1 /* 2 * async.c: Asynchronous function calls for boot performance 3 * 4 * (C) Copyright 2009 Intel Corporation 5 * Author: Arjan van de Ven <arjan@linux.intel.com> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; version 2 10 * of the License. 11 */ 12 13 14 /* 15 16 Goals and Theory of Operation 17 18 The primary goal of this feature is to reduce the kernel boot time, 19 by doing various independent hardware delays and discovery operations 20 decoupled and not strictly serialized. 21 22 More specifically, the asynchronous function call concept allows 23 certain operations (primarily during system boot) to happen 24 asynchronously, out of order, while these operations still 25 have their externally visible parts happen sequentially and in-order. 26 (not unlike how out-of-order CPUs retire their instructions in order) 27 28 Key to the asynchronous function call implementation is the concept of 29 a "sequence cookie" (which, although it has an abstracted type, can be 30 thought of as a monotonically incrementing number). 31 32 The async core will assign each scheduled event such a sequence cookie and 33 pass this to the called functions. 34 35 The asynchronously called function should before doing a globally visible 36 operation, such as registering device numbers, call the 37 async_synchronize_cookie() function and pass in its own cookie. The 38 async_synchronize_cookie() function will make sure that all asynchronous 39 operations that were scheduled prior to the operation corresponding with the 40 cookie have completed. 41 42 Subsystem/driver initialization code that scheduled asynchronous probe 43 functions, but which shares global resources with other drivers/subsystems 44 that do not use the asynchronous call feature, need to do a full 45 synchronization with the async_synchronize_full() function, before returning 46 from their init function. This is to maintain strict ordering between the 47 asynchronous and synchronous parts of the kernel. 48 49 */ 50 51 #include <linux/async.h> 52 #include <linux/atomic.h> 53 #include <linux/ktime.h> 54 #include <linux/export.h> 55 #include <linux/wait.h> 56 #include <linux/sched.h> 57 #include <linux/slab.h> 58 #include <linux/workqueue.h> 59 60 #include "workqueue_internal.h" 61 62 static async_cookie_t next_cookie = 1; 63 64 #define MAX_WORK 32768 65 #define ASYNC_COOKIE_MAX ULLONG_MAX /* infinity cookie */ 66 67 static LIST_HEAD(async_global_pending); /* pending from all registered doms */ 68 static ASYNC_DOMAIN(async_dfl_domain); 69 static DEFINE_SPINLOCK(async_lock); 70 71 struct async_entry { 72 struct list_head domain_list; 73 struct list_head global_list; 74 struct work_struct work; 75 async_cookie_t cookie; 76 async_func_t func; 77 void *data; 78 struct async_domain *domain; 79 }; 80 81 static DECLARE_WAIT_QUEUE_HEAD(async_done); 82 83 static atomic_t entry_count; 84 85 static async_cookie_t lowest_in_progress(struct async_domain *domain) 86 { 87 struct async_entry *first = NULL; 88 async_cookie_t ret = ASYNC_COOKIE_MAX; 89 unsigned long flags; 90 91 spin_lock_irqsave(&async_lock, flags); 92 93 if (domain) { 94 if (!list_empty(&domain->pending)) 95 first = list_first_entry(&domain->pending, 96 struct async_entry, domain_list); 97 } else { 98 if (!list_empty(&async_global_pending)) 99 first = list_first_entry(&async_global_pending, 100 struct async_entry, global_list); 101 } 102 103 if (first) 104 ret = first->cookie; 105 106 spin_unlock_irqrestore(&async_lock, flags); 107 return ret; 108 } 109 110 /* 111 * pick the first pending entry and run it 112 */ 113 static void async_run_entry_fn(struct work_struct *work) 114 { 115 struct async_entry *entry = 116 container_of(work, struct async_entry, work); 117 unsigned long flags; 118 ktime_t uninitialized_var(calltime), delta, rettime; 119 