1 /* 2 * linux/ipc/sem.c 3 * Copyright (C) 1992 Krishna Balasubramanian 4 * Copyright (C) 1995 Eric Schenk, Bruno Haible 5 * 6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> 7 * 8 * SMP-threaded, sysctl's added 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com> 10 * Enforced range limit on SEM_UNDO 11 * (c) 2001 Red Hat Inc 12 * Lockless wakeup 13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com> 14 * Further wakeup optimizations, documentation 15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com> 16 * 17 * support for audit of ipc object properties and permission changes 18 * Dustin Kirkland <dustin.kirkland@us.ibm.com> 19 * 20 * namespaces support 21 * OpenVZ, SWsoft Inc. 22 * Pavel Emelianov <xemul@openvz.org> 23 * 24 * Implementation notes: (May 2010) 25 * This file implements System V semaphores. 26 * 27 * User space visible behavior: 28 * - FIFO ordering for semop() operations (just FIFO, not starvation 29 * protection) 30 * - multiple semaphore operations that alter the same semaphore in 31 * one semop() are handled. 32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and 33 * SETALL calls. 34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. 35 * - undo adjustments at process exit are limited to 0..SEMVMX. 36 * - namespace are supported. 37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing 38 * to /proc/sys/kernel/sem. 39 * - statistics about the usage are reported in /proc/sysvipc/sem. 40 * 41 * Internals: 42 * - scalability: 43 * - all global variables are read-mostly. 44 * - semop() calls and semctl(RMID) are synchronized by RCU. 45 * - most operations do write operations (actually: spin_lock calls) to 46 * the per-semaphore array structure. 47 * Thus: Perfect SMP scaling between independent semaphore arrays. 48 * If multiple semaphores in one array are used, then cache line 49 * trashing on the semaphore array spinlock will limit the scaling. 50 * - semncnt and semzcnt are calculated on demand in count_semcnt() 51 * - the task that performs a successful semop() scans the list of all 52 * sleeping tasks and completes any pending operations that can be fulfilled. 53 * Semaphores are actively given to waiting tasks (necessary for FIFO). 54 * (see update_queue()) 55 * - To improve the scalability, the actual wake-up calls are performed after 56 * dropping all locks. (see wake_up_sem_queue_prepare(), 57 * wake_up_sem_queue_do()) 58 * - All work is done by the waker, the woken up task does not have to do 59 * anything - not even acquiring a lock or dropping a refcount. 60 * - A woken up task may not even touch the semaphore array anymore, it may 61 * have been destroyed already by a semctl(RMID). 62 * - The synchronizations between wake-ups due to a timeout/signal and a 63 * wake-up due to a completed semaphore operation is achieved by using an 64 * intermediate state (IN_WAKEUP). 65 * - UNDO values are stored in an array (one per process and per 66 * semaphore array, lazily allocated). For backwards compatibility, multiple 67 * modes for the UNDO variables are supported (per process, per thread) 68 * (see copy_semundo, CLONE_SYSVSEM) 69 * - There are two lists of the pending operations: a per-array list 70 * and per-semaphore list (stored in the array). This allows to achieve FIFO 71 * ordering without always scanning all pending operations. 72 * The worst-case behavior is nevertheless O(N^2) for N wakeups. 73 */ 74 75 #include <linux/slab.h> 76 #include <linux/spinlock.h> 77 #include <linux/init.h> 78 #include <linux/proc_fs.h> 79 #include <linux/time.h> 80 #include <linux/security.h> 81 #include <linux/syscalls.h> 82 #include <linux/audit.h> 83 #include <linux/capability.h> 84 #include <linux/seq_file.h> 85 #include <linux/rwsem.h> 86 #include <linux/nsproxy.h> 87 #include <linux/ipc_namespace.h> 88 89 #include <linux/uaccess.h> 90 #include "util.h" 91 92 /* One semaphore structure for each semaphore in the system. */ 93 struct sem { 94 int semval; /* current value */ 95 /* 96 * PID of the process that last modified the semaphore. For 97 * Linux, specifically these are: 98 * - semop 99 * - semctl, via SETVAL and SETALL. 100 * - at task exit when performing undo adjustments (see exit_sem). 101 */ 102 int sempid; 103 spinlock_t lock; /* spinlock for fine-grained semtimedop */ 104 struct list_head pending_alter; /* pending single-sop operations */ 105 /* that alter the semaphore */ 106 struct list_head pending_const; /* pending single-sop operations */ 107 /* that do not alter the semaphore*/ 108 time_t sem_otime; /* candidate for sem_otime */ 109 } ____cacheline_aligned_in_smp; 110 111 /* One queue for each sleeping process in the system. */ 112 struct sem_queue { 113 struct list_head list; /* queue of pending operations */ 114 struct task_struct *sleeper; /* this process */ 115 struct sem_undo *undo; /* undo structure */ 116 int pid; /* process id of requesting process */ 117 int status; /* completion status of operation */ 118 struct sembuf *sops; /* array of pending operations */ 119 struct sembuf *blocking; /* the operation that blocked */ 120 int nsops; /* number of operations */ 121 int alter; /* does *sops alter the array? */ 122 }; 123 124 /* Each task has a list of undo requests. They are executed automatically 125 * when the process exits. 