1 /* audit.c -- Auditing support 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 3 * System-call specific features have moved to auditsc.c 4 * 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 6 * All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 23 * 24 * Goals: 1) Integrate fully with Security Modules. 25 * 2) Minimal run-time overhead: 26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 27 * b) Small when syscall auditing is enabled and no audit record 28 * is generated (defer as much work as possible to record 29 * generation time): 30 * i) context is allocated, 31 * ii) names from getname are stored without a copy, and 32 * iii) inode information stored from path_lookup. 33 * 3) Ability to disable syscall auditing at boot time (audit=0). 34 * 4) Usable by other parts of the kernel (if audit_log* is called, 35 * then a syscall record will be generated automatically for the 36 * current syscall). 37 * 5) Netlink interface to user-space. 38 * 6) Support low-overhead kernel-based filtering to minimize the 39 * information that must be passed to user-space. 40 * 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ 42 */ 43 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 46 #include <linux/init.h> 47 #include <asm/types.h> 48 #include <linux/atomic.h> 49 #include <linux/mm.h> 50 #include <linux/export.h> 51 #include <linux/slab.h> 52 #include <linux/err.h> 53 #include <linux/kthread.h> 54 #include <linux/kernel.h> 55 #include <linux/syscalls.h> 56 57 #include <linux/audit.h> 58 59 #include <net/sock.h> 60 #include <net/netlink.h> 61 #include <linux/skbuff.h> 62 #ifdef CONFIG_SECURITY 63 #include <linux/security.h> 64 #endif 65 #include <linux/freezer.h> 66 #include <linux/tty.h> 67 #include <linux/pid_namespace.h> 68 #include <net/netns/generic.h> 69 70 #include "audit.h" 71 72 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 73 * (Initialization happens after skb_init is called.) */ 74 #define AUDIT_DISABLED -1 75 #define AUDIT_UNINITIALIZED 0 76 #define AUDIT_INITIALIZED 1 77 static int audit_initialized; 78 79 #define AUDIT_OFF 0 80 #define AUDIT_ON 1 81 #define AUDIT_LOCKED 2 82 u32 audit_enabled; 83 u32 audit_ever_enabled; 84 85 EXPORT_SYMBOL_GPL(audit_enabled); 86 87 /* Default state when kernel boots without any parameters. */ 88 static u32 audit_default; 89 90 /* If auditing cannot proceed, audit_failure selects what happens. */ 91 static u32 audit_failure = AUDIT_FAIL_PRINTK; 92 93 /* 94 * If audit records are to be written to the netlink socket, audit_pid 95 * contains the pid of the auditd process and audit_nlk_portid contains 96 * the portid to use to send netlink messages to that process. 97 */ 98 int audit_pid; 99 static __u32 audit_nlk_portid; 100 101 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 102 * to that number per second. This prevents DoS attacks, but results in 103 * audit records being dropped. */ 104 static u32 audit_rate_limit; 105 106 /* Number of outstanding audit_buffers allowed. 107 * When set to zero, this means unlimited. */ 108 static u32 audit_backlog_limit = 64; 109 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 110 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 111 static u32 audit_backlog_wait_overflow = 0; 112 113 /* The identity of the user shutting down the audit system. */ 114 kuid_t audit_sig_uid = INVALID_UID; 115 pid_t audit_sig_pid = -1; 116 u32 audit_sig_sid = 0; 117 118 /* Records can be lost in several ways: 119 0) [suppressed in audit_alloc] 120 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 121 2) out of memory in audit_log_move [alloc_skb] 122 3) suppressed due to audit_rate_limit 123 4) suppressed due to audit_backlog_limit 124 */ 125 static atomic_t audit_lost = ATOMIC_INIT(0); 126 127 /* The netlink socket. */ 128 static struct sock *audit_sock; 129 int audit_net_id; 130 131 /* Hash for inode-based rules */ 132 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 133 134 /* The audit_freelist is a list of pre-allocated audit buffers (if more 135 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of 136 * being placed on the freelist). */ 137 static DEFINE_SPINLOCK(audit_freelist_lock); 138 static int audit_freelist_count; 139 static LIST_HEAD(audit_freelist); 140 141 static struct sk_buff_head audit_skb_queue; 142 /* queue of skbs to send to auditd when/if it comes back */ 143 static struct sk_buff_head audit_skb_hold_queue; 144 static struct task_struct *kauditd_task; 145 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 146 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 147 148 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 149 .mask = -1, 150 .features = 0, 151 .lock = 0,}; 152 153 static char *audit_feature_names[2] = { 154 "only_unset_loginuid", 155 "loginuid_immutable", 156 }; 157 158 159 /* Serialize requests from userspace. */ 160 DEFINE_MUTEX(audit_cmd_mutex); 161 162 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 163 * audit records. Since printk uses a 1024 byte buffer, this buffer 164 * should be at least that large. */ 165 #define AUDIT_BUFSIZ 1024 166 167 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the 168 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ 169 #define AUDIT_MAXFREE (2*NR_CPUS) 170 171 /* The audit_buffer is used when formatting an audit record. The caller 172 * locks briefly to get the record off the freelist or to allocate the 173 * buffer, and locks briefly to send the buffer to the netlink layer or 174 * to place it on a transmit queue. Multiple audit_buffers can be in 175 * use simultaneously. */ 176 struct audit_buffer { 177 struct list_head list; 178 struct sk_buff *skb; /* formatted skb ready to send */ 179 struct audit_context *ctx; /* NULL or associated context */ 180 gfp_t gfp_mask; 181 }; 182 183 struct audit_reply { 184 __u32 portid; 185 struct net *net; 186 struct sk_buff *skb; 187 }; 188 189 static void audit_set_portid(struct audit_buffer *ab, __u32 portid) 190 { 191 if (ab) { 192 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 193 nlh->nlmsg_pid = portid; 194 } 195 } 196 197 void audit_panic(const char *message) 198 { 199 switch (audit_failure) { 200 case AUDIT_FAIL_SILENT: 201 break; 202 case AUDIT_FAIL_PRINTK: 203 if (printk_ratelimit()) 204 pr_err("%s\n", message); 205 break; 206 case AUDIT_FAIL_PANIC: 207 /* test audit_pid since printk is always losey, why bother? */ 208 if (audit_pid) 209 panic("audit: %s\n", message); 210 break; 211 } 212 } 213 214 static inline int audit_rate_check(void) 215 { 216 static unsigned long last_check = 0; 217 static int messages = 0; 218 static DEFINE_SPINLOCK(lock); 219 unsigned long flags; 220 unsigned long now; 221 unsigned long elapsed; 222 int retval = 0; 223 224 if (!audit_rate_limit) return 1; 225 226 spin_lock_irqsave(&lock, flags); 227 if (++messages < audit_rate_limit) { 228 retval = 1; 229 } else { 230 now = jiffies; 231 elapsed = now - last_check; 232 if (elapsed > HZ) { 233 last_check = now; 234 messages = 0; 235 retval = 1; 236 } 237 } 238 spin_unlock_irqrestore(&lock, flags); 239 240 return retval; 241 } 242 243 /** 244 * audit_log_lost - conditionally log lost audit message event 245 * @message: the message stating reason for lost audit message 246 * 247 * Emit at least 1 message per second, even if audit_rate_check is 248 * throttling. 