 err: 614 if (rc == -ECONNREFUSED) 615 auditd_reset(); 616 return rc; 617 } 618 619 /** 620 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues 621 * @sk: the sending sock 622 * @portid: the netlink destination 623 * @queue: the skb queue to process 624 * @retry_limit: limit on number of netlink unicast failures 625 * @skb_hook: per-skb hook for additional processing 626 * @err_hook: hook called if the skb fails the netlink unicast send 627 * 628 * Description: 629 * Run through the given queue and attempt to send the audit records to auditd, 630 * returns zero on success, negative values on failure. It is up to the caller 631 * to ensure that the @sk is valid for the duration of this function. 632 * 633 */ 634 static int kauditd_send_queue(struct sock *sk, u32 portid, 635 struct sk_buff_head *queue, 636 unsigned int retry_limit, 637 void (*skb_hook)(struct sk_buff *skb), 638 void (*err_hook)(struct sk_buff *skb)) 639 { 640 int rc = 0; 641 struct sk_buff *skb; 642 static unsigned int failed = 0; 643 644 /* NOTE: kauditd_thread takes care of all our locking, we just use 645 * the netlink info passed to us (e.g. sk and portid) */ 646 647 while ((skb = skb_dequeue(queue))) { 648 /* call the skb_hook for each skb we touch */ 649 if (skb_hook) 650 (*skb_hook)(skb); 651 652 /* can we send to anyone via unicast? */ 653 if (!sk) { 654 if (err_hook) 655 (*err_hook)(skb); 656 continue; 657 } 658 659 /* grab an extra skb reference in case of error */ 660 skb_get(skb); 661 rc = netlink_unicast(sk, skb, portid, 0); 662 if (rc < 0) { 663 /* fatal failure for our queue flush attempt? */ 664 if (++failed >= retry_limit || 665 rc == -ECONNREFUSED || rc == -EPERM) { 666 /* yes - error processing for the queue */ 667 sk = NULL; 668 if (err_hook) 669 (*err_hook)(skb); 670 if (!skb_hook) 671 goto out; 672 /* keep processing with the skb_hook */ 673 continue; 674 } else 675 /* no - requeue to preserve ordering */ 676 skb_queue_head(queue, skb); 677 } else { 678 /* it worked - drop the extra reference and continue */ 679 consume_skb(skb); 680 failed = 0; 681 } 682 } 683 684 out: 685 return (rc >= 0 ? 0 : rc); 686 } 687 688 /* 689 * kauditd_send_multicast_skb - Send a record to any multicast listeners 690 * @skb: audit record 691 * 692 * Description: 693 * Write a multicast message to anyone listening in the initial network 694 * namespace. This function doesn't consume an skb as might be expected since 695 * it has to copy it anyways. 696 */ 697 static void kauditd_send_multicast_skb(struct sk_buff *skb) 698 { 699 struct sk_buff *copy; 700 struct sock *sock = audit_get_sk(&init_net); 701 struct nlmsghdr *nlh; 702 703 /* NOTE: we are not taking an additional reference for init_net since 704 * we don't have to worry about it going away */ 705 706 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) 707 return; 708 709 /* 710 * The seemingly wasteful skb_copy() rather than bumping the refcount 711 * using skb_get() is necessary because non-standard mods are made to 712 * the skb by the original kaudit unicast socket send routine. The 713 * existing auditd daemon assumes this breakage. Fixing this would 714 * require co-ordinating a change in the established protocol between 715 * the kaudit kernel subsystem and the auditd userspace code. There is 716 * no reason for new multicast clients to continue with this 717 * non-compliance. 718 */ 719 copy = skb_copy(skb, GFP_KERNEL); 720 if (!copy) 721 return; 722 nlh = nlmsg_hdr(copy); 723 nlh->nlmsg_len = skb->len; 724 725 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL); 726 } 727 728 /** 729 * kauditd_thread - Worker thread to send audit records to userspace 730 * @dummy: unused 731 */ 732 static int kauditd_thread(void *dummy) 733 { 734 int rc; 735 u32 portid = 0; 736 struct net *net = NULL; 737 struct sock *sk = NULL; 738 739 #define UNICAST_RETRIES 5 740 741 set_freezable(); 742 while (!kthread_should_stop()) { 743 /* NOTE: see the lock comments in auditd_send_unicast_skb() */ 744 rcu_read_lock(); 745 if (!auditd_conn.pid) { 746 rcu_read_unlock(); 747 goto main_queue; 748 } 749 net = auditd_conn.net; 750 get_net(net); 751 sk = audit_get_sk(net); 752 portid = auditd_conn.portid; 753 rcu_read_unlock(); 754 755 /* attempt to flush the hold queue */ 756 rc = kauditd_send_queue(sk, portid, 757 &audit_hold_queue, UNICAST_RETRIES, 758 NULL, kauditd_rehold_skb); 759 if (rc < 0) { 760 sk = NULL; 761 goto main_queue; 762 } 763 764 /* attempt to flush the retry queue */ 765 rc = kauditd_send_queue(sk, portid, 766 &audit_retry_queue, UNICAST_RETRIES, 767 NULL, kauditd_hold_skb); 768 if (rc < 0) { 769 sk = NULL; 770 goto main_queue; 771 } 772 773 main_queue: 774 /* process the main queue - do the multicast send and attempt 775 * unicast, dump failed record sends to the retry queue; if 776 * sk == NULL due to previous failures we will just do the 777 * multicast send and move the record to the retry queue */ 778 kauditd_send_queue(sk, portid, &audit_queue, 1, 779 kauditd_send_multicast_skb, 780 kauditd_retry_skb); 781 782 /* drop our netns reference, no auditd sends past this line */ 783 if (net) { 784 put_net(net); 785 net = NULL; 786 } 787 sk = NULL; 788 789 /* we have processed all the queues so wake everyone */ 790 wake_up(&audit_backlog_wait); 791 792 /* NOTE: we want to wake up if there is anything on the queue, 793 * regardless of if an auditd is connected, as we need to 794 * do the multicast send and rotate records from the 795 * main queue to the retry/hold queues */ 796 wait_event_freezable(kauditd_wait, 797 (skb_queue_len(&audit_queue) ? 