1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* audit.c -- Auditing support 3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 4 * System-call specific features have moved to auditsc.c 5 * 6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 7 * All Rights Reserved. 8 * 9 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 10 * 11 * Goals: 1) Integrate fully with Security Modules. 12 * 2) Minimal run-time overhead: 13 * a) Minimal when syscall auditing is disabled (audit_enable=0). 14 * b) Small when syscall auditing is enabled and no audit record 15 * is generated (defer as much work as possible to record 16 * generation time): 17 * i) context is allocated, 18 * ii) names from getname are stored without a copy, and 19 * iii) inode information stored from path_lookup. 20 * 3) Ability to disable syscall auditing at boot time (audit=0). 21 * 4) Usable by other parts of the kernel (if audit_log* is called, 22 * then a syscall record will be generated automatically for the 23 * current syscall). 24 * 5) Netlink interface to user-space. 25 * 6) Support low-overhead kernel-based filtering to minimize the 26 * information that must be passed to user-space. 27 * 28 * Audit userspace, documentation, tests, and bug/issue trackers: 29 * https://github.com/linux-audit 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/file.h> 35 #include <linux/init.h> 36 #include <linux/types.h> 37 #include <linux/atomic.h> 38 #include <linux/mm.h> 39 #include <linux/export.h> 40 #include <linux/slab.h> 41 #include <linux/err.h> 42 #include <linux/kthread.h> 43 #include <linux/kernel.h> 44 #include <linux/syscalls.h> 45 #include <linux/spinlock.h> 46 #include <linux/rcupdate.h> 47 #include <linux/mutex.h> 48 #include <linux/gfp.h> 49 #include <linux/pid.h> 50 51 #include <linux/audit.h> 52 53 #include <net/sock.h> 54 #include <net/netlink.h> 55 #include <linux/skbuff.h> 56 #ifdef CONFIG_SECURITY 57 #include <linux/security.h> 58 #endif 59 #include <linux/freezer.h> 60 #include <linux/pid_namespace.h> 61 #include <net/netns/generic.h> 62 63 #include "audit.h" 64 65 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 66 * (Initialization happens after skb_init is called.) */ 67 #define AUDIT_DISABLED -1 68 #define AUDIT_UNINITIALIZED 0 69 #define AUDIT_INITIALIZED 1 70 static int audit_initialized = AUDIT_UNINITIALIZED; 71 72 u32 audit_enabled = AUDIT_OFF; 73 bool audit_ever_enabled = !!AUDIT_OFF; 74 75 EXPORT_SYMBOL_GPL(audit_enabled); 76 77 /* Default state when kernel boots without any parameters. */ 78 static u32 audit_default = AUDIT_OFF; 79 80 /* If auditing cannot proceed, audit_failure selects what happens. */ 81 static u32 audit_failure = AUDIT_FAIL_PRINTK; 82 83 /* private audit network namespace index */ 84 static unsigned int audit_net_id; 85 86 /** 87 * struct audit_net - audit private network namespace data 88 * @sk: communication socket 89 */ 90 struct audit_net { 91 struct sock *sk; 92 }; 93 94 /** 95 * struct auditd_connection - kernel/auditd connection state 96 * @pid: auditd PID 97 * @portid: netlink portid 98 * @net: the associated network namespace 99 * @rcu: RCU head 100 * 101 * Description: 102 * This struct is RCU protected; you must either hold the RCU lock for reading 103 * or the associated spinlock for writing. 104 */ 105 struct auditd_connection { 106 struct pid *pid; 107 u32 portid; 108 struct net *net; 109 struct rcu_head rcu; 110 }; 111 static struct auditd_connection __rcu *auditd_conn; 112 static DEFINE_SPINLOCK(auditd_conn_lock); 113 114 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 115 * to that number per second. This prevents DoS attacks, but results in 116 * audit records being dropped. */ 117 static u32 audit_rate_limit; 118 119 /* Number of outstanding audit_buffers allowed. 120 * When set to zero, this means unlimited. */ 121 static u32 audit_backlog_limit = 64; 122 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 123 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 124 125 /* The identity of the user shutting down the audit system. */ 126 static kuid_t audit_sig_uid = INVALID_UID; 127 static pid_t audit_sig_pid = -1; 128 static u32 audit_sig_sid; 129 130 /* Records can be lost in several ways: 131 0) [suppressed in audit_alloc] 132 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 133 2) out of memory in audit_log_move [alloc_skb] 134 3) suppressed due to audit_rate_limit 135 4) suppressed due to audit_backlog_limit 136 */ 137 static atomic_t audit_lost = ATOMIC_INIT(0); 138 139 /* Monotonically increasing sum of time the kernel has spent 140 * waiting while the backlog limit is exceeded. 141 */ 142 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0); 143 144 /* Hash for inode-based rules */ 145 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 146 147 static struct kmem_cache *audit_buffer_cache; 148 149 /* queue msgs to send via kauditd_task */ 150 static struct sk_buff_head audit_queue; 151 /* queue msgs due to temporary unicast send problems */ 152 static struct sk_buff_head audit_retry_queue; 153 /* queue msgs waiting for new auditd connection */ 154 static struct sk_buff_head audit_hold_queue; 155 156 /* queue servicing thread */ 157 static struct task_struct *kauditd_task; 158 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 159 160 /* waitqueue for callers who are blocked on the audit backlog */ 161 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 162 163 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 164 .mask = -1, 165 .features = 0, 166 .lock = 0,}; 167 168 static char *audit_feature_names[2] = { 169 "only_unset_loginuid", 170 "loginuid_immutable", 171 }; 172 173 /** 174 * struct audit_ctl_mutex - serialize requests from userspace 175 * @lock: the mutex used for locking 176 * @owner: the task which owns the lock 177 * 178 * Description: 179 * This is the lock struct used to ensure we only process userspace requests 180 * in an orderly fashion. We can't simply use a mutex/lock here because we 181 * need to track lock ownership so we don't end up blocking the lock owner in 182 * audit_log_start() or similar. 183 */ 184 static struct audit_ctl_mutex { 185 struct mutex lock; 186 void *owner; 187 } audit_cmd_mutex; 188 189 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 190 * audit records. Since printk uses a 1024 byte buffer, this buffer 191 * should be at least that large. */ 192 #define AUDIT_BUFSIZ 1024 193 194 /* The audit_buffer is used when formatting an audit record. The caller 195 * locks briefly to get the record off the freelist or to allocate the 196 * buffer, and locks briefly to send the buffer to the netlink layer or 197 * to place it on a transmit queue. Multiple audit_buffers can be in 198 * use simultaneously. */ 199 struct audit_buffer { 200 struct sk_buff *skb; /* formatted skb ready to send */ 201 struct audit_context *ctx; /* NULL or associated context */ 202 gfp_t gfp_mask; 203 }; 204 205 struct audit_reply { 206 __u32 portid; 207 struct net *net; 208 struct sk_buff *skb; 209 }; 210 211 /** 212 * auditd_test_task - Check to see if a given task is an audit daemon 213 * @task: the task to check 214 * 215 * Description: 216 * Return 1 if the task is a registered audit daemon, 0 otherwise. 217 */ 218 int auditd_test_task(struct task_struct *task) 219 { 220 int rc; 221 struct auditd_connection *ac; 222 223 rcu_read_lock(); 224 ac = rcu_dereference(auditd_conn); 225 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0); 226 rcu_read_unlock(); 227 228 return rc; 229 } 230 231 /** 232 * audit_ctl_lock - Take the audit control lock 233 */ 234 void audit_ctl_lock(void) 235 { 236 mutex_lock(&audit_cmd_mutex.lock); 237 audit_cmd_mutex.owner = current; 238 } 239 240 /** 241 * audit_ctl_unlock - Drop the audit control lock 242 */ 243 void audit_ctl_unlock(void) 244 { 245 audit_cmd_mutex.owner = NULL; 246 mutex_unlock(&audit_cmd_mutex.lock); 247 } 248 249 /** 250 * audit_ctl_owner_current - Test to see if the current task owns the lock 251 * 252 * Description: 253 * Return true if the current task owns the audit control lock, false if it 254 * doesn't own the lock. 255 */ 256 static bool audit_ctl_owner_current(void) 257 { 258 return (current == audit_cmd_mutex.owner); 259 } 260 261 /** 262 * auditd_pid_vnr - Return the auditd PID relative to the namespace 263 * 264 * Description: 265 * Returns the PID in relation to the namespace, 0 on failure. 