249 * Always increment the lost messages counter. 250 */ 251 void audit_log_lost(const char *message) 252 { 253 static unsigned long last_msg = 0; 254 static DEFINE_SPINLOCK(lock); 255 unsigned long flags; 256 unsigned long now; 257 int print; 258 259 atomic_inc(&audit_lost); 260 261 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 262 263 if (!print) { 264 spin_lock_irqsave(&lock, flags); 265 now = jiffies; 266 if (now - last_msg > HZ) { 267 print = 1; 268 last_msg = now; 269 } 270 spin_unlock_irqrestore(&lock, flags); 271 } 272 273 if (print) { 274 if (printk_ratelimit()) 275 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 276 atomic_read(&audit_lost), 277 audit_rate_limit, 278 audit_backlog_limit); 279 audit_panic(message); 280 } 281 } 282 283 static int audit_log_config_change(char *function_name, u32 new, u32 old, 284 int allow_changes) 285 { 286 struct audit_buffer *ab; 287 int rc = 0; 288 289 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 290 if (unlikely(!ab)) 291 return rc; 292 audit_log_format(ab, "%s=%u old=%u", function_name, new, old); 293 audit_log_session_info(ab); 294 rc = audit_log_task_context(ab); 295 if (rc) 296 allow_changes = 0; /* Something weird, deny request */ 297 audit_log_format(ab, " res=%d", allow_changes); 298 audit_log_end(ab); 299 return rc; 300 } 301 302 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 303 { 304 int allow_changes, rc = 0; 305 u32 old = *to_change; 306 307 /* check if we are locked */ 308 if (audit_enabled == AUDIT_LOCKED) 309 allow_changes = 0; 310 else 311 allow_changes = 1; 312 313 if (audit_enabled != AUDIT_OFF) { 314 rc = audit_log_config_change(function_name, new, old, allow_changes); 315 if (rc) 316 allow_changes = 0; 317 } 318 319 /* If we are allowed, make the change */ 320 if (allow_changes == 1) 321 *to_change = new; 322 /* Not allowed, update reason */ 323 else if (rc == 0) 324 rc = -EPERM; 325 return rc; 326 } 327 328 static int audit_set_rate_limit(u32 limit) 329 { 330 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 331 } 332 333 static int audit_set_backlog_limit(u32 limit) 334 { 335 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 336 } 337 338 static int audit_set_backlog_wait_time(u32 timeout) 339 { 340 return audit_do_config_change("audit_backlog_wait_time", 341 &audit_backlog_wait_time, timeout); 342 } 343 344 static int audit_set_enabled(u32 state) 345 { 346 int rc; 347 if (state < AUDIT_OFF || state > AUDIT_LOCKED) 348 return -EINVAL; 349 350 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 351 if (!rc) 352 audit_ever_enabled |= !!state; 353 354 return rc; 355 } 356 357 static int audit_set_failure(u32 state) 358 { 359 if (state != AUDIT_FAIL_SILENT 360 && state != AUDIT_FAIL_PRINTK 361 && state != AUDIT_FAIL_PANIC) 362 return -EINVAL; 363 364 return audit_do_config_change("audit_failure", &audit_failure, state); 365 } 366 367 /* 368 * Queue skbs to be sent to auditd when/if it comes back. These skbs should 369 * already have been sent via prink/syslog and so if these messages are dropped 370 * it is not a huge concern since we already passed the audit_log_lost() 371 * notification and stuff. This is just nice to get audit messages during 372 * boot before auditd is running or messages generated while auditd is stopped. 373 * This only holds messages is audit_default is set, aka booting with audit=1 374 * or building your kernel that way. 375 */ 376 static void audit_hold_skb(struct sk_buff *skb) 377 { 378 if (audit_default && 379 (!audit_backlog_limit || 380 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)) 381 skb_queue_tail(&audit_skb_hold_queue, skb); 382 else 383 kfree_skb(skb); 384 } 385 386 /* 387 * For one reason or another this nlh isn't getting delivered to the userspace 388 * audit daemon, just send it to printk. 389 */ 390 static void audit_printk_skb(struct sk_buff *skb) 391 { 392 struct nlmsghdr *nlh = nlmsg_hdr(skb); 393 char *data = nlmsg_data(nlh); 394 395 if (nlh->nlmsg_type != AUDIT_EOE) { 396 if (printk_ratelimit()) 397 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 398 else 399 audit_log_lost("printk limit exceeded"); 400 } 401 402 audit_hold_skb(skb); 403 } 404 405 static void kauditd_send_skb(struct sk_buff *skb) 406 { 407 int err; 408 /* take a reference in case we can't send it and we want to hold it */ 409 skb_get(skb); 410 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0); 411 if (err < 0) { 412 BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */ 413 if (audit_pid) { 414 pr_err("*NO* daemon at audit_pid=%d\n", audit_pid); 415 audit_log_lost("auditd disappeared"); 416 audit_pid = 0; 417 audit_sock = NULL; 418 } 419 /* we might get lucky and get this in the next auditd */ 420 audit_hold_skb(skb); 421 } else 422 /* drop the extra reference if sent ok */ 423 consume_skb(skb); 424 } 425 426 /* 427 * flush_hold_queue - empty the hold queue if auditd appears 428 * 429 * If auditd just started, drain the queue of messages already 430 * sent to syslog/printk. Remember loss here is ok. We already 431 * called audit_log_lost() if it didn't go out normally. so the 432 * race between the skb_dequeue and the next check for audit_pid 433 * doesn't matter. 434 * 435 * If you ever find kauditd to be too slow we can get a perf win 436 * by doing our own locking and keeping better track if there 437 * are messages in this queue. I don't see the need now, but 438 * in 5 years when I want to play with this again I'll see this 439 * note and still have no friggin idea what i'm thinking today. 440 */ 441 static void flush_hold_queue(void) 442 { 443 struct sk_buff *skb; 444 445 if (!audit_default || !audit_pid) 446 return; 447 448 skb = skb_dequeue(&audit_skb_hold_queue); 449 if (likely(!skb)) 450 return; 451 452 while (skb && audit_pid) { 453 kauditd_send_skb(skb); 454 skb = skb_dequeue(&audit_skb_hold_queue); 455 } 456 457 /* 458 * if auditd just disappeared but we 459 * dequeued an skb we need to drop ref 460 */ 461 if (skb) 462 consume_skb(skb); 463 } 464 465 static int kauditd_thread(void *dummy) 466 { 467 set_freezable(); 468 while (!kthread_should_stop()) { 469 struct sk_buff *skb; 470 DECLARE_WAITQUEUE(wait, current); 471 472 flush_hold_queue(); 473 474 skb = skb_dequeue(&audit_skb_queue); 475 476 if (skb) { 477 if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit) 478 wake_up(&audit_backlog_wait); 479 if (audit_pid) 480 kauditd_send_skb(skb); 481 else 482 audit_printk_skb(skb); 483 continue; 484 } 485 set_current_state(TASK_INTERRUPTIBLE); 486 add_wait_queue(&kauditd_wait, &wait); 487 488 if (!skb_queue_len(&audit_skb_queue)) { 489 try_to_freeze(); 490 schedule(); 491 } 492 493 __set_current_state(TASK_RUNNING); 494 remove_wait_queue(&kauditd_wait, &wait); 495 } 496 return 0; 497 } 498 499 int audit_send_list(void *_dest) 500 { 501 struct audit_netlink_list *dest = _dest; 502 struct sk_buff *skb; 503 struct net *net = dest->net; 504 struct audit_net *aunet = net_generic(net, audit_net_id); 505 506 /* wait for parent to finish and send an ACK */ 507 mutex_lock(&audit_cmd_mutex); 508 mutex_unlock(&audit_cmd_mutex); 509 510 while ((skb = __skb_dequeue(&dest->q)) != NULL) 511 netlink_unicast(aunet->nlsk, skb, dest->portid, 0); 512 513 put_net(net); 514 kfree(dest); 515 516 return 0; 517 } 518 519 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done, 520 int multi, const void *payload, int size) 521 { 522 struct sk_buff *skb; 523 struct nlmsghdr *nlh; 524 void *data; 525 int flags = multi ? NLM_F_MULTI : 0; 526 int t = done ? NLMSG_DONE : type; 527 528 skb = nlmsg_new(size, GFP_KERNEL); 529 if (!skb) 530 return NULL; 531 532 nlh = nlmsg_put(skb, portid, seq, t, size, flags); 533 if (!nlh) 534 goto out_kfree_skb; 535 data = nlmsg_data(nlh); 536 memcpy(data, payload, size); 537 return skb; 538 539 out_kfree_skb: 540 kfree_skb(skb); 541 return NULL; 542 } 543 544 static int audit_send_reply_thread(void *arg) 545 { 546 struct audit_reply *reply = (struct audit_reply *)arg; 547 struct net *net = reply->net; 548 struct audit_net *aunet = net_generic(net, audit_net_id); 549 550 mutex_lock(&audit_cmd_mutex); 551 mutex_unlock(&audit_cmd_mutex); 552 553 /* Ignore failure. It'll only happen if the sender goes away, 554 because our timeout is set to infinite. */ 555 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0); 556 put_net(net); 557 kfree(reply); 558 return 0; 559 } 560 /** 561 * audit_send_reply - send an audit reply message via netlink 562 * @request_skb: skb of request we are replying to (used to target the reply) 563 * @seq: sequence number 564 * @type: audit message type 565 * @done: done (last) flag 566 * @multi: multi-part message flag 567 * @payload: payload data 568 * @size: payload size 569 * 570 * Allocates an skb, builds the netlink message, and sends it to the port id. 571 * No failure notifications. 572 */ 573 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 574 int multi, const void *payload, int size) 575 { 576 u32 portid = NETLINK_CB(request_skb).portid; 577 struct net *net = sock_net(NETLINK_CB(request_skb).sk); 578 struct sk_buff *skb; 579 struct task_struct *tsk; 580 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), 581 GFP_KERNEL); 582 583 if (!reply) 584 return; 585 586 skb = audit_make_reply(portid, seq, type, done, multi, payload, size); 587 if (!skb) 588 goto out; 589 590 reply->net = get_net(net); 591 reply->portid = portid; 592 reply->skb = skb; 593 594 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 595 if (!IS_ERR(tsk)) 596 return; 597 kfree_skb(skb); 598 out: 599 kfree(reply); 600 } 601 602 /* 603 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 604 * control messages. 605 */ 606 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 607 { 608 int err = 0; 609 610 /* Only support initial user namespace for now. */ 611 /* 612 * We return ECONNREFUSED because it tricks userspace into thinking 613 * that audit was not configured into the kernel. Lots of users 614 * configure their PAM stack (because that's what the distro does) 615 * to reject login if unable to send messages to audit. If we return 616 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 617 * configured in and will let login proceed. If we return EPERM 618 * userspace will reject all logins. This should be removed when we 619 * support non init namespaces!! 620 */ 621 if (current_user_ns() != &init_user_ns) 622 return -ECONNREFUSED; 623 624 switch (msg_type) { 625 case AUDIT_LIST: 626 case AUDIT_ADD: 627 case AUDIT_DEL: 628 return -EOPNOTSUPP; 629 case AUDIT_GET: 630 case AUDIT_SET: 631 case AUDIT_GET_FEATURE: 632 case AUDIT_SET_FEATURE: 633 case AUDIT_LIST_RULES: 634 case AUDIT_ADD_RULE: 635 case AUDIT_DEL_RULE: 636 case AUDIT_SIGNAL_INFO: 637 case AUDIT_TTY_GET: 638 case AUDIT_TTY_SET: 639 case AUDIT_TRIM: 640 case AUDIT_MAKE_EQUIV: 641 /* Only support auditd and auditctl in initial pid namespace 642 * for now. */ 643 if ((task_active_pid_ns(current) != &init_pid_ns)) 644 return -EPERM; 645 646 if (!capable(CAP_AUDIT_CONTROL)) 647 err = -EPERM; 648 break; 649 case AUDIT_USER: 650 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 651 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 652 if (!capable(CAP_AUDIT_WRITE)) 653 err = -EPERM; 654 break; 655 default: /* bad msg */ 656 err = -EINVAL; 657 } 658 659 return err; 660 } 661 662 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type) 663 { 664 int rc = 0; 665 uid_t uid = from_kuid(&init_user_ns, current_uid()); 666 pid_t pid = task_tgid_nr(current); 667 668 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 669 *ab = NULL; 670 return rc; 671 } 672 673 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 674 if (unlikely(!*ab)) 675 return rc; 676 audit_log_format(*ab, "pid=%d uid=%u", pid, uid); 677 audit_log_session_info(*ab); 678 audit_log_task_context(*ab); 679 680 return rc; 681 } 682 683 int is_audit_feature_set(int i) 684 { 685 return af.features & AUDIT_FEATURE_TO_MASK(i); 686 } 687 688 689 static int audit_get_feature(struct sk_buff *skb) 690 { 691 u32 seq; 692 693 seq = nlmsg_hdr(skb)->nlmsg_seq; 694 695 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &af, sizeof(af)); 696 697 return 0; 698 } 699 700 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 701 u32 old_lock, u32 new_lock, int res) 702 { 703 struct audit_buffer *ab; 704 705 if (audit_enabled == AUDIT_OFF) 706 return; 707 708 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE); 709 audit_log_task_info(ab, current); 710 audit_log_format(ab, "feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 711 audit_feature_names[which], !!old_feature, !!new_feature, 712 !!old_lock, !!new_lock, res); 713 audit_log_end(ab); 714 } 715 716 static int audit_set_feature(struct sk_buff *skb) 717 { 718 struct audit_features *uaf; 719 int i; 720 721 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > sizeof(audit_feature_names)/sizeof(audit_feature_names[0])); 722 uaf = nlmsg_data(nlmsg_hdr(skb)); 723 724 /* if there is ever a version 2 we should handle that here */ 725 726 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 727 u32 feature = AUDIT_FEATURE_TO_MASK(i); 728 u32 old_feature, new_feature, old_lock, new_lock; 729 730 /* if we are not changing this feature, move along */ 731 if (!(feature & uaf->mask)) 732 continue; 733 734 old_feature = af.features & feature; 735 new_feature = uaf->features & feature; 736 new_lock = (uaf->lock | af.lock) & feature; 737 old_lock = af.lock & feature; 738 739 /* are we changing a locked feature? */ 740 if (old_lock && (new_feature != old_feature)) { 741 audit_log_feature_change(i, old_feature, new_feature, 742 old_lock, new_lock, 0); 743 return -EPERM; 744 } 745 } 746 /* nothing invalid, do the changes */ 747 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 748 u32 feature = AUDIT_FEATURE_TO_MASK(i); 749 u32 old_feature, new_feature, old_lock, new_lock; 750 751 /* if we are not changing this feature, move along */ 752 if (!