xref: /openbmc/linux/kernel/audit.c (revision 171f1bc7)
1 /* audit.c -- Auditing support
2  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3  * System-call specific features have moved to auditsc.c
4  *
5  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6  * All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23  *
24  * Goals: 1) Integrate fully with Security Modules.
25  *	  2) Minimal run-time overhead:
26  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
27  *	     b) Small when syscall auditing is enabled and no audit record
28  *		is generated (defer as much work as possible to record
29  *		generation time):
30  *		i) context is allocated,
31  *		ii) names from getname are stored without a copy, and
32  *		iii) inode information stored from path_lookup.
33  *	  3) Ability to disable syscall auditing at boot time (audit=0).
34  *	  4) Usable by other parts of the kernel (if audit_log* is called,
35  *	     then a syscall record will be generated automatically for the
36  *	     current syscall).
37  *	  5) Netlink interface to user-space.
38  *	  6) Support low-overhead kernel-based filtering to minimize the
39  *	     information that must be passed to user-space.
40  *
41  * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42  */
43 
44 #include <linux/init.h>
45 #include <asm/types.h>
46 #include <linux/atomic.h>
47 #include <linux/mm.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/err.h>
51 #include <linux/kthread.h>
52 
53 #include <linux/audit.h>
54 
55 #include <net/sock.h>
56 #include <net/netlink.h>
57 #include <linux/skbuff.h>
58 #ifdef CONFIG_SECURITY
59 #include <linux/security.h>
60 #endif
61 #include <linux/netlink.h>
62 #include <linux/freezer.h>
63 #include <linux/tty.h>
64 
65 #include "audit.h"
66 
67 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
68  * (Initialization happens after skb_init is called.) */
69 #define AUDIT_DISABLED		-1
70 #define AUDIT_UNINITIALIZED	0
71 #define AUDIT_INITIALIZED	1
72 static int	audit_initialized;
73 
74 #define AUDIT_OFF	0
75 #define AUDIT_ON	1
76 #define AUDIT_LOCKED	2
77 int		audit_enabled;
78 int		audit_ever_enabled;
79 
80 EXPORT_SYMBOL_GPL(audit_enabled);
81 
82 /* Default state when kernel boots without any parameters. */
83 static int	audit_default;
84 
85 /* If auditing cannot proceed, audit_failure selects what happens. */
86 static int	audit_failure = AUDIT_FAIL_PRINTK;
87 
88 /*
89  * If audit records are to be written to the netlink socket, audit_pid
90  * contains the pid of the auditd process and audit_nlk_pid contains
91  * the pid to use to send netlink messages to that process.
92  */
93 int		audit_pid;
94 static int	audit_nlk_pid;
95 
96 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
97  * to that number per second.  This prevents DoS attacks, but results in
98  * audit records being dropped. */
99 static int	audit_rate_limit;
100 
101 /* Number of outstanding audit_buffers allowed. */
102 static int	audit_backlog_limit = 64;
103 static int	audit_backlog_wait_time = 60 * HZ;
104 static int	audit_backlog_wait_overflow = 0;
105 
106 /* The identity of the user shutting down the audit system. */
107 uid_t		audit_sig_uid = -1;
108 pid_t		audit_sig_pid = -1;
109 u32		audit_sig_sid = 0;
110 
111 /* Records can be lost in several ways:
112    0) [suppressed in audit_alloc]
113    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
114    2) out of memory in audit_log_move [alloc_skb]
115    3) suppressed due to audit_rate_limit
116    4) suppressed due to audit_backlog_limit
117 */
118 static atomic_t    audit_lost = ATOMIC_INIT(0);
119 
120 /* The netlink socket. */
121 static struct sock *audit_sock;
122 
123 /* Hash for inode-based rules */
124 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
125 
126 /* The audit_freelist is a list of pre-allocated audit buffers (if more
127  * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
128  * being placed on the freelist). */
129 static DEFINE_SPINLOCK(audit_freelist_lock);
130 static int	   audit_freelist_count;
131 static LIST_HEAD(audit_freelist);
132 
133 static struct sk_buff_head audit_skb_queue;
134 /* queue of skbs to send to auditd when/if it comes back */
135 static struct sk_buff_head audit_skb_hold_queue;
136 static struct task_struct *kauditd_task;
137 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
138 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
139 
140 /* Serialize requests from userspace. */
141 DEFINE_MUTEX(audit_cmd_mutex);
142 
143 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
144  * audit records.  Since printk uses a 1024 byte buffer, this buffer
145  * should be at least that large. */
146 #define AUDIT_BUFSIZ 1024
147 
148 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
149  * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
150 #define AUDIT_MAXFREE  (2*NR_CPUS)
151 
152 /* The audit_buffer is used when formatting an audit record.  The caller
153  * locks briefly to get the record off the freelist or to allocate the
154  * buffer, and locks briefly to send the buffer to the netlink layer or
155  * to place it on a transmit queue.  Multiple audit_buffers can be in
156  * use simultaneously. */
157 struct audit_buffer {
158 	struct list_head     list;
159 	struct sk_buff       *skb;	/* formatted skb ready to send */
160 	struct audit_context *ctx;	/* NULL or associated context */
161 	gfp_t		     gfp_mask;
162 };
163 
164 struct audit_reply {
165 	int pid;
166 	struct sk_buff *skb;
167 };
168 
169 static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
170 {
171 	if (ab) {
172 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
173 		nlh->nlmsg_pid = pid;
174 	}
175 }
176 
177 void audit_panic(const char *message)
178 {
179 	switch (audit_failure)
180 	{
181 	case AUDIT_FAIL_SILENT:
182 		break;
183 	case AUDIT_FAIL_PRINTK:
184 		if (printk_ratelimit())
185 			printk(KERN_ERR "audit: %s\n", message);
186 		break;
187 	case AUDIT_FAIL_PANIC:
188 		/* test audit_pid since printk is always losey, why bother? */
189 		if (audit_pid)
190 			panic("audit: %s\n", message);
191 		break;
192 	}
193 }
194 
195 static inline int audit_rate_check(void)
196 {
197 	static unsigned long	last_check = 0;
198 	static int		messages   = 0;
199 	static DEFINE_SPINLOCK(lock);
200 	unsigned long		flags;
201 	unsigned long		now;
202 	unsigned long		elapsed;
203 	int			retval	   = 0;
204 
205 	if (!audit_rate_limit) return 1;
206 
207 	spin_lock_irqsave(&lock, flags);
208 	if (++messages < audit_rate_limit) {
209 		retval = 1;
210 	} else {
211 		now     = jiffies;
212 		elapsed = now - last_check;
213 		if (elapsed > HZ) {
214 			last_check = now;
215 			messages   = 0;
216 			retval     = 1;
217 		}
218 	}
219 	spin_unlock_irqrestore(&lock, flags);
220 
221 	return retval;
222 }
223 
224 /**
225  * audit_log_lost - conditionally log lost audit message event
226  * @message: the message stating reason for lost audit message
227  *
228  * Emit at least 1 message per second, even if audit_rate_check is
229  * throttling.