266 */ 267 static pid_t auditd_pid_vnr(void) 268 { 269 pid_t pid; 270 const struct auditd_connection *ac; 271 272 rcu_read_lock(); 273 ac = rcu_dereference(auditd_conn); 274 if (!ac || !ac->pid) 275 pid = 0; 276 else 277 pid = pid_vnr(ac->pid); 278 rcu_read_unlock(); 279 280 return pid; 281 } 282 283 /** 284 * audit_get_sk - Return the audit socket for the given network namespace 285 * @net: the destination network namespace 286 * 287 * Description: 288 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure 289 * that a reference is held for the network namespace while the sock is in use. 290 */ 291 static struct sock *audit_get_sk(const struct net *net) 292 { 293 struct audit_net *aunet; 294 295 if (!net) 296 return NULL; 297 298 aunet = net_generic(net, audit_net_id); 299 return aunet->sk; 300 } 301 302 void audit_panic(const char *message) 303 { 304 switch (audit_failure) { 305 case AUDIT_FAIL_SILENT: 306 break; 307 case AUDIT_FAIL_PRINTK: 308 if (printk_ratelimit()) 309 pr_err("%s\n", message); 310 break; 311 case AUDIT_FAIL_PANIC: 312 panic("audit: %s\n", message); 313 break; 314 } 315 } 316 317 static inline int audit_rate_check(void) 318 { 319 static unsigned long last_check = 0; 320 static int messages = 0; 321 static DEFINE_SPINLOCK(lock); 322 unsigned long flags; 323 unsigned long now; 324 int retval = 0; 325 326 if (!audit_rate_limit) return 1; 327 328 spin_lock_irqsave(&lock, flags); 329 if (++messages < audit_rate_limit) { 330 retval = 1; 331 } else { 332 now = jiffies; 333 if (time_after(now, last_check + HZ)) { 334 last_check = now; 335 messages = 0; 336 retval = 1; 337 } 338 } 339 spin_unlock_irqrestore(&lock, flags); 340 341 return retval; 342 } 343 344 /** 345 * audit_log_lost - conditionally log lost audit message event 346 * @message: the message stating reason for lost audit message 347 * 348 * Emit at least 1 message per second, even if audit_rate_check is 349 * throttling. 350 * Always increment the lost messages counter. 351 */ 352 void audit_log_lost(const char *message) 353 { 354 static unsigned long last_msg = 0; 355 static DEFINE_SPINLOCK(lock); 356 unsigned long flags; 357 unsigned long now; 358 int print; 359 360 atomic_inc(&audit_lost); 361 362 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 363 364 if (!print) { 365 spin_lock_irqsave(&lock, flags); 366 now = jiffies; 367 if (time_after(now, last_msg + HZ)) { 368 print = 1; 369 last_msg = now; 370 } 371 spin_unlock_irqrestore(&lock, flags); 372 } 373 374 if (print) { 375 if (printk_ratelimit()) 376 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 377 atomic_read(&audit_lost), 378 audit_rate_limit, 379 audit_backlog_limit); 380 audit_panic(message); 381 } 382 } 383 384 static int audit_log_config_change(char *function_name, u32 new, u32 old, 385 int allow_changes) 386 { 387 struct audit_buffer *ab; 388 int rc = 0; 389 390 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE); 391 if (unlikely(!ab)) 392 return rc; 393 audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old); 394 audit_log_session_info(ab); 395 rc = audit_log_task_context(ab); 396 if (rc) 397 allow_changes = 0; /* Something weird, deny request */ 398 audit_log_format(ab, " res=%d", allow_changes); 399 audit_log_end(ab); 400 return rc; 401 } 402 403 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 404 { 405 int allow_changes, rc = 0; 406 u32 old = *to_change; 407 408 /* check if we are locked */ 409 if (audit_enabled == AUDIT_LOCKED) 410 allow_changes = 0; 411 else 412 allow_changes = 1; 413 414 if (audit_enabled != AUDIT_OFF) { 415 rc = audit_log_config_change(function_name, new, old, allow_changes); 416 if (rc) 417 allow_changes = 0; 418 } 419 420 /* If we are allowed, make the change */ 421 if (allow_changes == 1) 422 *to_change = new; 423 /* Not allowed, update reason */ 424 else if (rc == 0) 425 rc = -EPERM; 426 return rc; 427 } 428 429 static int audit_set_rate_limit(u32 limit) 430 { 431 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 432 } 433 434 static int audit_set_backlog_limit(u32 limit) 435 { 436 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 437 } 438 439 static int audit_set_backlog_wait_time(u32 timeout) 440 { 441 return audit_do_config_change("audit_backlog_wait_time", 442 &audit_backlog_wait_time, timeout); 443 } 444 445 static int audit_set_enabled(u32 state) 446 { 447 int rc; 448 if (state > AUDIT_LOCKED) 449 return -EINVAL; 450 451 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 452 if (!rc) 453 audit_ever_enabled |= !!state; 454 455 return rc; 456 } 457 458 static int audit_set_failure(u32 state) 459 { 460 if (state != AUDIT_FAIL_SILENT 461 && state != AUDIT_FAIL_PRINTK 462 && state != AUDIT_FAIL_PANIC) 463 return -EINVAL; 464 465 return audit_do_config_change("audit_failure", &audit_failure, state); 466 } 467 468 /** 469 * auditd_conn_free - RCU helper to release an auditd connection struct 470 * @rcu: RCU head 471 * 472 * Description: 473 * Drop any references inside the auditd connection tracking struct and free 474 * the memory. 475 */ 476 static void auditd_conn_free(struct rcu_head *rcu) 477 { 478 struct auditd_connection *ac; 479 480 ac = container_of(rcu, struct auditd_connection, rcu); 481 put_pid(ac->pid); 482 put_net(ac->net); 483 kfree(ac); 484 } 485 486 /** 487 * auditd_set - Set/Reset the auditd connection state 488 * @pid: auditd PID 489 * @portid: auditd netlink portid 490 * @net: auditd network namespace pointer 491 * 492 * Description: 493 * This function will obtain and drop network namespace references as 494 * necessary. Returns zero on success, negative values on failure. 495 */ 496 static int auditd_set(struct pid *pid, u32 portid, struct net *net) 497 { 498 unsigned long flags; 499 struct auditd_connection *ac_old, *ac_new; 500 501 if (!pid || !net) 502 return -EINVAL; 503 504 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL); 505 if (!ac_new) 506 return -ENOMEM; 507 ac_new->pid = get_pid(pid); 508 ac_new->portid = portid; 509 ac_new->net = get_net(net); 510 511 spin_lock_irqsave(&auditd_conn_lock, flags); 512 ac_old = rcu_dereference_protected(auditd_conn, 513 lockdep_is_held(&auditd_conn_lock)); 514 rcu_assign_pointer(auditd_conn, ac_new); 515 spin_unlock_irqrestore(&auditd_conn_lock, flags); 516 517 if (ac_old) 518 call_rcu(&ac_old->rcu, auditd_conn_free); 519 520 return 0; 521 } 522 523 /** 524 * kauditd_printk_skb - Print the audit record to the ring buffer 525 * @skb: audit record 526 * 527 * Whatever the reason, this packet may not make it to the auditd connection 528 * so write it via printk so the information isn't completely lost. 529 */ 530 static void kauditd_printk_skb(struct sk_buff *skb) 531 { 532 struct nlmsghdr *nlh = nlmsg_hdr(skb); 533 char *data = nlmsg_data(nlh); 534 535 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit()) 536 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 537 } 538 539 /** 540 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue 541 * @skb: audit record 542 * @error: error code (unused) 543 * 544 * Description: 545 * This should only be used by the kauditd_thread when it fails to flush the 546 * hold queue. 547 */ 548 static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error) 549 { 550 /* put the record back in the queue */ 551 skb_queue_tail(&audit_hold_queue, skb); 552 } 553 554 /** 555 * kauditd_hold_skb - Queue an audit record, waiting for auditd 556 * @skb: audit record 557 * @error: error code 558 * 559 * Description: 560 * Queue the audit record, waiting for an instance of auditd. When this 561 * function is called we haven't given up yet on sending the record, but things 562 * are not looking good. The first thing we want to do is try to write the 563 * record via printk and then see if we want to try and hold on to the record 564 * and queue it, if we have room. If we want to hold on to the record, but we 565 * don't have room, record a record lost message. 566 */ 567 static void kauditd_hold_skb(struct sk_buff *skb, int error) 568 { 569 /* at this point it is uncertain if we will ever send this to auditd so 570 * try to send the message via printk before we go any further */ 571 kauditd_printk_skb(skb); 572 573 /* can we just silently drop the message? */ 574 if (!audit_default) 575 goto drop; 576 577 /* the hold queue is only for when the daemon goes away completely, 578 * not -EAGAIN failures; if we are in a -EAGAIN state requeue the 579 * record on the retry queue unless it's full, in which case drop it 580 */ 581 if (error == -EAGAIN) { 582 if (!audit_backlog_limit || 583 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) { 584 skb_queue_tail(&audit_retry_queue, skb); 585 return; 586 } 587 audit_log_lost("kauditd retry queue overflow"); 588 goto drop; 589 } 590 591 /* if we have room in the hold queue, queue the message */ 592 if (!audit_backlog_limit || 593 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) { 594 skb_queue_tail(&audit_hold_queue, skb); 595 return; 596 } 597 598 /* we have no other options - drop the message */ 599 audit_log_lost("kauditd hold queue overflow"); 600 drop: 601 kfree_skb(skb); 602 } 603 604 /** 605 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd 606 * @skb: audit record 607 * @error: error code (unused) 608 * 609 * Description: 610 * Not as serious as kauditd_hold_skb() as we still have a connected auditd, 611 * but for some reason we are having problems sending it audit records so 612 * queue the given record and attempt to resend. 