126 */ 127 struct sem_undo { 128 struct list_head list_proc; /* per-process list: * 129 * all undos from one process 130 * rcu protected */ 131 struct rcu_head rcu; /* rcu struct for sem_undo */ 132 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */ 133 struct list_head list_id; /* per semaphore array list: 134 * all undos for one array */ 135 int semid; /* semaphore set identifier */ 136 short *semadj; /* array of adjustments */ 137 /* one per semaphore */ 138 }; 139 140 /* sem_undo_list controls shared access to the list of sem_undo structures 141 * that may be shared among all a CLONE_SYSVSEM task group. 142 */ 143 struct sem_undo_list { 144 atomic_t refcnt; 145 spinlock_t lock; 146 struct list_head list_proc; 147 }; 148 149 150 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) 151 152 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid) 153 154 static int newary(struct ipc_namespace *, struct ipc_params *); 155 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); 156 #ifdef CONFIG_PROC_FS 157 static int sysvipc_sem_proc_show(struct seq_file *s, void *it); 158 #endif 159 160 #define SEMMSL_FAST 256 /* 512 bytes on stack */ 161 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ 162 163 /* 164 * Locking: 165 * sem_undo.id_next, 166 * sem_array.complex_count, 167 * sem_array.pending{_alter,_cont}, 168 * sem_array.sem_undo: global sem_lock() for read/write 169 * sem_undo.proc_next: only "current" is allowed to read/write that field. 170 * 171 * sem_array.sem_base[i].pending_{const,alter}: 172 * global or semaphore sem_lock() for read/write 173 */ 174 175 #define sc_semmsl sem_ctls[0] 176 #define sc_semmns sem_ctls[1] 177 #define sc_semopm sem_ctls[2] 178 #define sc_semmni sem_ctls[3] 179 180 void sem_init_ns(struct ipc_namespace *ns) 181 { 182 ns->sc_semmsl = SEMMSL; 183 ns->sc_semmns = SEMMNS; 184 ns->sc_semopm = SEMOPM; 185 ns->sc_semmni = SEMMNI; 186 ns->used_sems = 0; 187 ipc_init_ids(&ns->ids[IPC_SEM_IDS]); 188 } 189 190 #ifdef CONFIG_IPC_NS 191 void sem_exit_ns(struct ipc_namespace *ns) 192 { 193 free_ipcs(ns, &sem_ids(ns), freeary); 194 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); 195 } 196 #endif 197 198 void __init sem_init(void) 199 { 200 sem_init_ns(&init_ipc_ns); 201 ipc_init_proc_interface("sysvipc/sem", 202 " key semid perms nsems uid gid cuid cgid otime ctime\n", 203 IPC_SEM_IDS, sysvipc_sem_proc_show); 204 } 205 206 /** 207 * unmerge_queues - unmerge queues, if possible. 208 * @sma: semaphore array 209 * 210 * The function unmerges the wait queues if complex_count is 0. 211 * It must be called prior to dropping the global semaphore array lock. 212 */ 213 static void unmerge_queues(struct sem_array *sma) 214 { 215 struct sem_queue *q, *tq; 216 217 /* complex operations still around? */ 218 if (sma->complex_count) 219 return; 220 /* 221 * We will switch back to simple mode. 222 * Move all pending operation back into the per-semaphore 223 * queues. 224 */ 225 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 226 struct sem *curr; 227 curr = &sma->sem_base[q->sops[0].sem_num]; 228 229 list_add_tail(&q->list, &curr->pending_alter); 230 } 231 INIT_LIST_HEAD(&sma->pending_alter); 232 } 233 234 /** 235 * merge_queues - merge single semop queues into global queue 236 * @sma: semaphore array 237 * 238 * This function merges all per-semaphore queues into the global queue. 239 * It is necessary to achieve FIFO ordering for the pending single-sop 240 * operations when a multi-semop operation must sleep. 241 * Only the alter operations must be moved, the const operations can stay. 242 */ 243 static void merge_queues(struct sem_array *sma) 244 { 245 int i; 246 for (i = 0; i < sma->sem_nsems; i++) { 247 struct sem *sem = sma->sem_base + i; 248 249 list_splice_init(&sem->pending_alter, &sma->pending_alter); 250 } 251 } 252 253 static void sem_rcu_free(struct rcu_head *head) 254 { 255 struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu); 256 struct sem_array *sma = ipc_rcu_to_struct(p); 257 258 security_sem_free(sma); 259 ipc_rcu_free(head); 260 } 261 262 /* 263 * Wait until all currently ongoing simple ops have completed. 264 * Caller must own sem_perm.lock. 265 * New simple ops cannot start, because simple ops first check 266 * that sem_perm.lock is free. 267 * that a) sem_perm.lock is free and b) complex_count is 0. 268 */ 269 static void sem_wait_array(struct sem_array *sma) 270 { 271 int i; 272 struct sem *sem; 273 274 if (sma->complex_count) { 275 /* The thread that increased sma->complex_count waited on 276 * all sem->lock locks. Thus we don't need to wait again. 277 */ 278 return; 279 } 280 281 for (i = 0; i < sma->sem_nsems; i++) { 282 sem = sma->sem_base + i; 283 spin_unlock_wait(&sem->lock); 284 } 285 } 286 287 /* 288 * If the request contains only one semaphore operation, and there are 289 * no complex transactions pending, lock only the semaphore involved. 