230  * Always increment the lost messages counter.
231 */
232 void audit_log_lost(const char *message)
233 {
234 	static unsigned long	last_msg = 0;
235 	static DEFINE_SPINLOCK(lock);
236 	unsigned long		flags;
237 	unsigned long		now;
238 	int			print;
239 
240 	atomic_inc(&audit_lost);
241 
242 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
243 
244 	if (!print) {
245 		spin_lock_irqsave(&lock, flags);
246 		now = jiffies;
247 		if (now - last_msg > HZ) {
248 			print = 1;
249 			last_msg = now;
250 		}
251 		spin_unlock_irqrestore(&lock, flags);
252 	}
253 
254 	if (print) {
255 		if (printk_ratelimit())
256 			printk(KERN_WARNING
257 				"audit: audit_lost=%d audit_rate_limit=%d "
258 				"audit_backlog_limit=%d\n",
259 				atomic_read(&audit_lost),
260 				audit_rate_limit,
261 				audit_backlog_limit);
262 		audit_panic(message);
263 	}
264 }
265 
266 static int audit_log_config_change(char *function_name, int new, int old,
267 				   uid_t loginuid, u32 sessionid, u32 sid,
268 				   int allow_changes)
269 {
270 	struct audit_buffer *ab;
271 	int rc = 0;
272 
273 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
274 	audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new,
275 			 old, loginuid, sessionid);
276 	if (sid) {
277 		char *ctx = NULL;
278 		u32 len;
279 
280 		rc = security_secid_to_secctx(sid, &ctx, &len);
281 		if (rc) {
282 			audit_log_format(ab, " sid=%u", sid);
283 			allow_changes = 0; /* Something weird, deny request */
284 		} else {
285 			audit_log_format(ab, " subj=%s", ctx);
286 			security_release_secctx(ctx, len);
287 		}
288 	}
289 	audit_log_format(ab, " res=%d", allow_changes);
290 	audit_log_end(ab);
291 	return rc;
292 }
293 
294 static int audit_do_config_change(char *function_name, int *to_change,
295 				  int new, uid_t loginuid, u32 sessionid,
296 				  u32 sid)
297 {
298 	int allow_changes, rc = 0, old = *to_change;
299 
300 	/* check if we are locked */
301 	if (audit_enabled == AUDIT_LOCKED)
302 		allow_changes = 0;
303 	else
304 		allow_changes = 1;
305 
306 	if (audit_enabled != AUDIT_OFF) {
307 		rc = audit_log_config_change(function_name, new, old, loginuid,
308 					     sessionid, sid, allow_changes);
309 		if (rc)
310 			allow_changes = 0;
311 	}
312 
313 	/* If we are allowed, make the change */
314 	if (allow_changes == 1)
315 		*to_change = new;
316 	/* Not allowed, update reason */
317 	else if (rc == 0)
318 		rc = -EPERM;
319 	return rc;
320 }
321 
322 static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sessionid,
323 				u32 sid)
324 {
325 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit,
326 				      limit, loginuid, sessionid, sid);
327 }
328 
329 static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sessionid,
330 				   u32 sid)
331 {
332 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit,
333 				      limit, loginuid, sessionid, sid);
334 }
335 
336 static int audit_set_enabled(int state, uid_t loginuid, u32 sessionid, u32 sid)
337 {
338 	int rc;
339 	if (state < AUDIT_OFF || state > AUDIT_LOCKED)
340 		return -EINVAL;
341 
342 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state,
343 				     loginuid, sessionid, sid);
344 
345 	if (!rc)
346 		audit_ever_enabled |= !!state;
347 
348 	return rc;
349 }
350 
351 static int audit_set_failure(int state, uid_t loginuid, u32 sessionid, u32 sid)
352 {
353 	if (state != AUDIT_FAIL_SILENT
354 	    && state != AUDIT_FAIL_PRINTK
355 	    && state != AUDIT_FAIL_PANIC)
356 		return -EINVAL;
357 
358 	return audit_do_config_change("audit_failure", &audit_failure, state,
359 				      loginuid, sessionid, sid);
360 }
361 
362 /*
363  * Queue skbs to be sent to auditd when/if it comes back.  These skbs should
364  * already have been sent via prink/syslog and so if these messages are dropped
365  * it is not a huge concern since we already passed the audit_log_lost()
366  * notification and stuff.  This is just nice to get audit messages during
367  * boot before auditd is running or messages generated while auditd is stopped.
368  * This only holds messages is audit_default is set, aka booting with audit=1
369  * or building your kernel that way.
370  */
371 static void audit_hold_skb(struct sk_buff *skb)
372 {
373 	if (audit_default &&
374 	    skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)
375 		skb_queue_tail(&audit_skb_hold_queue, skb);
376 	else
377 		kfree_skb(skb);
378 }
379 
380 /*
381  * For one reason or another this nlh isn't getting delivered to the userspace
382  * audit daemon, just send it to printk.