613 */ 614 static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error) 615 { 616 if (!audit_backlog_limit || 617 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) { 618 skb_queue_tail(&audit_retry_queue, skb); 619 return; 620 } 621 622 /* we have to drop the record, send it via printk as a last effort */ 623 kauditd_printk_skb(skb); 624 audit_log_lost("kauditd retry queue overflow"); 625 kfree_skb(skb); 626 } 627 628 /** 629 * auditd_reset - Disconnect the auditd connection 630 * @ac: auditd connection state 631 * 632 * Description: 633 * Break the auditd/kauditd connection and move all the queued records into the 634 * hold queue in case auditd reconnects. It is important to note that the @ac 635 * pointer should never be dereferenced inside this function as it may be NULL 636 * or invalid, you can only compare the memory address! If @ac is NULL then 637 * the connection will always be reset. 638 */ 639 static void auditd_reset(const struct auditd_connection *ac) 640 { 641 unsigned long flags; 642 struct sk_buff *skb; 643 struct auditd_connection *ac_old; 644 645 /* if it isn't already broken, break the connection */ 646 spin_lock_irqsave(&auditd_conn_lock, flags); 647 ac_old = rcu_dereference_protected(auditd_conn, 648 lockdep_is_held(&auditd_conn_lock)); 649 if (ac && ac != ac_old) { 650 /* someone already registered a new auditd connection */ 651 spin_unlock_irqrestore(&auditd_conn_lock, flags); 652 return; 653 } 654 rcu_assign_pointer(auditd_conn, NULL); 655 spin_unlock_irqrestore(&auditd_conn_lock, flags); 656 657 if (ac_old) 658 call_rcu(&ac_old->rcu, auditd_conn_free); 659 660 /* flush the retry queue to the hold queue, but don't touch the main 661 * queue since we need to process that normally for multicast */ 662 while ((skb = skb_dequeue(&audit_retry_queue))) 663 kauditd_hold_skb(skb, -ECONNREFUSED); 664 } 665 666 /** 667 * auditd_send_unicast_skb - Send a record via unicast to auditd 668 * @skb: audit record 669 * 670 * Description: 671 * Send a skb to the audit daemon, returns positive/zero values on success and 672 * negative values on failure; in all cases the skb will be consumed by this 673 * function. If the send results in -ECONNREFUSED the connection with auditd 674 * will be reset. This function may sleep so callers should not hold any locks 675 * where this would cause a problem. 676 */ 677 static int auditd_send_unicast_skb(struct sk_buff *skb) 678 { 679 int rc; 680 u32 portid; 681 struct net *net; 682 struct sock *sk; 683 struct auditd_connection *ac; 684 685 /* NOTE: we can't call netlink_unicast while in the RCU section so 686 * take a reference to the network namespace and grab local 687 * copies of the namespace, the sock, and the portid; the 688 * namespace and sock aren't going to go away while we hold a 689 * reference and if the portid does become invalid after the RCU 690 * section netlink_unicast() should safely return an error */ 691 692 rcu_read_lock(); 693 ac = rcu_dereference(auditd_conn); 694 if (!ac) { 695 rcu_read_unlock(); 696 kfree_skb(skb); 697 rc = -ECONNREFUSED; 698 goto err; 699 } 700 net = get_net(ac->net); 701 sk = audit_get_sk(net); 702 portid = ac->portid; 703 rcu_read_unlock(); 704 705 rc = netlink_unicast(sk, skb, portid, 0); 706 put_net(net); 707 if (rc < 0) 708 goto err; 709 710 return rc; 711 712 err: 713 if (ac && rc == -ECONNREFUSED) 714 auditd_reset(ac); 715 return rc; 716 } 717 718 /** 719 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues 720 * @sk: the sending sock 721 * @portid: the netlink destination 722 * @queue: the skb queue to process 723 * @retry_limit: limit on number of netlink unicast failures 724 * @skb_hook: per-skb hook for additional processing 725 * @err_hook: hook called if the skb fails the netlink unicast send 726 * 727 * Description: 728 * Run through the given queue and attempt to send the audit records to auditd, 729 * returns zero on success, negative values on failure. It is up to the caller 730 * to ensure that the @sk is valid for the duration of this function. 731 * 732 */ 733 static int kauditd_send_queue(struct sock *sk, u32 portid, 734 struct sk_buff_head *queue, 735 unsigned int retry_limit, 736 void (*skb_hook)(struct sk_buff *skb), 737 void (*err_hook)(struct sk_buff *skb, int error)) 738 { 739 int rc = 0; 740 struct sk_buff *skb = NULL; 741 struct sk_buff *skb_tail; 742 unsigned int failed = 0; 743 744 /* NOTE: kauditd_thread takes care of all our locking, we just use 745 * the netlink info passed to us (e.g. sk and portid) */ 746 747 skb_tail = skb_peek_tail(queue); 748 while ((skb != skb_tail) && (skb = skb_dequeue(queue))) { 749 /* call the skb_hook for each skb we touch */ 750 if (skb_hook) 751 (*skb_hook)(skb); 752 753 /* can we send to anyone via unicast? */ 754 if (!sk) { 755 if (err_hook) 756 (*err_hook)(skb, -ECONNREFUSED); 757 continue; 758 } 759 760 retry: 761 /* grab an extra skb reference in case of error */ 762 skb_get(skb); 763 rc = netlink_unicast(sk, skb, portid, 0); 764 if (rc < 0) { 765 /* send failed - try a few times unless fatal error */ 766 if (++failed >= retry_limit || 767 rc == -ECONNREFUSED || rc == -EPERM) { 768 sk = NULL; 769 if (err_hook) 770 (*err_hook)(skb, rc); 771 if (rc == -EAGAIN) 772 rc = 0; 773 /* continue to drain the queue */ 774 continue; 775 } else 776 goto retry; 777 } else { 778 /* skb sent - drop the extra reference and continue */ 779 consume_skb(skb); 780 failed = 0; 781 } 782 } 783 784 return (rc >= 0 ? 0 : rc); 785 } 786 787 /* 788 * kauditd_send_multicast_skb - Send a record to any multicast listeners 789 * @skb: audit record 790 * 791 * Description: 792 * Write a multicast message to anyone listening in the initial network 793 * namespace. This function doesn't consume an skb as might be expected since 794 * it has to copy it anyways. 795 */ 796 static void kauditd_send_multicast_skb(struct sk_buff *skb) 797 { 798 struct sk_buff *copy; 799 struct sock *sock = audit_get_sk(&init_net); 800 struct nlmsghdr *nlh; 801 802 /* NOTE: we are not taking an additional reference for init_net since 803 * we don't have to worry about it going away */ 804 805 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) 806 return; 807 808 /* 809 * The seemingly wasteful skb_copy() rather than bumping the refcount 810 * using skb_get() is necessary because non-standard mods are made to 811 * the skb by the original kaudit unicast socket send routine. The 812 * existing auditd daemon assumes this breakage. Fixing this would 813 * require co-ordinating a change in the established protocol between 814 * the kaudit kernel subsystem and the auditd userspace code. There is 815 * no reason for new multicast clients to continue with this 816 * non-compliance. 817 */ 818 copy = skb_copy(skb, GFP_KERNEL); 819 if (!copy) 820 return; 821 nlh = nlmsg_hdr(copy); 822 nlh->nlmsg_len = skb->len; 823 824 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL); 825 } 826 827 /** 828 * kauditd_thread - Worker thread to send audit records to userspace 829 * @dummy: unused 830 */ 831 static int kauditd_thread(void *dummy) 832 { 833 int rc; 834 u32 portid = 0; 835 struct net *net = NULL; 836 struct sock *sk = NULL; 837 struct auditd_connection *ac; 838 839 #define UNICAST_RETRIES 5 840 841 set_freezable(); 842 while (!kthread_should_stop()) { 843 /* NOTE: see the lock comments in auditd_send_unicast_skb() */ 844 rcu_read_lock(); 845 ac = rcu_dereference(auditd_conn); 846 if (!ac) { 847 rcu_read_unlock(); 848 goto main_queue; 849 } 850 net = get_net(ac->net); 851 sk = audit_get_sk(net); 852 portid = ac->portid; 853 rcu_read_unlock(); 854 855 /* attempt to flush the hold queue */ 856 rc = kauditd_send_queue(sk, portid, 857 &audit_hold_queue, UNICAST_RETRIES, 858 NULL, kauditd_rehold_skb); 859 if (rc < 0) { 860 sk = NULL; 861 auditd_reset(ac); 862 goto main_queue; 863 } 864 865 /* attempt to flush the retry queue */ 866 rc = kauditd_send_queue(sk, portid, 867 &audit_retry_queue, UNICAST_RETRIES, 868 NULL, kauditd_hold_skb); 869 if (rc < 0) { 870 sk = NULL; 871 auditd_reset(ac); 872 goto main_queue; 873 } 874 875 main_queue: 876 /* process the main queue - do the multicast send and attempt 877 * unicast, dump failed record sends to the retry queue; if 878 * sk == NULL due to previous failures we will just do the 879 * multicast send and move the record to the hold queue */ 880 rc = kauditd_send_queue(sk, portid, &audit_queue, 1, 881 kauditd_send_multicast_skb, 882 (sk ? 883 kauditd_retry_skb : kauditd_hold_skb)); 884 if (ac && rc < 0) 885 auditd_reset(ac); 886 sk = NULL; 887 888 /* drop our netns reference, no auditd sends past this line */ 889 if (net) { 890 put_net(net); 891 net = NULL; 892 } 893 894 /* we have processed all the queues so wake everyone */ 895 wake_up(&audit_backlog_wait); 896 897 /* NOTE: we want to wake up if there is anything on the queue, 898 * regardless of if an auditd is connected, as we need to 899 * do the multicast send and rotate records from the 900 * main queue to the retry/hold queues */ 901 wait_event_freezable(kauditd_wait, 902 (skb_queue_len(&audit_queue) ? 