1 : 0)); 798 } 799 800 return 0; 801 } 802 803 int audit_send_list(void *_dest) 804 { 805 struct audit_netlink_list *dest = _dest; 806 struct sk_buff *skb; 807 struct sock *sk = audit_get_sk(dest->net); 808 809 /* wait for parent to finish and send an ACK */ 810 mutex_lock(&audit_cmd_mutex); 811 mutex_unlock(&audit_cmd_mutex); 812 813 while ((skb = __skb_dequeue(&dest->q)) != NULL) 814 netlink_unicast(sk, skb, dest->portid, 0); 815 816 put_net(dest->net); 817 kfree(dest); 818 819 return 0; 820 } 821 822 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done, 823 int multi, const void *payload, int size) 824 { 825 struct sk_buff *skb; 826 struct nlmsghdr *nlh; 827 void *data; 828 int flags = multi ? NLM_F_MULTI : 0; 829 int t = done ? NLMSG_DONE : type; 830 831 skb = nlmsg_new(size, GFP_KERNEL); 832 if (!skb) 833 return NULL; 834 835 nlh = nlmsg_put(skb, portid, seq, t, size, flags); 836 if (!nlh) 837 goto out_kfree_skb; 838 data = nlmsg_data(nlh); 839 memcpy(data, payload, size); 840 return skb; 841 842 out_kfree_skb: 843 kfree_skb(skb); 844 return NULL; 845 } 846 847 static int audit_send_reply_thread(void *arg) 848 { 849 struct audit_reply *reply = (struct audit_reply *)arg; 850 struct sock *sk = audit_get_sk(reply->net); 851 852 mutex_lock(&audit_cmd_mutex); 853 mutex_unlock(&audit_cmd_mutex); 854 855 /* Ignore failure. It'll only happen if the sender goes away, 856 because our timeout is set to infinite. */ 857 netlink_unicast(sk, reply->skb, reply->portid, 0); 858 put_net(reply->net); 859 kfree(reply); 860 return 0; 861 } 862 863 /** 864 * audit_send_reply - send an audit reply message via netlink 865 * @request_skb: skb of request we are replying to (used to target the reply) 866 * @seq: sequence number 867 * @type: audit message type 868 * @done: done (last) flag 869 * @multi: multi-part message flag 870 * @payload: payload data 871 * @size: payload size 872 * 873 * Allocates an skb, builds the netlink message, and sends it to the port id. 874 * No failure notifications. 875 */ 876 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 877 int multi, const void *payload, int size) 878 { 879 u32 portid = NETLINK_CB(request_skb).portid; 880 struct net *net = sock_net(NETLINK_CB(request_skb).sk); 881 struct sk_buff *skb; 882 struct task_struct *tsk; 883 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), 884 GFP_KERNEL); 885 886 if (!reply) 887 return; 888 889 skb = audit_make_reply(portid, seq, type, done, multi, payload, size); 890 if (!skb) 891 goto out; 892 893 reply->net = get_net(net); 894 reply->portid = portid; 895 reply->skb = skb; 896 897 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 898 if (!IS_ERR(tsk)) 899 return; 900 kfree_skb(skb); 901 out: 902 kfree(reply); 903 } 904 905 /* 906 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 907 * control messages. 908 */ 909 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 910 { 911 int err = 0; 912 913 /* Only support initial user namespace for now. */ 914 /* 915 * We return ECONNREFUSED because it tricks userspace into thinking 916 * that audit was not configured into the kernel. Lots of users 917 * configure their PAM stack (because that's what the distro does) 918 * to reject login if unable to send messages to audit. If we return 919 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 920 * configured in and will let login proceed. If we return EPERM 921 * userspace will reject all logins. This should be removed when we 922 * support non init namespaces!! 923 */ 924 if (current_user_ns() != &init_user_ns) 925 return -ECONNREFUSED; 926 927 switch (msg_type) { 928 case AUDIT_LIST: 929 case AUDIT_ADD: 930 case AUDIT_DEL: 931 return -EOPNOTSUPP; 932 case AUDIT_GET: 933 case AUDIT_SET: 934 case AUDIT_GET_FEATURE: 935 case AUDIT_SET_FEATURE: 936 case AUDIT_LIST_RULES: 937 case AUDIT_ADD_RULE: 938 case AUDIT_DEL_RULE: 939 case AUDIT_SIGNAL_INFO: 940 case AUDIT_TTY_GET: 941 case AUDIT_TTY_SET: 942 case AUDIT_TRIM: 943 case AUDIT_MAKE_EQUIV: 944 /* Only support auditd and auditctl in initial pid namespace 945 * for now. */ 946 if (task_active_pid_ns(current) != &init_pid_ns) 947 return -EPERM; 948 949 if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) 950 err = -EPERM; 951 break; 952 case AUDIT_USER: 953 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 954 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 955 if (!netlink_capable(skb, CAP_AUDIT_WRITE)) 956 err = -EPERM; 957 break; 958 default: /* bad msg */ 959 err = -EINVAL; 960 } 961 962 return err; 963 } 964 965 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type) 966 { 967 uid_t uid = from_kuid(&init_user_ns, current_uid()); 968 pid_t pid = task_tgid_nr(current); 969 970 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 971 *ab = NULL; 972 return; 973 } 974 975 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 976 if (unlikely(!*ab)) 977 return; 978 audit_log_format(*ab, "pid=%d uid=%u", pid, uid); 979 audit_log_session_info(*ab); 980 audit_log_task_context(*ab); 981 } 982 983 int is_audit_feature_set(int i) 984 { 985 return af.features & AUDIT_FEATURE_TO_MASK(i); 986 } 987 988 989 static int audit_get_feature(struct sk_buff *skb) 990 { 991 u32 seq; 992 993 seq = nlmsg_hdr(skb)->nlmsg_seq; 994 995 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); 996 997 return 0; 998 } 999 1000 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 1001 u32 old_lock, u32 new_lock, int res) 1002 { 1003 struct audit_buffer *ab; 1004 1005 if (audit_enabled == AUDIT_OFF) 1006 return; 1007 1008 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE); 1009 audit_log_task_info(ab, current); 1010 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 1011 audit_feature_names[which], !!old_feature, !!new_feature, 1012 !!old_lock, !!new_lock, res); 1013 audit_log_end(ab); 1014 } 1015 1016 static int audit_set_feature(struct sk_buff *skb) 1017 { 1018 struct audit_features *uaf; 1019 int i; 1020 1021 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); 1022 uaf = nlmsg_data(nlmsg_hdr(skb)); 1023 1024 /* if there is ever a version 2 we should handle that here */ 1025 1026 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1027 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1028 u32 old_feature, new_feature, old_lock, new_lock; 1029 1030 /* if we are not changing this feature, move along */ 1031 if (!(feature & uaf->mask)) 1032 continue; 1033 1034 old_feature = af.features & feature; 1035 new_feature = uaf->features & feature; 1036 new_lock = (uaf->lock | af.lock) & feature; 1037 old_lock = af.lock & feature; 1038 1039 /* are we changing a locked feature? */ 1040 if (old_lock && (new_feature != old_feature)) { 1041 audit_log_feature_change(i, old_feature, new_feature, 1042 old_lock, new_lock, 0); 1043 return -EPERM; 1044 } 1045 } 1046 /* nothing invalid, do the changes */ 1047 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1048 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1049 u32 old_feature, new_feature, old_lock, new_lock; 1050 1051 /* if we are not changing this feature, move along */ 1052 if (!