1 /* 2 * async.c: Asynchronous function calls for boot performance 3 * 4 * (C) Copyright 2009 Intel Corporation 5 * Author: Arjan van de Ven <arjan@linux.intel.com> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; version 2 10 * of the License. 11 */ 12 13 14 /* 15 16 Goals and Theory of Operation 17 18 The primary goal of this feature is to reduce the kernel boot time, 19 by doing various independent hardware delays and discovery operations 20 decoupled and not strictly serialized. 21 22 More specifically, the asynchronous function call concept allows 23 certain operations (primarily during system boot) to happen 24 asynchronously, out of order, while these operations still 25 have their externally visible parts happen sequentially and in-order. 26 (not unlike how out-of-order CPUs retire their instructions in order) 27 28 Key to the asynchronous function call implementation is the concept of 29 a "sequence cookie" (which, although it has an abstracted type, can be 30 thought of as a monotonically incrementing number). 31 32 The async core will assign each scheduled event such a sequence cookie and 33 pass this to the called functions. 34 35 The asynchronously called function should before doing a globally visible 36 operation, such as registering device numbers, call the 37 async_synchronize_cookie() function and pass in its own cookie. The 38 async_synchronize_cookie() function will make sure that all asynchronous 39 operations that were scheduled prior to the operation corresponding with the 40 cookie have completed. 41 42 Subsystem/driver initialization code that scheduled asynchronous probe 43 functions, but which shares global resources with other drivers/subsystems 44 that do not use the asynchronous call feature, need to do a full 45 synchronization with the async_synchronize_full() function, before returning 46 from their init function. This is to maintain strict ordering between the 47 asynchronous and synchronous parts of the kernel. 48 49 */ 50 51 #include <linux/async.h> 52 #include <linux/module.h> 53 #include <linux/wait.h> 54 #include <linux/sched.h> 55 #include <linux/init.h> 56 #include <linux/kthread.h> 57 #include <asm/atomic.h> 58 59 static async_cookie_t next_cookie = 1; 60 61 #define MAX_THREADS 256 62 #define MAX_WORK 32768 63 64 static LIST_HEAD(async_pending); 65 static LIST_HEAD(async_running); 66 static DEFINE_SPINLOCK(async_lock); 67 68 static int async_enabled = 0; 69 70 struct async_entry { 71 struct list_head list; 72 async_cookie_t cookie; 73 async_func_ptr *func; 74 void *data; 75 struct list_head *running; 76 }; 77 78 static DECLARE_WAIT_QUEUE_HEAD(async_done); 79 static DECLARE_WAIT_QUEUE_HEAD(async_new); 80 81 static atomic_t entry_count; 82 static atomic_t thread_count; 83 84 extern int initcall_debug; 85 86 87 /* 88 * MUST be called with the lock held! 89 */ 90 static async_cookie_t __lowest_in_progress(struct list_head *running) 91 { 92 struct async_entry *entry; 93 if (!list_empty(running)) { 94 entry = list_first_entry(running, 95 struct async_entry, list); 96 return entry->cookie; 97 } else if (!list_empty(&async_pending)) { 98 entry = list_first_entry(&async_pending, 99 struct async_entry, list); 100 return entry->cookie; 101 } else { 102 /* nothing in progress... next_cookie is "infinity" */ 103 return next_cookie; 104 } 105 106 } 107 108 static async_cookie_t lowest_in_progress(struct list_head *running) 109 { 110 unsigned long flags; 111 async_cookie_t ret; 112 113 spin_lock_irqsave(&async_lock, flags); 114 ret = __lowest_in_progress(running); 115 spin_unlock_irqrestore(&async_lock, flags); 116 return ret; 117 } 118 /* 119 * pick the first pending entry and run it 120 */ 121 static void run_one_entry(void) 122 { 123 unsigned long flags; 124 struct async_entry *entry; 125 ktime_t calltime, delta, rettime; 126 127 /* 1) pick one task from the pending queue */ 128 129 spin_lock_irqsave(&async_lock, flags); 130 if (list_empty(&async_pending)) 131 goto out; 132 entry = list_first_entry(&async_pending, struct async_entry, list); 133 134 /* 2) move it to the running queue */ 135 list_del(&entry->list); 136 list_add_tail(&entry->list, &async_running); 137 spin_unlock_irqrestore(&async_lock, flags); 138 139 /* 3) run it (and print duration)*/ 140 if (initcall_debug && system_state == SYSTEM_BOOTING) { 141 printk("calling %lli_%pF @ %i\n", (long long)entry->cookie, 142 entry->func, task_pid_nr(current)); 143 calltime = ktime_get(); 144 } 145 entry->func(entry->data, entry->cookie); 146 if (initcall_debug && system_state == SYSTEM_BOOTING) { 147 rettime = ktime_get(); 148 delta = ktime_sub(rettime, calltime); 149 printk("initcall %lli_%pF returned 0 after %lld usecs\n", 150 (long long)entry->cookie, 151 entry->func, 152 (long long)ktime_to_ns(delta) >> 10); 153 } 154 155 /* 4) remove it from the running queue */ 156 spin_lock_irqsave(&async_lock, flags); 157 list_del(&entry->list); 158 159 /* 5) free the entry */ 160 kfree(entry); 161 atomic_dec(&entry_count); 162 163 spin_unlock_irqrestore(&async_lock, flags); 164 165 /* 6) wake up any waiters. */ 166 wake_up(&async_done); 167 return; 168 169 out: 170 spin_unlock_irqrestore(&async_lock, flags); 171 } 172 173 174 static async_cookie_t __async_schedule(async_func_ptr *ptr, void *data, struct list_head *running) 175 { 176 struct async_entry *entry; 177 unsigned long flags; 178 async_cookie_t newcookie; 179 180 181 /* allow irq-off callers */ 182 entry = kzalloc(sizeof(struct async_entry), GFP_ATOMIC); 183 184 /* 185 * If we're out of memory or if there's too much work 186 * pending already, we execute synchronously. 