1 : 0)); 903 } 904 905 return 0; 906 } 907 908 int audit_send_list_thread(void *_dest) 909 { 910 struct audit_netlink_list *dest = _dest; 911 struct sk_buff *skb; 912 struct sock *sk = audit_get_sk(dest->net); 913 914 /* wait for parent to finish and send an ACK */ 915 audit_ctl_lock(); 916 audit_ctl_unlock(); 917 918 while ((skb = __skb_dequeue(&dest->q)) != NULL) 919 netlink_unicast(sk, skb, dest->portid, 0); 920 921 put_net(dest->net); 922 kfree(dest); 923 924 return 0; 925 } 926 927 struct sk_buff *audit_make_reply(int seq, int type, int done, 928 int multi, const void *payload, int size) 929 { 930 struct sk_buff *skb; 931 struct nlmsghdr *nlh; 932 void *data; 933 int flags = multi ? NLM_F_MULTI : 0; 934 int t = done ? NLMSG_DONE : type; 935 936 skb = nlmsg_new(size, GFP_KERNEL); 937 if (!skb) 938 return NULL; 939 940 nlh = nlmsg_put(skb, 0, seq, t, size, flags); 941 if (!nlh) 942 goto out_kfree_skb; 943 data = nlmsg_data(nlh); 944 memcpy(data, payload, size); 945 return skb; 946 947 out_kfree_skb: 948 kfree_skb(skb); 949 return NULL; 950 } 951 952 static void audit_free_reply(struct audit_reply *reply) 953 { 954 if (!reply) 955 return; 956 957 kfree_skb(reply->skb); 958 if (reply->net) 959 put_net(reply->net); 960 kfree(reply); 961 } 962 963 static int audit_send_reply_thread(void *arg) 964 { 965 struct audit_reply *reply = (struct audit_reply *)arg; 966 967 audit_ctl_lock(); 968 audit_ctl_unlock(); 969 970 /* Ignore failure. It'll only happen if the sender goes away, 971 because our timeout is set to infinite. */ 972 netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0); 973 reply->skb = NULL; 974 audit_free_reply(reply); 975 return 0; 976 } 977 978 /** 979 * audit_send_reply - send an audit reply message via netlink 980 * @request_skb: skb of request we are replying to (used to target the reply) 981 * @seq: sequence number 982 * @type: audit message type 983 * @done: done (last) flag 984 * @multi: multi-part message flag 985 * @payload: payload data 986 * @size: payload size 987 * 988 * Allocates a skb, builds the netlink message, and sends it to the port id. 989 */ 990 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 991 int multi, const void *payload, int size) 992 { 993 struct task_struct *tsk; 994 struct audit_reply *reply; 995 996 reply = kzalloc(sizeof(*reply), GFP_KERNEL); 997 if (!reply) 998 return; 999 1000 reply->skb = audit_make_reply(seq, type, done, multi, payload, size); 1001 if (!reply->skb) 1002 goto err; 1003 reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk)); 1004 reply->portid = NETLINK_CB(request_skb).portid; 1005 1006 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 1007 if (IS_ERR(tsk)) 1008 goto err; 1009 1010 return; 1011 1012 err: 1013 audit_free_reply(reply); 1014 } 1015 1016 /* 1017 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 1018 * control messages. 1019 */ 1020 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 1021 { 1022 int err = 0; 1023 1024 /* Only support initial user namespace for now. */ 1025 /* 1026 * We return ECONNREFUSED because it tricks userspace into thinking 1027 * that audit was not configured into the kernel. Lots of users 1028 * configure their PAM stack (because that's what the distro does) 1029 * to reject login if unable to send messages to audit. If we return 1030 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 1031 * configured in and will let login proceed. If we return EPERM 1032 * userspace will reject all logins. This should be removed when we 1033 * support non init namespaces!! 1034 */ 1035 if (current_user_ns() != &init_user_ns) 1036 return -ECONNREFUSED; 1037 1038 switch (msg_type) { 1039 case AUDIT_LIST: 1040 case AUDIT_ADD: 1041 case AUDIT_DEL: 1042 return -EOPNOTSUPP; 1043 case AUDIT_GET: 1044 case AUDIT_SET: 1045 case AUDIT_GET_FEATURE: 1046 case AUDIT_SET_FEATURE: 1047 case AUDIT_LIST_RULES: 1048 case AUDIT_ADD_RULE: 1049 case AUDIT_DEL_RULE: 1050 case AUDIT_SIGNAL_INFO: 1051 case AUDIT_TTY_GET: 1052 case AUDIT_TTY_SET: 1053 case AUDIT_TRIM: 1054 case AUDIT_MAKE_EQUIV: 1055 /* Only support auditd and auditctl in initial pid namespace 1056 * for now. */ 1057 if (task_active_pid_ns(current) != &init_pid_ns) 1058 return -EPERM; 1059 1060 if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) 1061 err = -EPERM; 1062 break; 1063 case AUDIT_USER: 1064 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1065 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1066 if (!netlink_capable(skb, CAP_AUDIT_WRITE)) 1067 err = -EPERM; 1068 break; 1069 default: /* bad msg */ 1070 err = -EINVAL; 1071 } 1072 1073 return err; 1074 } 1075 1076 static void audit_log_common_recv_msg(struct audit_context *context, 1077 struct audit_buffer **ab, u16 msg_type) 1078 { 1079 uid_t uid = from_kuid(&init_user_ns, current_uid()); 1080 pid_t pid = task_tgid_nr(current); 1081 1082 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 1083 *ab = NULL; 1084 return; 1085 } 1086 1087 *ab = audit_log_start(context, GFP_KERNEL, msg_type); 1088 if (unlikely(!*ab)) 1089 return; 1090 audit_log_format(*ab, "pid=%d uid=%u ", pid, uid); 1091 audit_log_session_info(*ab); 1092 audit_log_task_context(*ab); 1093 } 1094 1095 static inline void audit_log_user_recv_msg(struct audit_buffer **ab, 1096 u16 msg_type) 1097 { 1098 audit_log_common_recv_msg(NULL, ab, msg_type); 1099 } 1100 1101 static int is_audit_feature_set(int i) 1102 { 1103 return af.features & AUDIT_FEATURE_TO_MASK(i); 1104 } 1105 1106 1107 static int audit_get_feature(struct sk_buff *skb) 1108 { 1109 u32 seq; 1110 1111 seq = nlmsg_hdr(skb)->nlmsg_seq; 1112 1113 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); 1114 1115 return 0; 1116 } 1117 1118 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 1119 u32 old_lock, u32 new_lock, int res) 1120 { 1121 struct audit_buffer *ab; 1122 1123 if (audit_enabled == AUDIT_OFF) 1124 return; 1125 1126 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE); 1127 if (!ab) 1128 return; 1129 audit_log_task_info(ab); 1130 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 1131 audit_feature_names[which], !!old_feature, !!new_feature, 1132 !!old_lock, !!new_lock, res); 1133 audit_log_end(ab); 1134 } 1135 1136 static int audit_set_feature(struct audit_features *uaf) 1137 { 1138 int i; 1139 1140 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); 1141 1142 /* if there is ever a version 2 we should handle that here */ 1143 1144 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1145 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1146 u32 old_feature, new_feature, old_lock, new_lock; 1147 1148 /* if we are not changing this feature, move along */ 1149 if (!(feature & uaf->mask)) 1150 continue; 1151 1152 old_feature = af.features & feature; 1153 new_feature = uaf->features & feature; 1154 new_lock = (uaf->lock | af.lock) & feature; 1155 old_lock = af.lock & feature; 1156 1157 /* are we changing a locked feature? */ 1158 if (old_lock && (new_feature != old_feature)) { 1159 audit_log_feature_change(i, old_feature, new_feature, 1160 old_lock, new_lock, 0); 1161 return -EPERM; 1162 } 1163 } 1164 /* nothing invalid, do the changes */ 1165 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1166 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1167 u32 old_feature, new_feature, old_lock, new_lock; 1168 1169 /* if we are not changing this feature, move along */ 1170 if (!(feature & uaf->mask)) 1171 continue; 1172 1173 old_feature = af.features & feature; 1174 new_feature = uaf->features & feature; 1175 old_lock = af.lock & feature; 1176 new_lock = (uaf->lock | af.lock) & feature; 1177 1178 if (new_feature != old_feature) 1179 audit_log_feature_change(i, old_feature, new_feature, 1180 old_lock, new_lock, 1); 1181 1182 if (new_feature) 1183 af.features |= feature; 1184 else 1185 af.features &= ~feature; 1186 af.lock |= new_lock; 1187 } 1188 1189 return 0; 1190 } 1191 1192 static int audit_replace(struct pid *pid) 1193 { 1194 pid_t pvnr; 1195 struct sk_buff *skb; 1196 1197 pvnr = pid_vnr(pid); 1198 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr)); 1199 if (!skb) 1200 return -ENOMEM; 1201 return auditd_send_unicast_skb(skb); 1202 } 1203 1204 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 1205 { 1206 u32 seq; 1207 void *data; 1208 int data_len; 1209 int err; 1210 struct audit_buffer *ab; 1211 u16 msg_type = nlh->nlmsg_type; 1212 struct audit_sig_info *sig_data; 1213 char *ctx = NULL; 1214 u32 len; 1215 1216 err = audit_netlink_ok(skb, msg_type); 1217 if (err) 1218 return err; 1219 1220 seq = nlh->nlmsg_seq; 1221 data = nlmsg_data(nlh); 1222 data_len = nlmsg_len(nlh); 1223 1224 switch (msg_type) { 1225 case AUDIT_GET: { 1226 struct audit_status s; 1227 memset(&s, 0, sizeof(s)); 1228 s.enabled = audit_enabled; 1229 s.failure = audit_failure; 1230 /* NOTE: use pid_vnr() so the PID is relative to the current 1231 * namespace */ 1232 s.pid = auditd_pid_vnr(); 1233 s.rate_limit = audit_rate_limit; 1234 s.backlog_limit = audit_backlog_limit; 1235 s.lost = atomic_read(&audit_lost); 1236 s.backlog = skb_queue_len(&audit_queue); 1237 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; 1238 s.backlog_wait_time = audit_backlog_wait_time; 1239 s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual); 1240 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 1241 break; 1242 } 1243 case AUDIT_SET: { 1244 struct audit_status s; 1245 memset(&s, 0, sizeof(s)); 1246 /* guard against past and future API