1 /* 2 * async.c: Asynchronous function calls for boot performance 3 * 4 * (C) Copyright 2009 Intel Corporation 5 * Author: Arjan van de Ven <arjan@linux.intel.com> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; version 2 10 * of the License. 11 */ 12 13 14 /* 15 16 Goals and Theory of Operation 17 18 The primary goal of this feature is to reduce the kernel boot time, 19 by doing various independent hardware delays and discovery operations 20 decoupled and not strictly serialized. 21 22 More specifically, the asynchronous function call concept allows 23 certain operations (primarily during system boot) to happen 24 asynchronously, out of order, while these operations still 25 have their externally visible parts happen sequentially and in-order. 26 (not unlike how out-of-order CPUs retire their instructions in order) 27 28 Key to the asynchronous function call implementation is the concept of 29 a "sequence cookie" (which, although it has an abstracted type, can be 30 thought of as a monotonically incrementing number). 31 32 The async core will assign each scheduled event such a sequence cookie and 33 pass this to the called functions. 34 35 The asynchronously called function should before doing a globally visible 36 operation, such as registering device numbers, call the 37 async_synchronize_cookie() function and pass in its own cookie. The 38 async_synchronize_cookie() function will make sure that all asynchronous 39 operations that were scheduled prior to the operation corresponding with the 40 cookie have completed. 41 42 Subsystem/driver initialization code that scheduled asynchronous probe 43 functions, but which shares global resources with other drivers/subsystems 44 that do not use the asynchronous call feature, need to do a full 45 synchronization with the async_synchronize_full() function, before returning 46 from their init function. This is to maintain strict ordering between the 47 asynchronous and synchronous parts of the kernel. 48 49 */ 50 51 #include <linux/async.h> 52 #include <linux/module.h> 53 #include <linux/wait.h> 54 #include <linux/sched.h> 55 #include <linux/init.h> 56 #include <linux/kthread.h> 57 #include <asm/atomic.h> 58 59 static async_cookie_t next_cookie = 1; 60 61 #define MAX_THREADS 256 62 #define MAX_WORK 32768 63 64 static LIST_HEAD(async_pending); 65 static LIST_HEAD(async_running); 66 static DEFINE_SPINLOCK(async_lock); 67 68 static int async_enabled = 0; 69 70 struct async_entry { 71 struct list_head list; 72 async_cookie_t cookie; 73 async_func_ptr *func; 74 void *data; 75 struct list_head *running; 76 }; 77 78 static DECLARE_WAIT_QUEUE_HEAD(async_done); 79 static DECLARE_WAIT_QUEUE_HEAD(async_new); 80 81 static atomic_t entry_count; 82 static atomic_t thread_count; 83 84 extern int initcall_debug; 85 86 87 /* 88 * MUST be called with the lock held! 89 */ 90 static async_cookie_t __lowest_in_progress(struct list_head *running) 91 { 92 struct async_entry *entry; 93 if (!list_empty(&async_pending)) { 94 entry = list_first_entry(&async_pending, 95 struct async_entry, list); 96 return entry->cookie; 97 } else if (!list_empty(running)) { 98 entry = list_first_entry(running, 99 struct async_entry, list); 100 return entry->cookie; 101 } else { 102 /* nothing in progress... next_cookie is "infinity" */ 103 return next_cookie; 104 } 105 106 } 107 /* 108 * pick the first pending entry and run it 109 */ 110 static void run_one_entry(void) 111 { 112 unsigned long flags; 113 struct async_entry *entry; 114 ktime_t calltime, delta, rettime; 115 116 /* 1) pick one task from the pending queue */ 117 118 spin_lock_irqsave(&async_lock, flags); 119 if (list_empty(&async_pending)) 120 goto out; 121 entry = list_first_entry(&async_pending, struct async_entry, list); 122 123 /* 2) move it to the running queue */ 124 list_del(&entry->list); 125 list_add_tail(&entry->list, &async_running); 126 spin_unlock_irqrestore(&async_lock, flags); 127 128 /* 3) run it (and print duration)*/ 129 if (initcall_debug && system_state == SYSTEM_BOOTING) { 130 printk("calling %lli_%pF @ %i\n", entry->cookie, entry->func, task_pid_nr(current)); 131 calltime = ktime_get(); 132 } 133 entry->func(entry->data, entry->cookie); 134 if (initcall_debug && system_state == SYSTEM_BOOTING) { 135 rettime = ktime_get(); 136 delta = ktime_sub(rettime, calltime); 137 printk("initcall %lli_%pF returned 0 after %lld usecs\n", entry->cookie, 138 entry->func, ktime_to_ns(delta) >> 10); 139 } 140 141 /* 4) remove it from the running queue */ 142 spin_lock_irqsave(&async_lock, flags); 143 list_del(&entry->list); 144 145 /* 5) free the entry */ 146 kfree(entry); 147 atomic_dec(&entry_count); 148 149 spin_unlock_irqrestore(&async_lock, flags); 150 151 /* 6) wake up any waiters. */ 152 wake_up(&async_done); 153 return; 154 155 out: 156 spin_unlock_irqrestore(&async_lock, flags); 157 } 158 159 160 static async_cookie_t __async_schedule(async_func_ptr *ptr, void *data, struct list_head *running) 161 { 162 struct async_entry *entry; 163 unsigned long flags; 164 async_cookie_t newcookie; 165 166 167 /* allow irq-off callers */ 168 entry = kzalloc(sizeof(struct async_entry), GFP_ATOMIC); 169 170 /* 171 * If we're out of memory or if there's too much work 172 * pending already, we execute synchronously. 