120 /* 1) run (and print duration) */ 121 if (initcall_debug && system_state < SYSTEM_RUNNING) { 122 pr_debug("calling %lli_%pS @ %i\n", 123 (long long)entry->cookie, 124 entry->func, task_pid_nr(current)); 125 calltime = ktime_get(); 126 } 127 entry->func(entry->data, entry->cookie); 128 if (initcall_debug && system_state < SYSTEM_RUNNING) { 129 rettime = ktime_get(); 130 delta = ktime_sub(rettime, calltime); 131 pr_debug("initcall %lli_%pS returned 0 after %lld usecs\n", 132 (long long)entry->cookie, 133 entry->func, 134 (long long)ktime_to_ns(delta) >> 10); 135 } 136 137 /* 2) remove self from the pending queues */ 138 spin_lock_irqsave(&async_lock, flags); 139 list_del_init(&entry->domain_list); 140 list_del_init(&entry->global_list); 141 142 /* 3) free the entry */ 143 kfree(entry); 144 atomic_dec(&entry_count); 145 146 spin_unlock_irqrestore(&async_lock, flags); 147 148 /* 4) wake up any waiters */ 149 wake_up(&async_done); 150 } 151 152 /** 153 * async_schedule_node_domain - NUMA specific version of async_schedule_domain 154 * @func: function to execute asynchronously 155 * @data: data pointer to pass to the function 156 * @node: NUMA node that we want to schedule this on or close to 157 * @domain: the domain 158 * 159 * Returns an async_cookie_t that may be used for checkpointing later. 160 * @domain may be used in the async_synchronize_*_domain() functions to 161 * wait within a certain synchronization domain rather than globally. 162 * 163 * Note: This function may be called from atomic or non-atomic contexts. 164 * 165 * The node requested will be honored on a best effort basis. If the node 166 * has no CPUs associated with it then the work is distributed among all 167 * available CPUs. 168 */ 169 async_cookie_t async_schedule_node_domain(async_func_t func, void *data, 170 int node, struct async_domain *domain) 171 { 172 struct async_entry *entry; 173 unsigned long flags; 174 async_cookie_t newcookie; 175 176 /* allow irq-off callers */ 177 entry = kzalloc(sizeof(struct async_entry), GFP_ATOMIC); 178 179 /* 180 * If we're out of memory or if there's too much work 181 * pending already, we execute synchronously. 182 */ 183 if (!entry || atomic_read(&entry_count) > MAX_WORK) { 184 kfree(entry); 185 spin_lock_irqsave(&async_lock, flags); 186 newcookie = next_cookie++; 187 spin_unlock_irqrestore(&async_lock, flags); 188 189 /* low on memory.. run synchronously */ 190 func(data, newcookie); 191 return newcookie; 192 } 193 INIT_LIST_HEAD(&entry->domain_list); 194 INIT_LIST_HEAD(&entry->global_list); 195 INIT_WORK(&entry->work, async_run_entry_fn); 196 entry->func = func; 197 entry->data = data; 198 entry->domain = domain; 199 200 spin_lock_irqsave(&async_lock, flags); 201 202 /* allocate cookie and queue */ 203 newcookie = entry->cookie = next_cookie++; 204 205 list_add_tail(&entry->domain_list, &domain->pending); 206 if (domain->registered) 207 list_add_tail(&entry->global_list, &async_global_pending); 208 209 atomic_inc(&entry_count); 210 spin_unlock_irqrestore(&async_lock, flags); 211 212 /* mark that this task has queued an async job, used by module init */ 213 current->flags |= PF_USED_ASYNC; 214 215 /* schedule for execution */ 216 queue_work_node(node, system_unbound_wq, &entry->work); 217 218 return newcookie; 219 } 220 EXPORT_SYMBOL_GPL(async_schedule_node_domain); 221 222 /** 223 * async_schedule_node - NUMA specific version of async_schedule 224 * @func: function to execute asynchronously 225 * @data: data pointer to pass to the function 226 * @node: NUMA node that we want to schedule this on or close to 227 * 228 * Returns an async_cookie_t that may be used for checkpointing later. 229 * Note: This function may be called from atomic or non-atomic contexts. 