383  */
384 static void audit_printk_skb(struct sk_buff *skb)
385 {
386 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
387 	char *data = NLMSG_DATA(nlh);
388 
389 	if (nlh->nlmsg_type != AUDIT_EOE) {
390 		if (printk_ratelimit())
391 			printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, data);
392 		else
393 			audit_log_lost("printk limit exceeded\n");
394 	}
395 
396 	audit_hold_skb(skb);
397 }
398 
399 static void kauditd_send_skb(struct sk_buff *skb)
400 {
401 	int err;
402 	/* take a reference in case we can't send it and we want to hold it */
403 	skb_get(skb);
404 	err = netlink_unicast(audit_sock, skb, audit_nlk_pid, 0);
405 	if (err < 0) {
406 		BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
407 		printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
408 		audit_log_lost("auditd disappeared\n");
409 		audit_pid = 0;
410 		/* we might get lucky and get this in the next auditd */
411 		audit_hold_skb(skb);
412 	} else
413 		/* drop the extra reference if sent ok */
414 		consume_skb(skb);
415 }
416 
417 static int kauditd_thread(void *dummy)
418 {
419 	struct sk_buff *skb;
420 
421 	set_freezable();
422 	while (!kthread_should_stop()) {
423 		/*
424 		 * if auditd just started drain the queue of messages already
425 		 * sent to syslog/printk.  remember loss here is ok.  we already
426 		 * called audit_log_lost() if it didn't go out normally.  so the
427 		 * race between the skb_dequeue and the next check for audit_pid
428 		 * doesn't matter.
429 		 *
430 		 * if you ever find kauditd to be too slow we can get a perf win
431 		 * by doing our own locking and keeping better track if there
432 		 * are messages in this queue.  I don't see the need now, but
433 		 * in 5 years when I want to play with this again I'll see this
434 		 * note and still have no friggin idea what i'm thinking today.
435 		 */
436 		if (audit_default && audit_pid) {
437 			skb = skb_dequeue(&audit_skb_hold_queue);
438 			if (unlikely(skb)) {
439 				while (skb && audit_pid) {
440 					kauditd_send_skb(skb);
441 					skb = skb_dequeue(&audit_skb_hold_queue);
442 				}
443 			}
444 		}
445 
446 		skb = skb_dequeue(&audit_skb_queue);
447 		wake_up(&audit_backlog_wait);
448 		if (skb) {
449 			if (audit_pid)
450 				kauditd_send_skb(skb);
451 			else
452 				audit_printk_skb(skb);
453 		} else {
454 			DECLARE_WAITQUEUE(wait, current);
455 			set_current_state(TASK_INTERRUPTIBLE);
456 			add_wait_queue(&kauditd_wait, &wait);
457 
458 			if (!skb_queue_len(&audit_skb_queue)) {
459 				try_to_freeze();
460 				schedule();
461 			}
462 
463 			__set_current_state(TASK_RUNNING);
464 			remove_wait_queue(&kauditd_wait, &wait);
465 		}
466 	}
467 	return 0;
468 }
469 
470 static int audit_prepare_user_tty(pid_t pid, uid_t loginuid, u32 sessionid)
471 {
472 	struct task_struct *tsk;
473 	int err;
474 
475 	rcu_read_lock();
476 	tsk = find_task_by_vpid(pid);
477 	if (!tsk) {
478 		rcu_read_unlock();
479 		return -ESRCH;
480 	}
481 	get_task_struct(tsk);
482 	rcu_read_unlock();
483 	err = tty_audit_push_task(tsk, loginuid, sessionid);
484 	put_task_struct(tsk);
485 	return err;
486 }
487 
488 int audit_send_list(void *_dest)
489 {
490 	struct audit_netlink_list *dest = _dest;
491 	int pid = dest->pid;
492 	struct sk_buff *skb;
493 
494 	/* wait for parent to finish and send an ACK */
495 	mutex_lock(&audit_cmd_mutex);
496 	mutex_unlock(&audit_cmd_mutex);
497 
498 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
499 		netlink_unicast(audit_sock, skb, pid, 0);
500 
501 	kfree(dest);
502 
503 	return 0;
504 }
505 
506 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
507 				 int multi, const void *payload, int size)
508 {
509 	struct sk_buff	*skb;
510 	struct nlmsghdr	*nlh;
511 	void		*data;
512 	int		flags = multi ? NLM_F_MULTI : 0;
513 	int		t     = done  ? NLMSG_DONE  : type;
514 
515 	skb = nlmsg_new(size, GFP_KERNEL);
516 	if (!skb)
517 		return NULL;
518 
519 	nlh	= NLMSG_NEW(skb, pid, seq, t, size, flags);
520 	data	= NLMSG_DATA(nlh);
521 	memcpy(data, payload, size);
522 	return skb;
523 
524 nlmsg_failure:			/* Used by NLMSG_NEW */
525 	if (skb)
526 		kfree_skb(skb);
527 	return NULL;
528 }
529 
530 static int audit_send_reply_thread(void *arg)
531 {
532 	struct audit_reply *reply = (struct audit_reply *)arg;
533 
534 	mutex_lock(&audit_cmd_mutex);
535 	mutex_unlock(&audit_cmd_mutex);
536 
537 	/* Ignore failure. It'll only happen if the sender goes away,
538 	   because our timeout is set to infinite. */
539 	netlink_unicast(audit_sock, reply->skb, reply->pid, 0);
540 	kfree(reply);
541 	return 0;
542 }
543 /**
544  * audit_send_reply - send an audit reply message via netlink
545  * @pid: process id to send reply to
546  * @seq: sequence number
547  * @type: audit message type
548  * @done: done (last) flag
549  * @multi: multi-part message flag
550  * @payload: payload data
551  * @size: payload size
552  *
553  * Allocates an skb, builds the netlink message, and sends it to the pid.
554  * No failure notifications.
555  */
556 static void audit_send_reply(int pid, int seq, int type, int done, int multi,
557 			     const void *payload, int size)
558 {
559 	struct sk_buff *skb;
560 	struct task_struct *tsk;
561 	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
562 					    GFP_KERNEL);
563 
564 	if (!reply)
565 		return;
566 
567 	skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
568 	if (!skb)
569 		goto out;
570 
571 	reply->pid = pid;
572 	reply->skb = skb;
573 
574 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
575 	if (!IS_ERR(tsk))
576 		return;
577 	kfree_skb(skb);
578 out:
579 	kfree(reply);
580 }
581 
582 /*
583  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
584  * control messages.