290 * Otherwise, lock the entire semaphore array, since we either have 291 * multiple semaphores in our own semops, or we need to look at 292 * semaphores from other pending complex operations. 293 */ 294 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, 295 int nsops) 296 { 297 struct sem *sem; 298 299 if (nsops != 1) { 300 /* Complex operation - acquire a full lock */ 301 ipc_lock_object(&sma->sem_perm); 302 303 /* And wait until all simple ops that are processed 304 * right now have dropped their locks. 305 */ 306 sem_wait_array(sma); 307 return -1; 308 } 309 310 /* 311 * Only one semaphore affected - try to optimize locking. 312 * The rules are: 313 * - optimized locking is possible if no complex operation 314 * is either enqueued or processed right now. 315 * - The test for enqueued complex ops is simple: 316 * sma->complex_count != 0 317 * - Testing for complex ops that are processed right now is 318 * a bit more difficult. Complex ops acquire the full lock 319 * and first wait that the running simple ops have completed. 320 * (see above) 321 * Thus: If we own a simple lock and the global lock is free 322 * and complex_count is now 0, then it will stay 0 and 323 * thus just locking sem->lock is sufficient. 324 */ 325 sem = sma->sem_base + sops->sem_num; 326 327 if (sma->complex_count == 0) { 328 /* 329 * It appears that no complex operation is around. 330 * Acquire the per-semaphore lock. 331 */ 332 spin_lock(&sem->lock); 333 334 /* Then check that the global lock is free */ 335 if (!spin_is_locked(&sma->sem_perm.lock)) { 336 /* 337 * We need a memory barrier with acquire semantics, 338 * otherwise we can race with another thread that does: 339 * complex_count++; 340 * spin_unlock(sem_perm.lock); 341 */ 342 smp_acquire__after_ctrl_dep(); 343 344 /* 345 * Now repeat the test of complex_count: 346 * It can't change anymore until we drop sem->lock. 347 * Thus: if is now 0, then it will stay 0. 348 */ 349 if (sma->complex_count == 0) { 350 /* fast path successful! */ 351 return sops->sem_num; 352 } 353 } 354 spin_unlock(&sem->lock); 355 } 356 357 /* slow path: acquire the full lock */ 358 ipc_lock_object(&sma->sem_perm); 359 360 if (sma->complex_count == 0) { 361 /* False alarm: 362 * There is no complex operation, thus we can switch 363 * back to the fast path. 364 */ 365 spin_lock(&sem->lock); 366 ipc_unlock_object(&sma->sem_perm); 367 return sops->sem_num; 368 } else { 369 /* Not a false alarm, thus complete the sequence for a 370 * full lock. 371 */ 372 sem_wait_array(sma); 373 return -1; 374 } 375 } 376 377 static inline void sem_unlock(struct sem_array *sma, int locknum) 378 { 379 if (locknum == -1) { 380 unmerge_queues(sma); 381 ipc_unlock_object(&sma->sem_perm); 382 } else { 383 struct sem *sem = sma->sem_base + locknum; 384 spin_unlock(&sem->lock); 385 } 386 } 387 388 /* 389 * sem_lock_(check_) routines are called in the paths where the rwsem 390 * is not held. 391 * 392 * The caller holds the RCU read lock. 393 */ 394 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns, 395 int id, struct sembuf *sops, int nsops, int *locknum) 396 { 397 struct kern_ipc_perm *ipcp; 398 struct sem_array *sma; 399 400 ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); 401 if (IS_ERR(ipcp)) 402 return ERR_CAST(ipcp); 403 404 sma = container_of(ipcp, struct sem_array, sem_perm); 405 *locknum = sem_lock(sma, sops, nsops); 406 407 /* ipc_rmid() may have already freed the ID while sem_lock 408 * was spinning: verify that the structure is still valid 409 */ 410 if (ipc_valid_object(ipcp)) 411 return container_of(ipcp, struct sem_array, sem_perm); 412 413 sem_unlock(sma, *locknum); 414 return ERR_PTR(-EINVAL); 415 } 416 417 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id) 418 { 419 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); 420 421 if (IS_ERR(ipcp)) 422 return ERR_CAST(ipcp); 423 424 return container_of(ipcp, struct sem_array, sem_perm); 425 } 426 427 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, 428 int id) 429 { 430 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id); 431 432 if (IS_ERR(ipcp)) 433 return ERR_CAST(ipcp); 434 435 return container_of(ipcp, struct sem_array, sem_perm); 436 } 437 438 static inline void sem_lock_and_putref(struct sem_array *sma) 439 { 440 sem_lock(sma, NULL, -1); 441 ipc_rcu_putref(sma, sem_rcu_free); 442 } 443 444 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) 445 { 446 ipc_rmid(&sem_ids(ns), &s->sem_perm); 447 } 448 449 /* 450 * Lockless wakeup algorithm: 451 * Without the check/retry algorithm a lockless wakeup is possible: 452 * - queue.status is initialized to -EINTR before blocking. 453 * - wakeup is performed by 454 * * unlinking the queue entry from the pending list 455 * * setting queue.status to IN_WAKEUP 456 * This is the notification for the blocked thread that a 457 * result value is imminent. 458 * * call wake_up_process 459 * * set queue.status to the final value. 460 * - the previously blocked thread checks queue.status: 461 * * if it's IN_WAKEUP, then it must wait until the value changes 462 * * if it's not -EINTR, then the operation was completed by 463 * update_queue. semtimedop can return queue.status without 464 * performing any operation on the sem array. 