xref: /openbmc/linux/kernel/async.c (revision 58763a29)
1 /*
2  * async.c: Asynchronous function calls for boot performance
3  *
4  * (C) Copyright 2009 Intel Corporation
5  * Author: Arjan van de Ven <arjan@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 
14 /*
15 
16 Goals and Theory of Operation
17 
18 The primary goal of this feature is to reduce the kernel boot time,
19 by doing various independent hardware delays and discovery operations
20 decoupled and not strictly serialized.
21 
22 More specifically, the asynchronous function call concept allows
23 certain operations (primarily during system boot) to happen
24 asynchronously, out of order, while these operations still
25 have their externally visible parts happen sequentially and in-order.
26 (not unlike how out-of-order CPUs retire their instructions in order)
27 
28 Key to the asynchronous function call implementation is the concept of
29 a "sequence cookie" (which, although it has an abstracted type, can be
30 thought of as a monotonically incrementing number).
31 
32 The async core will assign each scheduled event such a sequence cookie and
33 pass this to the called functions.
34 
35 The asynchronously called function should before doing a globally visible
36 operation, such as registering device numbers, call the
37 async_synchronize_cookie() function and pass in its own cookie. The
38 async_synchronize_cookie() function will make sure that all asynchronous
39 operations that were scheduled prior to the operation corresponding with the
40 cookie have completed.
41 
42 Subsystem/driver initialization code that scheduled asynchronous probe
43 functions, but which shares global resources with other drivers/subsystems
44 that do not use the asynchronous call feature, need to do a full
45 synchronization with the async_synchronize_full() function, before returning
46 from their init function. This is to maintain strict ordering between the
47 asynchronous and synchronous parts of the kernel.
48 
49 */
50 
51 #include <linux/async.h>
52 #include <linux/module.h>
53 #include <linux/wait.h>
54 #include <linux/sched.h>
55 #include <linux/init.h>
56 #include <linux/kthread.h>
57 #include <asm/atomic.h>
58 
59 static async_cookie_t next_cookie = 1;
60 
61 #define MAX_THREADS	256
62 #define MAX_WORK	32768
63 
64 static LIST_HEAD(async_pending);
65 static LIST_HEAD(async_running);
66 static DEFINE_SPINLOCK(async_lock);
67 
68 static int async_enabled = 0;
69 
70 struct async_entry {
71 	struct list_head list;
72 	async_cookie_t   cookie;
73 	async_func_ptr	 *func;
74 	void             *data;
75 	struct list_head *running;
76 };
77 
78 static DECLARE_WAIT_QUEUE_HEAD(async_done);
79 static DECLARE_WAIT_QUEUE_HEAD(async_new);
80 
81 static atomic_t entry_count;
82 static atomic_t thread_count;
83 
84 extern int initcall_debug;
85 
86 
87 /*
88  * MUST be called with the lock held!