585  */
586 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
587 {
588 	int err = 0;
589 
590 	switch (msg_type) {
591 	case AUDIT_GET:
592 	case AUDIT_LIST:
593 	case AUDIT_LIST_RULES:
594 	case AUDIT_SET:
595 	case AUDIT_ADD:
596 	case AUDIT_ADD_RULE:
597 	case AUDIT_DEL:
598 	case AUDIT_DEL_RULE:
599 	case AUDIT_SIGNAL_INFO:
600 	case AUDIT_TTY_GET:
601 	case AUDIT_TTY_SET:
602 	case AUDIT_TRIM:
603 	case AUDIT_MAKE_EQUIV:
604 		if (security_netlink_recv(skb, CAP_AUDIT_CONTROL))
605 			err = -EPERM;
606 		break;
607 	case AUDIT_USER:
608 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
609 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
610 		if (security_netlink_recv(skb, CAP_AUDIT_WRITE))
611 			err = -EPERM;
612 		break;
613 	default:  /* bad msg */
614 		err = -EINVAL;
615 	}
616 
617 	return err;
618 }
619 
620 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type,
621 				     u32 pid, u32 uid, uid_t auid, u32 ses,
622 				     u32 sid)
623 {
624 	int rc = 0;
625 	char *ctx = NULL;
626 	u32 len;
627 
628 	if (!audit_enabled) {
629 		*ab = NULL;
630 		return rc;
631 	}
632 
633 	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
634 	audit_log_format(*ab, "user pid=%d uid=%u auid=%u ses=%u",
635 			 pid, uid, auid, ses);
636 	if (sid) {
637 		rc = security_secid_to_secctx(sid, &ctx, &len);
638 		if (rc)
639 			audit_log_format(*ab, " ssid=%u", sid);
640 		else {
641 			audit_log_format(*ab, " subj=%s", ctx);
642 			security_release_secctx(ctx, len);
643 		}
644 	}
645 
646 	return rc;
647 }
648 
649 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
650 {
651 	u32			uid, pid, seq, sid;
652 	void			*data;
653 	struct audit_status	*status_get, status_set;
654 	int			err;
655 	struct audit_buffer	*ab;
656 	u16			msg_type = nlh->nlmsg_type;
657 	uid_t			loginuid; /* loginuid of sender */
658 	u32			sessionid;
659 	struct audit_sig_info   *sig_data;
660 	char			*ctx = NULL;
661 	u32			len;
662 
663 	err = audit_netlink_ok(skb, msg_type);
664 	if (err)
665 		return err;
666 
667 	/* As soon as there's any sign of userspace auditd,
668 	 * start kauditd to talk to it */
669 	if (!kauditd_task)
670 		kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
671 	if (IS_ERR(kauditd_task)) {
672 		err = PTR_ERR(kauditd_task);
673 		kauditd_task = NULL;
674 		return err;
675 	}
676 
677 	pid  = NETLINK_CREDS(skb)->pid;
678 	uid  = NETLINK_CREDS(skb)->uid;
679 	loginuid = audit_get_loginuid(current);
680 	sessionid = audit_get_sessionid(current);
681 	security_task_getsecid(current, &sid);
682 	seq  = nlh->nlmsg_seq;
683 	data = NLMSG_DATA(nlh);
684 
685 	switch (msg_type) {
686 	case AUDIT_GET:
687 		status_set.enabled	 = audit_enabled;
688 		status_set.failure	 = audit_failure;
689 		status_set.pid		 = audit_pid;
690 		status_set.rate_limit	 = audit_rate_limit;
691 		status_set.backlog_limit = audit_backlog_limit;
692 		status_set.lost		 = atomic_read(&audit_lost);
693 		status_set.backlog	 = skb_queue_len(&audit_skb_queue);
694 		audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0,
695 				 &status_set, sizeof(status_set));
696 		break;
697 	case AUDIT_SET:
698 		if (nlh->nlmsg_len < sizeof(struct audit_status))
699 			return -EINVAL;
700 		status_get   = (struct audit_status *)data;
701 		if (status_get->mask & AUDIT_STATUS_ENABLED) {
702 			err = audit_set_enabled(status_get->enabled,
703 						loginuid, sessionid, sid);
704 			if (err < 0)
705 				return err;
706 		}
707 		if (status_get->mask & AUDIT_STATUS_FAILURE) {
708 			err = audit_set_failure(status_get->failure,
709 						loginuid, sessionid, sid);
710 			if (err < 0)
711 				return err;
712 		}
713 		if (status_get->mask & AUDIT_STATUS_PID) {
714 			int new_pid = status_get->pid;
715 
716 			if (audit_enabled != AUDIT_OFF)
717 				audit_log_config_change("audit_pid", new_pid,
718 							audit_pid, loginuid,
719 							sessionid, sid, 1);
720 
721 			audit_pid = new_pid;
722 			audit_nlk_pid = NETLINK_CB(skb).pid;
723 		}
724 		if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) {
725 			err = audit_set_rate_limit(status_get->rate_limit,
726 						   loginuid, sessionid, sid);
727 			if (err < 0)
728 				return err;
729 		}
730 		if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
731 			err = audit_set_backlog_limit(status_get->backlog_limit,
732 						      loginuid, sessionid, sid);
733 		break;
734 	case AUDIT_USER:
735 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
736 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
737 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
738 			return 0;
739 
740 		err = audit_filter_user(&NETLINK_CB(skb));
741 		if (err == 1) {
742 			err = 0;
743 			if (msg_type == AUDIT_USER_TTY) {
744 				err = audit_prepare_user_tty(pid, loginuid,
745 							     sessionid);
746 				if (err)
747 					break;
748 			}
749 			audit_log_common_recv_msg(&ab, msg_type, pid, uid,
750 						  loginuid, sessionid, sid);
751 
752 			if (msg_type != AUDIT_USER_TTY)
753 				audit_log_format(ab, " msg='%.1024s'",