(feature & uaf->mask)) 1053 continue; 1054 1055 old_feature = af.features & feature; 1056 new_feature = uaf->features & feature; 1057 old_lock = af.lock & feature; 1058 new_lock = (uaf->lock | af.lock) & feature; 1059 1060 if (new_feature != old_feature) 1061 audit_log_feature_change(i, old_feature, new_feature, 1062 old_lock, new_lock, 1); 1063 1064 if (new_feature) 1065 af.features |= feature; 1066 else 1067 af.features &= ~feature; 1068 af.lock |= new_lock; 1069 } 1070 1071 return 0; 1072 } 1073 1074 static int audit_replace(pid_t pid) 1075 { 1076 struct sk_buff *skb; 1077 1078 skb = audit_make_reply(0, 0, AUDIT_REPLACE, 0, 0, &pid, sizeof(pid)); 1079 if (!skb) 1080 return -ENOMEM; 1081 return auditd_send_unicast_skb(skb); 1082 } 1083 1084 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 1085 { 1086 u32 seq; 1087 void *data; 1088 int err; 1089 struct audit_buffer *ab; 1090 u16 msg_type = nlh->nlmsg_type; 1091 struct audit_sig_info *sig_data; 1092 char *ctx = NULL; 1093 u32 len; 1094 1095 err = audit_netlink_ok(skb, msg_type); 1096 if (err) 1097 return err; 1098 1099 seq = nlh->nlmsg_seq; 1100 data = nlmsg_data(nlh); 1101 1102 switch (msg_type) { 1103 case AUDIT_GET: { 1104 struct audit_status s; 1105 memset(&s, 0, sizeof(s)); 1106 s.enabled = audit_enabled; 1107 s.failure = audit_failure; 1108 rcu_read_lock(); 1109 s.pid = auditd_conn.pid; 1110 rcu_read_unlock(); 1111 s.rate_limit = audit_rate_limit; 1112 s.backlog_limit = audit_backlog_limit; 1113 s.lost = atomic_read(&audit_lost); 1114 s.backlog = skb_queue_len(&audit_queue); 1115 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; 1116 s.backlog_wait_time = audit_backlog_wait_time; 1117 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 1118 break; 1119 } 1120 case AUDIT_SET: { 1121 struct audit_status s; 1122 memset(&s, 0, sizeof(s)); 1123 /* guard against past and future API changes */ 1124 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 1125 if (s.mask & AUDIT_STATUS_ENABLED) { 1126 err = audit_set_enabled(s.enabled); 1127 if (err < 0) 1128 return err; 1129 } 1130 if (s.mask & AUDIT_STATUS_FAILURE) { 1131 err = audit_set_failure(s.failure); 1132 if (err < 0) 1133 return err; 1134 } 1135 if (s.mask & AUDIT_STATUS_PID) { 1136 /* NOTE: we are using task_tgid_vnr() below because 1137 * the s.pid value is relative to the namespace 1138 * of the caller; at present this doesn't matter 1139 * much since you can really only run auditd 1140 * from the initial pid namespace, but something 1141 * to keep in mind if this changes */ 1142 int new_pid = s.pid; 1143 pid_t auditd_pid; 1144 pid_t requesting_pid = task_tgid_vnr(current); 1145 1146 /* test the auditd connection */ 1147 audit_replace(requesting_pid); 1148 1149 rcu_read_lock(); 1150 auditd_pid = auditd_conn.pid; 1151 /* only the current auditd can unregister itself */ 1152 if ((!new_pid) && (requesting_pid != auditd_pid)) { 1153 rcu_read_unlock(); 1154 audit_log_config_change("audit_pid", new_pid, 1155 auditd_pid, 0); 1156 return -EACCES; 1157 } 1158 /* replacing a healthy auditd is not allowed */ 1159 if (auditd_pid && new_pid) { 1160 rcu_read_unlock(); 1161 audit_log_config_change("audit_pid", new_pid, 1162 auditd_pid, 0); 1163 return -EEXIST; 1164 } 1165 rcu_read_unlock(); 1166 1167 if (audit_enabled != AUDIT_OFF) 1168 audit_log_config_change("audit_pid", new_pid, 1169 auditd_pid, 1); 1170 1171 if (new_pid) { 1172 /* register a new auditd connection */ 1173 auditd_set(new_pid, 1174 NETLINK_CB(skb).portid, 1175 sock_net(NETLINK_CB(skb).sk)); 1176 /* try to process any backlog */ 1177 wake_up_interruptible(&kauditd_wait); 1178 } else 1179 /* unregister the auditd connection */ 1180 auditd_reset(); 1181 } 1182 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 1183 err = audit_set_rate_limit(s.rate_limit); 1184 if (err < 0) 1185 return err; 1186 } 1187 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 1188 err = audit_set_backlog_limit(s.backlog_limit); 1189 if (err < 0) 1190 return err; 1191 } 1192 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 1193 if (sizeof(s) > (size_t)nlh->nlmsg_len) 1194 return -EINVAL; 1195 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 1196 return -EINVAL; 1197 err = audit_set_backlog_wait_time(s.backlog_wait_time); 1198 if (err < 0) 1199 return err; 1200 } 1201 if (s.mask == AUDIT_STATUS_LOST) { 1202 u32 lost = atomic_xchg(&audit_lost, 0); 1203 1204 audit_log_config_change("lost", 0, lost, 1); 1205 return lost; 1206 } 1207 break; 1208 } 1209 case AUDIT_GET_FEATURE: 1210 err = audit_get_feature(skb); 1211 if (err) 1212 return err; 1213 break; 1214 case AUDIT_SET_FEATURE: 1215 err = audit_set_feature(skb); 1216 if (err) 1217 return err; 1218 break; 1219 case AUDIT_USER: 1220 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1221 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1222 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 1223 return 0; 1224 1225 err = audit_filter(msg_type, AUDIT_FILTER_USER); 1226 if (err == 1) { /* match or error */ 1227 err = 0; 1228 if (msg_type == AUDIT_USER_TTY) { 1229 err = tty_audit_push(); 1230 if (err) 1231 break; 1232 } 1233 audit_log_common_recv_msg(&ab, msg_type); 1234 if (msg_type != AUDIT_USER_TTY) 1235 audit_log_format(ab, " msg='%.*s'", 1236 AUDIT_MESSAGE_TEXT_MAX, 1237 (char *)data); 1238 else { 1239 int size; 1240 1241 audit_log_format(ab, " data="); 1242 size = nlmsg_len(nlh); 1243 if (size > 0 && 1244 ((unsigned char *)data)[size - 1] == '\0') 1245 size--; 1246 audit_log_n_untrustedstring(ab, data, size); 1247 } 1248 audit_set_portid(ab, NETLINK_CB(skb).portid); 1249 audit_log_end(ab); 1250 } 1251 break; 1252 case AUDIT_ADD_RULE: 1253 case AUDIT_DEL_RULE: 1254 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 1255 return -EINVAL; 1256 if (audit_enabled == AUDIT_LOCKED) { 1257 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1258 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled); 1259 audit_log_end(ab); 1260 return -EPERM; 1261 } 1262 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid, 1263 seq, data, nlmsg_len(nlh)); 1264 break; 1265 case AUDIT_LIST_RULES: 1266 err = audit_list_rules_send(skb, seq); 1267 break; 1268 case AUDIT_TRIM: 1269 