xref: /openbmc/linux/kernel/acct.c (revision ed84ef1c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/kernel/acct.c
4  *
5  *  BSD Process Accounting for Linux
6  *
7  *  Author: Marco van Wieringen <mvw@planets.elm.net>
8  *
9  *  Some code based on ideas and code from:
10  *  Thomas K. Dyas <tdyas@eden.rutgers.edu>
11  *
12  *  This file implements BSD-style process accounting. Whenever any
13  *  process exits, an accounting record of type "struct acct" is
14  *  written to the file specified with the acct() system call. It is
15  *  up to user-level programs to do useful things with the accounting
16  *  log. The kernel just provides the raw accounting information.
17  *
18  * (C) Copyright 1995 - 1997 Marco van Wieringen - ELM Consultancy B.V.
19  *
20  *  Plugged two leaks. 1) It didn't return acct_file into the free_filps if
21  *  the file happened to be read-only. 2) If the accounting was suspended
22  *  due to the lack of space it happily allowed to reopen it and completely
23  *  lost the old acct_file. 3/10/98, Al Viro.
24  *
25  *  Now we silently close acct_file on attempt to reopen. Cleaned sys_acct().
26  *  XTerms and EMACS are manifestations of pure evil. 21/10/98, AV.
27  *
28  *  Fixed a nasty interaction with sys_umount(). If the accounting
29  *  was suspeneded we failed to stop it on umount(). Messy.
30  *  Another one: remount to readonly didn't stop accounting.
31  *	Question: what should we do if we have CAP_SYS_ADMIN but not
32  *  CAP_SYS_PACCT? Current code does the following: umount returns -EBUSY
33  *  unless we are messing with the root. In that case we are getting a
34  *  real mess with do_remount_sb(). 9/11/98, AV.
35  *
36  *  Fixed a bunch of races (and pair of leaks). Probably not the best way,
37  *  but this one obviously doesn't introduce deadlocks. Later. BTW, found
38  *  one race (and leak) in BSD implementation.
39  *  OK, that's better. ANOTHER race and leak in BSD variant. There always
40  *  is one more bug... 10/11/98, AV.
41  *
42  *	Oh, fsck... Oopsable SMP race in do_process_acct() - we must hold
43  * ->mmap_lock to walk the vma list of current->mm. Nasty, since it leaks
44  * a struct file opened for write. Fixed. 2/6/2000, AV.
45  */
46 
47 #include <linux/mm.h>
48 #include <linux/slab.h>
49 #include <linux/acct.h>
50 #include <linux/capability.h>
51 #include <linux/file.h>
52 #include <linux/tty.h>
53 #include <linux/security.h>
54 #include <linux/vfs.h>
55 #include <linux/jiffies.h>
56 #include <linux/times.h>
57 #include <linux/syscalls.h>
58 #include <linux/mount.h>
59 #include <linux/uaccess.h>
60 #include <linux/sched/cputime.h>
61 
62 #include <asm/div64.h>
63 #include <linux/blkdev.h> /* sector_div */
64 #include <linux/pid_namespace.h>
65 #include <linux/fs_pin.h>
66 
67 /*
68  * These constants control the amount of freespace that suspend and
69  * resume the process accounting system, and the time delay between
70  * each check.
71  * Turned into sysctl-controllable parameters. AV, 12/11/98
72  */
73 
74 int acct_parm[3] = {4, 2, 30};
75 #define RESUME		(acct_parm[0])	/* >foo% free space - resume */
76 #define SUSPEND		(acct_parm[1])	/* <foo% free space - suspend */
77 #define ACCT_TIMEOUT	(acct_parm[2])	/* foo second timeout between checks */
78 
79 /*
80  * External references and all of the globals.
81  */
82 
83 struct bsd_acct_struct {
84 	struct fs_pin		pin;
85 	atomic_long_t		count;
86 	struct rcu_head		rcu;
87 	struct mutex		lock;
88 	int			active;
89 	unsigned long		needcheck;
90 	struct file		*file;
91 	struct pid_namespace	*ns;
92 	struct work_struct	work;
93 	struct completion	done;
94 };
95 
96 static void do_acct_process(struct bsd_acct_struct *acct);
97 
98 /*
99  * Check the amount of free space and suspend/resume accordingly.