465 * * otherwise it must acquire the spinlock and check what's up. 466 * 467 * The two-stage algorithm is necessary to protect against the following 468 * races: 469 * - if queue.status is set after wake_up_process, then the woken up idle 470 * thread could race forward and try (and fail) to acquire sma->lock 471 * before update_queue had a chance to set queue.status 472 * - if queue.status is written before wake_up_process and if the 473 * blocked process is woken up by a signal between writing 474 * queue.status and the wake_up_process, then the woken up 475 * process could return from semtimedop and die by calling 476 * sys_exit before wake_up_process is called. Then wake_up_process 477 * will oops, because the task structure is already invalid. 478 * (yes, this happened on s390 with sysv msg). 479 * 480 */ 481 #define IN_WAKEUP 1 482 483 /** 484 * newary - Create a new semaphore set 485 * @ns: namespace 486 * @params: ptr to the structure that contains key, semflg and nsems 487 * 488 * Called with sem_ids.rwsem held (as a writer) 489 */ 490 static int newary(struct ipc_namespace *ns, struct ipc_params *params) 491 { 492 int id; 493 int retval; 494 struct sem_array *sma; 495 int size; 496 key_t key = params->key; 497 int nsems = params->u.nsems; 498 int semflg = params->flg; 499 int i; 500 501 if (!nsems) 502 return -EINVAL; 503 if (ns->used_sems + nsems > ns->sc_semmns) 504 return -ENOSPC; 505 506 size = sizeof(*sma) + nsems * sizeof(struct sem); 507 sma = ipc_rcu_alloc(size); 508 if (!sma) 509 return -ENOMEM; 510 511 memset(sma, 0, size); 512 513 sma->sem_perm.mode = (semflg & S_IRWXUGO); 514 sma->sem_perm.key = key; 515 516 sma->sem_perm.security = NULL; 517 retval = security_sem_alloc(sma); 518 if (retval) { 519 ipc_rcu_putref(sma, ipc_rcu_free); 520 return retval; 521 } 522 523 sma->sem_base = (struct sem *) &sma[1]; 524 525 for (i = 0; i < nsems; i++) { 526 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter); 527 INIT_LIST_HEAD(&sma->sem_base[i].pending_const); 528 spin_lock_init(&sma->sem_base[i].lock); 529 } 530 531 sma->complex_count = 0; 532 INIT_LIST_HEAD(&sma->pending_alter); 533 INIT_LIST_HEAD(&sma->pending_const); 534 INIT_LIST_HEAD(&sma->list_id); 535 sma->sem_nsems = nsems; 536 sma->sem_ctime = get_seconds(); 537 538 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); 539 if (id < 0) { 540 ipc_rcu_putref(sma, sem_rcu_free); 541 return id; 542 } 543 ns->used_sems += nsems; 544 545 sem_unlock(sma, -1); 546 rcu_read_unlock(); 547 548 return sma->sem_perm.id; 549 } 550 551 552 /* 553 * Called with sem_ids.rwsem and ipcp locked. 554 */ 555 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg) 556 { 557 struct sem_array *sma; 558 559 sma = container_of(ipcp, struct sem_array, sem_perm); 560 return security_sem_associate(sma, semflg); 561 } 562 563 /* 564 * Called with sem_ids.rwsem and ipcp locked. 565 */ 566 static inline int sem_more_checks(struct kern_ipc_perm *ipcp, 567 struct ipc_params *params) 568 { 569 struct sem_array *sma; 570 571 sma = container_of(ipcp, struct sem_array, sem_perm); 572 if (params->u.nsems > sma->sem_nsems) 573 return -EINVAL; 574 575 return 0; 576 } 577 578 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) 579 { 580 struct ipc_namespace *ns; 581 static const struct ipc_ops sem_ops = { 582 .getnew = newary, 583 .associate = sem_security, 584 .more_checks = sem_more_checks, 585 }; 586 struct ipc_params sem_params; 587 588 ns = current->nsproxy->ipc_ns; 589 590 if (nsems < 0 || nsems > ns->sc_semmsl) 591 return -EINVAL; 592 593 sem_params.key = key; 594 sem_params.flg = semflg; 595 sem_params.u.nsems = nsems; 596 597 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); 598 } 599 600 /** 601 * perform_atomic_semop - Perform (if possible) a semaphore operation 602 * @sma: semaphore array 603 * @q: struct sem_queue that describes the operation 604 * 605 * Returns 0 if the operation was possible. 606 * Returns 1 if the operation is impossible, the caller must sleep. 607 * Negative values are error codes. 608 */ 609 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q) 610 { 611 int result, sem_op, nsops, pid; 612 struct sembuf *sop; 613 struct sem *curr; 614 struct sembuf *sops; 615 struct sem_undo *un; 616 617 sops = q->sops; 618 nsops = q->nsops; 619 un = q->undo; 620 621 for (sop = sops; sop < sops + nsops; sop++) { 622 curr = sma->sem_base + sop->sem_num; 623 sem_op = sop->sem_op; 624 result = curr->semval; 625 626 if (!sem_op && result) 627 goto would_block; 628 629 result += sem_op; 630 if (result < 0) 631 goto would_block; 632 if (result > SEMVMX) 633 goto out_of_range; 634 635 if (sop->sem_flg & SEM_UNDO) { 636 int undo = un->semadj[sop->sem_num] - sem_op; 637 /* Exceeding the undo range is an error. */ 638 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 639 goto out_of_range; 640 un->semadj[sop->sem_num] = undo; 641 } 642 643 curr->semval = result; 644 } 645 646 sop--; 647 pid = q->pid; 648 while (sop >= sops) { 