(feature & uaf->mask)) 753 continue; 754 755 old_feature = af.features & feature; 756 new_feature = uaf->features & feature; 757 old_lock = af.lock & feature; 758 new_lock = (uaf->lock | af.lock) & feature; 759 760 if (new_feature != old_feature) 761 audit_log_feature_change(i, old_feature, new_feature, 762 old_lock, new_lock, 1); 763 764 if (new_feature) 765 af.features |= feature; 766 else 767 af.features &= ~feature; 768 af.lock |= new_lock; 769 } 770 771 return 0; 772 } 773 774 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 775 { 776 u32 seq; 777 void *data; 778 int err; 779 struct audit_buffer *ab; 780 u16 msg_type = nlh->nlmsg_type; 781 struct audit_sig_info *sig_data; 782 char *ctx = NULL; 783 u32 len; 784 785 err = audit_netlink_ok(skb, msg_type); 786 if (err) 787 return err; 788 789 /* As soon as there's any sign of userspace auditd, 790 * start kauditd to talk to it */ 791 if (!kauditd_task) { 792 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 793 if (IS_ERR(kauditd_task)) { 794 err = PTR_ERR(kauditd_task); 795 kauditd_task = NULL; 796 return err; 797 } 798 } 799 seq = nlh->nlmsg_seq; 800 data = nlmsg_data(nlh); 801 802 switch (msg_type) { 803 case AUDIT_GET: { 804 struct audit_status s; 805 memset(&s, 0, sizeof(s)); 806 s.enabled = audit_enabled; 807 s.failure = audit_failure; 808 s.pid = audit_pid; 809 s.rate_limit = audit_rate_limit; 810 s.backlog_limit = audit_backlog_limit; 811 s.lost = atomic_read(&audit_lost); 812 s.backlog = skb_queue_len(&audit_skb_queue); 813 s.version = AUDIT_VERSION_LATEST; 814 s.backlog_wait_time = audit_backlog_wait_time; 815 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 816 break; 817 } 818 case AUDIT_SET: { 819 struct audit_status s; 820 memset(&s, 0, sizeof(s)); 821 /* guard against past and future API changes */ 822 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 823 if (s.mask & AUDIT_STATUS_ENABLED) { 824 err = audit_set_enabled(s.enabled); 825 if (err < 0) 826 return err; 827 } 828 if (s.mask & AUDIT_STATUS_FAILURE) { 829 err = audit_set_failure(s.failure); 830 if (err < 0) 831 return err; 832 } 833 if (s.mask & AUDIT_STATUS_PID) { 834 int new_pid = s.pid; 835 836 if ((!new_pid) && (task_tgid_vnr(current) != audit_pid)) 837 return -EACCES; 838 if (audit_enabled != AUDIT_OFF) 839 audit_log_config_change("audit_pid", new_pid, audit_pid, 1); 840 audit_pid = new_pid; 841 audit_nlk_portid = NETLINK_CB(skb).portid; 842 audit_sock = skb->sk; 843 } 844 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 845 err = audit_set_rate_limit(s.rate_limit); 846 if (err < 0) 847 return err; 848 } 849 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 850 err = audit_set_backlog_limit(s.backlog_limit); 851 if (err < 0) 852 return err; 853 } 854 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 855 if (sizeof(s) > (size_t)nlh->nlmsg_len) 856 return -EINVAL; 857 if (s.backlog_wait_time < 0 || 858 s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 859 return -EINVAL; 860 err = audit_set_backlog_wait_time(s.backlog_wait_time); 861 if (err < 0) 862 return err; 863 } 864 break; 865 } 866 case AUDIT_GET_FEATURE: 867 err = audit_get_feature(skb); 868 if (err) 869 return err; 870 break; 871 case AUDIT_SET_FEATURE: 872 err = audit_set_feature(skb); 873 if (err) 874 return err; 875 break; 876 case AUDIT_USER: 877 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 878 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 879 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 880 return 0; 881 882 err = audit_filter_user(msg_type); 883 if (err == 1) { /* match or error */ 884 err = 0; 885 if (msg_type == AUDIT_USER_TTY) { 886 err = tty_audit_push_current(); 887 if (err) 888 break; 889 } 890 mutex_unlock(&audit_cmd_mutex); 891 audit_log_common_recv_msg(&ab, msg_type); 892 if (msg_type != AUDIT_USER_TTY) 893 audit_log_format(ab, " msg='%.*s'", 894 AUDIT_MESSAGE_TEXT_MAX, 895 (char *)data); 896 else { 897 int size; 898 899 audit_log_format(ab, " data="); 900 size = nlmsg_len(nlh); 901 if (size > 0 && 902 ((unsigned char *)data)[size - 1] == '\0') 903 size--; 904 audit_log_n_untrustedstring(ab, data, size); 905 } 906 audit_set_portid(ab, NETLINK_CB(skb).portid); 907 audit_log_end(ab); 908 mutex_lock(&audit_cmd_mutex); 909 } 910 break; 911 case AUDIT_ADD_RULE: 912 case AUDIT_DEL_RULE: 913 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 914 return -EINVAL; 915 if (audit_enabled == AUDIT_LOCKED) { 916 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 917 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled); 918 audit_log_end(ab); 919 return -EPERM; 920 } 921 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid, 922 seq, data, nlmsg_len(nlh)); 923 break; 924 case AUDIT_LIST_RULES: 925 err = audit_list_rules_send(skb, seq); 926 break; 927 case AUDIT_TRIM: 928 audit_trim_trees(); 929 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 930 audit_log_format(ab, " op=trim res=1"); 931 audit_log_end(ab); 932 break; 933 case AUDIT_MAKE_EQUIV: { 934 void *bufp = data; 935 u32 sizes[2]; 936 size_t msglen = nlmsg_len(nlh); 937 char *old, *new; 938 939 err = -EINVAL; 940 if (msglen < 2 * sizeof(u32)) 941 break; 942 memcpy(sizes, bufp, 2 * sizeof(u32)); 943 bufp += 2 * sizeof(u32); 944 msglen -= 2 * sizeof(u32); 945 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 946 if (IS_ERR(old)) { 947 err = PTR_ERR(old); 948 break; 949 } 950 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 951 if (IS_ERR(new)) { 952 err = PTR_ERR(new); 953 kfree(old); 954 break; 955 } 956 /* OK, here comes... */ 957 err = audit_tag_tree(old, new); 958 959 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 960 961 audit_log_format(ab, " op=make_equiv old="); 962 audit_log_untrustedstring(ab, old); 963 audit_log_format(ab, " new="); 964 audit_log_untrustedstring(ab, new); 965 audit_log_format(ab, " res=%d", !err); 966 audit_log_end(ab); 967 kfree(old); 968 kfree(new); 969 break; 970 } 971 case AUDIT_SIGNAL_INFO: 972 len = 0; 973 if (audit_sig_sid) { 974 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 975 if (err) 976 return err; 977 } 978 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 979 if (!sig_data) { 980 if (audit_sig_sid) 981 security_release_secctx(ctx, len); 982 return -ENOMEM; 983 } 984 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 985 sig_data->pid = audit_sig_pid; 986 if (audit_sig_sid) { 987 memcpy(sig_data->ctx, ctx, len); 988 security_release_secctx(ctx, len); 989 } 990 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 991 sig_data, sizeof(*sig_data) + len); 992 kfree(sig_data); 993 break; 994 case AUDIT_TTY_GET: { 995 struct audit_tty_status s; 996 struct task_struct *tsk = current; 997 998 spin_lock(&tsk->sighand->siglock); 999 s.enabled = tsk->signal->audit_tty; 1000 s.log_passwd = tsk->signal->audit_tty_log_passwd; 1001 spin_unlock(&tsk->sighand->siglock); 1002 1003 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1004 break; 1005 } 1006 case AUDIT_TTY_SET: { 1007 struct audit_tty_status s, old; 1008 struct task_struct *tsk = current; 1009 struct