187 */ 188 if (!async_enabled || !entry || atomic_read(&entry_count) > MAX_WORK) { 189 kfree(entry); 190 spin_lock_irqsave(&async_lock, flags); 191 newcookie = next_cookie++; 192 spin_unlock_irqrestore(&async_lock, flags); 193 194 /* low on memory.. run synchronously */ 195 ptr(data, newcookie); 196 return newcookie; 197 } 198 entry->func = ptr; 199 entry->data = data; 200 entry->running = running; 201 202 spin_lock_irqsave(&async_lock, flags); 203 newcookie = entry->cookie = next_cookie++; 204 list_add_tail(&entry->list, &async_pending); 205 atomic_inc(&entry_count); 206 spin_unlock_irqrestore(&async_lock, flags); 207 wake_up(&async_new); 208 return newcookie; 209 } 210 211 async_cookie_t async_schedule(async_func_ptr *ptr, void *data) 212 { 213 return __async_schedule(ptr, data, &async_pending); 214 } 215 EXPORT_SYMBOL_GPL(async_schedule); 216 217 async_cookie_t async_schedule_special(async_func_ptr *ptr, void *data, struct list_head *running) 218 { 219 return __async_schedule(ptr, data, running); 220 } 221 EXPORT_SYMBOL_GPL(async_schedule_special); 222 223 void async_synchronize_full(void) 224 { 225 do { 226 async_synchronize_cookie(next_cookie); 227 } while (!list_empty(&async_running) || !list_empty(&async_pending)); 228 } 229 EXPORT_SYMBOL_GPL(async_synchronize_full); 230 231 void async_synchronize_full_special(struct list_head *list) 232 { 233 async_synchronize_cookie_special(next_cookie, list); 234 } 235 EXPORT_SYMBOL_GPL(async_synchronize_full_special); 236 237 void async_synchronize_cookie_special(async_cookie_t cookie, struct list_head *running) 238 { 239 ktime_t starttime, delta, endtime; 240 241 if (initcall_debug && system_state == SYSTEM_BOOTING) { 242 printk("async_waiting @ %i\n", task_pid_nr(current)); 243 starttime = ktime_get(); 244 } 245 246 wait_event(async_done, lowest_in_progress(running) >= cookie); 247 248 if (initcall_debug && system_state == SYSTEM_BOOTING) { 249 endtime = ktime_get(); 250 delta = ktime_sub(endtime, starttime); 251 252 printk("async_continuing @ %i after %lli usec\n", 253 task_pid_nr(current), 254 (long long)ktime_to_ns(delta) >> 10); 255 } 256 } 257 EXPORT_SYMBOL_GPL(async_synchronize_cookie_special); 258 259 void async_synchronize_cookie(async_cookie_t cookie) 260 { 261 async_synchronize_cookie_special(cookie, &async_running); 262 } 263 EXPORT_SYMBOL_GPL(async_synchronize_cookie); 264 265 266 static int async_thread(void *unused) 267 { 268 DECLARE_WAITQUEUE(wq, current); 269 add_wait_queue(&async_new, &wq); 270 271 while (!kthread_should_stop()) { 272 int ret = HZ; 273 set_current_state(TASK_INTERRUPTIBLE); 274 /* 275 * check the list head without lock.. false positives 276 * are dealt with inside run_one_entry() while holding 277 * the lock. 278 */ 279 rmb(); 280 if (!list_empty(&async_pending)) 281 run_one_entry(); 282 else 283 ret = schedule_timeout(HZ); 284 285 if (ret == 0) { 286 /* 287 * we timed out, this means we as thread are redundant. 288 * we sign off and die, but we to avoid any races there 289 * is a last-straw check to see if work snuck in. 290 */ 291 atomic_dec(&thread_count); 292 wmb(); /* manager must see our departure first */ 293 if (list_empty(&async_pending)) 294 break; 295 /* 296 * woops work came in between us timing out and us 297 * signing off; we need to stay alive and keep working. 298 */ 299 atomic_inc(&thread_count); 300 } 301 } 302 remove_wait_queue(&async_new, &wq); 303 304 return 0; 305 } 306 307 static int async_manager_thread(void *unused) 308 { 309 DECLARE_WAITQUEUE(wq, current); 310 add_wait_queue(&async_new, &wq); 311 312 while (!kthread_should_stop()) { 313 int tc, ec; 314 315 set_current_state(TASK_INTERRUPTIBLE); 316 317 tc = atomic_read(&thread_count); 318 rmb(); 319 ec = atomic_read(&entry_count); 320 321 while (tc < ec && tc < MAX_THREADS) { 322 kthread_run(async_thread, NULL, "async/%i", tc); 323 atomic_inc(&thread_count); 324 tc++; 325 } 326 327 schedule(); 328 } 329 remove_wait_queue(&async_new, &wq); 330 331 return 0; 332 } 333 334 static int __init async_init(void) 335 { 336 if (async_enabled) 337 kthread_run(async_manager_thread, NULL, "async/mgr"); 338 return 0; 339 } 340 341 static int __init setup_async(char *str) 342 { 343 async_enabled = 1; 344 return 1; 345 } 346 347 __setup("fastboot", setup_async); 348 349 350 core_initcall(async_init); 351