100  */
101 static int check_free_space(struct bsd_acct_struct *acct)
102 {
103 	struct kstatfs sbuf;
104 
105 	if (time_is_after_jiffies(acct->needcheck))
106 		goto out;
107 
108 	/* May block */
109 	if (vfs_statfs(&acct->file->f_path, &sbuf))
110 		goto out;
111 
112 	if (acct->active) {
113 		u64 suspend = sbuf.f_blocks * SUSPEND;
114 		do_div(suspend, 100);
115 		if (sbuf.f_bavail <= suspend) {
116 			acct->active = 0;
117 			pr_info("Process accounting paused\n");
118 		}
119 	} else {
120 		u64 resume = sbuf.f_blocks * RESUME;
121 		do_div(resume, 100);
122 		if (sbuf.f_bavail >= resume) {
123 			acct->active = 1;
124 			pr_info("Process accounting resumed\n");
125 		}
126 	}
127 
128 	acct->needcheck = jiffies + ACCT_TIMEOUT*HZ;
129 out:
130 	return acct->active;
131 }
132 
133 static void acct_put(struct bsd_acct_struct *p)
134 {
135 	if (atomic_long_dec_and_test(&p->count))
136 		kfree_rcu(p, rcu);
137 }
138 
139 static inline struct bsd_acct_struct *to_acct(struct fs_pin *p)
140 {
141 	return p ? container_of(p, struct bsd_acct_struct, pin) : NULL;
142 }
143 
144 static struct bsd_acct_struct *acct_get(struct pid_namespace *ns)
145 {
146 	struct bsd_acct_struct *res;
147 again:
148 	smp_rmb();
149 	rcu_read_lock();
150 	res = to_acct(READ_ONCE(ns->bacct));
151 	if (!res) {
152 		rcu_read_unlock();
153 		return NULL;
154 	}
155 	if (!atomic_long_inc_not_zero(&res->count)) {
156 		rcu_read_unlock();
157 		cpu_relax();
158 		goto again;
159 	}
160 	rcu_read_unlock();
161 	mutex_lock(&res->lock);
162 	if (res != to_acct(READ_ONCE(ns->bacct))) {
163 		mutex_unlock(&res->lock);
164 		acct_put(res);
165 		goto again;
166 	}
167 	return res;
168 }
169 
170 static void acct_pin_kill(struct fs_pin *pin)
171 {
172 	struct bsd_acct_struct *acct = to_acct(pin);
173 	mutex_lock(&acct->lock);
174 	do_acct_process(acct);
175 	schedule_work(&acct->work);
176 	wait_for_completion(&acct->done);
177 	cmpxchg(&acct->ns->bacct, pin, NULL);
178 	mutex_unlock(&acct->lock);
179 	pin_remove(pin);
180 	acct_put(acct);
181 }
182 
183 static void close_work(struct work_struct *work)
184 {
185 	struct bsd_acct_struct *acct = container_of(work, struct bsd_acct_struct, work);
186 	struct file *file = acct->file;
187 	if (file->f_op->flush)
188 		file->f_op->flush(file, NULL);
189 	__fput_sync(file);
190 	complete(&acct->done);
191 }
192 
193 static int acct_on(struct filename *pathname)
194 {
195 	struct file *file;
196 	struct vfsmount *mnt, *internal;
197 	struct pid_namespace *ns = task_active_pid_ns(current);
198 	struct bsd_acct_struct *acct;
199 	struct fs_pin *old;
200 	int err;
201 
202 	acct = kzalloc(sizeof(struct bsd_acct_struct), GFP_KERNEL);
203 	if (!acct)
204 		return -ENOMEM;
205 
206 	/* Difference from BSD - they don't do O_APPEND */
207 	file = file_open_name(pathname, O_WRONLY|O_APPEND|O_LARGEFILE, 0);
208 	if (IS_ERR(file)) {
209 		kfree(acct);
210 		return PTR_ERR(file);
211 	}
212 
213 	if (!S_ISREG(file_inode(file)->i_mode)) {
214 		kfree(acct);
215 		filp_close(file, NULL);
216 		return -EACCES;
217 	}
218 
219 	if (!(file->f_mode & FMODE_CAN_WRITE)) {
220 		kfree(acct);
221 		filp_close(file, NULL);
222 		return -EIO;
223 	}
224 	internal = mnt_clone_internal(&file->f_path);
225 	if (IS_ERR(internal)) {
226 		kfree(acct);
227 		filp_close(file, NULL);
228 		return PTR_ERR(internal);
229 	}
230 	err = __mnt_want_write(internal);
231 	if (err) {
232 		mntput(internal);
233 		kfree(acct);
234 		filp_close(file, NULL);
235 		return err;
236 	}
237 	mnt = file->f_path.mnt;
238 	file->f_path.mnt = internal;
239 
240 	atomic_long_set(&acct->count, 1);
241 	init_fs_pin(&acct->pin, acct_pin_kill);
242 	acct->file = file;
243 	acct->needcheck = jiffies;
244 	acct->ns = ns;
245 	mutex_init(&acct->lock);
246 	INIT_WORK(&acct->work, close_work);
247 	init_completion(&acct->done);
248 	mutex_lock_nested(&acct->lock, 1);	/* nobody has seen it yet */
249 	pin_insert(&acct->pin, mnt);
250 
251 	rcu_read_lock();
252 	old = xchg(&ns->bacct, &acct->pin);
253 	mutex_unlock(&acct->lock);
254 	pin_kill(old);
255 	__mnt_drop_write(mnt);
256 	mntput(mnt);
257 	return 0;
258 }
259 
260 static DEFINE_MUTEX(acct_on_mutex);
261 
262 /**
263  * sys_acct - enable/disable process accounting
264  * @name: file name for accounting records or NULL to shutdown accounting
265  *
266  * sys_acct() is the only system call needed to implement process
267  * accounting. It takes the name of the file where accounting records
268  * should be written. If the filename is NULL, accounting will be
269  * shutdown.