audit_trim_trees(); 1270 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1271 audit_log_format(ab, " op=trim res=1"); 1272 audit_log_end(ab); 1273 break; 1274 case AUDIT_MAKE_EQUIV: { 1275 void *bufp = data; 1276 u32 sizes[2]; 1277 size_t msglen = nlmsg_len(nlh); 1278 char *old, *new; 1279 1280 err = -EINVAL; 1281 if (msglen < 2 * sizeof(u32)) 1282 break; 1283 memcpy(sizes, bufp, 2 * sizeof(u32)); 1284 bufp += 2 * sizeof(u32); 1285 msglen -= 2 * sizeof(u32); 1286 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 1287 if (IS_ERR(old)) { 1288 err = PTR_ERR(old); 1289 break; 1290 } 1291 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 1292 if (IS_ERR(new)) { 1293 err = PTR_ERR(new); 1294 kfree(old); 1295 break; 1296 } 1297 /* OK, here comes... */ 1298 err = audit_tag_tree(old, new); 1299 1300 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1301 1302 audit_log_format(ab, " op=make_equiv old="); 1303 audit_log_untrustedstring(ab, old); 1304 audit_log_format(ab, " new="); 1305 audit_log_untrustedstring(ab, new); 1306 audit_log_format(ab, " res=%d", !err); 1307 audit_log_end(ab); 1308 kfree(old); 1309 kfree(new); 1310 break; 1311 } 1312 case AUDIT_SIGNAL_INFO: 1313 len = 0; 1314 if (audit_sig_sid) { 1315 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 1316 if (err) 1317 return err; 1318 } 1319 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 1320 if (!sig_data) { 1321 if (audit_sig_sid) 1322 security_release_secctx(ctx, len); 1323 return -ENOMEM; 1324 } 1325 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 1326 sig_data->pid = audit_sig_pid; 1327 if (audit_sig_sid) { 1328 memcpy(sig_data->ctx, ctx, len); 1329 security_release_secctx(ctx, len); 1330 } 1331 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 1332 sig_data, sizeof(*sig_data) + len); 1333 kfree(sig_data); 1334 break; 1335 case AUDIT_TTY_GET: { 1336 struct audit_tty_status s; 1337 unsigned int t; 1338 1339 t = READ_ONCE(current->signal->audit_tty); 1340 s.enabled = t & AUDIT_TTY_ENABLE; 1341 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1342 1343 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1344 break; 1345 } 1346 case AUDIT_TTY_SET: { 1347 struct audit_tty_status s, old; 1348 struct audit_buffer *ab; 1349 unsigned int t; 1350 1351 memset(&s, 0, sizeof(s)); 1352 /* guard against past and future API changes */ 1353 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 1354 /* check if new data is valid */ 1355 if ((s.enabled != 0 && s.enabled != 1) || 1356 (s.log_passwd != 0 && s.log_passwd != 1)) 1357 err = -EINVAL; 1358 1359 if (err) 1360 t = READ_ONCE(current->signal->audit_tty); 1361 else { 1362 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD); 1363 t = xchg(¤t->signal->audit_tty, t); 1364 } 1365 old.enabled = t & AUDIT_TTY_ENABLE; 1366 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1367 1368 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1369 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1370 " old-log_passwd=%d new-log_passwd=%d res=%d", 1371 old.enabled, s.enabled, old.log_passwd, 1372 s.log_passwd, !err); 1373 audit_log_end(ab); 1374 break; 1375 } 1376 default: 1377 err = -EINVAL; 1378 break; 1379 } 1380 1381 return err < 0 ? err : 0; 1382 } 1383 1384 /* 1385 * Get message from skb. Each message is processed by audit_receive_msg. 1386 * Malformed skbs with wrong length are discarded silently. 1387 */ 1388 static void audit_receive_skb(struct sk_buff *skb) 1389 { 1390 struct nlmsghdr *nlh; 1391 /* 1392 * len MUST be signed for nlmsg_next to be able to dec it below 0 1393 * if the nlmsg_len was not aligned 1394 */ 1395 int len; 1396 int err; 1397 1398 nlh = nlmsg_hdr(skb); 1399 len = skb->len; 1400 1401 while (nlmsg_ok(nlh, len)) { 1402 err = audit_receive_msg(skb, nlh); 1403 /* if err or if this message says it wants a response */ 1404 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 1405 netlink_ack(skb, nlh, err); 1406 1407 nlh = nlmsg_next(nlh, &len); 1408 } 1409 } 1410 1411 /* Receive messages from netlink socket. */ 1412 static void audit_receive(struct sk_buff *skb) 1413 { 1414 mutex_lock(&audit_cmd_mutex); 1415 audit_receive_skb(skb); 1416 mutex_unlock(&audit_cmd_mutex); 1417 } 1418 1419 /* Run custom bind function on netlink socket group connect or bind requests. */ 1420 static int audit_bind(struct net *net, int group) 1421 { 1422 if (!capable(CAP_AUDIT_READ)) 1423 return -EPERM; 1424 1425 return 0; 1426 } 1427 1428 static int __net_init audit_net_init(struct net *net) 1429 { 1430 struct netlink_kernel_cfg cfg = { 1431 .input = audit_receive, 1432 .bind = audit_bind, 1433 .flags = NL_CFG_F_NONROOT_RECV, 1434 .groups = AUDIT_NLGRP_MAX, 1435 }; 1436 1437 struct audit_net *aunet = net_generic(net, audit_net_id); 1438 1439 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1440 if (aunet->sk == NULL) { 1441 audit_panic("cannot initialize netlink socket in namespace"); 1442 return -ENOMEM; 1443 } 1444 aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1445 1446 return 0; 1447 } 1448 1449 static void __net_exit audit_net_exit(struct net *net) 1450 { 1451 struct audit_net *aunet = net_generic(net, audit_net_id); 1452 1453 rcu_read_lock(); 1454 if (net == auditd_conn.net) 1455 auditd_reset(); 1456 rcu_read_unlock(); 1457 1458 netlink_kernel_release(aunet->sk); 1459 } 1460 1461 static struct pernet_operations audit_net_ops __net_initdata = { 1462 .init = audit_net_init, 1463 .exit = audit_net_exit, 1464 .id = &audit_net_id, 1465 .size = sizeof(struct audit_net), 1466 }; 1467 1468 /* Initialize audit support at boot time. */ 1469 static int __init audit_init(void) 1470 { 1471 int i; 1472 1473 if (audit_initialized == AUDIT_DISABLED) 1474 return 0; 1475 1476 memset(&auditd_conn, 0, sizeof(auditd_conn)); 1477 spin_lock_init(&auditd_conn.lock); 1478 1479 skb_queue_head_init(&audit_queue); 1480 skb_queue_head_init(&audit_retry_queue); 1481 skb_queue_head_init(&audit_hold_queue); 1482 1483 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1484 INIT_LIST_HEAD(&audit_inode_hash[i]); 1485 1486 pr_info("initializing netlink subsys (%s)\n", 1487 audit_default ? "enabled" : "disabled"); 1488 register_pernet_subsys(&audit_net_ops); 1489 1490 audit_initialized = AUDIT_INITIALIZED; 1491 audit_enabled = audit_default; 1492 audit_ever_enabled |= !!audit_default; 1493 1494 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 1495 if (IS_ERR(kauditd_task)) { 1496 int err = PTR_ERR(kauditd_task); 1497 panic("audit: failed to start the kauditd thread (%d)\n", err); 1498 } 1499 1500 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, 1501 "state=initialized audit_enabled=%u res=1", 1502 audit_enabled); 1503 1504 return 0; 1505 } 1506 __initcall(audit_init); 1507 1508 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ 1509 static int __init audit_enable(char *str) 1510 { 1511 audit_default = !!simple_strtol(str, NULL, 0); 1512 if (!audit_default) 1513 audit_initialized = AUDIT_DISABLED; 1514 1515 pr_info("%s\n", audit_default ? 