754 						 (char *)data);
755 			else {
756 				int size;
757 
758 				audit_log_format(ab, " msg=");
759 				size = nlmsg_len(nlh);
760 				if (size > 0 &&
761 				    ((unsigned char *)data)[size - 1] == '\0')
762 					size--;
763 				audit_log_n_untrustedstring(ab, data, size);
764 			}
765 			audit_set_pid(ab, pid);
766 			audit_log_end(ab);
767 		}
768 		break;
769 	case AUDIT_ADD:
770 	case AUDIT_DEL:
771 		if (nlmsg_len(nlh) < sizeof(struct audit_rule))
772 			return -EINVAL;
773 		if (audit_enabled == AUDIT_LOCKED) {
774 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
775 						  uid, loginuid, sessionid, sid);
776 
777 			audit_log_format(ab, " audit_enabled=%d res=0",
778 					 audit_enabled);
779 			audit_log_end(ab);
780 			return -EPERM;
781 		}
782 		/* fallthrough */
783 	case AUDIT_LIST:
784 		err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
785 					   uid, seq, data, nlmsg_len(nlh),
786 					   loginuid, sessionid, sid);
787 		break;
788 	case AUDIT_ADD_RULE:
789 	case AUDIT_DEL_RULE:
790 		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
791 			return -EINVAL;
792 		if (audit_enabled == AUDIT_LOCKED) {
793 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
794 						  uid, loginuid, sessionid, sid);
795 
796 			audit_log_format(ab, " audit_enabled=%d res=0",
797 					 audit_enabled);
798 			audit_log_end(ab);
799 			return -EPERM;
800 		}
801 		/* fallthrough */
802 	case AUDIT_LIST_RULES:
803 		err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
804 					   uid, seq, data, nlmsg_len(nlh),
805 					   loginuid, sessionid, sid);
806 		break;
807 	case AUDIT_TRIM:
808 		audit_trim_trees();
809 
810 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
811 					  uid, loginuid, sessionid, sid);
812 
813 		audit_log_format(ab, " op=trim res=1");
814 		audit_log_end(ab);
815 		break;
816 	case AUDIT_MAKE_EQUIV: {
817 		void *bufp = data;
818 		u32 sizes[2];
819 		size_t msglen = nlmsg_len(nlh);
820 		char *old, *new;
821 
822 		err = -EINVAL;
823 		if (msglen < 2 * sizeof(u32))
824 			break;
825 		memcpy(sizes, bufp, 2 * sizeof(u32));
826 		bufp += 2 * sizeof(u32);
827 		msglen -= 2 * sizeof(u32);
828 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
829 		if (IS_ERR(old)) {
830 			err = PTR_ERR(old);
831 			break;
832 		}
833 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
834 		if (IS_ERR(new)) {
835 			err = PTR_ERR(new);
836 			kfree(old);
837 			break;
838 		}
839 		/* OK, here comes... */
840 		err = audit_tag_tree(old, new);
841 
842 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
843 					  uid, loginuid, sessionid, sid);
844 
845 		audit_log_format(ab, " op=make_equiv old=");
846 		audit_log_untrustedstring(ab, old);
847 		audit_log_format(ab, " new=");
848 		audit_log_untrustedstring(ab, new);
849 		audit_log_format(ab, " res=%d", !err);
850 		audit_log_end(ab);
851 		kfree(old);
852 		kfree(new);
853 		break;
854 	}
855 	case AUDIT_SIGNAL_INFO:
856 		len = 0;
857 		if (audit_sig_sid) {
858 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
859 			if (err)
860 				return err;
861 		}
862 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
863 		if (!sig_data) {
864 			if (audit_sig_sid)
865 				security_release_secctx(ctx, len);
866 			return -ENOMEM;
867 		}
868 		sig_data->uid = audit_sig_uid;
869 		sig_data->pid = audit_sig_pid;
870 		if (audit_sig_sid) {
871 			memcpy(sig_data->ctx, ctx, len);
872 			security_release_secctx(ctx, len);
873 		}
874 		audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
875 				0, 0, sig_data, sizeof(*sig_data) + len);
876 		kfree(sig_data);
877 		break;
878 	case AUDIT_TTY_GET: {
879 		struct audit_tty_status s;
880 		struct task_struct *tsk;
881 		unsigned long flags;
882 
883 		rcu_read_lock();
884 		tsk = find_task_by_vpid(pid);
885 		if (tsk && lock_task_sighand(tsk, &flags)) {
886 			s.enabled = tsk->signal->audit_tty != 0;
887 			unlock_task_sighand(tsk, &flags);
888 		} else
889 			err = -ESRCH;
890 		rcu_read_unlock();
891 
892 		if (!err)
893 			audit_send_reply(NETLINK_CB(skb).pid, seq,
894 					 AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
895 		break;
896 	}
897 	case AUDIT_TTY_SET: {
898 		struct audit_tty_status *s;
899 		struct task_struct *tsk;
900 		unsigned long flags;
901 
902 		if (nlh->nlmsg_len < sizeof(struct audit_tty_status))
903 			return -EINVAL;
904 		s = data;
905 		if (s->enabled != 0 && s->enabled != 1)
906 			return -EINVAL;
907 		rcu_read_lock();
908 		tsk = find_task_by_vpid(pid);
909 		if (tsk && lock_task_sighand(tsk, &flags)) {
910 			tsk->signal->audit_tty = s->enabled != 0;
911 			unlock_task_sighand(tsk, &flags);
912 		} else
913 			err = -ESRCH;
914 		rcu_read_unlock();
915 		break;
916 	}
917 	default:
918 		err = -EINVAL;
919 		break;
920 	}
921 
922 	return err < 0 ? err : 0;
923 }
924 
925 /*
926  * Get message from skb.  Each message is processed by audit_receive_msg.
927  * Malformed skbs with wrong length are discarded silently.