audit_buffer *ab; 1010 1011 memset(&s, 0, sizeof(s)); 1012 /* guard against past and future API changes */ 1013 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); 1014 /* check if new data is valid */ 1015 if ((s.enabled != 0 && s.enabled != 1) || 1016 (s.log_passwd != 0 && s.log_passwd != 1)) 1017 err = -EINVAL; 1018 1019 spin_lock(&tsk->sighand->siglock); 1020 old.enabled = tsk->signal->audit_tty; 1021 old.log_passwd = tsk->signal->audit_tty_log_passwd; 1022 if (!err) { 1023 tsk->signal->audit_tty = s.enabled; 1024 tsk->signal->audit_tty_log_passwd = s.log_passwd; 1025 } 1026 spin_unlock(&tsk->sighand->siglock); 1027 1028 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); 1029 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1030 " old-log_passwd=%d new-log_passwd=%d res=%d", 1031 old.enabled, s.enabled, old.log_passwd, 1032 s.log_passwd, !err); 1033 audit_log_end(ab); 1034 break; 1035 } 1036 default: 1037 err = -EINVAL; 1038 break; 1039 } 1040 1041 return err < 0 ? err : 0; 1042 } 1043 1044 /* 1045 * Get message from skb. Each message is processed by audit_receive_msg. 1046 * Malformed skbs with wrong length are discarded silently. 1047 */ 1048 static void audit_receive_skb(struct sk_buff *skb) 1049 { 1050 struct nlmsghdr *nlh; 1051 /* 1052 * len MUST be signed for nlmsg_next to be able to dec it below 0 1053 * if the nlmsg_len was not aligned 1054 */ 1055 int len; 1056 int err; 1057 1058 nlh = nlmsg_hdr(skb); 1059 len = skb->len; 1060 1061 while (nlmsg_ok(nlh, len)) { 1062 err = audit_receive_msg(skb, nlh); 1063 /* if err or if this message says it wants a response */ 1064 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 1065 netlink_ack(skb, nlh, err); 1066 1067 nlh = nlmsg_next(nlh, &len); 1068 } 1069 } 1070 1071 /* Receive messages from netlink socket. */ 1072 static void audit_receive(struct sk_buff *skb) 1073 { 1074 mutex_lock(&audit_cmd_mutex); 1075 audit_receive_skb(skb); 1076 mutex_unlock(&audit_cmd_mutex); 1077 } 1078 1079 static int __net_init audit_net_init(struct net *net) 1080 { 1081 struct netlink_kernel_cfg cfg = { 1082 .input = audit_receive, 1083 }; 1084 1085 struct audit_net *aunet = net_generic(net, audit_net_id); 1086 1087 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1088 if (aunet->nlsk == NULL) { 1089 audit_panic("cannot initialize netlink socket in namespace"); 1090 return -ENOMEM; 1091 } 1092 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1093 return 0; 1094 } 1095 1096 static void __net_exit audit_net_exit(struct net *net) 1097 { 1098 struct audit_net *aunet = net_generic(net, audit_net_id); 1099 struct sock *sock = aunet->nlsk; 1100 if (sock == audit_sock) { 1101 audit_pid = 0; 1102 audit_sock = NULL; 1103 } 1104 1105 RCU_INIT_POINTER(aunet->nlsk, NULL); 1106 synchronize_net(); 1107 netlink_kernel_release(sock); 1108 } 1109 1110 static struct pernet_operations audit_net_ops __net_initdata = { 1111 .init = audit_net_init, 1112 .exit = audit_net_exit, 1113 .id = &audit_net_id, 1114 .size = sizeof(struct audit_net), 1115 }; 1116 1117 /* Initialize audit support at boot time. */ 1118 static int __init audit_init(void) 1119 { 1120 int i; 1121 1122 if (audit_initialized == AUDIT_DISABLED) 1123 return 0; 1124 1125 pr_info("initializing netlink subsys (%s)\n", 1126 audit_default ? "enabled" : "disabled"); 1127 register_pernet_subsys(&audit_net_ops); 1128 1129 skb_queue_head_init(&audit_skb_queue); 1130 skb_queue_head_init(&audit_skb_hold_queue); 1131 audit_initialized = AUDIT_INITIALIZED; 1132 audit_enabled = audit_default; 1133 audit_ever_enabled |= !!audit_default; 1134 1135 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); 1136 1137 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1138 INIT_LIST_HEAD(&audit_inode_hash[i]); 1139 1140 return 0; 1141 } 1142 __initcall(audit_init); 1143 1144 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ 1145 static int __init audit_enable(char *str) 1146 { 1147 audit_default = !!simple_strtol(str, NULL, 0); 1148 if (!audit_default) 1149 audit_initialized = AUDIT_DISABLED; 1150 1151 pr_info("%s\n", audit_default ? 1152 "enabled (after initialization)" : "disabled (until reboot)"); 1153 1154 return 1; 1155 } 1156 __setup("audit=", audit_enable); 1157 1158 /* Process kernel command-line parameter at boot time. 1159 * audit_backlog_limit=<n> */ 1160 static int __init audit_backlog_limit_set(char *str) 1161 { 1162 u32 audit_backlog_limit_arg; 1163 1164 pr_info("audit_backlog_limit: "); 1165 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1166 pr_cont("using default of %u, unable to parse %s\n", 1167 audit_backlog_limit, str); 1168 return 1; 1169 } 1170 1171 audit_backlog_limit = audit_backlog_limit_arg; 1172 pr_cont("%d\n", audit_backlog_limit); 1173 1174 return 1; 1175 } 1176 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1177 1178 static void audit_buffer_free(struct audit_buffer *ab) 1179 { 1180 unsigned long flags; 1181 1182 if (!ab) 1183 return; 1184 1185 if (ab->skb) 1186 kfree_skb(ab->skb); 1187 1188 spin_lock_irqsave(&audit_freelist_lock, flags); 1189 if (audit_freelist_count > AUDIT_MAXFREE) 1190 kfree(ab); 1191 else { 1192 audit_freelist_count++; 1193 list_add(&ab->list, &audit_freelist); 1194 } 1195 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1196 } 1197 1198 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, 1199 gfp_t gfp_mask, int type) 1200 { 1201 unsigned long flags; 1202 struct audit_buffer *ab = NULL; 1203 struct nlmsghdr *nlh; 1204 1205 spin_lock_irqsave(&audit_freelist_lock, flags); 1206 if (!list_empty(&audit_freelist)) { 1207 ab = list_entry(audit_freelist.next, 1208 struct audit_buffer, list); 1209 list_del(&ab->list); 1210 --audit_freelist_count; 1211 } 1212 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1213 1214 if (!ab) { 1215 ab = kmalloc(sizeof(*ab), gfp_mask); 1216 if (!ab) 1217 goto err; 1218 } 1219 1220 ab->ctx = ctx; 1221 ab->gfp_mask = gfp_mask; 1222 1223 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1224 if (!ab->skb) 1225 goto err; 1226 1227 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0); 1228 if (!nlh) 1229 goto out_kfree_skb; 1230 1231 return ab; 1232 1233 out_kfree_skb: 1234 kfree_skb(ab->skb); 1235 ab->skb = NULL; 1236 err: 1237 audit_buffer_free(ab); 1238 return NULL; 1239 } 1240 1241 /** 1242 * audit_serial - compute a serial number for the audit record 1243 * 1244 * Compute a serial number for the audit record. Audit records are 1245 * written to user-space as soon as they are generated, so a complete 1246 * audit record may be written in several pieces. The timestamp of the 1247 * record and this serial number are used by the user-space tools to 1248 * determine which pieces belong to the same audit record. The 1249 * (timestamp,serial) tuple is unique for each syscall and is live from 1250 * syscall entry to syscall exit. 1251 * 1252 * NOTE: Another possibility is to store the formatted records off the 1253 * audit context (for those records that have a context), and emit them 1254 * all at syscall exit. However, this could delay the reporting of 1255 * significant errors until syscall exit (or never, if the system 1256 * halts). 