1516 "enabled (after initialization)" : "disabled (until reboot)"); 1517 1518 return 1; 1519 } 1520 __setup("audit=", audit_enable); 1521 1522 /* Process kernel command-line parameter at boot time. 1523 * audit_backlog_limit=<n> */ 1524 static int __init audit_backlog_limit_set(char *str) 1525 { 1526 u32 audit_backlog_limit_arg; 1527 1528 pr_info("audit_backlog_limit: "); 1529 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1530 pr_cont("using default of %u, unable to parse %s\n", 1531 audit_backlog_limit, str); 1532 return 1; 1533 } 1534 1535 audit_backlog_limit = audit_backlog_limit_arg; 1536 pr_cont("%d\n", audit_backlog_limit); 1537 1538 return 1; 1539 } 1540 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1541 1542 static void audit_buffer_free(struct audit_buffer *ab) 1543 { 1544 unsigned long flags; 1545 1546 if (!ab) 1547 return; 1548 1549 kfree_skb(ab->skb); 1550 spin_lock_irqsave(&audit_freelist_lock, flags); 1551 if (audit_freelist_count > AUDIT_MAXFREE) 1552 kfree(ab); 1553 else { 1554 audit_freelist_count++; 1555 list_add(&ab->list, &audit_freelist); 1556 } 1557 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1558 } 1559 1560 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, 1561 gfp_t gfp_mask, int type) 1562 { 1563 unsigned long flags; 1564 struct audit_buffer *ab = NULL; 1565 struct nlmsghdr *nlh; 1566 1567 spin_lock_irqsave(&audit_freelist_lock, flags); 1568 if (!list_empty(&audit_freelist)) { 1569 ab = list_entry(audit_freelist.next, 1570 struct audit_buffer, list); 1571 list_del(&ab->list); 1572 --audit_freelist_count; 1573 } 1574 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1575 1576 if (!ab) { 1577 ab = kmalloc(sizeof(*ab), gfp_mask); 1578 if (!ab) 1579 goto err; 1580 } 1581 1582 ab->ctx = ctx; 1583 ab->gfp_mask = gfp_mask; 1584 1585 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1586 if (!ab->skb) 1587 goto err; 1588 1589 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0); 1590 if (!nlh) 1591 goto out_kfree_skb; 1592 1593 return ab; 1594 1595 out_kfree_skb: 1596 kfree_skb(ab->skb); 1597 ab->skb = NULL; 1598 err: 1599 audit_buffer_free(ab); 1600 return NULL; 1601 } 1602 1603 /** 1604 * audit_serial - compute a serial number for the audit record 1605 * 1606 * Compute a serial number for the audit record. Audit records are 1607 * written to user-space as soon as they are generated, so a complete 1608 * audit record may be written in several pieces. The timestamp of the 1609 * record and this serial number are used by the user-space tools to 1610 * determine which pieces belong to the same audit record. The 1611 * (timestamp,serial) tuple is unique for each syscall and is live from 1612 * syscall entry to syscall exit. 1613 * 1614 * NOTE: Another possibility is to store the formatted records off the 1615 * audit context (for those records that have a context), and emit them 1616 * all at syscall exit. However, this could delay the reporting of 1617 * significant errors until syscall exit (or never, if the system 1618 * halts). 1619 */ 1620 unsigned int audit_serial(void) 1621 { 1622 static atomic_t serial = ATOMIC_INIT(0); 1623 1624 return atomic_add_return(1, &serial); 1625 } 1626 1627 static inline void audit_get_stamp(struct audit_context *ctx, 1628 struct timespec *t, unsigned int *serial) 1629 { 1630 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1631 *t = CURRENT_TIME; 1632 *serial = audit_serial(); 1633 } 1634 } 1635 1636 /** 1637 * audit_log_start - obtain an audit buffer 1638 * @ctx: audit_context (may be NULL) 1639 * @gfp_mask: type of allocation 1640 * @type: audit message type 1641 * 1642 * Returns audit_buffer pointer on success or NULL on error. 1643 * 1644 * Obtain an audit buffer. This routine does locking to obtain the 1645 * audit buffer, but then no locking is required for calls to 1646 * audit_log_*format. If the task (ctx) is a task that is currently in a 1647 * syscall, then the syscall is marked as auditable and an audit record 1648 * will be written at syscall exit. If there is no associated task, then 1649 * task context (ctx) should be NULL. 1650 */ 1651 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1652 int type) 1653 { 1654 struct audit_buffer *ab; 1655 struct timespec t; 1656 unsigned int uninitialized_var(serial); 1657 1658 if (audit_initialized != AUDIT_INITIALIZED) 1659 return NULL; 1660 1661 if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE))) 1662 return NULL; 1663 1664 /* NOTE: don't ever fail/sleep on these two conditions: 1665 * 1. auditd generated record - since we need auditd to drain the 1666 * queue; also, when we are checking for auditd, compare PIDs using 1667 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg() 1668 * using a PID anchored in the caller's namespace 1669 * 2. generator holding the audit_cmd_mutex - we don't want to block 1670 * while holding the mutex */ 1671 if (!(auditd_test_task(current) || 1672 (current == __mutex_owner(&audit_cmd_mutex)))) { 1673 long stime = audit_backlog_wait_time; 1674 1675 while (audit_backlog_limit && 1676 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1677 /* wake kauditd to try and flush the queue */ 1678 wake_up_interruptible(&kauditd_wait); 1679 1680 /* sleep if we are allowed and we haven't exhausted our 1681 * backlog wait limit */ 1682 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) { 1683 DECLARE_WAITQUEUE(wait, current); 1684 1685 add_wait_queue_exclusive(&audit_backlog_wait, 1686 &wait); 1687 set_current_state(TASK_UNINTERRUPTIBLE); 1688 stime = schedule_timeout(stime); 1689 remove_wait_queue(&audit_backlog_wait, &wait); 1690 } else { 1691 if (audit_rate_check() && printk_ratelimit()) 1692 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1693 skb_queue_len(&audit_queue), 1694 audit_backlog_limit); 1695 audit_log_lost("backlog limit exceeded"); 1696 return NULL; 1697 } 1698 } 1699 } 1700 1701 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1702 if (!ab) { 1703 audit_log_lost("out of memory in audit_log_start"); 1704 return NULL; 1705 } 1706 1707 audit_get_stamp(ab->ctx, &t, &serial); 1708 audit_log_format(ab, "audit(%lu.