928  */
929 static void audit_receive_skb(struct sk_buff *skb)
930 {
931 	struct nlmsghdr *nlh;
932 	/*
933 	 * len MUST be signed for NLMSG_NEXT to be able to dec it below 0
934 	 * if the nlmsg_len was not aligned
935 	 */
936 	int len;
937 	int err;
938 
939 	nlh = nlmsg_hdr(skb);
940 	len = skb->len;
941 
942 	while (NLMSG_OK(nlh, len)) {
943 		err = audit_receive_msg(skb, nlh);
944 		/* if err or if this message says it wants a response */
945 		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
946 			netlink_ack(skb, nlh, err);
947 
948 		nlh = NLMSG_NEXT(nlh, len);
949 	}
950 }
951 
952 /* Receive messages from netlink socket. */
953 static void audit_receive(struct sk_buff  *skb)
954 {
955 	mutex_lock(&audit_cmd_mutex);
956 	audit_receive_skb(skb);
957 	mutex_unlock(&audit_cmd_mutex);
958 }
959 
960 /* Initialize audit support at boot time. */
961 static int __init audit_init(void)
962 {
963 	int i;
964 
965 	if (audit_initialized == AUDIT_DISABLED)
966 		return 0;
967 
968 	printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
969 	       audit_default ? "enabled" : "disabled");
970 	audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0,
971 					   audit_receive, NULL, THIS_MODULE);
972 	if (!audit_sock)
973 		audit_panic("cannot initialize netlink socket");
974 	else
975 		audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
976 
977 	skb_queue_head_init(&audit_skb_queue);
978 	skb_queue_head_init(&audit_skb_hold_queue);
979 	audit_initialized = AUDIT_INITIALIZED;
980 	audit_enabled = audit_default;
981 	audit_ever_enabled |= !!audit_default;
982 
983 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
984 
985 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
986 		INIT_LIST_HEAD(&audit_inode_hash[i]);
987 
988 	return 0;
989 }
990 __initcall(audit_init);
991 
992 /* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
993 static int __init audit_enable(char *str)
994 {
995 	audit_default = !!simple_strtol(str, NULL, 0);
996 	if (!audit_default)
997 		audit_initialized = AUDIT_DISABLED;
998 
999 	printk(KERN_INFO "audit: %s", audit_default ? "enabled" : "disabled");
1000 
1001 	if (audit_initialized == AUDIT_INITIALIZED) {
1002 		audit_enabled = audit_default;
1003 		audit_ever_enabled |= !!audit_default;
1004 	} else if (audit_initialized == AUDIT_UNINITIALIZED) {
1005 		printk(" (after initialization)");
1006 	} else {
1007 		printk(" (until reboot)");
1008 	}
1009 	printk("\n");
1010 
1011 	return 1;
1012 }
1013 
1014 __setup("audit=", audit_enable);
1015 
1016 static void audit_buffer_free(struct audit_buffer *ab)
1017 {
1018 	unsigned long flags;
1019 
1020 	if (!ab)
1021 		return;
1022 
1023 	if (ab->skb)
1024 		kfree_skb(ab->skb);
1025 
1026 	spin_lock_irqsave(&audit_freelist_lock, flags);
1027 	if (audit_freelist_count > AUDIT_MAXFREE)
1028 		kfree(ab);
1029 	else {
1030 		audit_freelist_count++;
1031 		list_add(&ab->list, &audit_freelist);
1032 	}
1033 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1034 }
1035 
1036 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1037 						gfp_t gfp_mask, int type)
1038 {
1039 	unsigned long flags;
1040 	struct audit_buffer *ab = NULL;
1041 	struct nlmsghdr *nlh;
1042 
1043 	spin_lock_irqsave(&audit_freelist_lock, flags);
1044 	if (!list_empty(&audit_freelist)) {
1045 		ab = list_entry(audit_freelist.next,
1046 				struct audit_buffer, list);
1047 		list_del(&ab->list);
1048 		--audit_freelist_count;
1049 	}
1050 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1051 
1052 	if (!ab) {
1053 		ab = kmalloc(sizeof(*ab), gfp_mask);
1054 		if (!ab)
1055 			goto err;
1056 	}
1057 
1058 	ab->ctx = ctx;
1059 	ab->gfp_mask = gfp_mask;
1060 
1061 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1062 	if (!ab->skb)
1063 		goto nlmsg_failure;
1064 
1065 	nlh = NLMSG_NEW(ab->skb, 0, 0, type, 0, 0);
1066 
1067 	return ab;
1068 
1069 nlmsg_failure:                  /* Used by NLMSG_NEW */
1070 	kfree_skb(ab->skb);
1071 	ab->skb = NULL;
1072 err:
1073 	audit_buffer_free(ab);
1074 	return NULL;
1075 }
1076 
1077 /**
1078  * audit_serial - compute a serial number for the audit record
1079  *
1080  * Compute a serial number for the audit record.  Audit records are
1081  * written to user-space as soon as they are generated, so a complete
1082  * audit record may be written in several pieces.  The timestamp of the
1083  * record and this serial number are used by the user-space tools to
1084  * determine which pieces belong to the same audit record.  The
1085  * (timestamp,serial) tuple is unique for each syscall and is live from
1086  * syscall entry to syscall exit.
1087  *
1088  * NOTE: Another possibility is to store the formatted records off the
1089  * audit context (for those records that have a context), and emit them
1090  * all at syscall exit.  However, this could delay the reporting of
1091  * significant errors until syscall exit (or never, if the system
1092  * halts).
1093  */
1094 unsigned int audit_serial(void)
1095 {
1096 	static DEFINE_SPINLOCK(serial_lock);
1097 	static unsigned int serial = 0;
1098 
1099 	unsigned long flags;
1100 	unsigned int ret;
1101 
1102 	spin_lock_irqsave(&serial_lock, flags);
1103 	do {
1104 		ret = ++serial;
1105 	} while (unlikely(!ret));
1106 	spin_unlock_irqrestore(&serial_lock, flags);
1107 
1108 	return ret;
1109 }
1110 
1111 static inline void audit_get_stamp(struct audit_context *ctx,
1112 				   struct timespec *t, unsigned int *serial)
1113 {
1114 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1115 		*t = CURRENT_TIME;
1116 		*serial = audit_serial();
1117 	}
1118 }
1119 
1120 /* Obtain an audit buffer.  This routine does locking to obtain the
1121  * audit buffer, but then no locking is required for calls to
1122  * audit_log_*format.  If the tsk is a task that is currently in a
1123  * syscall, then the syscall is marked as auditable and an audit record
1124  * will be written at syscall exit.  If there is no associated task, tsk
1125  * should be NULL. */
1126 
1127 /**
1128  * audit_log_start - obtain an audit buffer
1129  * @ctx: audit_context (may be NULL)
1130  * @gfp_mask: type of allocation
1131  * @type: audit message type
1132  *
1133  * Returns audit_buffer pointer on success or NULL on error.
1134  *
1135  * Obtain an audit buffer.  This routine does locking to obtain the
1136  * audit buffer, but then no locking is required for calls to
1137  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1138  * syscall, then the syscall is marked as auditable and an audit record
1139  * will be written at syscall exit.  If there is no associated task, then
1140  * task context (ctx) should be NULL.
