xref: /openbmc/linux/kernel/async.c (revision 890f0b0d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * async.c: Asynchronous function calls for boot performance
4  *
5  * (C) Copyright 2009 Intel Corporation
6  * Author: Arjan van de Ven <arjan@linux.intel.com>
7  */
8 
9 
10 /*
11 
12 Goals and Theory of Operation
13 
14 The primary goal of this feature is to reduce the kernel boot time,
15 by doing various independent hardware delays and discovery operations
16 decoupled and not strictly serialized.
17 
18 More specifically, the asynchronous function call concept allows
19 certain operations (primarily during system boot) to happen
20 asynchronously, out of order, while these operations still
21 have their externally visible parts happen sequentially and in-order.
22 (not unlike how out-of-order CPUs retire their instructions in order)
23 
24 Key to the asynchronous function call implementation is the concept of
25 a "sequence cookie" (which, although it has an abstracted type, can be
26 thought of as a monotonically incrementing number).
27 
28 The async core will assign each scheduled event such a sequence cookie and
29 pass this to the called functions.
30 
31 The asynchronously called function should before doing a globally visible
32 operation, such as registering device numbers, call the
33 async_synchronize_cookie() function and pass in its own cookie. The
34 async_synchronize_cookie() function will make sure that all asynchronous
35 operations that were scheduled prior to the operation corresponding with the
36 cookie have completed.
37 
38 Subsystem/driver initialization code that scheduled asynchronous probe
39 functions, but which shares global resources with other drivers/subsystems
40 that do not use the asynchronous call feature, need to do a full
41 synchronization with the async_synchronize_full() function, before returning
42 from their init function. This is to maintain strict ordering between the
43 asynchronous and synchronous parts of the kernel.
44 
45 */
46 
47 #include <linux/async.h>
48 #include <linux/atomic.h>
49 #include <linux/ktime.h>
50 #include <linux/export.h>
51 #include <linux/wait.h>
52 #include <linux/sched.h>
53 #include <linux/slab.h>
54 #include <linux/workqueue.h>
55 
56 #include "workqueue_internal.h"
57 
58 static async_cookie_t next_cookie = 1;
59 
60 #define MAX_WORK		32768
61 #define ASYNC_COOKIE_MAX	ULLONG_MAX	/* infinity cookie */
62 
63 static LIST_HEAD(async_global_pending);	/* pending from all registered doms */
64 static ASYNC_DOMAIN(async_dfl_domain);
65 static DEFINE_SPINLOCK(async_lock);
66 
67 struct async_entry {
68 	struct list_head	domain_list;
69 	struct list_head	global_list;
70 	struct work_struct	work;
71 	async_cookie_t		cookie;
72 	async_func_t		func;
73 	void			*data;
74 	struct async_domain	*domain;
75 };
76 
77 static DECLARE_WAIT_QUEUE_HEAD(async_done);
78 
79 static atomic_t entry_count;
80 
81 static async_cookie_t lowest_in_progress(struct async_domain *domain)
82 {
83 	struct async_entry *first = NULL;
84 	async_cookie_t ret = ASYNC_COOKIE_MAX;
85 	unsigned long flags;
86 
87 	spin_lock_irqsave(&async_lock, flags);
88 
89 	if (domain) {
90 		if (!list_empty(&domain->pending))
91 			first = list_first_entry(&domain->pending,
92 					struct async_entry, domain_list);
93 	} else {
94 		if (!list_empty(&async_global_pending))
95 			first = list_first_entry(&async_global_pending,
96 					struct async_entry, global_list);
97 	}
98 
99 	if (first)
100 		ret = first->cookie;
101 
102 	spin_unlock_irqrestore(&async_lock, flags);
103 	return ret;
104 }
105 
106 /*
107  * pick the first pending entry and run it
108  */
109 static void async_run_entry_fn(struct work_struct *work)
110 {
111 	struct async_entry *entry =
112 		container_of(work, struct async_entry, work);
113 	unsigned long flags;
114 	ktime_t uninitialized_var(calltime), delta, rettime;