270  *
271  * Returns: 0 for success or negative errno values for failure.
272  */
273 SYSCALL_DEFINE1(acct, const char __user *, name)
274 {
275 	int error = 0;
276 
277 	if (!capable(CAP_SYS_PACCT))
278 		return -EPERM;
279 
280 	if (name) {
281 		struct filename *tmp = getname(name);
282 
283 		if (IS_ERR(tmp))
284 			return PTR_ERR(tmp);
285 		mutex_lock(&acct_on_mutex);
286 		error = acct_on(tmp);
287 		mutex_unlock(&acct_on_mutex);
288 		putname(tmp);
289 	} else {
290 		rcu_read_lock();
291 		pin_kill(task_active_pid_ns(current)->bacct);
292 	}
293 
294 	return error;
295 }
296 
297 void acct_exit_ns(struct pid_namespace *ns)
298 {
299 	rcu_read_lock();
300 	pin_kill(ns->bacct);
301 }
302 
303 /*
304  *  encode an unsigned long into a comp_t
305  *
306  *  This routine has been adopted from the encode_comp_t() function in
307  *  the kern_acct.c file of the FreeBSD operating system. The encoding
308  *  is a 13-bit fraction with a 3-bit (base 8) exponent.
309  */
310 
311 #define	MANTSIZE	13			/* 13 bit mantissa. */
312 #define	EXPSIZE		3			/* Base 8 (3 bit) exponent. */
313 #define	MAXFRACT	((1 << MANTSIZE) - 1)	/* Maximum fractional value. */
314 
315 static comp_t encode_comp_t(unsigned long value)
316 {
317 	int exp, rnd;
318 
319 	exp = rnd = 0;
320 	while (value > MAXFRACT) {
321 		rnd = value & (1 << (EXPSIZE - 1));	/* Round up? */
322 		value >>= EXPSIZE;	/* Base 8 exponent == 3 bit shift. */
323 		exp++;
324 	}
325 
326 	/*
327 	 * If we need to round up, do it (and handle overflow correctly).
328 	 */
329 	if (rnd && (++value > MAXFRACT)) {
330 		value >>= EXPSIZE;
331 		exp++;
332 	}
333 
334 	/*
335 	 * Clean it up and polish it off.
336 	 */
337 	exp <<= MANTSIZE;		/* Shift the exponent into place */
338 	exp += value;			/* and add on the mantissa. */
339 	return exp;
340 }
341 
342 #if ACCT_VERSION == 1 || ACCT_VERSION == 2
343 /*
344  * encode an u64 into a comp2_t (24 bits)
345  *
346  * Format: 5 bit base 2 exponent, 20 bits mantissa.
347  * The leading bit of the mantissa is not stored, but implied for
348  * non-zero exponents.
349  * Largest encodable value is 50 bits.
350  */
351 
352 #define MANTSIZE2       20                      /* 20 bit mantissa. */
353 #define EXPSIZE2        5                       /* 5 bit base 2 exponent. */
354 #define MAXFRACT2       ((1ul << MANTSIZE2) - 1) /* Maximum fractional value. */
355 #define MAXEXP2         ((1 << EXPSIZE2) - 1)    /* Maximum exponent. */
356 
357 static comp2_t encode_comp2_t(u64 value)
358 {
359 	int exp, rnd;
360 
361 	exp = (value > (MAXFRACT2>>1));
362 	rnd = 0;
363 	while (value > MAXFRACT2) {
364 		rnd = value & 1;
365 		value >>= 1;
366 		exp++;
367 	}
368 
369 	/*
370 	 * If we need to round up, do it (and handle overflow correctly).