230 * 231 * The node requested will be honored on a best effort basis. If the node 232 * has no CPUs associated with it then the work is distributed among all 233 * available CPUs. 234 */ 235 async_cookie_t async_schedule_node(async_func_t func, void *data, int node) 236 { 237 return async_schedule_node_domain(func, data, node, &async_dfl_domain); 238 } 239 EXPORT_SYMBOL_GPL(async_schedule_node); 240 241 /** 242 * async_synchronize_full - synchronize all asynchronous function calls 243 * 244 * This function waits until all asynchronous function calls have been done. 245 */ 246 void async_synchronize_full(void) 247 { 248 async_synchronize_full_domain(NULL); 249 } 250 EXPORT_SYMBOL_GPL(async_synchronize_full); 251 252 /** 253 * async_unregister_domain - ensure no more anonymous waiters on this domain 254 * @domain: idle domain to flush out of any async_synchronize_full instances 255 * 256 * async_synchronize_{cookie|full}_domain() are not flushed since callers 257 * of these routines should know the lifetime of @domain 258 * 259 * Prefer ASYNC_DOMAIN_EXCLUSIVE() declarations over flushing 260 */ 261 void async_unregister_domain(struct async_domain *domain) 262 { 263 spin_lock_irq(&async_lock); 264 WARN_ON(!domain->registered || !list_empty(&domain->pending)); 265 domain->registered = 0; 266 spin_unlock_irq(&async_lock); 267 } 268 EXPORT_SYMBOL_GPL(async_unregister_domain); 269 270 /** 271 * async_synchronize_full_domain - synchronize all asynchronous function within a certain domain 272 * @domain: the domain to synchronize 273 * 274 * This function waits until all asynchronous function calls for the 275 * synchronization domain specified by @domain have been done. 276 */ 277 void async_synchronize_full_domain(struct async_domain *domain) 278 { 279 async_synchronize_cookie_domain(ASYNC_COOKIE_MAX, domain); 280 } 281 EXPORT_SYMBOL_GPL(async_synchronize_full_domain); 282 283 /** 284 * async_synchronize_cookie_domain - synchronize asynchronous function calls within a certain domain with cookie checkpointing 285 * @cookie: async_cookie_t to use as checkpoint 286 * @domain: the domain to synchronize (%NULL for all registered domains) 287 * 288 * This function waits until all asynchronous function calls for the 289 * synchronization domain specified by @domain submitted prior to @cookie 290 * have been done. 291 */ 292 void async_synchronize_cookie_domain(async_cookie_t cookie, struct async_domain *domain) 293 { 294 ktime_t uninitialized_var(starttime), delta, endtime; 295 296 if (initcall_debug && system_state < SYSTEM_RUNNING) { 297 pr_debug("async_waiting @ %i\n", task_pid_nr(current)); 298 starttime = ktime_get(); 299 } 300 301 wait_event(async_done, lowest_in_progress(domain) >= cookie); 302 303 if (initcall_debug && system_state < SYSTEM_RUNNING) { 304 endtime = ktime_get(); 305 delta = ktime_sub(endtime, starttime); 306 307 pr_debug("async_continuing @ %i after %lli usec\n", 308 task_pid_nr(current), 309 (long long)ktime_to_ns(delta) >> 10); 310 } 311 } 312 EXPORT_SYMBOL_GPL(async_synchronize_cookie_domain); 313 314 /** 315 * async_synchronize_cookie - synchronize asynchronous function calls with cookie checkpointing 316 * @cookie: async_cookie_t to use as checkpoint 317 * 318 * This function waits until all asynchronous function calls prior to @cookie 319 * have been done. 320 */ 321 void async_synchronize_cookie(async_cookie_t cookie) 322 { 323 async_synchronize_cookie_domain(cookie, &async_dfl_domain); 324 } 325 EXPORT_SYMBOL_GPL(async_synchronize_cookie); 326 327 /** 328 * current_is_async - is %current an async worker task? 329 * 330 * Returns %true if %current is an async worker task. 331 */ 332 bool current_is_async(void) 333 { 334 struct worker *worker = current_wq_worker(); 335 336 return worker && worker->current_func == async_run_entry_fn; 337 } 338 EXPORT_SYMBOL_GPL(current_is_async); 339