115 
116 	/* 1) run (and print duration) */
117 	if (initcall_debug && system_state < SYSTEM_RUNNING) {
118 		pr_debug("calling  %lli_%pS @ %i\n",
119 			(long long)entry->cookie,
120 			entry->func, task_pid_nr(current));
121 		calltime = ktime_get();
122 	}
123 	entry->func(entry->data, entry->cookie);
124 	if (initcall_debug && system_state < SYSTEM_RUNNING) {
125 		rettime = ktime_get();
126 		delta = ktime_sub(rettime, calltime);
127 		pr_debug("initcall %lli_%pS returned 0 after %lld usecs\n",
128 			(long long)entry->cookie,
129 			entry->func,
130 			(long long)ktime_to_ns(delta) >> 10);
131 	}
132 
133 	/* 2) remove self from the pending queues */
134 	spin_lock_irqsave(&async_lock, flags);
135 	list_del_init(&entry->domain_list);
136 	list_del_init(&entry->global_list);
137 
138 	/* 3) free the entry */
139 	kfree(entry);
140 	atomic_dec(&entry_count);
141 
142 	spin_unlock_irqrestore(&async_lock, flags);
143 
144 	/* 4) wake up any waiters */
145 	wake_up(&async_done);
146 }
147 
148 /**
149  * async_schedule_node_domain - NUMA specific version of async_schedule_domain
150  * @func: function to execute asynchronously
151  * @data: data pointer to pass to the function
152  * @node: NUMA node that we want to schedule this on or close to
153  * @domain: the domain
154  *
155  * Returns an async_cookie_t that may be used for checkpointing later.
156  * @domain may be used in the async_synchronize_*_domain() functions to
157  * wait within a certain synchronization domain rather than globally.
158  *
159  * Note: This function may be called from atomic or non-atomic contexts.
160  *
161  * The node requested will be honored on a best effort basis. If the node
162  * has no CPUs associated with it then the work is distributed among all
163  * available CPUs.
164  */
165 async_cookie_t async_schedule_node_domain(async_func_t func, void *data,
166 					  int node, struct async_domain *domain)
167 {
168 	struct async_entry *entry;
169 	unsigned long flags;
170 	async_cookie_t newcookie;
171 
172 	/* allow irq-off callers */
173 	entry = kzalloc(sizeof(struct async_entry), GFP_ATOMIC);
174 
175 	/*
176 	 * If we're out of memory or if there's too much work
177 	 * pending already, we execute synchronously.
178 	 */
179 	if (!entry || atomic_read(&entry_count) > MAX_WORK) {
180 		kfree(entry);
181 		spin_lock_irqsave(&async_lock, flags);
182 		newcookie = next_cookie++;
183 		spin_unlock_irqrestore(&async_lock, flags);
184 
185 		/* low on memory.. run synchronously */
186 		func(data, newcookie);
187 		return newcookie;
188 	}
189 	INIT_LIST_HEAD(&entry->domain_list);
190 	INIT_LIST_HEAD(&entry->global_list);
191 	INIT_WORK(&entry->work, async_run_entry_fn);
192 	entry->func = func;
193 	entry->data = data;
194 	entry->domain = domain;
195 
196 	spin_lock_irqsave(&async_lock, flags);
197 
198 	/* allocate cookie and queue */
199 	newcookie = entry->cookie = next_cookie++;
200 
201 	list_add_tail(&entry->domain_list, &domain->pending);
202 	if (domain->registered)
203 		list_add_tail(&entry->global_list, &async_global_pending);
204 
205 	atomic_inc(&entry_count);
206 	spin_unlock_irqrestore(&async_lock, flags);
207 
208 	/* mark that this task has queued an async job, used by module init */
209 	current->flags |= PF_USED_ASYNC;
210 
211 	/* schedule for execution */
212 	queue_work_node(node, system_unbound_wq, &entry->work);
213 
214 	return newcookie;
215 }
216 EXPORT_SYMBOL_GPL(async_schedule_node_domain);
217 
218 /**
219  * async_schedule_node - NUMA specific version of async_schedule
220  * @func: function to execute asynchronously
221  * @data: data pointer to pass to the function
222  * @node: NUMA node that we want to schedule this on or close to
223  *
224  * Returns an async_cookie_t that may be used for checkpointing later.
225  * Note: This function may be called from atomic or non-atomic contexts.