649 sma->sem_base[sop->sem_num].sempid = pid; 650 sop--; 651 } 652 653 return 0; 654 655 out_of_range: 656 result = -ERANGE; 657 goto undo; 658 659 would_block: 660 q->blocking = sop; 661 662 if (sop->sem_flg & IPC_NOWAIT) 663 result = -EAGAIN; 664 else 665 result = 1; 666 667 undo: 668 sop--; 669 while (sop >= sops) { 670 sem_op = sop->sem_op; 671 sma->sem_base[sop->sem_num].semval -= sem_op; 672 if (sop->sem_flg & SEM_UNDO) 673 un->semadj[sop->sem_num] += sem_op; 674 sop--; 675 } 676 677 return result; 678 } 679 680 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up 681 * @q: queue entry that must be signaled 682 * @error: Error value for the signal 683 * 684 * Prepare the wake-up of the queue entry q. 685 */ 686 static void wake_up_sem_queue_prepare(struct list_head *pt, 687 struct sem_queue *q, int error) 688 { 689 if (list_empty(pt)) { 690 /* 691 * Hold preempt off so that we don't get preempted and have the 692 * wakee busy-wait until we're scheduled back on. 693 */ 694 preempt_disable(); 695 } 696 q->status = IN_WAKEUP; 697 q->pid = error; 698 699 list_add_tail(&q->list, pt); 700 } 701 702 /** 703 * wake_up_sem_queue_do - do the actual wake-up 704 * @pt: list of tasks to be woken up 705 * 706 * Do the actual wake-up. 707 * The function is called without any locks held, thus the semaphore array 708 * could be destroyed already and the tasks can disappear as soon as the 709 * status is set to the actual return code. 710 */ 711 static void wake_up_sem_queue_do(struct list_head *pt) 712 { 713 struct sem_queue *q, *t; 714 int did_something; 715 716 did_something = !list_empty(pt); 717 list_for_each_entry_safe(q, t, pt, list) { 718 wake_up_process(q->sleeper); 719 /* q can disappear immediately after writing q->status. */ 720 smp_wmb(); 721 q->status = q->pid; 722 } 723 if (did_something) 724 preempt_enable(); 725 } 726 727 static void unlink_queue(struct sem_array *sma, struct sem_queue *q) 728 { 729 list_del(&q->list); 730 if (q->nsops > 1) 731 sma->complex_count--; 732 } 733 734 /** check_restart(sma, q) 735 * @sma: semaphore array 736 * @q: the operation that just completed 737 * 738 * update_queue is O(N^2) when it restarts scanning the whole queue of 739 * waiting operations. Therefore this function checks if the restart is 740 * really necessary. It is called after a previously waiting operation 741 * modified the array. 742 * Note that wait-for-zero operations are handled without restart. 743 */ 744 static int check_restart(struct sem_array *sma, struct sem_queue *q) 745 { 746 /* pending complex alter operations are too difficult to analyse */ 747 if (!list_empty(&sma->pending_alter)) 748 return 1; 749 750 /* we were a sleeping complex operation. Too difficult */ 751 if (q->nsops > 1) 752 return 1; 753 754 /* It is impossible that someone waits for the new value: 755 * - complex operations always restart. 756 * - wait-for-zero are handled seperately. 757 * - q is a previously sleeping simple operation that 758 * altered the array. It must be a decrement, because 759 * simple increments never sleep. 760 * - If there are older (higher priority) decrements 761 * in the queue, then they have observed the original 762 * semval value and couldn't proceed. The operation 763 * decremented to value - thus they won't proceed either. 764 */ 765 return 0; 766 } 767 768 /** 769 * wake_const_ops - wake up non-alter tasks 770 * @sma: semaphore array. 771 * @semnum: semaphore that was modified. 772 * @pt: list head for the tasks that must be woken up. 773 * 774 * wake_const_ops must be called after a semaphore in a semaphore array 775 * was set to 0. If complex const operations are pending, wake_const_ops must 776 * be called with semnum = -1, as well as with the number of each modified 777 * semaphore. 778 * The tasks that must be woken up are added to @pt. The return code 779 * is stored in q->pid. 780 * The function returns 1 if at least one operation was completed successfully. 781 */ 782 static int wake_const_ops(struct sem_array *sma, int semnum, 783 struct list_head *pt) 784 { 785 struct sem_queue *q; 786 struct list_head *walk; 787 struct list_head *pending_list; 788 int semop_completed = 0; 789 790 if (semnum == -1) 791 pending_list = &sma->pending_const; 792 else 793 pending_list = &sma->sem_base[semnum].pending_const; 794 795 walk = pending_list->next; 796 while (walk != pending_list) { 797 int error; 798 799 q = container_of(walk, struct sem_queue, list); 800 walk = walk->next; 801 802 error = perform_atomic_semop(sma, q); 803 804 if (error <= 0) { 805 /* operation completed, remove from queue & wakeup */ 806 807 unlink_queue(sma, q); 808 809 wake_up_sem_queue_prepare(pt, q, error); 810 if (error == 0) 811 semop_completed = 1; 812 } 813 } 814 return semop_completed; 815 } 816 817 /** 818 * do_smart_wakeup_zero - wakeup all wait for zero tasks 819 * @sma: semaphore array 820 * @sops: operations that were performed 821 * @nsops: number of operations 822 * @pt: list head of the tasks that must be woken up. 823 * 824 * Checks all required queue for wait-for-zero operations, based 825 * on the actual changes that were performed on the semaphore array. 