1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * async.c: Asynchronous function calls for boot performance 4 * 5 * (C) Copyright 2009 Intel Corporation 6 * Author: Arjan van de Ven <arjan@linux.intel.com> 7 */ 8 9 10 /* 11 12 Goals and Theory of Operation 13 14 The primary goal of this feature is to reduce the kernel boot time, 15 by doing various independent hardware delays and discovery operations 16 decoupled and not strictly serialized. 17 18 More specifically, the asynchronous function call concept allows 19 certain operations (primarily during system boot) to happen 20 asynchronously, out of order, while these operations still 21 have their externally visible parts happen sequentially and in-order. 22 (not unlike how out-of-order CPUs retire their instructions in order) 23 24 Key to the asynchronous function call implementation is the concept of 25 a "sequence cookie" (which, although it has an abstracted type, can be 26 thought of as a monotonically incrementing number). 27 28 The async core will assign each scheduled event such a sequence cookie and 29 pass this to the called functions. 30 31 The asynchronously called function should before doing a globally visible 32 operation, such as registering device numbers, call the 33 async_synchronize_cookie() function and pass in its own cookie. The 34 async_synchronize_cookie() function will make sure that all asynchronous 35 operations that were scheduled prior to the operation corresponding with the 36 cookie have completed. 37 38 Subsystem/driver initialization code that scheduled asynchronous probe 39 functions, but which shares global resources with other drivers/subsystems 40 that do not use the asynchronous call feature, need to do a full 41 synchronization with the async_synchronize_full() function, before returning 42 from their init function. This is to maintain strict ordering between the 43 asynchronous and synchronous parts of the kernel. 44 45 */ 46 47 #include <linux/async.h> 48 #include <linux/atomic.h> 49 #include <linux/ktime.h> 50 #include <linux/export.h> 51 #include <linux/wait.h> 52 #include <linux/sched.h> 53 #include <linux/slab.h> 54 #include <linux/workqueue.h> 55 56 #include "workqueue_internal.h" 57 58 static async_cookie_t next_cookie = 1; 59 60 #define MAX_WORK 32768 61 #define ASYNC_COOKIE_MAX ULLONG_MAX /* infinity cookie */ 62 63 static LIST_HEAD(async_global_pending); /* pending from all registered doms */ 64 static ASYNC_DOMAIN(async_dfl_domain); 65 static DEFINE_SPINLOCK(async_lock); 66 67 struct async_entry { 68 struct list_head domain_list; 69 struct list_head global_list; 70 struct work_struct work; 71 async_cookie_t cookie; 72 async_func_t func; 73 void *data; 74 struct async_domain *domain; 75 }; 76 77 static DECLARE_WAIT_QUEUE_HEAD(async_done); 78 79 static atomic_t entry_count; 80 81 static long long microseconds_since(ktime_t start) 82 { 83 ktime_t now = ktime_get(); 84 return ktime_to_ns(ktime_sub(now, start)) >> 10; 85 } 86 87 static async_cookie_t lowest_in_progress(struct async_domain *domain) 88 { 89 struct async_entry *first = NULL; 90 async_cookie_t ret = ASYNC_COOKIE_MAX; 91 unsigned long flags; 92 93 spin_lock_irqsave(&async_lock, flags); 94 95 if (domain) { 96 if (!list_empty(&domain->pending)) 97 first = list_first_entry(&domain->pending, 98 struct async_entry, domain_list); 99 } else { 100 if (!list_empty(&async_global_pending)) 101 first = list_first_entry(&async_global_pending, 102 struct async_entry, global_list); 103 } 104 105 if (first) 106 ret = first->cookie; 107 108 spin_unlock_irqrestore(&async_lock, flags); 109 return ret; 110 } 111 112 /* 113 * pick the first pending entry and run it 114 */ 115 static void async_run_entry_fn(struct work_struct *work) 116 { 117 struct async_entry *entry = 118 container_of(work, struct async_entry, work); 119 unsigned long flags; 