1257 */ 1258 unsigned int audit_serial(void) 1259 { 1260 static DEFINE_SPINLOCK(serial_lock); 1261 static unsigned int serial = 0; 1262 1263 unsigned long flags; 1264 unsigned int ret; 1265 1266 spin_lock_irqsave(&serial_lock, flags); 1267 do { 1268 ret = ++serial; 1269 } while (unlikely(!ret)); 1270 spin_unlock_irqrestore(&serial_lock, flags); 1271 1272 return ret; 1273 } 1274 1275 static inline void audit_get_stamp(struct audit_context *ctx, 1276 struct timespec *t, unsigned int *serial) 1277 { 1278 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1279 *t = CURRENT_TIME; 1280 *serial = audit_serial(); 1281 } 1282 } 1283 1284 /* 1285 * Wait for auditd to drain the queue a little 1286 */ 1287 static long wait_for_auditd(long sleep_time) 1288 { 1289 DECLARE_WAITQUEUE(wait, current); 1290 set_current_state(TASK_UNINTERRUPTIBLE); 1291 add_wait_queue_exclusive(&audit_backlog_wait, &wait); 1292 1293 if (audit_backlog_limit && 1294 skb_queue_len(&audit_skb_queue) > audit_backlog_limit) 1295 sleep_time = schedule_timeout(sleep_time); 1296 1297 __set_current_state(TASK_RUNNING); 1298 remove_wait_queue(&audit_backlog_wait, &wait); 1299 1300 return sleep_time; 1301 } 1302 1303 /** 1304 * audit_log_start - obtain an audit buffer 1305 * @ctx: audit_context (may be NULL) 1306 * @gfp_mask: type of allocation 1307 * @type: audit message type 1308 * 1309 * Returns audit_buffer pointer on success or NULL on error. 1310 * 1311 * Obtain an audit buffer. This routine does locking to obtain the 1312 * audit buffer, but then no locking is required for calls to 1313 * audit_log_*format. If the task (ctx) is a task that is currently in a 1314 * syscall, then the syscall is marked as auditable and an audit record 1315 * will be written at syscall exit. If there is no associated task, then 1316 * task context (ctx) should be NULL. 1317 */ 1318 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1319 int type) 1320 { 1321 struct audit_buffer *ab = NULL; 1322 struct timespec t; 1323 unsigned int uninitialized_var(serial); 1324 int reserve = 5; /* Allow atomic callers to go up to five 1325 entries over the normal backlog limit */ 1326 unsigned long timeout_start = jiffies; 1327 1328 if (audit_initialized != AUDIT_INITIALIZED) 1329 return NULL; 1330 1331 if (unlikely(audit_filter_type(type))) 1332 return NULL; 1333 1334 if (gfp_mask & __GFP_WAIT) { 1335 if (audit_pid && audit_pid == current->pid) 1336 gfp_mask &= ~__GFP_WAIT; 1337 else 1338 reserve = 0; 1339 } 1340 1341 while (audit_backlog_limit 1342 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) { 1343 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) { 1344 long sleep_time; 1345 1346 sleep_time = timeout_start + audit_backlog_wait_time - jiffies; 1347 if (sleep_time > 0) { 1348 sleep_time = wait_for_auditd(sleep_time); 1349 if (sleep_time > 0) 1350 continue; 1351 } 1352 } 1353 if (audit_rate_check() && printk_ratelimit()) 1354 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1355 skb_queue_len(&audit_skb_queue), 1356 audit_backlog_limit); 1357 audit_log_lost("backlog limit exceeded"); 1358 audit_backlog_wait_time = audit_backlog_wait_overflow; 1359 wake_up(&audit_backlog_wait); 1360 return NULL; 1361 } 1362 1363 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 1364 1365 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1366 if (!ab) { 1367 audit_log_lost("out of memory in audit_log_start"); 1368 return NULL; 1369 } 1370 1371 audit_get_stamp(ab->ctx, &t, &serial); 1372 1373 audit_log_format(ab, "audit(%lu.%03lu:%u): ", 1374 t.tv_sec, t.tv_nsec/1000000, serial); 1375 return ab; 1376 } 1377 1378 /** 1379 * audit_expand - expand skb in the audit buffer 1380 * @ab: audit_buffer 1381 * @extra: space to add at tail of the skb 1382 * 1383 * Returns 0 (no space) on failed expansion, or available space if 1384 * successful. 1385 */ 1386 static inline int audit_expand(struct audit_buffer *ab, int extra) 1387 { 1388 struct sk_buff *skb = ab->skb; 1389 int oldtail = skb_tailroom(skb); 1390 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1391 int newtail = skb_tailroom(skb); 1392 1393 if (ret < 0) { 1394 audit_log_lost("out of memory in audit_expand"); 1395 return 0; 1396 } 1397 1398 skb->truesize += newtail - oldtail; 1399 return newtail; 1400 } 1401 1402 /* 1403 * Format an audit message into the audit buffer. If there isn't enough 1404 * room in the audit buffer, more room will be allocated and vsnprint 1405 * will be called a second time. Currently, we assume that a printk 1406 * can't format message larger than 1024 bytes, so we don't either. 1407 */ 1408 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1409 va_list args) 1410 { 1411 int len, avail; 1412 struct sk_buff *skb; 1413 va_list args2; 1414 1415 if (!ab) 1416 return; 1417 1418 BUG_ON(!ab->skb); 1419 skb = ab->skb; 1420 avail = skb_tailroom(skb); 1421 if (avail == 0) { 1422 avail = audit_expand(ab, AUDIT_BUFSIZ); 1423 if (!avail) 1424 goto out; 1425 } 1426 va_copy(args2, args); 1427 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1428 if (len >= avail) { 1429 /* The printk buffer is 1024 bytes long, so if we get 1430 * here and AUDIT_BUFSIZ is at least 1024, then we can 1431 * log everything that printk could have logged. */ 1432 avail = audit_expand(ab, 1433 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1434 if (!avail) 1435 goto out_va_end; 1436 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1437 } 1438 if (len > 0) 1439 skb_put(skb, len); 1440 out_va_end: 1441 va_end(args2); 1442 out: 1443 return; 1444 } 1445 1446 /** 1447 * audit_log_format - format a message into the audit buffer. 1448 * @ab: audit_buffer 1449 * @fmt: format string 1450 * @...: optional parameters matching @fmt string 1451 * 1452 * All the work is done in audit_log_vformat. 1453 */ 1454 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1455 { 1456 va_list args; 1457 1458 if (!ab) 1459 return; 1460 va_start(args, fmt); 1461 audit_log_vformat(ab, fmt, args); 1462 va_end(args); 1463 } 1464 1465 /** 1466 * audit_log_hex - convert a buffer to hex and append it to the audit skb 1467 * @ab: the audit_buffer 1468 * @buf: buffer to convert to hex 1469 * @len: length of @buf to be converted 1470 * 1471 * No return value; failure to expand is silently ignored. 1472 * 1473 * This function will take the passed buf and convert it into a string of 1474 * ascii hex digits. The new string is placed onto the skb. 1475 */ 1476 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 1477 size_t len) 1478 { 1479 int i, avail, new_len; 1480 unsigned char *ptr; 1481 struct sk_buff *skb; 1482 1483 if (!ab) 1484 return; 1485 1486 BUG_ON(!ab->skb); 1487 skb = ab->skb; 1488 avail = skb_tailroom(skb); 1489 new_len = len<<1; 1490 if (new_len >= avail) { 1491 /* Round the buffer request up to the next multiple */ 1492 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1493 avail = audit_expand(ab, new_len); 1494 if (!avail) 1495 return; 1496 } 1497 1498 ptr = skb_tail_pointer(skb); 1499 for (i = 0; i < len; i++) 1500 ptr = hex_byte_pack_upper(ptr, buf[i]); 1501 *ptr = 0; 1502 skb_put(skb, len << 1); /* new string is twice the old string */ 1503 } 1504 1505 /* 1506 * Format a string of no more than slen characters into the audit buffer, 1507 * enclosed in quote marks. 