173 */ 174 if (!async_enabled || !entry || atomic_read(&entry_count) > MAX_WORK) { 175 kfree(entry); 176 spin_lock_irqsave(&async_lock, flags); 177 newcookie = next_cookie++; 178 spin_unlock_irqrestore(&async_lock, flags); 179 180 /* low on memory.. run synchronously */ 181 ptr(data, newcookie); 182 return newcookie; 183 } 184 entry->func = ptr; 185 entry->data = data; 186 entry->running = running; 187 188 spin_lock_irqsave(&async_lock, flags); 189 newcookie = entry->cookie = next_cookie++; 190 list_add_tail(&entry->list, &async_pending); 191 atomic_inc(&entry_count); 192 spin_unlock_irqrestore(&async_lock, flags); 193 wake_up(&async_new); 194 return newcookie; 195 } 196 197 async_cookie_t async_schedule(async_func_ptr *ptr, void *data) 198 { 199 return __async_schedule(ptr, data, &async_pending); 200 } 201 EXPORT_SYMBOL_GPL(async_schedule); 202 203 async_cookie_t async_schedule_special(async_func_ptr *ptr, void *data, struct list_head *running) 204 { 205 return __async_schedule(ptr, data, running); 206 } 207 EXPORT_SYMBOL_GPL(async_schedule_special); 208 209 void async_synchronize_full(void) 210 { 211 do { 212 async_synchronize_cookie(next_cookie); 213 } while (!list_empty(&async_running) || !list_empty(&async_pending)); 214 } 215 EXPORT_SYMBOL_GPL(async_synchronize_full); 216 217 void async_synchronize_full_special(struct list_head *list) 218 { 219 async_synchronize_cookie_special(next_cookie, list); 220 } 221 EXPORT_SYMBOL_GPL(async_synchronize_full_special); 222 223 void async_synchronize_cookie_special(async_cookie_t cookie, struct list_head *running) 224 { 225 ktime_t starttime, delta, endtime; 226 227 if (initcall_debug && system_state == SYSTEM_BOOTING) { 228 printk("async_waiting @ %i\n", task_pid_nr(current)); 229 starttime = ktime_get(); 230 } 231 232 wait_event(async_done, __lowest_in_progress(running) >= cookie); 233 234 if (initcall_debug && system_state == SYSTEM_BOOTING) { 235 endtime = ktime_get(); 236 delta = ktime_sub(endtime, starttime); 237 238 printk("async_continuing @ %i after %lli usec\n", 239 task_pid_nr(current), ktime_to_ns(delta) >> 10); 240 } 241 } 242 EXPORT_SYMBOL_GPL(async_synchronize_cookie_special); 243 244 void async_synchronize_cookie(async_cookie_t cookie) 245 { 246 async_synchronize_cookie_special(cookie, &async_running); 247 } 248 EXPORT_SYMBOL_GPL(async_synchronize_cookie); 249 250 251 static int async_thread(void *unused) 252 { 253 DECLARE_WAITQUEUE(wq, current); 254 add_wait_queue(&async_new, &wq); 255 256 while (!kthread_should_stop()) { 257 int ret = HZ; 258 set_current_state(TASK_INTERRUPTIBLE); 259 /* 260 * check the list head without lock.. false positives 261 * are dealt with inside run_one_entry() while holding 262 * the lock. 263 */ 264 rmb(); 265 if (!list_empty(&async_pending)) 266 run_one_entry(); 267 else 268 ret = schedule_timeout(HZ); 269 270 if (ret == 0) { 271 /* 272 * we timed out, this means we as thread are redundant. 273 * we sign off and die, but we to avoid any races there 274 * is a last-straw check to see if work snuck in. 275 */ 276 atomic_dec(&thread_count); 277 wmb(); /* manager must see our departure first */ 278 if (list_empty(&async_pending)) 279 break; 280 /* 281 * woops work came in between us timing out and us 282 * signing off; we need to stay alive and keep working. 283 */ 284 atomic_inc(&thread_count); 285 } 286 } 287 remove_wait_queue(&async_new, &wq); 288 289 return 0; 290 } 291 292 static int async_manager_thread(void *unused) 293 { 294 DECLARE_WAITQUEUE(wq, current); 295 add_wait_queue(&async_new, &wq); 296 297 while (!kthread_should_stop()) { 298 int tc, ec; 299 300 set_current_state(TASK_INTERRUPTIBLE); 301 302 tc = atomic_read(&thread_count); 303 rmb(); 304 ec = atomic_read(&entry_count); 305 306 while (tc < ec && tc < MAX_THREADS) { 307 kthread_run(async_thread, NULL, "async/%i", tc); 308 atomic_inc(&thread_count); 309 tc++; 310 } 311 312 schedule(); 313 } 314 remove_wait_queue(&async_new, &wq); 315 316 return 0; 317 } 318 319 static int __init async_init(void) 320 { 321 if (async_enabled) 322 kthread_run(async_manager_thread, NULL, "async/mgr"); 323 return 0; 324 } 325 326 static int __init setup_async(char *str) 327 { 328 async_enabled = 1; 329 return 1; 330 } 331 332 __setup("fastboot", setup_async); 333 334 335 core_initcall(async_init); 336