120 ktime_t calltime; 121 122 /* 1) run (and print duration) */ 123 pr_debug("calling %lli_%pS @ %i\n", (long long)entry->cookie, 124 entry->func, task_pid_nr(current)); 125 calltime = ktime_get(); 126 127 entry->func(entry->data, entry->cookie); 128 129 pr_debug("initcall %lli_%pS returned after %lld usecs\n", 130 (long long)entry->cookie, entry->func, 131 microseconds_since(calltime)); 132 133 /* 2) remove self from the pending queues */ 134 spin_lock_irqsave(&async_lock, flags); 135 list_del_init(&entry->domain_list); 136 list_del_init(&entry->global_list); 137 138 /* 3) free the entry */ 139 kfree(entry); 140 atomic_dec(&entry_count); 141 142 spin_unlock_irqrestore(&async_lock, flags); 143 144 /* 4) wake up any waiters */ 145 wake_up(&async_done); 146 } 147 148 static async_cookie_t __async_schedule_node_domain(async_func_t func, 149 void *data, int node, 150 struct async_domain *domain, 151 struct async_entry *entry) 152 { 153 async_cookie_t newcookie; 154 unsigned long flags; 155 156 INIT_LIST_HEAD(&entry->domain_list); 157 INIT_LIST_HEAD(&entry->global_list); 158 INIT_WORK(&entry->work, async_run_entry_fn); 159 entry->func = func; 160 entry->data = data; 161 entry->domain = domain; 162 163 spin_lock_irqsave(&async_lock, flags); 164 165 /* allocate cookie and queue */ 166 newcookie = entry->cookie = next_cookie++; 167 168 list_add_tail(&entry->domain_list, &domain->pending); 169 if (domain->registered) 170 list_add_tail(&entry->global_list, &async_global_pending); 171 172 atomic_inc(&entry_count); 173 spin_unlock_irqrestore(&async_lock, flags); 174 175 /* schedule for execution */ 176 queue_work_node(node, system_unbound_wq, &entry->work); 177 178 return newcookie; 179 } 180 181 /** 182 * async_schedule_node_domain - NUMA specific version of async_schedule_domain 183 * @func: function to execute asynchronously 184 * @data: data pointer to pass to the function 185 * @node: NUMA node that we want to schedule this on or close to 186 * @domain: the domain 187 * 188 * Returns an async_cookie_t that may be used for checkpointing later. 189 * @domain may be used in the async_synchronize_*_domain() functions to 190 * wait within a certain synchronization domain rather than globally. 191 * 192 * Note: This function may be called from atomic or non-atomic contexts. 193 * 194 * The node requested will be honored on a best effort basis. If the node 195 * has no CPUs associated with it then the work is distributed among all 196 * available CPUs. 197 */ 198 async_cookie_t async_schedule_node_domain(async_func_t func, void *data, 199 int node, struct async_domain *domain) 200 { 201 struct async_entry *entry; 202 unsigned long flags; 203 async_cookie_t newcookie; 204 205 /* allow irq-off callers */ 206 entry = kzalloc(sizeof(struct async_entry), GFP_ATOMIC); 207 208 /* 209 * If we're out of memory or if there's too much work 210 * pending already, we execute synchronously. 211 */ 212 if (!entry || atomic_read(&entry_count) > MAX_WORK) { 213 kfree(entry); 214 spin_lock_irqsave(&async_lock, flags); 215 newcookie = next_cookie++; 216 spin_unlock_irqrestore(&async_lock, flags); 217 218 /* low on memory.. run synchronously */ 219 func(data, newcookie); 220 return newcookie; 221 } 222 223 return __async_schedule_node_domain(func, data, node, domain, entry); 224 } 225 EXPORT_SYMBOL_GPL(async_schedule_node_domain); 226 227 /** 228 * async_schedule_node - NUMA specific version of async_schedule 229 * @func: function to execute asynchronously 230 * @data: data pointer to pass to the function 231 * @node: NUMA node that we want to schedule this on or close to 232 * 233 * Returns an async_cookie_t that may be used for checkpointing later. 234 * Note: This function may be called from atomic or non-atomic contexts. 