changes */ 1247 memcpy(&s, data, min_t(size_t, sizeof(s), data_len)); 1248 if (s.mask & AUDIT_STATUS_ENABLED) { 1249 err = audit_set_enabled(s.enabled); 1250 if (err < 0) 1251 return err; 1252 } 1253 if (s.mask & AUDIT_STATUS_FAILURE) { 1254 err = audit_set_failure(s.failure); 1255 if (err < 0) 1256 return err; 1257 } 1258 if (s.mask & AUDIT_STATUS_PID) { 1259 /* NOTE: we are using the vnr PID functions below 1260 * because the s.pid value is relative to the 1261 * namespace of the caller; at present this 1262 * doesn't matter much since you can really only 1263 * run auditd from the initial pid namespace, but 1264 * something to keep in mind if this changes */ 1265 pid_t new_pid = s.pid; 1266 pid_t auditd_pid; 1267 struct pid *req_pid = task_tgid(current); 1268 1269 /* Sanity check - PID values must match. Setting 1270 * pid to 0 is how auditd ends auditing. */ 1271 if (new_pid && (new_pid != pid_vnr(req_pid))) 1272 return -EINVAL; 1273 1274 /* test the auditd connection */ 1275 audit_replace(req_pid); 1276 1277 auditd_pid = auditd_pid_vnr(); 1278 if (auditd_pid) { 1279 /* replacing a healthy auditd is not allowed */ 1280 if (new_pid) { 1281 audit_log_config_change("audit_pid", 1282 new_pid, auditd_pid, 0); 1283 return -EEXIST; 1284 } 1285 /* only current auditd can unregister itself */ 1286 if (pid_vnr(req_pid) != auditd_pid) { 1287 audit_log_config_change("audit_pid", 1288 new_pid, auditd_pid, 0); 1289 return -EACCES; 1290 } 1291 } 1292 1293 if (new_pid) { 1294 /* register a new auditd connection */ 1295 err = auditd_set(req_pid, 1296 NETLINK_CB(skb).portid, 1297 sock_net(NETLINK_CB(skb).sk)); 1298 if (audit_enabled != AUDIT_OFF) 1299 audit_log_config_change("audit_pid", 1300 new_pid, 1301 auditd_pid, 1302 err ? 0 : 1); 1303 if (err) 1304 return err; 1305 1306 /* try to process any backlog */ 1307 wake_up_interruptible(&kauditd_wait); 1308 } else { 1309 if (audit_enabled != AUDIT_OFF) 1310 audit_log_config_change("audit_pid", 1311 new_pid, 1312 auditd_pid, 1); 1313 1314 /* unregister the auditd connection */ 1315 auditd_reset(NULL); 1316 } 1317 } 1318 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 1319 err = audit_set_rate_limit(s.rate_limit); 1320 if (err < 0) 1321 return err; 1322 } 1323 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 1324 err = audit_set_backlog_limit(s.backlog_limit); 1325 if (err < 0) 1326 return err; 1327 } 1328 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 1329 if (sizeof(s) > (size_t)nlh->nlmsg_len) 1330 return -EINVAL; 1331 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 1332 return -EINVAL; 1333 err = audit_set_backlog_wait_time(s.backlog_wait_time); 1334 if (err < 0) 1335 return err; 1336 } 1337 if (s.mask == AUDIT_STATUS_LOST) { 1338 u32 lost = atomic_xchg(&audit_lost, 0); 1339 1340 audit_log_config_change("lost", 0, lost, 1); 1341 return lost; 1342 } 1343 if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) { 1344 u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0); 1345 1346 audit_log_config_change("backlog_wait_time_actual", 0, actual, 1); 1347 return actual; 1348 } 1349 break; 1350 } 1351 case AUDIT_GET_FEATURE: 1352 err = audit_get_feature(skb); 1353 if (err) 1354 return err; 1355 break; 1356 case AUDIT_SET_FEATURE: 1357 if (data_len < sizeof(struct audit_features)) 1358 return -EINVAL; 1359 err = audit_set_feature(data); 1360 if (err) 1361 return err; 1362 break; 1363 case AUDIT_USER: 1364 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1365 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1366 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 1367 return 0; 1368 /* exit early if there isn't at least one character to print */ 1369 if (data_len < 2) 1370 return -EINVAL; 1371 1372 err = audit_filter(msg_type, AUDIT_FILTER_USER); 1373 if (err == 1) { /* match or error */ 1374 char *str = data; 1375 1376 err = 0; 1377 if (msg_type == AUDIT_USER_TTY) { 1378 err = tty_audit_push(); 1379 if (err) 1380 break; 1381 } 1382 audit_log_user_recv_msg(&ab, msg_type); 1383 if (msg_type != AUDIT_USER_TTY) { 1384 /* ensure NULL termination */ 1385 str[data_len - 1] = '\0'; 1386 audit_log_format(ab, " msg='%.*s'", 1387 AUDIT_MESSAGE_TEXT_MAX, 1388 str); 1389 } else { 1390 audit_log_format(ab, " data="); 1391 if (str[data_len - 1] == '\0') 1392 data_len--; 1393 audit_log_n_untrustedstring(ab, str, data_len); 1394 } 1395 audit_log_end(ab); 1396 } 1397 break; 1398 case AUDIT_ADD_RULE: 1399 case AUDIT_DEL_RULE: 1400 if (data_len < sizeof(struct audit_rule_data)) 1401 return -EINVAL; 1402 if (audit_enabled == AUDIT_LOCKED) { 1403 audit_log_common_recv_msg(audit_context(), &ab, 1404 AUDIT_CONFIG_CHANGE); 1405 audit_log_format(ab, " op=%s audit_enabled=%d res=0", 1406 msg_type == AUDIT_ADD_RULE ? 1407 "add_rule" : "remove_rule", 1408 audit_enabled); 1409 audit_log_end(ab); 1410 return -EPERM; 1411 } 1412 err = audit_rule_change(msg_type, seq, data, data_len); 1413 break; 1414 case AUDIT_LIST_RULES: 1415 err = audit_list_rules_send(skb, seq); 1416 break; 1417 case AUDIT_TRIM: 1418 audit_trim_trees(); 1419 audit_log_common_recv_msg(audit_context(), &ab, 1420 AUDIT_CONFIG_CHANGE); 1421 audit_log_format(ab, " op=trim res=1"); 1422 audit_log_end(ab); 1423 break; 1424 case AUDIT_MAKE_EQUIV: { 1425 void *bufp = data; 1426 u32 sizes[2]; 1427 size_t msglen = data_len; 1428 char *old, *new; 1429 1430 err = -EINVAL; 1431 if (msglen < 2 * sizeof(u32)) 1432 break; 1433 memcpy(sizes, bufp, 2 * sizeof(u32)); 1434 bufp += 2 * sizeof(u32); 1435 msglen -= 2 * sizeof(u32); 1436 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 1437 if (IS_ERR(old)) { 1438 err = PTR_ERR(old); 1439 break; 1440 } 1441 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 1442 if (IS_ERR(new)) { 1443 err = PTR_ERR(new); 1444 kfree(old); 1445 break; 1446 } 1447 /* OK, here comes... */ 1448 err = audit_tag_tree(old, new); 1449 1450 audit_log_common_recv_msg(audit_context(), &ab, 1451 AUDIT_CONFIG_CHANGE); 1452 audit_log_format(ab, " op=make_equiv old="); 1453 audit_log_untrustedstring(ab, old); 1454 audit_log_format(ab, " new="); 1455 audit_log_untrustedstring(ab, new); 1456 audit_log_format(ab, " res=%d", !err); 1457 audit_log_end(ab); 1458 kfree(old); 1459 kfree(new); 1460 break; 1461 } 1462 case AUDIT_SIGNAL_INFO: 1463 len = 0; 1464 if (audit_sig_sid) { 1465 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 1466 if (err) 1467 return err; 1468 } 1469 sig_data = kmalloc(struct_size(sig_data, ctx, len), GFP_KERNEL); 1470 if (!sig_data) { 1471 if (audit_sig_sid) 1472 security_release_secctx(ctx, len); 1473 return -ENOMEM; 1474 } 1475 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 1476 sig_data->pid = audit_sig_pid; 1477 if (audit_sig_sid) { 1478 memcpy(sig_data->ctx, ctx, len); 1479 security_release_secctx(ctx, len); 1480 } 1481 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 1482 sig_data, struct_size(sig_data, ctx, len)); 1483 kfree(sig_data); 1484 break; 1485 case AUDIT_TTY_GET: { 1486 struct audit_tty_status s; 1487 unsigned int t; 1488 1489 t = READ_ONCE(current->signal->audit_tty); 1490 s.enabled = t & AUDIT_TTY_ENABLE; 1491 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1492 1493 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1494 break; 1495 } 1496 case AUDIT_TTY_SET: { 1497 struct audit_tty_status s, old; 1498 struct audit_buffer *ab; 1499 unsigned int t; 1500 1501 memset(&s, 0, sizeof(s)); 1502 /* guard against past and future API changes */ 1503 memcpy(&s, data, min_t(size_t, sizeof(s), data_len)); 1504 /* check if new data is valid */ 1505 if ((s.enabled != 0 && s.enabled != 1) || 1506 (s.log_passwd != 0 && s.log_passwd != 1)) 1507 err = -EINVAL; 1508 1509 if (err) 1510 t = READ_ONCE(current->signal->audit_tty); 1511 else { 1512 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD); 1513 t = xchg(¤t->signal->audit_tty, t); 1514 } 1515 old.enabled = t & AUDIT_TTY_ENABLE; 1516 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1517 1518 audit_log_common_recv_msg(audit_context(), &ab, 1519 AUDIT_CONFIG_CHANGE); 1520 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1521 " old-log_passwd=%d new-log_passwd=%d res=%d", 1522 old.enabled, s.enabled, old.log_passwd, 1523 s.log_passwd, !err); 1524 audit_log_end(ab); 1525 break; 1526 } 1527 default: 1528 err = -EINVAL; 1529 break; 1530 } 1531 1532 return err < 0 ? err : 0; 1533 } 1534 1535 /** 1536 * audit_receive - receive messages from a netlink control socket 1537 * @skb: the message buffer 1538 * 1539 * Parse the provided skb and deal with any messages that may be present, 1540 * malformed skbs are discarded. 