371 	 */
372 	if (rnd && (++value > MAXFRACT2)) {
373 		value >>= 1;
374 		exp++;
375 	}
376 
377 	if (exp > MAXEXP2) {
378 		/* Overflow. Return largest representable number instead. */
379 		return (1ul << (MANTSIZE2+EXPSIZE2-1)) - 1;
380 	} else {
381 		return (value & (MAXFRACT2>>1)) | (exp << (MANTSIZE2-1));
382 	}
383 }
384 #elif ACCT_VERSION == 3
385 /*
386  * encode an u64 into a 32 bit IEEE float
387  */
388 static u32 encode_float(u64 value)
389 {
390 	unsigned exp = 190;
391 	unsigned u;
392 
393 	if (value == 0)
394 		return 0;
395 	while ((s64)value > 0) {
396 		value <<= 1;
397 		exp--;
398 	}
399 	u = (u32)(value >> 40) & 0x7fffffu;
400 	return u | (exp << 23);
401 }
402 #endif
403 
404 /*
405  *  Write an accounting entry for an exiting process
406  *
407  *  The acct_process() call is the workhorse of the process
408  *  accounting system. The struct acct is built here and then written
409  *  into the accounting file. This function should only be called from
410  *  do_exit() or when switching to a different output file.
411  */
412 
413 static void fill_ac(acct_t *ac)
414 {
415 	struct pacct_struct *pacct = &current->signal->pacct;
416 	u64 elapsed, run_time;
417 	time64_t btime;
418 	struct tty_struct *tty;
419 
420 	/*
421 	 * Fill the accounting struct with the needed info as recorded
422 	 * by the different kernel functions.
423 	 */
424 	memset(ac, 0, sizeof(acct_t));
425 
426 	ac->ac_version = ACCT_VERSION | ACCT_BYTEORDER;
427 	strlcpy(ac->ac_comm, current->comm, sizeof(ac->ac_comm));
428 
429 	/* calculate run_time in nsec*/
430 	run_time = ktime_get_ns();
431 	run_time -= current->group_leader->start_time;
432 	/* convert nsec -> AHZ */
433 	elapsed = nsec_to_AHZ(run_time);
434 #if ACCT_VERSION == 3
435 	ac->ac_etime = encode_float(elapsed);
436 #else
437 	ac->ac_etime = encode_comp_t(elapsed < (unsigned long) -1l ?
438 				(unsigned long) elapsed : (unsigned long) -1l);
439 #endif
440 #if ACCT_VERSION == 1 || ACCT_VERSION == 2
441 	{
442 		/* new enlarged etime field */
443 		comp2_t etime = encode_comp2_t(elapsed);
444 
445 		ac->ac_etime_hi = etime >> 16;
446 		ac->ac_etime_lo = (u16) etime;
447 	}
448 #endif
449 	do_div(elapsed, AHZ);
450 	btime = ktime_get_real_seconds() - elapsed;
451 	ac->ac_btime = clamp_t(time64_t, btime, 0, U32_MAX);
452 #if ACCT_VERSION==2
453 	ac->ac_ahz = AHZ;
454 #endif
455 
456 	spin_lock_irq(&current->sighand->siglock);
457 	tty = current->signal->tty;	/* Safe as we hold the siglock */
458 	ac->ac_tty = tty ? old_encode_dev(tty_devnum(tty)) : 0;
459 	ac->ac_utime = encode_comp_t(nsec_to_AHZ(pacct->ac_utime));
460 	ac->ac_stime = encode_comp_t(nsec_to_AHZ(pacct->ac_stime));
461 	ac->ac_flag = pacct->ac_flag;
462 	ac->ac_mem = encode_comp_t(pacct->ac_mem);
463 	ac->ac_minflt = encode_comp_t(pacct->ac_minflt);
464 	ac->ac_majflt = encode_comp_t(pacct->ac_majflt);
465 	ac->ac_exitcode = pacct->ac_exitcode;
466 	spin_unlock_irq(&current->sighand->siglock);
467 }
468 /*
469  *  do_acct_process does all actual work. Caller holds the reference to file.
470  */
471 static void do_acct_process(struct bsd_acct_struct *acct)
472 {
473 	acct_t ac;
474 	unsigned long flim;
475 	const struct cred *orig_cred;
476 	struct file *file = acct->file;
477 
478 	/*
479 	 * Accounting records are not subject to resource limits.