235 * 236 * The node requested will be honored on a best effort basis. If the node 237 * has no CPUs associated with it then the work is distributed among all 238 * available CPUs. 239 */ 240 async_cookie_t async_schedule_node(async_func_t func, void *data, int node) 241 { 242 return async_schedule_node_domain(func, data, node, &async_dfl_domain); 243 } 244 EXPORT_SYMBOL_GPL(async_schedule_node); 245 246 /** 247 * async_schedule_dev_nocall - A simplified variant of async_schedule_dev() 248 * @func: function to execute asynchronously 249 * @dev: device argument to be passed to function 250 * 251 * @dev is used as both the argument for the function and to provide NUMA 252 * context for where to run the function. 253 * 254 * If the asynchronous execution of @func is scheduled successfully, return 255 * true. Otherwise, do nothing and return false, unlike async_schedule_dev() 256 * that will run the function synchronously then. 257 */ 258 bool async_schedule_dev_nocall(async_func_t func, struct device *dev) 259 { 260 struct async_entry *entry; 261 262 entry = kzalloc(sizeof(struct async_entry), GFP_KERNEL); 263 264 /* Give up if there is no memory or too much work. */ 265 if (!entry || atomic_read(&entry_count) > MAX_WORK) { 266 kfree(entry); 267 return false; 268 } 269 270 __async_schedule_node_domain(func, dev, dev_to_node(dev), 271 &async_dfl_domain, entry); 272 return true; 273 } 274 275 /** 276 * async_synchronize_full - synchronize all asynchronous function calls 277 * 278 * This function waits until all asynchronous function calls have been done. 279 */ 280 void async_synchronize_full(void) 281 { 282 async_synchronize_full_domain(NULL); 283 } 284 EXPORT_SYMBOL_GPL(async_synchronize_full); 285 286 /** 287 * async_synchronize_full_domain - synchronize all asynchronous function within a certain domain 288 * @domain: the domain to synchronize 289 * 290 * This function waits until all asynchronous function calls for the 291 * synchronization domain specified by @domain have been done. 292 */ 293 void async_synchronize_full_domain(struct async_domain *domain) 294 { 295 async_synchronize_cookie_domain(ASYNC_COOKIE_MAX, domain); 296 } 297 EXPORT_SYMBOL_GPL(async_synchronize_full_domain); 298 299 /** 300 * async_synchronize_cookie_domain - synchronize asynchronous function calls within a certain domain with cookie checkpointing 301 * @cookie: async_cookie_t to use as checkpoint 302 * @domain: the domain to synchronize (%NULL for all registered domains) 303 * 304 * This function waits until all asynchronous function calls for the 305 * synchronization domain specified by @domain submitted prior to @cookie 306 * have been done. 307 */ 308 void async_synchronize_cookie_domain(async_cookie_t cookie, struct async_domain *domain) 309 { 310 ktime_t starttime; 311 312 pr_debug("async_waiting @ %i\n", task_pid_nr(current)); 313 starttime = ktime_get(); 314 315 wait_event(async_done, lowest_in_progress(domain) >= cookie); 316 317 pr_debug("async_continuing @ %i after %lli usec\n", task_pid_nr(current), 318 microseconds_since(starttime)); 319 } 320 EXPORT_SYMBOL_GPL(async_synchronize_cookie_domain); 321 322 /** 323 * async_synchronize_cookie - synchronize asynchronous function calls with cookie checkpointing 324 * @cookie: async_cookie_t to use as checkpoint 325 * 326 * This function waits until all asynchronous function calls prior to @cookie 327 * have been done. 328 */ 329 void async_synchronize_cookie(async_cookie_t cookie) 330 { 331 async_synchronize_cookie_domain(cookie, &async_dfl_domain); 332 } 333 EXPORT_SYMBOL_GPL(async_synchronize_cookie); 334 335 /** 336 * current_is_async - is %current an async worker task? 337 * 338 * Returns %true if %current is an async worker task. 339 */ 340 bool current_is_async(void) 341 { 342 struct worker *worker = current_wq_worker(); 343 344 return worker && worker->current_func == async_run_entry_fn; 345 } 346 EXPORT_SYMBOL_GPL(current_is_async); 347