1141  */
1142 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1143 				     int type)
1144 {
1145 	struct audit_buffer	*ab	= NULL;
1146 	struct timespec		t;
1147 	unsigned int		uninitialized_var(serial);
1148 	int reserve;
1149 	unsigned long timeout_start = jiffies;
1150 
1151 	if (audit_initialized != AUDIT_INITIALIZED)
1152 		return NULL;
1153 
1154 	if (unlikely(audit_filter_type(type)))
1155 		return NULL;
1156 
1157 	if (gfp_mask & __GFP_WAIT)
1158 		reserve = 0;
1159 	else
1160 		reserve = 5; /* Allow atomic callers to go up to five
1161 				entries over the normal backlog limit */
1162 
1163 	while (audit_backlog_limit
1164 	       && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1165 		if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time
1166 		    && time_before(jiffies, timeout_start + audit_backlog_wait_time)) {
1167 
1168 			/* Wait for auditd to drain the queue a little */
1169 			DECLARE_WAITQUEUE(wait, current);
1170 			set_current_state(TASK_INTERRUPTIBLE);
1171 			add_wait_queue(&audit_backlog_wait, &wait);
1172 
1173 			if (audit_backlog_limit &&
1174 			    skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1175 				schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies);
1176 
1177 			__set_current_state(TASK_RUNNING);
1178 			remove_wait_queue(&audit_backlog_wait, &wait);
1179 			continue;
1180 		}
1181 		if (audit_rate_check() && printk_ratelimit())
1182 			printk(KERN_WARNING
1183 			       "audit: audit_backlog=%d > "
1184 			       "audit_backlog_limit=%d\n",
1185 			       skb_queue_len(&audit_skb_queue),
1186 			       audit_backlog_limit);
1187 		audit_log_lost("backlog limit exceeded");
1188 		audit_backlog_wait_time = audit_backlog_wait_overflow;
1189 		wake_up(&audit_backlog_wait);
1190 		return NULL;
1191 	}
1192 
1193 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1194 	if (!ab) {
1195 		audit_log_lost("out of memory in audit_log_start");
1196 		return NULL;
1197 	}
1198 
1199 	audit_get_stamp(ab->ctx, &t, &serial);
1200 
1201 	audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1202 			 t.tv_sec, t.tv_nsec/1000000, serial);
1203 	return ab;
1204 }
1205 
1206 /**
1207  * audit_expand - expand skb in the audit buffer
1208  * @ab: audit_buffer
1209  * @extra: space to add at tail of the skb
1210  *
1211  * Returns 0 (no space) on failed expansion, or available space if
1212  * successful.
1213  */
1214 static inline int audit_expand(struct audit_buffer *ab, int extra)
1215 {
1216 	struct sk_buff *skb = ab->skb;
1217 	int oldtail = skb_tailroom(skb);
1218 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1219 	int newtail = skb_tailroom(skb);
1220 
1221 	if (ret < 0) {
1222 		audit_log_lost("out of memory in audit_expand");
1223 		return 0;
1224 	}
1225 
1226 	skb->truesize += newtail - oldtail;
1227 	return newtail;
1228 }
1229 
1230 /*
1231  * Format an audit message into the audit buffer.  If there isn't enough
1232  * room in the audit buffer, more room will be allocated and vsnprint
1233  * will be called a second time.  Currently, we assume that a printk
1234  * can't format message larger than 1024 bytes, so we don't either.
1235  */
1236 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1237 			      va_list args)
1238 {
1239 	int len, avail;
1240 	struct sk_buff *skb;
1241 	va_list args2;
1242 
1243 	if (!ab)
1244 		return;
1245 
1246 	BUG_ON(!ab->skb);
1247 	skb = ab->skb;
1248 	avail = skb_tailroom(skb);
1249 	if (avail == 0) {
1250 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1251 		if (!avail)
1252 			goto out;
1253 	}
1254 	va_copy(args2, args);
1255 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1256 	if (len >= avail) {
1257 		/* The printk buffer is 1024 bytes long, so if we get
1258 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1259 		 * log everything that printk could have logged. */
1260 		avail = audit_expand(ab,
1261 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1262 		if (!avail)
1263 			goto out;
1264 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1265 	}
1266 	va_end(args2);
1267 	if (len > 0)
1268 		skb_put(skb, len);
1269 out:
1270 	return;
1271 }
1272 
1273 /**
1274  * audit_log_format - format a message into the audit buffer.
1275  * @ab: audit_buffer
1276  * @fmt: format string
1277  * @...: optional parameters matching @fmt string
1278  *
1279  * All the work is done in audit_log_vformat.
1280  */
1281 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1282 {
1283 	va_list args;
1284 
1285 	if (!ab)
1286 		return;
1287 	va_start(args, fmt);
1288 	audit_log_vformat(ab, fmt, args);
1289 	va_end(args);
1290 }
1291 
1292 /**
1293  * audit_log_hex - convert a buffer to hex and append it to the audit skb
1294  * @ab: the audit_buffer
1295  * @buf: buffer to convert to hex
1296  * @len: length of @buf to be converted
1297  *
1298  * No return value; failure to expand is silently ignored.
1299  *
1300  * This function will take the passed buf and convert it into a string of
1301  * ascii hex digits. The new string is placed onto the skb.
1302  */
1303 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1304 		size_t len)
1305 {
1306 	int i, avail, new_len;
1307 	unsigned char *ptr;
1308 	struct sk_buff *skb;
1309 	static const unsigned char *hex = "0123456789ABCDEF";
1310 
1311 	if (!ab)
1312 		return;
1313 
1314 	BUG_ON(!ab->skb);
1315 	skb = ab->skb;
1316 	avail = skb_tailroom(skb);
1317 	new_len = len<<1;
1318 	if (new_len >= avail) {
1319 		/* Round the buffer request up to the next multiple */
1320 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1321 		avail = audit_expand(ab, new_len);
1322 		if (!avail)
1323 			return;
1324 	}
1325 
1326 	ptr = skb_tail_pointer(skb);
1327 	for (i=0; i<len; i++) {
1328 		*ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
1329 		*ptr++ = hex[buf[i] & 0x0F];	  /* Lower nibble */
1330 	}
1331 	*ptr = 0;
1332 	skb_put(skb, len << 1); /* new string is twice the old string */
1333 }
1334 
1335 /*
1336  * Format a string of no more than slen characters into the audit buffer,
1337  * enclosed in quote marks.