480 	 */
481 	flim = rlimit(RLIMIT_FSIZE);
482 	current->signal->rlim[RLIMIT_FSIZE].rlim_cur = RLIM_INFINITY;
483 	/* Perform file operations on behalf of whoever enabled accounting */
484 	orig_cred = override_creds(file->f_cred);
485 
486 	/*
487 	 * First check to see if there is enough free_space to continue
488 	 * the process accounting system.
489 	 */
490 	if (!check_free_space(acct))
491 		goto out;
492 
493 	fill_ac(&ac);
494 	/* we really need to bite the bullet and change layout */
495 	ac.ac_uid = from_kuid_munged(file->f_cred->user_ns, orig_cred->uid);
496 	ac.ac_gid = from_kgid_munged(file->f_cred->user_ns, orig_cred->gid);
497 #if ACCT_VERSION == 1 || ACCT_VERSION == 2
498 	/* backward-compatible 16 bit fields */
499 	ac.ac_uid16 = ac.ac_uid;
500 	ac.ac_gid16 = ac.ac_gid;
501 #elif ACCT_VERSION == 3
502 	{
503 		struct pid_namespace *ns = acct->ns;
504 
505 		ac.ac_pid = task_tgid_nr_ns(current, ns);
506 		rcu_read_lock();
507 		ac.ac_ppid = task_tgid_nr_ns(rcu_dereference(current->real_parent),
508 					     ns);
509 		rcu_read_unlock();
510 	}
511 #endif
512 	/*
513 	 * Get freeze protection. If the fs is frozen, just skip the write
514 	 * as we could deadlock the system otherwise.
515 	 */
516 	if (file_start_write_trylock(file)) {
517 		/* it's been opened O_APPEND, so position is irrelevant */
518 		loff_t pos = 0;
519 		__kernel_write(file, &ac, sizeof(acct_t), &pos);
520 		file_end_write(file);
521 	}
522 out:
523 	current->signal->rlim[RLIMIT_FSIZE].rlim_cur = flim;
524 	revert_creds(orig_cred);
525 }
526 
527 /**
528  * acct_collect - collect accounting information into pacct_struct
529  * @exitcode: task exit code
530  * @group_dead: not 0, if this thread is the last one in the process.
531  */
532 void acct_collect(long exitcode, int group_dead)
533 {
534 	struct pacct_struct *pacct = &current->signal->pacct;
535 	u64 utime, stime;
536 	unsigned long vsize = 0;
537 
538 	if (group_dead && current->mm) {
539 		struct vm_area_struct *vma;
540 
541 		mmap_read_lock(current->mm);
542 		vma = current->mm->mmap;
543 		while (vma) {
544 			vsize += vma->vm_end - vma->vm_start;
545 			vma = vma->vm_next;
546 		}
547 		mmap_read_unlock(current->mm);
548 	}
549 
550 	spin_lock_irq(&current->sighand->siglock);
551 	if (group_dead)
552 		pacct->ac_mem = vsize / 1024;
553 	if (thread_group_leader(current)) {
554 		pacct->ac_exitcode = exitcode;
555 		if (current->flags & PF_FORKNOEXEC)
556 			pacct->ac_flag |= AFORK;
557 	}
558 	if (current->flags & PF_SUPERPRIV)
559 		pacct->ac_flag |= ASU;
560 	if (current->flags & PF_DUMPCORE)
561 		pacct->ac_flag |= ACORE;
562 	if (current->flags & PF_SIGNALED)
563 		pacct->ac_flag |= AXSIG;
564 
565 	task_cputime(current, &utime, &stime);
566 	pacct->ac_utime += utime;
567 	pacct->ac_stime += stime;
568 	pacct->ac_minflt += current->min_flt;
569 	pacct->ac_majflt += current->maj_flt;
570 	spin_unlock_irq(&current->sighand->siglock);
571 }
572 
573 static void slow_acct_process(struct pid_namespace *ns)
574 {
575 	for ( ; ns; ns = ns->parent) {
576 		struct bsd_acct_struct *acct = acct_get(ns);
577 		if (acct) {
578 			do_acct_process(acct);
579 			mutex_unlock(&acct->lock);
580 			acct_put(acct);
581 		}
582 	}
583 }
584 
585 /**
586  * acct_process - handles process accounting for an exiting task
587  */
588 void acct_process(void)
589 {
590 	struct pid_namespace *ns;
591 
592 	/*
593 	 * This loop is safe lockless, since current is still
594 	 * alive and holds its namespace, which in turn holds
595 	 * its parent.
596 	 */
597 	for (ns = task_active_pid_ns(current); ns != NULL; ns = ns->parent) {
598 		if (ns->bacct)
599 			break;
600 	}
601 	if (unlikely(ns))
602 		slow_acct_process(ns);
603 }
604