1508 */ 1509 void audit_log_n_string(struct audit_buffer *ab, const char *string, 1510 size_t slen) 1511 { 1512 int avail, new_len; 1513 unsigned char *ptr; 1514 struct sk_buff *skb; 1515 1516 if (!ab) 1517 return; 1518 1519 BUG_ON(!ab->skb); 1520 skb = ab->skb; 1521 avail = skb_tailroom(skb); 1522 new_len = slen + 3; /* enclosing quotes + null terminator */ 1523 if (new_len > avail) { 1524 avail = audit_expand(ab, new_len); 1525 if (!avail) 1526 return; 1527 } 1528 ptr = skb_tail_pointer(skb); 1529 *ptr++ = '"'; 1530 memcpy(ptr, string, slen); 1531 ptr += slen; 1532 *ptr++ = '"'; 1533 *ptr = 0; 1534 skb_put(skb, slen + 2); /* don't include null terminator */ 1535 } 1536 1537 /** 1538 * audit_string_contains_control - does a string need to be logged in hex 1539 * @string: string to be checked 1540 * @len: max length of the string to check 1541 */ 1542 int audit_string_contains_control(const char *string, size_t len) 1543 { 1544 const unsigned char *p; 1545 for (p = string; p < (const unsigned char *)string + len; p++) { 1546 if (*p == '"' || *p < 0x21 || *p > 0x7e) 1547 return 1; 1548 } 1549 return 0; 1550 } 1551 1552 /** 1553 * audit_log_n_untrustedstring - log a string that may contain random characters 1554 * @ab: audit_buffer 1555 * @len: length of string (not including trailing null) 1556 * @string: string to be logged 1557 * 1558 * This code will escape a string that is passed to it if the string 1559 * contains a control character, unprintable character, double quote mark, 1560 * or a space. Unescaped strings will start and end with a double quote mark. 1561 * Strings that are escaped are printed in hex (2 digits per char). 1562 * 1563 * The caller specifies the number of characters in the string to log, which may 1564 * or may not be the entire string. 1565 */ 1566 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 1567 size_t len) 1568 { 1569 if (audit_string_contains_control(string, len)) 1570 audit_log_n_hex(ab, string, len); 1571 else 1572 audit_log_n_string(ab, string, len); 1573 } 1574 1575 /** 1576 * audit_log_untrustedstring - log a string that may contain random characters 1577 * @ab: audit_buffer 1578 * @string: string to be logged 1579 * 1580 * Same as audit_log_n_untrustedstring(), except that strlen is used to 1581 * determine string length. 1582 */ 1583 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 1584 { 1585 audit_log_n_untrustedstring(ab, string, strlen(string)); 1586 } 1587 1588 /* This is a helper-function to print the escaped d_path */ 1589 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 1590 const struct path *path) 1591 { 1592 char *p, *pathname; 1593 1594 if (prefix) 1595 audit_log_format(ab, "%s", prefix); 1596 1597 /* We will allow 11 spaces for ' (deleted)' to be appended */ 1598 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 1599 if (!pathname) { 1600 audit_log_string(ab, "<no_memory>"); 1601 return; 1602 } 1603 p = d_path(path, pathname, PATH_MAX+11); 1604 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 1605 /* FIXME: can we save some information here? */ 1606 audit_log_string(ab, "<too_long>"); 1607 } else 1608 audit_log_untrustedstring(ab, p); 1609 kfree(pathname); 1610 } 1611 1612 void audit_log_session_info(struct audit_buffer *ab) 1613 { 1614 unsigned int sessionid = audit_get_sessionid(current); 1615 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 1616 1617 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid); 1618 } 1619 1620 void audit_log_key(struct audit_buffer *ab, char *key) 1621 { 1622 audit_log_format(ab, " key="); 1623 if (key) 1624 audit_log_untrustedstring(ab, key); 1625 else 1626 audit_log_format(ab, "(null)"); 1627 } 1628 1629 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) 1630 { 1631 int i; 1632 1633 audit_log_format(ab, " %s=", prefix); 1634 CAP_FOR_EACH_U32(i) { 1635 audit_log_format(ab, "%08x", 1636 cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]); 1637 } 1638 } 1639 1640 void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1641 { 1642 kernel_cap_t *perm = &name->fcap.permitted; 1643 kernel_cap_t *inh = &name->fcap.inheritable; 1644 int log = 0; 1645 1646 if (!cap_isclear(*perm)) { 1647 audit_log_cap(ab, "cap_fp", perm); 1648 log = 1; 1649 } 1650 if (!cap_isclear(*inh)) { 1651 audit_log_cap(ab, "cap_fi", inh); 1652 log = 1; 1653 } 1654 1655 if (log) 1656 audit_log_format(ab, " cap_fe=%d cap_fver=%x", 1657 name->fcap.fE, name->fcap_ver); 1658 } 1659 1660 static inline int audit_copy_fcaps(struct audit_names *name, 1661 const struct dentry *dentry) 1662 { 1663 struct cpu_vfs_cap_data caps; 1664 int rc; 1665 1666 if (!dentry) 1667 return 0; 1668 1669 rc = get_vfs_caps_from_disk(dentry, &caps); 1670 if (rc) 1671 return rc; 1672 1673 name->fcap.permitted = caps.permitted; 1674 name->fcap.inheritable = caps.inheritable; 1675 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 1676 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 1677 VFS_CAP_REVISION_SHIFT; 1678 1679 return 0; 1680 } 1681 1682 /* Copy inode data into an audit_names. */ 1683 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, 1684 const struct inode *inode) 1685 { 1686 name->ino = inode->i_ino; 1687 name->dev = inode->i_sb->s_dev; 1688 name->mode = inode->i_mode; 1689 name->uid = inode->i_uid; 1690 name->gid = inode->i_gid; 1691 name->rdev = inode->i_rdev; 1692 security_inode_getsecid(inode, &name->osid); 1693 audit_copy_fcaps(name, dentry); 1694 } 1695 1696 /** 1697 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1698 * @context: audit_context for the task 1699 * @n: audit_names structure with reportable details 1700 * @path: optional path to report instead of audit_names->name 1701 * @record_num: record number to report when handling a list of names 1702 * @call_panic: optional pointer to int that will be updated if secid fails 1703 */ 1704 void audit_log_name(struct audit_context *context, struct audit_names *n, 1705 struct path *path, int record_num, int *call_panic) 1706 { 1707 struct audit_buffer *ab; 1708 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1709 if (!ab) 1710 return; 1711 1712 audit_log_format(ab, "item=%d", record_num); 1713 1714 if (path) 1715 audit_log_d_path(ab, " name=", path); 1716 else if (n->name) { 1717 switch (n->name_len) { 1718 case AUDIT_NAME_FULL: 1719 /* log the full path */ 1720 audit_log_format(ab, " name="); 1721 audit_log_untrustedstring(ab, n->name->name); 1722 break; 1723 case 0: 1724 /* name was specified as a relative path and the 1725 * directory component is the cwd */ 1726 audit_log_d_path(ab, " name=", &context->pwd); 1727 break; 1728 default: 1729 /* log the name's directory component */ 1730 audit_log_format(ab, " name="); 1731 audit_log_n_untrustedstring(ab, n->name->name, 1732 n->name_len); 1733 } 1734 } else 1735 audit_log_format(ab, " name=(null)"); 