89  */
90 static async_cookie_t  __lowest_in_progress(struct list_head *running)
91 {
92 	struct async_entry *entry;
93 	if (!list_empty(running)) {
94 		entry = list_first_entry(running,
95 			struct async_entry, list);
96 		return entry->cookie;
97 	} else if (!list_empty(&async_pending)) {
98 		entry = list_first_entry(&async_pending,
99 			struct async_entry, list);
100 		return entry->cookie;
101 	} else {
102 		/* nothing in progress... next_cookie is "infinity" */
103 		return next_cookie;
104 	}
105 
106 }
107 
108 static async_cookie_t  lowest_in_progress(struct list_head *running)
109 {
110 	unsigned long flags;
111 	async_cookie_t ret;
112 
113 	spin_lock_irqsave(&async_lock, flags);
114 	ret = __lowest_in_progress(running);
115 	spin_unlock_irqrestore(&async_lock, flags);
116 	return ret;
117 }
118 /*
119  * pick the first pending entry and run it
120  */
121 static void run_one_entry(void)
122 {
123 	unsigned long flags;
124 	struct async_entry *entry;
125 	ktime_t calltime, delta, rettime;
126 
127 	/* 1) pick one task from the pending queue */
128 
129 	spin_lock_irqsave(&async_lock, flags);
130 	if (list_empty(&async_pending))
131 		goto out;
132 	entry = list_first_entry(&async_pending, struct async_entry, list);
133 
134 	/* 2) move it to the running queue */
135 	list_del(&entry->list);
136 	list_add_tail(&entry->list, &async_running);
137 	spin_unlock_irqrestore(&async_lock, flags);
138 
139 	/* 3) run it (and print duration)*/
140 	if (initcall_debug && system_state == SYSTEM_BOOTING) {
141 		printk("calling  %lli_%pF @ %i\n", (long long)entry->cookie,
142 			entry->func, task_pid_nr(current));
143 		calltime = ktime_get();
144 	}
145 	entry->func(entry->data, entry->cookie);
146 	if (initcall_debug && system_state == SYSTEM_BOOTING) {
147 		rettime = ktime_get();
148 		delta = ktime_sub(rettime, calltime);
149 		printk("initcall %lli_%pF returned 0 after %lld usecs\n",
150 			(long long)entry->cookie,
151 			entry->func,
152 			(long long)ktime_to_ns(delta) >> 10);
153 	}
154 
155 	/* 4) remove it from the running queue */
156 	spin_lock_irqsave(&async_lock, flags);
157 	list_del(&entry->list);
158 
159 	/* 5) free the entry  */
160 	kfree(entry);
161 	atomic_dec(&entry_count);
162 
163 	spin_unlock_irqrestore(&async_lock, flags);
164 
165 	/* 6) wake up any waiters. */
166 	wake_up(&async_done);
167 	return;
168 
169 out:
170 	spin_unlock_irqrestore(&async_lock, flags);
171 }
172 
173 
174 static async_cookie_t __async_schedule(async_func_ptr *ptr, void *data, struct list_head *running)
175 {
176 	struct async_entry *entry;
177 	unsigned long flags;
178 	async_cookie_t newcookie;
179 
180 
181 	/* allow irq-off callers */
182 	entry = kzalloc(sizeof(struct async_entry), GFP_ATOMIC);
183 
184 	/*
185 	 * If we're out of memory or if there's too much work
186 	 * pending already, we execute synchronously.
187 	 */
188 	if (!async_enabled || !entry || atomic_read(&entry_count) > MAX_WORK) {
189 		kfree(entry);
190 		spin_lock_irqsave(&async_lock, flags);
191 		newcookie = next_cookie++;
192 		spin_unlock_irqrestore(&async_lock, flags);
193 
194 		/* low on memory.. run synchronously */
195 		ptr(data, newcookie);
196 		return newcookie;
197 	}
198 	entry->func = ptr;
199 	entry->data = data;
200 	entry->running = running;
201 
202 	spin_lock_irqsave(&async_lock, flags);
203 	newcookie = entry->cookie = next_cookie++;
204 	list_add_tail(&entry->list, &async_pending);
205 	atomic_inc(&entry_count);
206 	spin_unlock_irqrestore(&async_lock, flags);
207 	wake_up(&async_new);
208 	return newcookie;
209 }
210 
211 async_cookie_t async_schedule(async_func_ptr *ptr, void *data)
212 {
213 	return __async_schedule(ptr, data, &async_pending);