226  *
227  * The node requested will be honored on a best effort basis. If the node
228  * has no CPUs associated with it then the work is distributed among all
229  * available CPUs.
230  */
231 async_cookie_t async_schedule_node(async_func_t func, void *data, int node)
232 {
233 	return async_schedule_node_domain(func, data, node, &async_dfl_domain);
234 }
235 EXPORT_SYMBOL_GPL(async_schedule_node);
236 
237 /**
238  * async_synchronize_full - synchronize all asynchronous function calls
239  *
240  * This function waits until all asynchronous function calls have been done.
241  */
242 void async_synchronize_full(void)
243 {
244 	async_synchronize_full_domain(NULL);
245 }
246 EXPORT_SYMBOL_GPL(async_synchronize_full);
247 
248 /**
249  * async_unregister_domain - ensure no more anonymous waiters on this domain
250  * @domain: idle domain to flush out of any async_synchronize_full instances
251  *
252  * async_synchronize_{cookie|full}_domain() are not flushed since callers
253  * of these routines should know the lifetime of @domain
254  *
255  * Prefer ASYNC_DOMAIN_EXCLUSIVE() declarations over flushing
256  */
257 void async_unregister_domain(struct async_domain *domain)
258 {
259 	spin_lock_irq(&async_lock);
260 	WARN_ON(!domain->registered || !list_empty(&domain->pending));
261 	domain->registered = 0;
262 	spin_unlock_irq(&async_lock);
263 }
264 EXPORT_SYMBOL_GPL(async_unregister_domain);
265 
266 /**
267  * async_synchronize_full_domain - synchronize all asynchronous function within a certain domain
268  * @domain: the domain to synchronize
269  *
270  * This function waits until all asynchronous function calls for the
271  * synchronization domain specified by @domain have been done.
272  */
273 void async_synchronize_full_domain(struct async_domain *domain)
274 {
275 	async_synchronize_cookie_domain(ASYNC_COOKIE_MAX, domain);
276 }
277 EXPORT_SYMBOL_GPL(async_synchronize_full_domain);
278 
279 /**
280  * async_synchronize_cookie_domain - synchronize asynchronous function calls within a certain domain with cookie checkpointing
281  * @cookie: async_cookie_t to use as checkpoint
282  * @domain: the domain to synchronize (%NULL for all registered domains)
283  *
284  * This function waits until all asynchronous function calls for the
285  * synchronization domain specified by @domain submitted prior to @cookie
286  * have been done.
287  */
288 void async_synchronize_cookie_domain(async_cookie_t cookie, struct async_domain *domain)
289 {
290 	ktime_t uninitialized_var(starttime), delta, endtime;
291 
292 	if (initcall_debug && system_state < SYSTEM_RUNNING) {
293 		pr_debug("async_waiting @ %i\n", task_pid_nr(current));
294 		starttime = ktime_get();
295 	}
296 
297 	wait_event(async_done, lowest_in_progress(domain) >= cookie);
298 
299 	if (initcall_debug && system_state < SYSTEM_RUNNING) {
300 		endtime = ktime_get();
301 		delta = ktime_sub(endtime, starttime);
302 
303 		pr_debug("async_continuing @ %i after %lli usec\n",
304 			task_pid_nr(current),
305 			(long long)ktime_to_ns(delta) >> 10);
306 	}
307 }
308 EXPORT_SYMBOL_GPL(async_synchronize_cookie_domain);
309 
310 /**
311  * async_synchronize_cookie - synchronize asynchronous function calls with cookie checkpointing
312  * @cookie: async_cookie_t to use as checkpoint
313  *
314  * This function waits until all asynchronous function calls prior to @cookie
315  * have been done.
316  */
317 void async_synchronize_cookie(async_cookie_t cookie)
318 {
319 	async_synchronize_cookie_domain(cookie, &async_dfl_domain);
320 }
321 EXPORT_SYMBOL_GPL(async_synchronize_cookie);
322 
323 /**
324  * current_is_async - is %current an async worker task?
325  *
326  * Returns %true if %current is an async worker task.
327  */
328 bool current_is_async(void)
329 {
330 	struct worker *worker = current_wq_worker();
331 
332 	return worker && worker->current_func == async_run_entry_fn;
333 }
334 EXPORT_SYMBOL_GPL(current_is_async);
335