1736 1737 if (n->ino != (unsigned long)-1) { 1738 audit_log_format(ab, " inode=%lu" 1739 " dev=%02x:%02x mode=%#ho" 1740 " ouid=%u ogid=%u rdev=%02x:%02x", 1741 n->ino, 1742 MAJOR(n->dev), 1743 MINOR(n->dev), 1744 n->mode, 1745 from_kuid(&init_user_ns, n->uid), 1746 from_kgid(&init_user_ns, n->gid), 1747 MAJOR(n->rdev), 1748 MINOR(n->rdev)); 1749 } 1750 if (n->osid != 0) { 1751 char *ctx = NULL; 1752 u32 len; 1753 if (security_secid_to_secctx( 1754 n->osid, &ctx, &len)) { 1755 audit_log_format(ab, " osid=%u", n->osid); 1756 if (call_panic) 1757 *call_panic = 2; 1758 } else { 1759 audit_log_format(ab, " obj=%s", ctx); 1760 security_release_secctx(ctx, len); 1761 } 1762 } 1763 1764 /* log the audit_names record type */ 1765 audit_log_format(ab, " nametype="); 1766 switch(n->type) { 1767 case AUDIT_TYPE_NORMAL: 1768 audit_log_format(ab, "NORMAL"); 1769 break; 1770 case AUDIT_TYPE_PARENT: 1771 audit_log_format(ab, "PARENT"); 1772 break; 1773 case AUDIT_TYPE_CHILD_DELETE: 1774 audit_log_format(ab, "DELETE"); 1775 break; 1776 case AUDIT_TYPE_CHILD_CREATE: 1777 audit_log_format(ab, "CREATE"); 1778 break; 1779 default: 1780 audit_log_format(ab, "UNKNOWN"); 1781 break; 1782 } 1783 1784 audit_log_fcaps(ab, n); 1785 audit_log_end(ab); 1786 } 1787 1788 int audit_log_task_context(struct audit_buffer *ab) 1789 { 1790 char *ctx = NULL; 1791 unsigned len; 1792 int error; 1793 u32 sid; 1794 1795 security_task_getsecid(current, &sid); 1796 if (!sid) 1797 return 0; 1798 1799 error = security_secid_to_secctx(sid, &ctx, &len); 1800 if (error) { 1801 if (error != -EINVAL) 1802 goto error_path; 1803 return 0; 1804 } 1805 1806 audit_log_format(ab, " subj=%s", ctx); 1807 security_release_secctx(ctx, len); 1808 return 0; 1809 1810 error_path: 1811 audit_panic("error in audit_log_task_context"); 1812 return error; 1813 } 1814 EXPORT_SYMBOL(audit_log_task_context); 1815 1816 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) 1817 { 1818 const struct cred *cred; 1819 char name[sizeof(tsk->comm)]; 1820 struct mm_struct *mm = tsk->mm; 1821 char *tty; 1822 1823 if (!ab) 1824 return; 1825 1826 /* tsk == current */ 1827 cred = current_cred(); 1828 1829 spin_lock_irq(&tsk->sighand->siglock); 1830 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name) 1831 tty = tsk->signal->tty->name; 1832 else 1833 tty = "(none)"; 1834 spin_unlock_irq(&tsk->sighand->siglock); 1835 1836 audit_log_format(ab, 1837 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 1838 " euid=%u suid=%u fsuid=%u" 1839 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 1840 task_ppid_nr(tsk), 1841 task_pid_nr(tsk), 1842 from_kuid(&init_user_ns, audit_get_loginuid(tsk)), 1843 from_kuid(&init_user_ns, cred->uid), 1844 from_kgid(&init_user_ns, cred->gid), 1845 from_kuid(&init_user_ns, cred->euid), 1846 from_kuid(&init_user_ns, cred->suid), 1847 from_kuid(&init_user_ns, cred->fsuid), 1848 from_kgid(&init_user_ns, cred->egid), 1849 from_kgid(&init_user_ns, cred->sgid), 1850 from_kgid(&init_user_ns, cred->fsgid), 1851 tty, audit_get_sessionid(tsk)); 1852 1853 get_task_comm(name, tsk); 1854 audit_log_format(ab, " comm="); 1855 audit_log_untrustedstring(ab, name); 1856 1857 if (mm) { 1858 down_read(&mm->mmap_sem); 1859 if (mm->exe_file) 1860 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path); 1861 up_read(&mm->mmap_sem); 1862 } else 1863 audit_log_format(ab, " exe=(null)"); 1864 audit_log_task_context(ab); 1865 } 1866 EXPORT_SYMBOL(audit_log_task_info); 1867 1868 /** 1869 * audit_log_link_denied - report a link restriction denial 1870 * @operation: specific link opreation 1871 * @link: the path that triggered the restriction 1872 */ 1873 void audit_log_link_denied(const char *operation, struct path *link) 1874 { 1875 struct audit_buffer *ab; 1876 struct audit_names *name; 1877 1878 name = kzalloc(sizeof(*name), GFP_NOFS); 1879 if (!name) 1880 return; 1881 1882 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */ 1883 ab = audit_log_start(current->audit_context, GFP_KERNEL, 1884 AUDIT_ANOM_LINK); 1885 if (!ab) 1886 goto out; 1887 audit_log_format(ab, "op=%s", operation); 1888 audit_log_task_info(ab, current); 1889 audit_log_format(ab, " res=0"); 1890 audit_log_end(ab); 1891 1892 /* Generate AUDIT_PATH record with object. */ 1893 name->type = AUDIT_TYPE_NORMAL; 1894 audit_copy_inode(name, link->dentry, link->dentry->d_inode); 1895 audit_log_name(current->audit_context, name, link, 0, NULL); 1896 out: 1897 kfree(name); 1898 } 1899 1900 /** 1901 * audit_log_end - end one audit record 1902 * @ab: the audit_buffer 1903 * 1904 * The netlink_* functions cannot be called inside an irq context, so 1905 * the audit buffer is placed on a queue and a tasklet is scheduled to 1906 * remove them from the queue outside the irq context. May be called in 1907 * any context. 1908 */ 1909 void audit_log_end(struct audit_buffer *ab) 1910 { 1911 if (!ab) 1912 return; 1913 if (!audit_rate_check()) { 1914 audit_log_lost("rate limit exceeded"); 1915 } else { 1916 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 1917 nlh->nlmsg_len = ab->skb->len - NLMSG_HDRLEN; 1918 1919 if (audit_pid) { 1920 skb_queue_tail(&audit_skb_queue, ab->skb); 1921 wake_up_interruptible(&kauditd_wait); 1922 } else { 1923 audit_printk_skb(ab->skb); 1924 } 1925 ab->skb = NULL; 1926 } 1927 audit_buffer_free(ab); 1928 } 1929 1930 /** 1931 * audit_log - Log an audit record 1932 * @ctx: audit context 1933 * @gfp_mask: type of allocation 1934 * @type: audit message type 1935 * @fmt: format string to use 1936 * @...: variable parameters matching the format string 1937 * 1938 * This is a convenience function that calls audit_log_start, 1939 * audit_log_vformat, and audit_log_end. It may be called 1940 * in any context. 1941 */ 1942 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 1943 const char *fmt, ...) 1944 { 1945 struct audit_buffer *ab; 1946 va_list args; 1947 1948 ab = audit_log_start(ctx, gfp_mask, type); 1949 if (ab) { 1950 va_start(args, fmt); 1951 audit_log_vformat(ab, fmt, args); 1952 va_end(args); 1953 audit_log_end(ab); 1954 } 1955 } 1956 1957 #ifdef CONFIG_SECURITY 1958 /** 1959 * audit_log_secctx - Converts and logs SELinux context 1960 * @ab: audit_buffer 1961 * @secid: security number 1962 * 1963 * This is a helper function that calls security_secid_to_secctx to convert 1964 * secid to secctx and then adds the (converted) SELinux context to the audit 1965 * log by calling audit_log_format, thus also preventing leak of internal secid 1966 * to userspace. If secid cannot be converted audit_panic is called. 1967 */ 1968 void audit_log_secctx(struct audit_buffer *ab, u32 secid) 1969 { 1970 u32 len; 1971 char *secctx; 1972 1973 if (security_secid_to_secctx(secid, &secctx, &len)) { 1974 audit_panic("Cannot convert secid to context"); 1975 } else { 1976 audit_log_format(ab, " obj=%s", secctx); 1977 security_release_secctx(secctx, len); 1978 } 1979 } 1980 EXPORT_SYMBOL(audit_log_secctx); 1981 #endif 1982 1983 EXPORT_SYMBOL(audit_log_start); 1984 EXPORT_SYMBOL(audit_log_end); 1985 EXPORT_SYMBOL(audit_log_format); 1986 EXPORT_SYMBOL(audit_log); 1987