1541 */ 1542 static void audit_receive(struct sk_buff *skb) 1543 { 1544 struct nlmsghdr *nlh; 1545 /* 1546 * len MUST be signed for nlmsg_next to be able to dec it below 0 1547 * if the nlmsg_len was not aligned 1548 */ 1549 int len; 1550 int err; 1551 1552 nlh = nlmsg_hdr(skb); 1553 len = skb->len; 1554 1555 audit_ctl_lock(); 1556 while (nlmsg_ok(nlh, len)) { 1557 err = audit_receive_msg(skb, nlh); 1558 /* if err or if this message says it wants a response */ 1559 if (err || (nlh->nlmsg_flags & NLM_F_ACK)) 1560 netlink_ack(skb, nlh, err, NULL); 1561 1562 nlh = nlmsg_next(nlh, &len); 1563 } 1564 audit_ctl_unlock(); 1565 1566 /* can't block with the ctrl lock, so penalize the sender now */ 1567 if (audit_backlog_limit && 1568 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1569 DECLARE_WAITQUEUE(wait, current); 1570 1571 /* wake kauditd to try and flush the queue */ 1572 wake_up_interruptible(&kauditd_wait); 1573 1574 add_wait_queue_exclusive(&audit_backlog_wait, &wait); 1575 set_current_state(TASK_UNINTERRUPTIBLE); 1576 schedule_timeout(audit_backlog_wait_time); 1577 remove_wait_queue(&audit_backlog_wait, &wait); 1578 } 1579 } 1580 1581 /* Log information about who is connecting to the audit multicast socket */ 1582 static void audit_log_multicast(int group, const char *op, int err) 1583 { 1584 const struct cred *cred; 1585 struct tty_struct *tty; 1586 char comm[sizeof(current->comm)]; 1587 struct audit_buffer *ab; 1588 1589 if (!audit_enabled) 1590 return; 1591 1592 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER); 1593 if (!ab) 1594 return; 1595 1596 cred = current_cred(); 1597 tty = audit_get_tty(); 1598 audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u", 1599 task_pid_nr(current), 1600 from_kuid(&init_user_ns, cred->uid), 1601 from_kuid(&init_user_ns, audit_get_loginuid(current)), 1602 tty ? tty_name(tty) : "(none)", 1603 audit_get_sessionid(current)); 1604 audit_put_tty(tty); 1605 audit_log_task_context(ab); /* subj= */ 1606 audit_log_format(ab, " comm="); 1607 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 1608 audit_log_d_path_exe(ab, current->mm); /* exe= */ 1609 audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err); 1610 audit_log_end(ab); 1611 } 1612 1613 /* Run custom bind function on netlink socket group connect or bind requests. */ 1614 static int audit_multicast_bind(struct net *net, int group) 1615 { 1616 int err = 0; 1617 1618 if (!capable(CAP_AUDIT_READ)) 1619 err = -EPERM; 1620 audit_log_multicast(group, "connect", err); 1621 return err; 1622 } 1623 1624 static void audit_multicast_unbind(struct net *net, int group) 1625 { 1626 audit_log_multicast(group, "disconnect", 0); 1627 } 1628 1629 static int __net_init audit_net_init(struct net *net) 1630 { 1631 struct netlink_kernel_cfg cfg = { 1632 .input = audit_receive, 1633 .bind = audit_multicast_bind, 1634 .unbind = audit_multicast_unbind, 1635 .flags = NL_CFG_F_NONROOT_RECV, 1636 .groups = AUDIT_NLGRP_MAX, 1637 }; 1638 1639 struct audit_net *aunet = net_generic(net, audit_net_id); 1640 1641 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1642 if (aunet->sk == NULL) { 1643 audit_panic("cannot initialize netlink socket in namespace"); 1644 return -ENOMEM; 1645 } 1646 /* limit the timeout in case auditd is blocked/stopped */ 1647 aunet->sk->sk_sndtimeo = HZ / 10; 1648 1649 return 0; 1650 } 1651 1652 static void __net_exit audit_net_exit(struct net *net) 1653 { 1654 struct audit_net *aunet = net_generic(net, audit_net_id); 1655 1656 /* NOTE: you would think that we would want to check the auditd 1657 * connection and potentially reset it here if it lives in this 1658 * namespace, but since the auditd connection tracking struct holds a 1659 * reference to this namespace (see auditd_set()) we are only ever 1660 * going to get here after that connection has been released */ 1661 1662 netlink_kernel_release(aunet->sk); 1663 } 1664 1665 static struct pernet_operations audit_net_ops __net_initdata = { 1666 .init = audit_net_init, 1667 .exit = audit_net_exit, 1668 .id = &audit_net_id, 1669 .size = sizeof(struct audit_net), 1670 }; 1671 1672 /* Initialize audit support at boot time. */ 1673 static int __init audit_init(void) 1674 { 1675 int i; 1676 1677 if (audit_initialized == AUDIT_DISABLED) 1678 return 0; 1679 1680 audit_buffer_cache = kmem_cache_create("audit_buffer", 1681 sizeof(struct audit_buffer), 1682 0, SLAB_PANIC, NULL); 1683 1684 skb_queue_head_init(&audit_queue); 1685 skb_queue_head_init(&audit_retry_queue); 1686 skb_queue_head_init(&audit_hold_queue); 1687 1688 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1689 INIT_LIST_HEAD(&audit_inode_hash[i]); 1690 1691 mutex_init(&audit_cmd_mutex.lock); 1692 audit_cmd_mutex.owner = NULL; 1693 1694 pr_info("initializing netlink subsys (%s)\n", 1695 audit_default ? "enabled" : "disabled"); 1696 register_pernet_subsys(&audit_net_ops); 1697 1698 audit_initialized = AUDIT_INITIALIZED; 1699 1700 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 1701 if (IS_ERR(kauditd_task)) { 1702 int err = PTR_ERR(kauditd_task); 1703 panic("audit: failed to start the kauditd thread (%d)\n", err); 1704 } 1705 1706 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, 1707 "state=initialized audit_enabled=%u res=1", 1708 audit_enabled); 1709 1710 return 0; 1711 } 1712 postcore_initcall(audit_init); 1713 1714 /* 1715 * Process kernel command-line parameter at boot time. 1716 * audit={0|off} or audit={1|on}. 1717 */ 1718 static int __init audit_enable(char *str) 1719 { 1720 if (!strcasecmp(str, "off") || !strcmp(str, "0")) 1721 audit_default = AUDIT_OFF; 1722 else if (!strcasecmp(str, "on") || !strcmp(str, "1")) 1723 audit_default = AUDIT_ON; 1724 else { 1725 pr_err("audit: invalid 'audit' parameter value (%s)\n", str); 1726 audit_default = AUDIT_ON; 1727 } 1728 1729 if (audit_default == AUDIT_OFF) 1730 audit_initialized = AUDIT_DISABLED; 1731 if (audit_set_enabled(audit_default)) 1732 pr_err("audit: error setting audit state (%d)\n", 1733 audit_default); 1734 1735 pr_info("%s\n", audit_default ? 1736 "enabled (after initialization)" : "disabled (until reboot)"); 1737 1738 return 1; 1739 } 1740 __setup("audit=", audit_enable); 1741 1742 /* Process kernel command-line parameter at boot time. 1743 * audit_backlog_limit=<n> */ 1744 static int __init audit_backlog_limit_set(char *str) 1745 { 1746 u32 audit_backlog_limit_arg; 1747 1748 pr_info("audit_backlog_limit: "); 1749 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1750 pr_cont("using default of %u, unable to parse %s\n", 1751 audit_backlog_limit, str); 1752 return 1; 1753 } 1754 1755 audit_backlog_limit = audit_backlog_limit_arg; 1756 pr_cont("%d\n", audit_backlog_limit); 1757 1758 return 1; 1759 } 1760 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1761 1762 static void audit_buffer_free(struct audit_buffer *ab) 1763 { 1764 if (!ab) 1765 return; 1766 1767 kfree_skb(ab->skb); 1768 kmem_cache_free(audit_buffer_cache, ab); 1769 } 1770 1771 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx, 1772 gfp_t gfp_mask, int type) 1773 { 1774 struct audit_buffer *ab; 1775 1776 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask); 1777 if (!ab) 1778 return NULL; 1779 1780 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1781 if (!ab->skb) 1782 goto err; 1783 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0)) 1784 goto err; 1785 1786 ab->ctx = ctx; 1787 ab->gfp_mask = gfp_mask; 1788 1789 return ab; 1790 1791 err: 1792 audit_buffer_free(ab); 1793 return NULL; 1794 } 1795 1796 /** 1797 * audit_serial - compute a serial number for the audit record 1798 * 1799 * Compute a serial number for the audit record. Audit records are 1800 * written to user-space as soon as they are generated, so a complete 1801 * audit record may be written in several pieces. The timestamp of the 1802 * record and this serial number are used by the user-space tools to 1803 * determine which pieces belong to the same audit record. The 1804 * (timestamp,serial) tuple is unique for each syscall and is live from 1805 * syscall entry to syscall exit. 1806 * 1807 * NOTE: Another possibility is to store the formatted records off the 1808 * audit context (for those records that have a context), and emit them 1809 * all at syscall exit. However, this could delay the reporting of 1810 * significant errors until syscall exit (or never, if the system 1811 * halts). 1812 */ 1813 unsigned int audit_serial(void) 1814 { 1815 static atomic_t serial = ATOMIC_INIT(0); 1816 1817 return atomic_inc_return(&serial); 1818 } 1819 1820 static inline void audit_get_stamp(struct audit_context *ctx, 1821 struct timespec64 *t, unsigned int *serial) 1822 { 1823 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1824 ktime_get_coarse_real_ts64(t); 1825 *serial = audit_serial(); 1826 } 1827 } 1828 1829 /** 1830 * audit_log_start - obtain an audit buffer 1831 * @ctx: audit_context (may be NULL) 1832 * @gfp_mask: type of allocation 1833 * @type: audit message type 1834 * 1835 * Returns audit_buffer pointer on success or NULL on error. 