%03lu:%u): ", 1709 t.tv_sec, t.tv_nsec/1000000, serial); 1710 1711 return ab; 1712 } 1713 1714 /** 1715 * audit_expand - expand skb in the audit buffer 1716 * @ab: audit_buffer 1717 * @extra: space to add at tail of the skb 1718 * 1719 * Returns 0 (no space) on failed expansion, or available space if 1720 * successful. 1721 */ 1722 static inline int audit_expand(struct audit_buffer *ab, int extra) 1723 { 1724 struct sk_buff *skb = ab->skb; 1725 int oldtail = skb_tailroom(skb); 1726 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1727 int newtail = skb_tailroom(skb); 1728 1729 if (ret < 0) { 1730 audit_log_lost("out of memory in audit_expand"); 1731 return 0; 1732 } 1733 1734 skb->truesize += newtail - oldtail; 1735 return newtail; 1736 } 1737 1738 /* 1739 * Format an audit message into the audit buffer. If there isn't enough 1740 * room in the audit buffer, more room will be allocated and vsnprint 1741 * will be called a second time. Currently, we assume that a printk 1742 * can't format message larger than 1024 bytes, so we don't either. 1743 */ 1744 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1745 va_list args) 1746 { 1747 int len, avail; 1748 struct sk_buff *skb; 1749 va_list args2; 1750 1751 if (!ab) 1752 return; 1753 1754 BUG_ON(!ab->skb); 1755 skb = ab->skb; 1756 avail = skb_tailroom(skb); 1757 if (avail == 0) { 1758 avail = audit_expand(ab, AUDIT_BUFSIZ); 1759 if (!avail) 1760 goto out; 1761 } 1762 va_copy(args2, args); 1763 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1764 if (len >= avail) { 1765 /* The printk buffer is 1024 bytes long, so if we get 1766 * here and AUDIT_BUFSIZ is at least 1024, then we can 1767 * log everything that printk could have logged. */ 1768 avail = audit_expand(ab, 1769 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1770 if (!avail) 1771 goto out_va_end; 1772 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1773 } 1774 if (len > 0) 1775 skb_put(skb, len); 1776 out_va_end: 1777 va_end(args2); 1778 out: 1779 return; 1780 } 1781 1782 /** 1783 * audit_log_format - format a message into the audit buffer. 1784 * @ab: audit_buffer 1785 * @fmt: format string 1786 * @...: optional parameters matching @fmt string 1787 * 1788 * All the work is done in audit_log_vformat. 1789 */ 1790 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1791 { 1792 va_list args; 1793 1794 if (!ab) 1795 return; 1796 va_start(args, fmt); 1797 audit_log_vformat(ab, fmt, args); 1798 va_end(args); 1799 } 1800 1801 /** 1802 * audit_log_hex - convert a buffer to hex and append it to the audit skb 1803 * @ab: the audit_buffer 1804 * @buf: buffer to convert to hex 1805 * @len: length of @buf to be converted 1806 * 1807 * No return value; failure to expand is silently ignored. 1808 * 1809 * This function will take the passed buf and convert it into a string of 1810 * ascii hex digits. The new string is placed onto the skb. 1811 */ 1812 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1813 size_t len) 1814 { 1815 int i, avail, new_len; 1816 unsigned char *ptr; 1817 struct sk_buff *skb; 1818 1819 if (!ab) 1820 return; 1821 1822 BUG_ON(!ab->skb); 1823 skb = ab->skb; 1824 avail = skb_tailroom(skb); 1825 new_len = len<<1; 1826 if (new_len >= avail) { 1827 /* Round the buffer request up to the next multiple */ 1828 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1829 avail = audit_expand(ab, new_len); 1830 if (!avail) 1831 return; 1832 } 1833 1834 ptr = skb_tail_pointer(skb); 1835 for (i = 0; i < len; i++) 1836 ptr = hex_byte_pack_upper(ptr, buf[i]); 1837 *ptr = 0; 1838 skb_put(skb, len << 1); /* new string is twice the old string */ 1839 } 1840 1841 /* 1842 * Format a string of no more than slen characters into the audit buffer, 1843 * enclosed in quote marks. 1844 */ 1845 void audit_log_n_string(struct audit_buffer *ab, const char *string, 1846 size_t slen) 1847 { 1848 int avail, new_len; 1849 unsigned char *ptr; 1850 struct sk_buff *skb; 1851 1852 if (!ab) 1853 return; 1854 1855 BUG_ON(!ab->skb); 1856 skb = ab->skb; 1857 avail = skb_tailroom(skb); 1858 new_len = slen + 3; /* enclosing quotes + null terminator */ 1859 if (new_len > avail) { 1860 avail = audit_expand(ab, new_len); 1861 if (!avail) 1862 return; 1863 } 1864 ptr = skb_tail_pointer(skb); 1865 *ptr++ = '"'; 1866 memcpy(ptr, string, slen); 1867 ptr += slen; 1868 *ptr++ = '"'; 1869 *ptr = 0; 1870 skb_put(skb, slen + 2); /* don't include null terminator */ 1871 } 1872 1873 /** 1874 * audit_string_contains_control - does a string need to be logged in hex 1875 * @string: string to be checked 1876 * @len: max length of the string to check 1877 */ 1878 bool audit_string_contains_control(const char *string, size_t len) 1879 { 1880 const unsigned char *p; 1881 for (p = string; p < (const unsigned char *)string + len; p++) { 1882 if (*p == '"' || *p < 0x21 || *p > 0x7e) 1883 return true; 1884 } 1885 return false; 1886 } 1887 1888 /** 1889 * audit_log_n_untrustedstring - log a string that may contain random characters 1890 * @ab: audit_buffer 1891 * @len: length of string (not including trailing null) 1892 * @string: string to be logged 1893 * 1894 * This code will escape a string that is passed to it if the string 1895 * contains a control character, unprintable character, double quote mark, 1896 * or a space. Unescaped strings will start and end with a double quote mark. 1897 * Strings that are escaped are printed in hex (2 digits per char). 1898 * 1899 * The caller specifies the number of characters in the string to log, which may 1900 * or may not be the entire string. 