826 * The function returns 1 if at least one operation was completed successfully. 827 */ 828 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops, 829 int nsops, struct list_head *pt) 830 { 831 int i; 832 int semop_completed = 0; 833 int got_zero = 0; 834 835 /* first: the per-semaphore queues, if known */ 836 if (sops) { 837 for (i = 0; i < nsops; i++) { 838 int num = sops[i].sem_num; 839 840 if (sma->sem_base[num].semval == 0) { 841 got_zero = 1; 842 semop_completed |= wake_const_ops(sma, num, pt); 843 } 844 } 845 } else { 846 /* 847 * No sops means modified semaphores not known. 848 * Assume all were changed. 849 */ 850 for (i = 0; i < sma->sem_nsems; i++) { 851 if (sma->sem_base[i].semval == 0) { 852 got_zero = 1; 853 semop_completed |= wake_const_ops(sma, i, pt); 854 } 855 } 856 } 857 /* 858 * If one of the modified semaphores got 0, 859 * then check the global queue, too. 860 */ 861 if (got_zero) 862 semop_completed |= wake_const_ops(sma, -1, pt); 863 864 return semop_completed; 865 } 866 867 868 /** 869 * update_queue - look for tasks that can be completed. 870 * @sma: semaphore array. 871 * @semnum: semaphore that was modified. 872 * @pt: list head for the tasks that must be woken up. 873 * 874 * update_queue must be called after a semaphore in a semaphore array 875 * was modified. If multiple semaphores were modified, update_queue must 876 * be called with semnum = -1, as well as with the number of each modified 877 * semaphore. 878 * The tasks that must be woken up are added to @pt. The return code 879 * is stored in q->pid. 880 * The function internally checks if const operations can now succeed. 881 * 882 * The function return 1 if at least one semop was completed successfully. 883 */ 884 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt) 885 { 886 struct sem_queue *q; 887 struct list_head *walk; 888 struct list_head *pending_list; 889 int semop_completed = 0; 890 891 if (semnum == -1) 892 pending_list = &sma->pending_alter; 893 else 894 pending_list = &sma->sem_base[semnum].pending_alter; 895 896 again: 897 walk = pending_list->next; 898 while (walk != pending_list) { 899 int error, restart; 900 901 q = container_of(walk, struct sem_queue, list); 902 walk = walk->next; 903 904 /* If we are scanning the single sop, per-semaphore list of 905 * one semaphore and that semaphore is 0, then it is not 906 * necessary to scan further: simple increments 907 * that affect only one entry succeed immediately and cannot 908 * be in the per semaphore pending queue, and decrements 909 * cannot be successful if the value is already 0. 910 */ 911 if (semnum != -1 && sma->sem_base[semnum].semval == 0) 912 break; 913 914 error = perform_atomic_semop(sma, q); 915 916 /* Does q->sleeper still need to sleep? */ 917 if (error > 0) 918 continue; 919 920 unlink_queue(sma, q); 921 922 if (error) { 923 restart = 0; 924 } else { 925 semop_completed = 1; 926 do_smart_wakeup_zero(sma, q->sops, q->nsops, pt); 927 restart = check_restart(sma, q); 928 } 929 930 wake_up_sem_queue_prepare(pt, q, error); 931 if (restart) 932 goto again; 933 } 934 return semop_completed; 935 } 936 937 /** 938 * set_semotime - set sem_otime 939 * @sma: semaphore array 940 * @sops: operations that modified the array, may be NULL 941 * 942 * sem_otime is replicated to avoid cache line trashing. 943 * This function sets one instance to the current time. 944 */ 945 static void set_semotime(struct sem_array *sma, struct sembuf *sops) 946 { 947 if (sops == NULL) { 948 sma->sem_base[0].sem_otime = get_seconds(); 949 } else { 950 sma->sem_base[sops[0].sem_num].sem_otime = 951 get_seconds(); 952 } 953 } 954 955 /** 956 * do_smart_update - optimized update_queue 957 * @sma: semaphore array 958 * @sops: operations that were performed 959 * @nsops: number of operations 960 * @otime: force setting otime 961 * @pt: list head of the tasks that must be woken up. 962 * 963 * do_smart_update() does the required calls to update_queue and wakeup_zero, 964 * based on the actual changes that were performed on the semaphore array. 965 * Note that the function does not do the actual wake-up: the caller is 966 * responsible for calling wake_up_sem_queue_do(@pt). 967 * It is safe to perform this call after dropping all locks. 968 */ 969 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, 970 int otime, struct list_head *pt) 971 { 972 int i; 973 974 otime |= do_smart_wakeup_zero(sma, sops, nsops, pt); 975 976 if (!list_empty(&sma->pending_alter)) { 977 /* semaphore array uses the global queue - just process it. */ 978 otime |= update_queue(sma, -1, pt); 979 } else { 980 if (!sops) { 981 /* 982 * No sops, thus the modified semaphores are not 983 * known. Check all. 984 */ 985 for (i = 0; i < sma->sem_nsems; i++) 986 otime |= update_queue(sma, i, pt); 987 } else { 988 /* 989 * Check the semaphores that were increased: 990 * - No complex ops, thus all sleeping ops are 991 * decrease. 