1 /* 2 * async.c: Asynchronous function calls for boot performance 3 * 4 * (C) Copyright 2009 Intel Corporation 5 * Author: Arjan van de Ven <arjan@linux.intel.com> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; version 2 10 * of the License. 11 */ 12 13 14 /* 15 16 Goals and Theory of Operation 17 18 The primary goal of this feature is to reduce the kernel boot time, 19 by doing various independent hardware delays and discovery operations 20 decoupled and not strictly serialized. 21 22 More specifically, the asynchronous function call concept allows 23 certain operations (primarily during system boot) to happen 24 asynchronously, out of order, while these operations still 25 have their externally visible parts happen sequentially and in-order. 26 (not unlike how out-of-order CPUs retire their instructions in order) 27 28 Key to the asynchronous function call implementation is the concept of 29 a "sequence cookie" (which, although it has an abstracted type, can be 30 thought of as a monotonically incrementing number). 31 32 The async core will assign each scheduled event such a sequence cookie and 33 pass this to the called functions. 34 35 The asynchronously called function should before doing a globally visible 36 operation, such as registering device numbers, call the 37 async_synchronize_cookie() function and pass in its own cookie. The 38 async_synchronize_cookie() function will make sure that all asynchronous 39 operations that were scheduled prior to the operation corresponding with the 40 cookie have completed. 41 42 Subsystem/driver initialization code that scheduled asynchronous probe 43 functions, but which shares global resources with other drivers/subsystems 44 that do not use the asynchronous call feature, need to do a full 45 synchronization with the async_synchronize_full() function, before returning 46 from their init function. This is to maintain strict ordering between the 47 asynchronous and synchronous parts of the kernel. 48 49 */ 50 51 #include <linux/async.h> 52 #include <linux/module.h> 53 #include <linux/wait.h> 54 #include <linux/sched.h> 55 #include <linux/init.h> 56 #include <linux/kthread.h> 57 #include <asm/atomic.h> 58 59 static async_cookie_t next_cookie = 1; 60 61 #define MAX_THREADS 256 62 #define MAX_WORK 32768 63 64 static LIST_HEAD(async_pending); 65 static LIST_HEAD(async_running); 66 static DEFINE_SPINLOCK(async_lock); 67 68 struct async_entry { 69 struct list_head list; 70 async_cookie_t cookie; 71 async_func_ptr *func; 72 void *data; 73 struct list_head *running; 74 }; 75 76 static DECLARE_WAIT_QUEUE_HEAD(async_done); 77 static DECLARE_WAIT_QUEUE_HEAD(async_new); 78 79 static atomic_t entry_count; 80 static atomic_t thread_count; 81 82 extern int initcall_debug; 83 84 85 /* 86 * MUST be called with the lock held! 87 */ 88 static async_cookie_t __lowest_in_progress(struct list_head *running) 89 { 90 struct async_entry *entry; 91 if (!list_empty(&async_pending)) { 92 entry = list_first_entry(&async_pending, 93 struct async_entry, list); 94 return entry->cookie; 95 } else if (!list_empty(running)) { 96 entry = list_first_entry(running, 97 struct async_entry, list); 98 return entry->cookie; 99 } else { 100 /* nothing in progress... next_cookie is "infinity" */ 101 return next_cookie; 102 } 103 104 } 105 /* 106 * pick the first pending entry and run it 107 */ 108 static void run_one_entry(void) 109 { 110 unsigned long flags; 111 struct async_entry *entry; 112 ktime_t calltime, delta, rettime; 113 114 /* 1) pick one task from the pending queue */ 115 116 spin_lock_irqsave(&async_lock, flags); 117 if (list_empty(&async_pending)) 118 goto out; 119 entry = list_first_entry(&async_pending, struct async_entry, list); 120 121 /* 2) move it to the running queue */ 122 list_del(&entry->list); 123 list_add_tail(&entry->list, &async_running); 124 spin_unlock_irqrestore(&async_lock, flags); 125 126 /* 3) run it (and print duration)*/ 127 if (initcall_debug && system_state == SYSTEM_BOOTING) { 128 printk("calling %lli_%pF @ %i\n", entry->cookie, entry->func, task_pid_nr(current)); 129 calltime = ktime_get(); 130 } 131 entry->func(entry->data, entry->cookie); 132 if (initcall_debug && system_state == SYSTEM_BOOTING) { 133 rettime = ktime_get(); 134 delta = ktime_sub(rettime, calltime); 135 printk("initcall %lli_%pF returned 0 after %lld usecs\n", entry->cookie, 136 entry->func, ktime_to_ns(delta) >> 10); 137 } 138 139 /* 4) remove it from the running queue */ 140 spin_lock_irqsave(&async_lock, flags); 141 list_del(&entry->list); 142 143 /* 5) free the entry */ 144 kfree(entry); 145 atomic_dec(&entry_count); 146 147 spin_unlock_irqrestore(&async_lock, flags); 148 149 /* 6) wake up any waiters. */ 150 wake_up(&async_done); 151 return; 152 153 out: 154 spin_unlock_irqrestore(&async_lock, flags); 155 } 156 157 158 static async_cookie_t __async_schedule(async_func_ptr *ptr, void *data, struct list_head *running) 159 { 160 struct async_entry *entry; 161 unsigned long flags; 162 async_cookie_t newcookie; 163 164 165 /* allow irq-off callers */ 166 entry = kzalloc(sizeof(struct async_entry), GFP_ATOMIC); 167 168 /* 169 * If we're out of memory or if there's too much work 170 * pending already, we execute synchronously. 