1901 */ 1902 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 1903 size_t len) 1904 { 1905 if (audit_string_contains_control(string, len)) 1906 audit_log_n_hex(ab, string, len); 1907 else 1908 audit_log_n_string(ab, string, len); 1909 } 1910 1911 /** 1912 * audit_log_untrustedstring - log a string that may contain random characters 1913 * @ab: audit_buffer 1914 * @string: string to be logged 1915 * 1916 * Same as audit_log_n_untrustedstring(), except that strlen is used to 1917 * determine string length. 1918 */ 1919 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 1920 { 1921 audit_log_n_untrustedstring(ab, string, strlen(string)); 1922 } 1923 1924 /* This is a helper-function to print the escaped d_path */ 1925 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 1926 const struct path *path) 1927 { 1928 char *p, *pathname; 1929 1930 if (prefix) 1931 audit_log_format(ab, "%s", prefix); 1932 1933 /* We will allow 11 spaces for ' (deleted)' to be appended */ 1934 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 1935 if (!pathname) { 1936 audit_log_string(ab, "<no_memory>"); 1937 return; 1938 } 1939 p = d_path(path, pathname, PATH_MAX+11); 1940 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 1941 /* FIXME: can we save some information here? */ 1942 audit_log_string(ab, "<too_long>"); 1943 } else 1944 audit_log_untrustedstring(ab, p); 1945 kfree(pathname); 1946 } 1947 1948 void audit_log_session_info(struct audit_buffer *ab) 1949 { 1950 unsigned int sessionid = audit_get_sessionid(current); 1951 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 1952 1953 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid); 1954 } 1955 1956 void audit_log_key(struct audit_buffer *ab, char *key) 1957 { 1958 audit_log_format(ab, " key="); 1959 if (key) 1960 audit_log_untrustedstring(ab, key); 1961 else 1962 audit_log_format(ab, "(null)"); 1963 } 1964 1965 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) 1966 { 1967 int i; 1968 1969 audit_log_format(ab, " %s=", prefix); 1970 CAP_FOR_EACH_U32(i) { 1971 audit_log_format(ab, "%08x", 1972 cap->cap[CAP_LAST_U32 - i]); 1973 } 1974 } 1975 1976 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1977 { 1978 kernel_cap_t *perm = &name->fcap.permitted; 1979 kernel_cap_t *inh = &name->fcap.inheritable; 1980 int log = 0; 1981 1982 if (!cap_isclear(*perm)) { 1983 audit_log_cap(ab, "cap_fp", perm); 1984 log = 1; 1985 } 1986 if (!cap_isclear(*inh)) { 1987 audit_log_cap(ab, "cap_fi", inh); 1988 log = 1; 1989 } 1990 1991 if (log) 1992 audit_log_format(ab, " cap_fe=%d cap_fver=%x", 1993 name->fcap.fE, name->fcap_ver); 1994 } 1995 1996 static inline int audit_copy_fcaps(struct audit_names *name, 1997 const struct dentry *dentry) 1998 { 1999 struct cpu_vfs_cap_data caps; 2000 int rc; 2001 2002 if (!dentry) 2003 return 0; 2004 2005 rc = get_vfs_caps_from_disk(dentry, &caps); 2006 if (rc) 2007 return rc; 2008 2009 name->fcap.permitted = caps.permitted; 2010 name->fcap.inheritable = caps.inheritable; 2011 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2012 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 2013 VFS_CAP_REVISION_SHIFT; 2014 2015 return 0; 2016 } 2017 2018 /* Copy inode data into an audit_names. */ 2019 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, 2020 struct inode *inode) 2021 { 2022 name->ino = inode->i_ino; 2023 name->dev = inode->i_sb->s_dev; 2024 name->mode = inode->i_mode; 2025 name->uid = inode->i_uid; 2026 name->gid = inode->i_gid; 2027 name->rdev = inode->i_rdev; 2028 security_inode_getsecid(inode, &name->osid); 2029 audit_copy_fcaps(name, dentry); 2030 } 2031 2032 /** 2033 * audit_log_name - produce AUDIT_PATH record from struct audit_names 2034 * @context: audit_context for the task 2035 * @n: audit_names structure with reportable details 2036 * @path: optional path to report instead of audit_names->name 2037 * @record_num: record number to report when handling a list of names 2038 * @call_panic: optional pointer to int that will be updated if secid fails 2039 */ 2040 void audit_log_name(struct audit_context *context, struct audit_names *n, 2041 const struct path *path, int record_num, int *call_panic) 2042 { 2043 struct audit_buffer *ab; 2044 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 2045 if (!ab) 2046 return; 2047 2048 audit_log_format(ab, "item=%d", record_num); 2049 2050 if (path) 2051 audit_log_d_path(ab, " name=", path); 2052 else if (n->name) { 2053 switch (n->name_len) { 2054 case AUDIT_NAME_FULL: 2055 /* log the full path */ 2056 audit_log_format(ab, " name="); 2057 audit_log_untrustedstring(ab, n->name->name); 2058 break; 2059 case 0: 2060 /* name was specified as a relative path and the 2061 * directory component is the cwd */ 2062 audit_log_d_path(ab, " name=", &context->pwd); 2063 break; 2064 default: 2065 /* log the name's directory component */ 2066 audit_log_format(ab, " name="); 2067 audit_log_n_untrustedstring(ab, n->name->name, 2068 n->name_len); 2069 } 2070 } else 2071 audit_log_format(ab, " name=(null)"); 2072 2073 if (n->ino != AUDIT_INO_UNSET) 2074 audit_log_format(ab, " inode=%lu" 2075 " dev=%02x:%02x mode=%#ho" 2076 " ouid=%u ogid=%u rdev=%02x:%02x", 2077 n->ino, 2078 MAJOR(n->dev), 2079 MINOR(n->dev), 2080 n->mode, 2081 from_kuid(&init_user_ns, n->uid), 2082 from_kgid(&init_user_ns, n->gid), 2083 MAJOR(n->rdev), 2084 MINOR(n->rdev)); 2085 if (n->osid != 0) { 2086 char *ctx = NULL; 2087 u32 len; 2088 if (security_secid_to_secctx( 2089 n->osid, &ctx, &len)) { 2090 audit_log_format(ab, " osid=%u", n->osid); 2091 if (call_panic) 2092 *call_panic = 2; 2093 } else { 2094 audit_log_format(ab, " obj=%s", ctx); 2095 security_release_secctx(ctx, len); 2096 } 2097 } 2098 2099 /* log the audit_names record type */ 2100 audit_log_format(ab, " nametype="); 2101 switch(n->type) { 2102 case AUDIT_TYPE_NORMAL: 2103 audit_log_format(ab, "NORMAL"); 2104 break; 2105 case AUDIT_TYPE_PARENT: 2106 audit_log_format(ab, "PARENT"); 2107 break; 2108 case AUDIT_TYPE_CHILD_DELETE: 2109 audit_log_format(ab, "DELETE"); 2110 break; 2111 case AUDIT_TYPE_CHILD_CREATE: 2112 audit_log_format(ab, "CREATE"); 2113 break; 2114 default: 2115 audit_log_format(ab, "UNKNOWN"); 2116 break; 2117 } 2118 2119 audit_log_fcaps(ab, n); 2120 audit_log_end(ab); 2121 } 2122 2123 int audit_log_task_context(struct audit_buffer *ab) 2124 { 2125 char *ctx = NULL; 2126 unsigned len; 2127 int error; 2128 u32 sid; 2129 2130 security_task_getsecid(current, &sid); 2131 if (!sid) 2132 