992 * - if we decreased the value, then any sleeping 993 * semaphore ops wont be able to run: If the 994 * previous value was too small, then the new 995 * value will be too small, too. 996 */ 997 for (i = 0; i < nsops; i++) { 998 if (sops[i].sem_op > 0) { 999 otime |= update_queue(sma, 1000 sops[i].sem_num, pt); 1001 } 1002 } 1003 } 1004 } 1005 if (otime) 1006 set_semotime(sma, sops); 1007 } 1008 1009 /* 1010 * check_qop: Test if a queued operation sleeps on the semaphore semnum 1011 */ 1012 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q, 1013 bool count_zero) 1014 { 1015 struct sembuf *sop = q->blocking; 1016 1017 /* 1018 * Linux always (since 0.99.10) reported a task as sleeping on all 1019 * semaphores. This violates SUS, therefore it was changed to the 1020 * standard compliant behavior. 1021 * Give the administrators a chance to notice that an application 1022 * might misbehave because it relies on the Linux behavior. 1023 */ 1024 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n" 1025 "The task %s (%d) triggered the difference, watch for misbehavior.\n", 1026 current->comm, task_pid_nr(current)); 1027 1028 if (sop->sem_num != semnum) 1029 return 0; 1030 1031 if (count_zero && sop->sem_op == 0) 1032 return 1; 1033 if (!count_zero && sop->sem_op < 0) 1034 return 1; 1035 1036 return 0; 1037 } 1038 1039 /* The following counts are associated to each semaphore: 1040 * semncnt number of tasks waiting on semval being nonzero 1041 * semzcnt number of tasks waiting on semval being zero 1042 * 1043 * Per definition, a task waits only on the semaphore of the first semop 1044 * that cannot proceed, even if additional operation would block, too. 1045 */ 1046 static int count_semcnt(struct sem_array *sma, ushort semnum, 1047 bool count_zero) 1048 { 1049 struct list_head *l; 1050 struct sem_queue *q; 1051 int semcnt; 1052 1053 semcnt = 0; 1054 /* First: check the simple operations. They are easy to evaluate */ 1055 if (count_zero) 1056 l = &sma->sem_base[semnum].pending_const; 1057 else 1058 l = &sma->sem_base[semnum].pending_alter; 1059 1060 list_for_each_entry(q, l, list) { 1061 /* all task on a per-semaphore list sleep on exactly 1062 * that semaphore 1063 */ 1064 semcnt++; 1065 } 1066 1067 /* Then: check the complex operations. */ 1068 list_for_each_entry(q, &sma->pending_alter, list) { 1069 semcnt += check_qop(sma, semnum, q, count_zero); 1070 } 1071 if (count_zero) { 1072 list_for_each_entry(q, &sma->pending_const, list) { 1073 semcnt += check_qop(sma, semnum, q, count_zero); 1074 } 1075 } 1076 return semcnt; 1077 } 1078 1079 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked 1080 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem 1081 * remains locked on exit. 1082 */ 1083 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) 1084 { 1085 struct sem_undo *un, *tu; 1086 struct sem_queue *q, *tq; 1087 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 1088 struct list_head tasks; 1089 int i; 1090 1091 /* Free the existing undo structures for this semaphore set. */ 1092 ipc_assert_locked_object(&sma->sem_perm); 1093 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { 1094 list_del(&un->list_id); 1095 spin_lock(&un->ulp->lock); 1096 un->semid = -1; 1097 list_del_rcu(&un->list_proc); 1098 spin_unlock(&un->ulp->lock); 1099 kfree_rcu(un, rcu); 1100 } 1101 1102 /* Wake up all pending processes and let them fail with EIDRM. */ 1103 INIT_LIST_HEAD(&tasks); 1104 list_for_each_entry_safe(q, tq, &sma->pending_const, list) { 1105 unlink_queue(sma, q); 1106 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1107 } 1108 1109 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 1110 unlink_queue(sma, q); 1111 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1112 } 1113 for (i = 0; i < sma->sem_nsems; i++) { 1114 struct sem *sem = sma->sem_base + i; 1115 list_for_each_entry_safe(q, tq, &sem->pending_const, list) { 1116 unlink_queue(sma, q); 1117 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1118 } 1119 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) { 1120 unlink_queue(sma, q); 1121 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1122 } 1123 } 1124 1125 /* Remove the semaphore set from the IDR */ 1126 sem_rmid(ns, sma); 1127 sem_unlock(sma, -1); 1128 rcu_read_unlock(); 1129 1130 wake_up_sem_queue_do(&tasks); 1131 ns->used_sems -= sma->sem_nsems; 1132 ipc_rcu_putref(sma, sem_rcu_free); 1133 } 1134 1135 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) 1136 { 1137 switch (version) { 1138 case IPC_64: 1139 return copy_to_user(buf, in, sizeof(*in)); 1140 case IPC_OLD: 1141 { 1142 struct semid_ds out; 1143 1144 memset(&out, 0, sizeof(out)); 1145 1146 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); 1147 1148 out.sem_otime = in->sem_otime; 1149 out.sem_ctime = in->sem_ctime; 1150 out.sem_nsems = in->sem_nsems; 1151 1152 return copy_to_user(buf, &out, sizeof(out)); 1153 } 1154 default: 1155 return -EINVAL; 1156 } 1157 } 1158 1159 static time_t get_semotime(struct sem_array *sma) 1160 { 1161 int i; 1162 time_t res; 1163 1164 res = sma->sem_base[0].sem_otime; 1165 for (i = 1; i < sma->sem_nsems; i++) { 1166 time_t to = sma->sem_base[i].sem_otime; 1167 1168 if (to > res) 1169 res = to; 1170 } 1171 return