1836 * 1837 * Obtain an audit buffer. This routine does locking to obtain the 1838 * audit buffer, but then no locking is required for calls to 1839 * audit_log_*format. If the task (ctx) is a task that is currently in a 1840 * syscall, then the syscall is marked as auditable and an audit record 1841 * will be written at syscall exit. If there is no associated task, then 1842 * task context (ctx) should be NULL. 1843 */ 1844 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1845 int type) 1846 { 1847 struct audit_buffer *ab; 1848 struct timespec64 t; 1849 unsigned int serial; 1850 1851 if (audit_initialized != AUDIT_INITIALIZED) 1852 return NULL; 1853 1854 if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE))) 1855 return NULL; 1856 1857 /* NOTE: don't ever fail/sleep on these two conditions: 1858 * 1. auditd generated record - since we need auditd to drain the 1859 * queue; also, when we are checking for auditd, compare PIDs using 1860 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg() 1861 * using a PID anchored in the caller's namespace 1862 * 2. generator holding the audit_cmd_mutex - we don't want to block 1863 * while holding the mutex, although we do penalize the sender 1864 * later in audit_receive() when it is safe to block 1865 */ 1866 if (!(auditd_test_task(current) || audit_ctl_owner_current())) { 1867 long stime = audit_backlog_wait_time; 1868 1869 while (audit_backlog_limit && 1870 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1871 /* wake kauditd to try and flush the queue */ 1872 wake_up_interruptible(&kauditd_wait); 1873 1874 /* sleep if we are allowed and we haven't exhausted our 1875 * backlog wait limit */ 1876 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) { 1877 long rtime = stime; 1878 1879 DECLARE_WAITQUEUE(wait, current); 1880 1881 add_wait_queue_exclusive(&audit_backlog_wait, 1882 &wait); 1883 set_current_state(TASK_UNINTERRUPTIBLE); 1884 stime = schedule_timeout(rtime); 1885 atomic_add(rtime - stime, &audit_backlog_wait_time_actual); 1886 remove_wait_queue(&audit_backlog_wait, &wait); 1887 } else { 1888 if (audit_rate_check() && printk_ratelimit()) 1889 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1890 skb_queue_len(&audit_queue), 1891 audit_backlog_limit); 1892 audit_log_lost("backlog limit exceeded"); 1893 return NULL; 1894 } 1895 } 1896 } 1897 1898 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1899 if (!ab) { 1900 audit_log_lost("out of memory in audit_log_start"); 1901 return NULL; 1902 } 1903 1904 audit_get_stamp(ab->ctx, &t, &serial); 1905 /* cancel dummy context to enable supporting records */ 1906 if (ctx) 1907 ctx->dummy = 0; 1908 audit_log_format(ab, "audit(%llu.%03lu:%u): ", 1909 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial); 1910 1911 return ab; 1912 } 1913 1914 /** 1915 * audit_expand - expand skb in the audit buffer 1916 * @ab: audit_buffer 1917 * @extra: space to add at tail of the skb 1918 * 1919 * Returns 0 (no space) on failed expansion, or available space if 1920 * successful. 1921 */ 1922 static inline int audit_expand(struct audit_buffer *ab, int extra) 1923 { 1924 struct sk_buff *skb = ab->skb; 1925 int oldtail = skb_tailroom(skb); 1926 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1927 int newtail = skb_tailroom(skb); 1928 1929 if (ret < 0) { 1930 audit_log_lost("out of memory in audit_expand"); 1931 return 0; 1932 } 1933 1934 skb->truesize += newtail - oldtail; 1935 return newtail; 1936 } 1937 1938 /* 1939 * Format an audit message into the audit buffer. If there isn't enough 1940 * room in the audit buffer, more room will be allocated and vsnprint 1941 * will be called a second time. Currently, we assume that a printk 1942 * can't format message larger than 1024 bytes, so we don't either. 1943 */ 1944 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1945 va_list args) 1946 { 1947 int len, avail; 1948 struct sk_buff *skb; 1949 va_list args2; 1950 1951 if (!ab) 1952 return; 1953 1954 BUG_ON(!ab->skb); 1955 skb = ab->skb; 1956 avail = skb_tailroom(skb); 1957 if (avail == 0) { 1958 avail = audit_expand(ab, AUDIT_BUFSIZ); 1959 if (!avail) 1960 goto out; 1961 } 1962 va_copy(args2, args); 1963 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1964 if (len >= avail) { 1965 /* The printk buffer is 1024 bytes long, so if we get 1966 * here and AUDIT_BUFSIZ is at least 1024, then we can 1967 * log everything that printk could have logged. */ 1968 avail = audit_expand(ab, 1969 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1970 if (!avail) 1971 goto out_va_end; 1972 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1973 } 1974 if (len > 0) 1975 skb_put(skb, len); 1976 out_va_end: 1977 va_end(args2); 1978 out: 1979 return; 1980 } 1981 1982 /** 1983 * audit_log_format - format a message into the audit buffer. 1984 * @ab: audit_buffer 1985 * @fmt: format string 1986 * @...: optional parameters matching @fmt string 1987 * 1988 * All the work is done in audit_log_vformat. 1989 */ 1990 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1991 { 1992 va_list args; 1993 1994 if (!ab) 1995 return; 1996 va_start(args, fmt); 1997 audit_log_vformat(ab, fmt, args); 1998 va_end(args); 1999 } 2000 2001 /** 2002 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb 2003 * @ab: the audit_buffer 2004 * @buf: buffer to convert to hex 2005 * @len: length of @buf to be converted 2006 * 2007 * No return value; failure to expand is silently ignored. 2008 * 2009 * This function will take the passed buf and convert it into a string of 2010 * ascii hex digits. The new string is placed onto the skb. 2011 */ 2012 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 2013 size_t len) 2014 { 2015 int i, avail, new_len; 2016 unsigned char *ptr; 2017 struct sk_buff *skb; 2018 2019 if (!ab) 2020 return; 2021 2022 BUG_ON(!ab->skb); 2023 skb = ab->skb; 2024 avail = skb_tailroom(skb); 2025 new_len = len<<1; 2026 if (new_len >= avail) { 2027 /* Round the buffer request up to the next multiple */ 2028 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 2029 avail = audit_expand(ab, new_len); 2030 if (!avail) 2031 return; 2032 } 2033 2034 ptr = skb_tail_pointer(skb); 2035 for (i = 0; i < len; i++) 2036 ptr = hex_byte_pack_upper(ptr, buf[i]); 2037 *ptr = 0; 2038 skb_put(skb, len << 1); /* new string is twice the old string */ 2039 } 2040 2041 /* 2042 * Format a string of no more than slen characters into the audit buffer, 2043 * enclosed in quote marks. 2044 */ 2045 void audit_log_n_string(struct audit_buffer *ab, const char *string, 2046 size_t slen) 2047 { 2048 int avail, new_len; 2049 unsigned char *ptr; 2050 struct sk_buff *skb; 2051 2052 if (!ab) 2053 return; 2054 2055 BUG_ON(!ab->skb); 2056 skb = ab->skb; 2057 avail = skb_tailroom(skb); 2058 new_len = slen + 3; /* enclosing quotes + null terminator */ 2059 if (new_len > avail) { 2060 avail = audit_expand(ab, new_len); 2061 if (!avail) 2062 return; 2063 } 2064 ptr = skb_tail_pointer(skb); 2065 *ptr++ = '"'; 2066 memcpy(ptr, string, slen); 2067 ptr += slen; 2068 *ptr++ = '"'; 2069 *ptr = 0; 2070 skb_put(skb, slen + 2); /* don't include null terminator */ 2071 } 2072 2073 /** 2074 * audit_string_contains_control - does a string need to be logged in hex 2075 * @string: string to be checked 2076 * @len: max length of the string to check 2077 */ 2078 bool audit_string_contains_control(const char *string, size_t len) 2079 { 2080 const unsigned char *p; 2081 for (p = string; p < (const unsigned char *)string + len; p++) { 2082 if (*p == '"' || *p < 0x21 || *p > 0x7e) 2083 return true; 2084 } 2085 return false; 2086 } 2087 2088 /** 2089 * audit_log_n_untrustedstring - log a string that may contain random characters 2090 * @ab: audit_buffer 2091 * @len: length of string (not including trailing null) 2092 * @string: string to be logged 2093 * 2094 * This code will escape a string that is passed to it if the string 2095 * contains a control character, unprintable character, double quote mark, 2096 * or a space. Unescaped strings will start and end with a double quote mark. 2097 * Strings that are escaped are printed in hex (2 digits per char). 2098 * 2099 * The caller specifies the number of characters in the string to log, which may 2100 * or may not be the entire string. 2101 */ 2102 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 2103 size_t len) 2104 { 2105 if (audit_string_contains_control(string, len)) 2106 audit_log_n_hex(ab, string, len); 2107 else 2108 audit_log_n_string(ab, string, len); 2109 } 2110 2111 /** 2112 * audit_log_untrustedstring - log a string that may contain random characters 2113 * @ab: audit_buffer 2114 * @string: string to be logged 2115 * 2116 * Same as audit_log_n_untrustedstring(), except that strlen is used to 2117 * determine string length. 