return 0; 2133 2134 error = security_secid_to_secctx(sid, &ctx, &len); 2135 if (error) { 2136 if (error != -EINVAL) 2137 goto error_path; 2138 return 0; 2139 } 2140 2141 audit_log_format(ab, " subj=%s", ctx); 2142 security_release_secctx(ctx, len); 2143 return 0; 2144 2145 error_path: 2146 audit_panic("error in audit_log_task_context"); 2147 return error; 2148 } 2149 EXPORT_SYMBOL(audit_log_task_context); 2150 2151 void audit_log_d_path_exe(struct audit_buffer *ab, 2152 struct mm_struct *mm) 2153 { 2154 struct file *exe_file; 2155 2156 if (!mm) 2157 goto out_null; 2158 2159 exe_file = get_mm_exe_file(mm); 2160 if (!exe_file) 2161 goto out_null; 2162 2163 audit_log_d_path(ab, " exe=", &exe_file->f_path); 2164 fput(exe_file); 2165 return; 2166 out_null: 2167 audit_log_format(ab, " exe=(null)"); 2168 } 2169 2170 struct tty_struct *audit_get_tty(struct task_struct *tsk) 2171 { 2172 struct tty_struct *tty = NULL; 2173 unsigned long flags; 2174 2175 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2176 if (tsk->signal) 2177 tty = tty_kref_get(tsk->signal->tty); 2178 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2179 return tty; 2180 } 2181 2182 void audit_put_tty(struct tty_struct *tty) 2183 { 2184 tty_kref_put(tty); 2185 } 2186 2187 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) 2188 { 2189 const struct cred *cred; 2190 char comm[sizeof(tsk->comm)]; 2191 struct tty_struct *tty; 2192 2193 if (!ab) 2194 return; 2195 2196 /* tsk == current */ 2197 cred = current_cred(); 2198 tty = audit_get_tty(tsk); 2199 audit_log_format(ab, 2200 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 2201 " euid=%u suid=%u fsuid=%u" 2202 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 2203 task_ppid_nr(tsk), 2204 task_tgid_nr(tsk), 2205 from_kuid(&init_user_ns, audit_get_loginuid(tsk)), 2206 from_kuid(&init_user_ns, cred->uid), 2207 from_kgid(&init_user_ns, cred->gid), 2208 from_kuid(&init_user_ns, cred->euid), 2209 from_kuid(&init_user_ns, cred->suid), 2210 from_kuid(&init_user_ns, cred->fsuid), 2211 from_kgid(&init_user_ns, cred->egid), 2212 from_kgid(&init_user_ns, cred->sgid), 2213 from_kgid(&init_user_ns, cred->fsgid), 2214 tty ? tty_name(tty) : "(none)", 2215 audit_get_sessionid(tsk)); 2216 audit_put_tty(tty); 2217 audit_log_format(ab, " comm="); 2218 audit_log_untrustedstring(ab, get_task_comm(comm, tsk)); 2219 audit_log_d_path_exe(ab, tsk->mm); 2220 audit_log_task_context(ab); 2221 } 2222 EXPORT_SYMBOL(audit_log_task_info); 2223 2224 /** 2225 * audit_log_link_denied - report a link restriction denial 2226 * @operation: specific link operation 2227 * @link: the path that triggered the restriction 2228 */ 2229 void audit_log_link_denied(const char *operation, const struct path *link) 2230 { 2231 struct audit_buffer *ab; 2232 struct audit_names *name; 2233 2234 name = kzalloc(sizeof(*name), GFP_NOFS); 2235 if (!name) 2236 return; 2237 2238 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */ 2239 ab = audit_log_start(current->audit_context, GFP_KERNEL, 2240 AUDIT_ANOM_LINK); 2241 if (!ab) 2242 goto out; 2243 audit_log_format(ab, "op=%s", operation); 2244 audit_log_task_info(ab, current); 2245 audit_log_format(ab, " res=0"); 2246 audit_log_end(ab); 2247 2248 /* Generate AUDIT_PATH record with object. */ 2249 name->type = AUDIT_TYPE_NORMAL; 2250 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry)); 2251 audit_log_name(current->audit_context, name, link, 0, NULL); 2252 out: 2253 kfree(name); 2254 } 2255 2256 /** 2257 * audit_log_end - end one audit record 2258 * @ab: the audit_buffer 2259 * 2260 * We can not do a netlink send inside an irq context because it blocks (last 2261 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a 2262 * queue and a tasklet is scheduled to remove them from the queue outside the 2263 * irq context. May be called in any context. 2264 */ 2265 void audit_log_end(struct audit_buffer *ab) 2266 { 2267 struct sk_buff *skb; 2268 struct nlmsghdr *nlh; 2269 2270 if (!ab) 2271 return; 2272 2273 if (audit_rate_check()) { 2274 skb = ab->skb; 2275 ab->skb = NULL; 2276 2277 /* setup the netlink header, see the comments in 2278 * kauditd_send_multicast_skb() for length quirks */ 2279 nlh = nlmsg_hdr(skb); 2280 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN; 2281 2282 /* queue the netlink packet and poke the kauditd thread */ 2283 skb_queue_tail(&audit_queue, skb); 2284 wake_up_interruptible(&kauditd_wait); 2285 } else 2286 audit_log_lost("rate limit exceeded"); 2287 2288 audit_buffer_free(ab); 2289 } 2290 2291 /** 2292 * audit_log - Log an audit record 2293 * @ctx: audit context 2294 * @gfp_mask: type of allocation 2295 * @type: audit message type 2296 * @fmt: format string to use 2297 * @...: variable parameters matching the format string 2298 * 2299 * This is a convenience function that calls audit_log_start, 2300 * audit_log_vformat, and audit_log_end. It may be called 2301 * in any context. 2302 */ 2303 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 2304 const char *fmt, ...) 2305 { 2306 struct audit_buffer *ab; 2307 va_list args; 2308 2309 ab = audit_log_start(ctx, gfp_mask, type); 2310 if (ab) { 2311 va_start(args, fmt); 2312 audit_log_vformat(ab, fmt, args); 2313 va_end(args); 2314 audit_log_end(ab); 2315 } 2316 } 2317 2318 #ifdef CONFIG_SECURITY 2319 /** 2320 * audit_log_secctx - Converts and logs SELinux context 2321 * @ab: audit_buffer 2322 * @secid: security number 2323 * 2324 * This is a helper function that calls security_secid_to_secctx to convert 2325 * secid to secctx and then adds the (converted) SELinux context to the audit 2326 * log by calling audit_log_format, thus also preventing leak of internal secid 2327 * to userspace. If secid cannot be converted audit_panic is called. 2328 */ 2329 void audit_log_secctx(struct audit_buffer *ab, u32 secid) 2330 { 2331 u32 len; 2332 char *secctx; 2333 2334 if (security_secid_to_secctx(secid, &secctx, &len)) { 2335 audit_panic("Cannot convert secid to context"); 2336 } else { 2337 audit_log_format(ab, " obj=%s", secctx); 2338 security_release_secctx(secctx, len); 2339 } 2340 } 2341 EXPORT_SYMBOL(audit_log_secctx); 2342 #endif 2343 2344 EXPORT_SYMBOL(audit_log_start); 2345 EXPORT_SYMBOL(audit_log_end); 2346 EXPORT_SYMBOL(audit_log_format); 2347 EXPORT_SYMBOL(audit_log); 2348