214 }
215 EXPORT_SYMBOL_GPL(async_schedule);
216 
217 async_cookie_t async_schedule_special(async_func_ptr *ptr, void *data, struct list_head *running)
218 {
219 	return __async_schedule(ptr, data, running);
220 }
221 EXPORT_SYMBOL_GPL(async_schedule_special);
222 
223 void async_synchronize_full(void)
224 {
225 	do {
226 		async_synchronize_cookie(next_cookie);
227 	} while (!list_empty(&async_running) || !list_empty(&async_pending));
228 }
229 EXPORT_SYMBOL_GPL(async_synchronize_full);
230 
231 void async_synchronize_full_special(struct list_head *list)
232 {
233 	async_synchronize_cookie_special(next_cookie, list);
234 }
235 EXPORT_SYMBOL_GPL(async_synchronize_full_special);
236 
237 void async_synchronize_cookie_special(async_cookie_t cookie, struct list_head *running)
238 {
239 	ktime_t starttime, delta, endtime;
240 
241 	if (initcall_debug && system_state == SYSTEM_BOOTING) {
242 		printk("async_waiting @ %i\n", task_pid_nr(current));
243 		starttime = ktime_get();
244 	}
245 
246 	wait_event(async_done, lowest_in_progress(running) >= cookie);
247 
248 	if (initcall_debug && system_state == SYSTEM_BOOTING) {
249 		endtime = ktime_get();
250 		delta = ktime_sub(endtime, starttime);
251 
252 		printk("async_continuing @ %i after %lli usec\n",
253 			task_pid_nr(current),
254 			(long long)ktime_to_ns(delta) >> 10);
255 	}
256 }
257 EXPORT_SYMBOL_GPL(async_synchronize_cookie_special);
258 
259 void async_synchronize_cookie(async_cookie_t cookie)
260 {
261 	async_synchronize_cookie_special(cookie, &async_running);
262 }
263 EXPORT_SYMBOL_GPL(async_synchronize_cookie);
264 
265 
266 static int async_thread(void *unused)
267 {
268 	DECLARE_WAITQUEUE(wq, current);
269 	add_wait_queue(&async_new, &wq);
270 
271 	while (!kthread_should_stop()) {
272 		int ret = HZ;
273 		set_current_state(TASK_INTERRUPTIBLE);
274 		/*
275 		 * check the list head without lock.. false positives
276 		 * are dealt with inside run_one_entry() while holding
277 		 * the lock.
278 		 */
279 		rmb();
280 		if (!list_empty(&async_pending))
281 			run_one_entry();
282 		else
283 			ret = schedule_timeout(HZ);
284 
285 		if (ret == 0) {
286 			/*
287 			 * we timed out, this means we as thread are redundant.
288 			 * we sign off and die, but we to avoid any races there
289 			 * is a last-straw check to see if work snuck in.
290 			 */
291 			atomic_dec(&thread_count);
292 			wmb(); /* manager must see our departure first */
293 			if (list_empty(&async_pending))
294 				break;
295 			/*
296 			 * woops work came in between us timing out and us
297 			 * signing off; we need to stay alive and keep working.
298 			 */
299 			atomic_inc(&thread_count);
300 		}
301 	}
302 	remove_wait_queue(&async_new, &wq);
303 
304 	return 0;
305 }
306 
307 static int async_manager_thread(void *unused)
308 {
309 	DECLARE_WAITQUEUE(wq, current);
310 	add_wait_queue(&async_new, &wq);
311 
312 	while (!kthread_should_stop()) {
313 		int tc, ec;
314 
315 		set_current_state(TASK_INTERRUPTIBLE);
316 
317 		tc = atomic_read(&thread_count);
318 		rmb();
319 		ec = atomic_read(&entry_count);
320 
321 		while (tc < ec && tc < MAX_THREADS) {
322 			kthread_run(async_thread, NULL, "async/%i", tc);
323 			atomic_inc(&thread_count);
324 			tc++;
325 		}
326 
327 		schedule();
328 	}
329 	remove_wait_queue(&async_new, &wq);
330 
331 	return 0;
332 }
333 
334 static int __init async_init(void)
335 {
336 	if (async_enabled)
337 		kthread_run(async_manager_thread, NULL, "async/mgr");
338 	return 0;
339 }
340 
341 static int __init setup_async(char *str)
342 {
343 	async_enabled = 1;
344 	return 1;
345 }
346 
347 __setup("fastboot", setup_async);
348 
349 
350 core_initcall(async_init);
351