2118 */ 2119 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 2120 { 2121 audit_log_n_untrustedstring(ab, string, strlen(string)); 2122 } 2123 2124 /* This is a helper-function to print the escaped d_path */ 2125 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 2126 const struct path *path) 2127 { 2128 char *p, *pathname; 2129 2130 if (prefix) 2131 audit_log_format(ab, "%s", prefix); 2132 2133 /* We will allow 11 spaces for ' (deleted)' to be appended */ 2134 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 2135 if (!pathname) { 2136 audit_log_format(ab, "\"<no_memory>\""); 2137 return; 2138 } 2139 p = d_path(path, pathname, PATH_MAX+11); 2140 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 2141 /* FIXME: can we save some information here? */ 2142 audit_log_format(ab, "\"<too_long>\""); 2143 } else 2144 audit_log_untrustedstring(ab, p); 2145 kfree(pathname); 2146 } 2147 2148 void audit_log_session_info(struct audit_buffer *ab) 2149 { 2150 unsigned int sessionid = audit_get_sessionid(current); 2151 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 2152 2153 audit_log_format(ab, "auid=%u ses=%u", auid, sessionid); 2154 } 2155 2156 void audit_log_key(struct audit_buffer *ab, char *key) 2157 { 2158 audit_log_format(ab, " key="); 2159 if (key) 2160 audit_log_untrustedstring(ab, key); 2161 else 2162 audit_log_format(ab, "(null)"); 2163 } 2164 2165 int audit_log_task_context(struct audit_buffer *ab) 2166 { 2167 char *ctx = NULL; 2168 unsigned len; 2169 int error; 2170 u32 sid; 2171 2172 security_current_getsecid_subj(&sid); 2173 if (!sid) 2174 return 0; 2175 2176 error = security_secid_to_secctx(sid, &ctx, &len); 2177 if (error) { 2178 if (error != -EINVAL) 2179 goto error_path; 2180 return 0; 2181 } 2182 2183 audit_log_format(ab, " subj=%s", ctx); 2184 security_release_secctx(ctx, len); 2185 return 0; 2186 2187 error_path: 2188 audit_panic("error in audit_log_task_context"); 2189 return error; 2190 } 2191 EXPORT_SYMBOL(audit_log_task_context); 2192 2193 void audit_log_d_path_exe(struct audit_buffer *ab, 2194 struct mm_struct *mm) 2195 { 2196 struct file *exe_file; 2197 2198 if (!mm) 2199 goto out_null; 2200 2201 exe_file = get_mm_exe_file(mm); 2202 if (!exe_file) 2203 goto out_null; 2204 2205 audit_log_d_path(ab, " exe=", &exe_file->f_path); 2206 fput(exe_file); 2207 return; 2208 out_null: 2209 audit_log_format(ab, " exe=(null)"); 2210 } 2211 2212 struct tty_struct *audit_get_tty(void) 2213 { 2214 struct tty_struct *tty = NULL; 2215 unsigned long flags; 2216 2217 spin_lock_irqsave(¤t->sighand->siglock, flags); 2218 if (current->signal) 2219 tty = tty_kref_get(current->signal->tty); 2220 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 2221 return tty; 2222 } 2223 2224 void audit_put_tty(struct tty_struct *tty) 2225 { 2226 tty_kref_put(tty); 2227 } 2228 2229 void audit_log_task_info(struct audit_buffer *ab) 2230 { 2231 const struct cred *cred; 2232 char comm[sizeof(current->comm)]; 2233 struct tty_struct *tty; 2234 2235 if (!ab) 2236 return; 2237 2238 cred = current_cred(); 2239 tty = audit_get_tty(); 2240 audit_log_format(ab, 2241 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 2242 " euid=%u suid=%u fsuid=%u" 2243 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 2244 task_ppid_nr(current), 2245 task_tgid_nr(current), 2246 from_kuid(&init_user_ns, audit_get_loginuid(current)), 2247 from_kuid(&init_user_ns, cred->uid), 2248 from_kgid(&init_user_ns, cred->gid), 2249 from_kuid(&init_user_ns, cred->euid), 2250 from_kuid(&init_user_ns, cred->suid), 2251 from_kuid(&init_user_ns, cred->fsuid), 2252 from_kgid(&init_user_ns, cred->egid), 2253 from_kgid(&init_user_ns, cred->sgid), 2254 from_kgid(&init_user_ns, cred->fsgid), 2255 tty ? tty_name(tty) : "(none)", 2256 audit_get_sessionid(current)); 2257 audit_put_tty(tty); 2258 audit_log_format(ab, " comm="); 2259 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2260 audit_log_d_path_exe(ab, current->mm); 2261 audit_log_task_context(ab); 2262 } 2263 EXPORT_SYMBOL(audit_log_task_info); 2264 2265 /** 2266 * audit_log_path_denied - report a path restriction denial 2267 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc) 2268 * @operation: specific operation name 2269 */ 2270 void audit_log_path_denied(int type, const char *operation) 2271 { 2272 struct audit_buffer *ab; 2273 2274 if (!audit_enabled || audit_dummy_context()) 2275 return; 2276 2277 /* Generate log with subject, operation, outcome. */ 2278 ab = audit_log_start(audit_context(), GFP_KERNEL, type); 2279 if (!ab) 2280 return; 2281 audit_log_format(ab, "op=%s", operation); 2282 audit_log_task_info(ab); 2283 audit_log_format(ab, " res=0"); 2284 audit_log_end(ab); 2285 } 2286 2287 /* global counter which is incremented every time something logs in */ 2288 static atomic_t session_id = ATOMIC_INIT(0); 2289 2290 static int audit_set_loginuid_perm(kuid_t loginuid) 2291 { 2292 /* if we are unset, we don't need privs */ 2293 if (!audit_loginuid_set(current)) 2294 return 0; 2295 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/ 2296 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE)) 2297 return -EPERM; 2298 /* it is set, you need permission */ 2299 if (!capable(CAP_AUDIT_CONTROL)) 2300 return -EPERM; 2301 /* reject if this is not an unset and we don't allow that */ 2302 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) 2303 && uid_valid(loginuid)) 2304 return -EPERM; 2305 return 0; 2306 } 2307 2308 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid, 2309 unsigned int oldsessionid, 2310 unsigned int sessionid, int rc) 2311 { 2312 struct audit_buffer *ab; 2313 uid_t uid, oldloginuid, loginuid; 2314 struct tty_struct *tty; 2315 2316 if (!audit_enabled) 2317 return; 2318 2319 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN); 2320 if (!ab) 2321 return; 2322 2323 uid = from_kuid(&init_user_ns, task_uid(current)); 2324 oldloginuid = from_kuid(&init_user_ns, koldloginuid); 2325 loginuid = from_kuid(&init_user_ns, kloginuid); 2326 tty = audit_get_tty(); 2327 2328 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid); 2329 audit_log_task_context(ab); 2330 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d", 2331 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)", 2332 oldsessionid, sessionid, !rc); 2333 audit_put_tty(tty); 2334 audit_log_end(ab); 2335 } 2336 2337 /** 2338 * audit_set_loginuid - set current task's loginuid 2339 * @loginuid: loginuid value 2340 * 2341 * Returns 0. 2342 * 2343 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2344 */ 2345 int audit_set_loginuid(kuid_t loginuid) 2346 { 2347 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET; 2348 kuid_t oldloginuid; 2349 int rc; 2350 2351 oldloginuid = audit_get_loginuid(current); 2352 oldsessionid = audit_get_sessionid(current); 2353 2354 rc = audit_set_loginuid_perm(loginuid); 2355 if (rc) 2356 goto out; 2357 2358 /* are we setting or clearing? */ 2359 if (uid_valid(loginuid)) { 2360 sessionid = (unsigned int)atomic_inc_return(&session_id); 2361 if (unlikely(sessionid == AUDIT_SID_UNSET)) 2362 sessionid = (unsigned int)atomic_inc_return(&session_id); 2363 } 2364 2365 current->sessionid = sessionid; 2366 current->loginuid = loginuid; 2367 out: 2368 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc); 2369 return rc; 2370 } 2371 2372 /** 2373 * audit_signal_info - record signal info for shutting down audit subsystem 2374 * @sig: signal value 2375 * @t: task being signaled 2376 * 2377 * If the audit subsystem is being terminated, record the task (pid) 2378 * and uid that is doing that. 2379 */ 2380 int audit_signal_info(int sig, struct task_struct *t) 2381 { 2382 kuid_t uid = current_uid(), auid; 2383 2384 if (auditd_test_task(t) && 2385 (sig == SIGTERM || sig == SIGHUP || 2386 sig == SIGUSR1 || sig == SIGUSR2)) { 2387 audit_sig_pid = task_tgid_nr(current); 2388 auid = audit_get_loginuid(current); 2389 if (uid_valid(auid)) 2390 audit_sig_uid = auid; 2391 else 2392 audit_sig_uid = uid; 2393 security_current_getsecid_subj(&audit_sig_sid); 2394 } 2395 2396 return audit_signal_info_syscall(t); 2397 } 2398 2399 /** 2400 * audit_log_end - end one audit record 2401 * @ab: the audit_buffer 2402 * 2403 * We can not do a netlink send inside an irq context because it blocks (last 2404 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a 2405 * queue and a kthread is scheduled to remove them from the queue outside the 2406 * irq context. May be called in any context. 2407 */ 2408 void audit_log_end(struct audit_buffer *ab) 2409 { 2410 struct sk_buff *skb; 2411 struct nlmsghdr *nlh; 2412 2413 if (!ab) 2414 return; 2415 2416 if (audit_rate_check()) { 2417 skb = ab->skb; 2418 ab->skb = NULL; 2419 2420 /* setup the netlink header, see the comments in 2421 * kauditd_send_multicast_skb() for length quirks */ 2422 nlh = nlmsg_hdr(skb); 2423 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN; 2424 2425 /* queue the netlink packet and poke the kauditd thread */ 2426 skb_queue_tail(&audit_queue, skb); 2427 wake_up_interruptible(&kauditd_wait); 2428 } else 2429 audit_log_lost("rate limit exceeded"); 2430 2431 audit_buffer_free(ab); 2432 } 2433 2434 /** 2435 * audit_log - Log an audit record 2436 * @ctx: audit context 2437 * @gfp_mask: type of allocation 2438 * @type: audit message type 2439 * @fmt: format string to use 2440 * @...: variable parameters matching the format string 2441 * 2442 * This is a convenience function that calls audit_log_start, 2443 * audit_log_vformat, and audit_log_end. It may be called 2444 * in any context. 2445 */ 2446 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 2447 const char *fmt, ...) 2448 { 2449 struct audit_buffer *ab; 2450 va_list args; 2451 2452 ab = audit_log_start(ctx, gfp_mask, type); 2453 if (ab) { 2454 va_start(args, fmt); 2455 audit_log_vformat(ab, fmt, args); 2456 va_end(args); 2457 audit_log_end(ab); 2458 } 2459 } 2460 2461 EXPORT_SYMBOL(audit_log_start); 2462 EXPORT_SYMBOL(audit_log_end); 2463 EXPORT_SYMBOL(audit_log_format); 2464 EXPORT_SYMBOL(audit_log); 2465