171 */ 172 if (!entry || atomic_read(&entry_count) > MAX_WORK) { 173 kfree(entry); 174 spin_lock_irqsave(&async_lock, flags); 175 newcookie = next_cookie++; 176 spin_unlock_irqrestore(&async_lock, flags); 177 178 /* low on memory.. run synchronously */ 179 ptr(data, newcookie); 180 return newcookie; 181 } 182 entry->func = ptr; 183 entry->data = data; 184 entry->running = running; 185 186 spin_lock_irqsave(&async_lock, flags); 187 newcookie = entry->cookie = next_cookie++; 188 list_add_tail(&entry->list, &async_pending); 189 atomic_inc(&entry_count); 190 spin_unlock_irqrestore(&async_lock, flags); 191 wake_up(&async_new); 192 return newcookie; 193 } 194 195 async_cookie_t async_schedule(async_func_ptr *ptr, void *data) 196 { 197 return __async_schedule(ptr, data, &async_pending); 198 } 199 EXPORT_SYMBOL_GPL(async_schedule); 200 201 async_cookie_t async_schedule_special(async_func_ptr *ptr, void *data, struct list_head *running) 202 { 203 return __async_schedule(ptr, data, running); 204 } 205 EXPORT_SYMBOL_GPL(async_schedule_special); 206 207 void async_synchronize_full(void) 208 { 209 async_synchronize_cookie(next_cookie); 210 } 211 EXPORT_SYMBOL_GPL(async_synchronize_full); 212 213 void async_synchronize_full_special(struct list_head *list) 214 { 215 async_synchronize_cookie_special(next_cookie, list); 216 } 217 EXPORT_SYMBOL_GPL(async_synchronize_full_special); 218 219 void async_synchronize_cookie_special(async_cookie_t cookie, struct list_head *running) 220 { 221 ktime_t starttime, delta, endtime; 222 223 if (initcall_debug && system_state == SYSTEM_BOOTING) { 224 printk("async_waiting @ %i\n", task_pid_nr(current)); 225 starttime = ktime_get(); 226 } 227 228 wait_event(async_done, __lowest_in_progress(running) >= cookie); 229 230 if (initcall_debug && system_state == SYSTEM_BOOTING) { 231 endtime = ktime_get(); 232 delta = ktime_sub(endtime, starttime); 233 234 printk("async_continuing @ %i after %lli usec\n", 235 task_pid_nr(current), ktime_to_ns(delta) >> 10); 236 } 237 } 238 EXPORT_SYMBOL_GPL(async_synchronize_cookie_special); 239 240 void async_synchronize_cookie(async_cookie_t cookie) 241 { 242 async_synchronize_cookie_special(cookie, &async_running); 243 } 244 EXPORT_SYMBOL_GPL(async_synchronize_cookie); 245 246 247 static int async_thread(void *unused) 248 { 249 DECLARE_WAITQUEUE(wq, current); 250 add_wait_queue(&async_new, &wq); 251 252 while (!kthread_should_stop()) { 253 int ret = HZ; 254 set_current_state(TASK_INTERRUPTIBLE); 255 /* 256 * check the list head without lock.. false positives 257 * are dealt with inside run_one_entry() while holding 258 * the lock. 259 */ 260 rmb(); 261 if (!list_empty(&async_pending)) 262 run_one_entry(); 263 else 264 ret = schedule_timeout(HZ); 265 266 if (ret == 0) { 267 /* 268 * we timed out, this means we as thread are redundant. 269 * we sign off and die, but we to avoid any races there 270 * is a last-straw check to see if work snuck in. 271 */ 272 atomic_dec(&thread_count); 273 wmb(); /* manager must see our departure first */ 274 if (list_empty(&async_pending)) 275 break; 276 /* 277 * woops work came in between us timing out and us 278 * signing off; we need to stay alive and keep working. 279 */ 280 atomic_inc(&thread_count); 281 } 282 } 283 remove_wait_queue(&async_new, &wq); 284 285 return 0; 286 } 287 288 static int async_manager_thread(void *unused) 289 { 290 DECLARE_WAITQUEUE(wq, current); 291 add_wait_queue(&async_new, &wq); 292 293 while (!kthread_should_stop()) { 294 int tc, ec; 295 296 set_current_state(TASK_INTERRUPTIBLE); 297 298 tc = atomic_read(&thread_count); 299 rmb(); 300 ec = atomic_read(&entry_count); 301 302 while (tc < ec && tc < MAX_THREADS) { 303 kthread_run(async_thread, NULL, "async/%i", tc); 304 atomic_inc(&thread_count); 305 tc++; 306 } 307 308 schedule(); 309 } 310 remove_wait_queue(&async_new, &wq); 311 312 return 0; 313 } 314 315 static int __init async_init(void) 316 { 317 kthread_run(async_manager_thread, NULL, "async/mgr"); 318 return 0; 319 } 320 321 core_initcall(async_init); 322