1338  */
1339 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1340 			size_t slen)
1341 {
1342 	int avail, new_len;
1343 	unsigned char *ptr;
1344 	struct sk_buff *skb;
1345 
1346 	if (!ab)
1347 		return;
1348 
1349 	BUG_ON(!ab->skb);
1350 	skb = ab->skb;
1351 	avail = skb_tailroom(skb);
1352 	new_len = slen + 3;	/* enclosing quotes + null terminator */
1353 	if (new_len > avail) {
1354 		avail = audit_expand(ab, new_len);
1355 		if (!avail)
1356 			return;
1357 	}
1358 	ptr = skb_tail_pointer(skb);
1359 	*ptr++ = '"';
1360 	memcpy(ptr, string, slen);
1361 	ptr += slen;
1362 	*ptr++ = '"';
1363 	*ptr = 0;
1364 	skb_put(skb, slen + 2);	/* don't include null terminator */
1365 }
1366 
1367 /**
1368  * audit_string_contains_control - does a string need to be logged in hex
1369  * @string: string to be checked
1370  * @len: max length of the string to check
1371  */
1372 int audit_string_contains_control(const char *string, size_t len)
1373 {
1374 	const unsigned char *p;
1375 	for (p = string; p < (const unsigned char *)string + len; p++) {
1376 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1377 			return 1;
1378 	}
1379 	return 0;
1380 }
1381 
1382 /**
1383  * audit_log_n_untrustedstring - log a string that may contain random characters
1384  * @ab: audit_buffer
1385  * @len: length of string (not including trailing null)
1386  * @string: string to be logged
1387  *
1388  * This code will escape a string that is passed to it if the string
1389  * contains a control character, unprintable character, double quote mark,
1390  * or a space. Unescaped strings will start and end with a double quote mark.
1391  * Strings that are escaped are printed in hex (2 digits per char).
1392  *
1393  * The caller specifies the number of characters in the string to log, which may
1394  * or may not be the entire string.
1395  */
1396 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1397 				 size_t len)
1398 {
1399 	if (audit_string_contains_control(string, len))
1400 		audit_log_n_hex(ab, string, len);
1401 	else
1402 		audit_log_n_string(ab, string, len);
1403 }
1404 
1405 /**
1406  * audit_log_untrustedstring - log a string that may contain random characters
1407  * @ab: audit_buffer
1408  * @string: string to be logged
1409  *
1410  * Same as audit_log_n_untrustedstring(), except that strlen is used to
1411  * determine string length.
1412  */
1413 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1414 {
1415 	audit_log_n_untrustedstring(ab, string, strlen(string));
1416 }
1417 
1418 /* This is a helper-function to print the escaped d_path */
1419 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1420 		      struct path *path)
1421 {
1422 	char *p, *pathname;
1423 
1424 	if (prefix)
1425 		audit_log_format(ab, " %s", prefix);
1426 
1427 	/* We will allow 11 spaces for ' (deleted)' to be appended */
1428 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1429 	if (!pathname) {
1430 		audit_log_string(ab, "<no_memory>");
1431 		return;
1432 	}
1433 	p = d_path(path, pathname, PATH_MAX+11);
1434 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1435 		/* FIXME: can we save some information here? */
1436 		audit_log_string(ab, "<too_long>");
1437 	} else
1438 		audit_log_untrustedstring(ab, p);
1439 	kfree(pathname);
1440 }
1441 
1442 void audit_log_key(struct audit_buffer *ab, char *key)
1443 {
1444 	audit_log_format(ab, " key=");
1445 	if (key)
1446 		audit_log_untrustedstring(ab, key);
1447 	else
1448 		audit_log_format(ab, "(null)");
1449 }
1450 
1451 /**
1452  * audit_log_end - end one audit record
1453  * @ab: the audit_buffer
1454  *
1455  * The netlink_* functions cannot be called inside an irq context, so
1456  * the audit buffer is placed on a queue and a tasklet is scheduled to
1457  * remove them from the queue outside the irq context.  May be called in
1458  * any context.
1459  */
1460 void audit_log_end(struct audit_buffer *ab)
1461 {
1462 	if (!ab)
1463 		return;
1464 	if (!audit_rate_check()) {
1465 		audit_log_lost("rate limit exceeded");
1466 	} else {
1467 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1468 		nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
1469 
1470 		if (audit_pid) {
1471 			skb_queue_tail(&audit_skb_queue, ab->skb);
1472 			wake_up_interruptible(&kauditd_wait);
1473 		} else {
1474 			audit_printk_skb(ab->skb);
1475 		}
1476 		ab->skb = NULL;
1477 	}
1478 	audit_buffer_free(ab);
1479 }
1480 
1481 /**
1482  * audit_log - Log an audit record
1483  * @ctx: audit context
1484  * @gfp_mask: type of allocation
1485  * @type: audit message type
1486  * @fmt: format string to use
1487  * @...: variable parameters matching the format string
1488  *
1489  * This is a convenience function that calls audit_log_start,
1490  * audit_log_vformat, and audit_log_end.  It may be called
1491  * in any context.
1492  */
1493 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1494 	       const char *fmt, ...)
1495 {
1496 	struct audit_buffer *ab;
1497 	va_list args;
1498 
1499 	ab = audit_log_start(ctx, gfp_mask, type);
1500 	if (ab) {
1501 		va_start(args, fmt);
1502 		audit_log_vformat(ab, fmt, args);
1503 		va_end(args);
1504 		audit_log_end(ab);
1505 	}
1506 }
1507 
1508 #ifdef CONFIG_SECURITY
1509 /**
1510  * audit_log_secctx - Converts and logs SELinux context
1511  * @ab: audit_buffer
1512  * @secid: security number
1513  *
1514  * This is a helper function that calls security_secid_to_secctx to convert
1515  * secid to secctx and then adds the (converted) SELinux context to the audit
1516  * log by calling audit_log_format, thus also preventing leak of internal secid
1517  * to userspace. If secid cannot be converted audit_panic is called.
1518  */
1519 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
1520 {
1521 	u32 len;
1522 	char *secctx;
1523 
1524 	if (security_secid_to_secctx(secid, &secctx, &len)) {
1525 		audit_panic("Cannot convert secid to context");
1526 	} else {
1527 		audit_log_format(ab, " obj=%s", secctx);
1528 		security_release_secctx(secctx, len);
1529 	}
1530 }
1531 EXPORT_SYMBOL(audit_log_secctx);
1532 #endif
1533 
1534 EXPORT_SYMBOL(audit_log_start);
1535 EXPORT_SYMBOL(audit_log_end);
1536 EXPORT_SYMBOL(audit_log_format);
1537 EXPORT_SYMBOL(audit_log);
1538