res; 1172 } 1173 1174 static int semctl_nolock(struct ipc_namespace *ns, int semid, 1175 int cmd, int version, void __user *p) 1176 { 1177 int err; 1178 struct sem_array *sma; 1179 1180 switch (cmd) { 1181 case IPC_INFO: 1182 case SEM_INFO: 1183 { 1184 struct seminfo seminfo; 1185 int max_id; 1186 1187 err = security_sem_semctl(NULL, cmd); 1188 if (err) 1189 return err; 1190 1191 memset(&seminfo, 0, sizeof(seminfo)); 1192 seminfo.semmni = ns->sc_semmni; 1193 seminfo.semmns = ns->sc_semmns; 1194 seminfo.semmsl = ns->sc_semmsl; 1195 seminfo.semopm = ns->sc_semopm; 1196 seminfo.semvmx = SEMVMX; 1197 seminfo.semmnu = SEMMNU; 1198 seminfo.semmap = SEMMAP; 1199 seminfo.semume = SEMUME; 1200 down_read(&sem_ids(ns).rwsem); 1201 if (cmd == SEM_INFO) { 1202 seminfo.semusz = sem_ids(ns).in_use; 1203 seminfo.semaem = ns->used_sems; 1204 } else { 1205 seminfo.semusz = SEMUSZ; 1206 seminfo.semaem = SEMAEM; 1207 } 1208 max_id = ipc_get_maxid(&sem_ids(ns)); 1209 up_read(&sem_ids(ns).rwsem); 1210 if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) 1211 return -EFAULT; 1212 return (max_id < 0) ? 0 : max_id; 1213 } 1214 case IPC_STAT: 1215 case SEM_STAT: 1216 { 1217 struct semid64_ds tbuf; 1218 int id = 0; 1219 1220 memset(&tbuf, 0, sizeof(tbuf)); 1221 1222 rcu_read_lock(); 1223 if (cmd == SEM_STAT) { 1224 sma = sem_obtain_object(ns, semid); 1225 if (IS_ERR(sma)) { 1226 err = PTR_ERR(sma); 1227 goto out_unlock; 1228 } 1229 id = sma->sem_perm.id; 1230 } else { 1231 sma = sem_obtain_object_check(ns, semid); 1232 if (IS_ERR(sma)) { 1233 err = PTR_ERR(sma); 1234 goto out_unlock; 1235 } 1236 } 1237 1238 err = -EACCES; 1239 if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) 1240 goto out_unlock; 1241 1242 err = security_sem_semctl(sma, cmd); 1243 if (err) 1244 goto out_unlock; 1245 1246 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); 1247 tbuf.sem_otime = get_semotime(sma); 1248 tbuf.sem_ctime = sma->sem_ctime; 1249 tbuf.sem_nsems = sma->sem_nsems; 1250 rcu_read_unlock(); 1251 if (copy_semid_to_user(p, &tbuf, version)) 1252 return -EFAULT; 1253 return id; 1254 } 1255 default: 1256 return -EINVAL; 1257 } 1258 out_unlock: 1259 rcu_read_unlock(); 1260 return err; 1261 } 1262 1263 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, 1264 unsigned long arg) 1265 { 1266 struct sem_undo *un; 1267 struct sem_array *sma; 1268 struct sem *curr; 1269 int err; 1270 struct list_head tasks; 1271 int val; 1272 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) 1273 /* big-endian 64bit */ 1274 val = arg >> 32; 1275 #else 1276 /* 32bit or little-endian 64bit */ 1277 val = arg; 1278 #endif 1279 1280 if (val > SEMVMX || val < 0) 1281 return -ERANGE; 1282 1283 INIT_LIST_HEAD(&tasks); 1284 1285 rcu_read_lock(); 1286 sma = sem_obtain_object_check(ns, semid); 1287 if (IS_ERR(sma)) { 1288 rcu_read_unlock(); 1289 return PTR_ERR(sma); 1290 } 1291 1292 if (semnum < 0 || semnum >= sma->sem_nsems) { 1293 rcu_read_unlock(); 1294 return -EINVAL; 1295 } 1296 1297 1298 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) { 1299 rcu_read_unlock(); 1300 return -EACCES; 1301 } 1302 1303 err = security_sem_semctl(sma, SETVAL); 1304 if (err) { 1305 rcu_read_unlock(); 1306 return -EACCES; 1307 } 1308 1309 sem_lock(sma, NULL, -1); 1310 1311 if (!ipc_valid_object(&sma->sem_perm)) { 1312 sem_unlock(sma, -1); 1313 rcu_read_unlock(); 1314 return -EIDRM; 1315 } 1316 1317 curr = &sma->sem_base[semnum]; 1318 1319 ipc_assert_locked_object(&sma->sem_perm); 1320 list_for_each_entry(un, &sma->list_id, list_id) 1321 un->semadj[semnum] = 0; 1322 1323 curr->semval = val; 1324 curr->sempid = task_tgid_vnr(current); 1325 sma->sem_ctime = get_seconds(); 1326 /* maybe some queued-up processes were waiting for this */ 1327 do_smart_update(sma, NULL, 0, 0, &tasks); 1328 sem_unlock(sma, -1); 1329 rcu_read_unlock(); 1330 wake_up_sem_queue_do(&tasks); 1331 return 0; 1332 } 1333 1334 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, 1335 int cmd, void __user *p) 1336 { 1337 struct sem_array *sma; 1338 struct sem *curr; 1339 int err, nsems; 1340 ushort fast_sem_io[SEMMSL_FAST]; 1341 ushort *sem_io = fast_sem_io; 1342 struct list_head tasks; 1343 1344 INIT_LIST_HEAD(&tasks); 1345 1346 rcu_read_lock(); 1347 sma = sem_obtain_object_check(ns, semid); 1348 if (IS_ERR(sma)) { 1349 rcu_read_unlock(); 1350 return PTR_ERR(sma); 1351 } 1352 1353 nsems = sma->sem_nsems; 1354 1355 err = -EACCES; 1356 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO)) 1357 goto out_rcu_wakeup; 1358 1359 err = security_sem_semctl(sma, cmd); 1360 if (err) 1361 goto out_rcu_wakeup; 1362 1363 err = -EACCES; 1364 switch (cmd) { 1365 case GETALL: 1366 { 1367 ushort __user *array = p; 1368 int i; 1369 1370 sem_lock(sma, NULL, -1); 1371 if (!ipc_valid_object(&sma->sem_perm)) { 1372 err = -EIDRM; 1373 goto out_unlock; 1374 } 1375 if (nsems > SEMMSL_FAST) { 1376 if (!ipc_rcu_getref(sma)) { 1377 err = -EIDRM; 1378 goto out_unlock; 1379 } 1380 sem_unlock(sma, -1); 1381 rcu_read_unlock(); 1382 sem_io = ipc_alloc(sizeof(ushort)*nsems); 1383 if (sem_io == NULL) { 1384 ipc_rcu_putref(sma, sem_rcu_free); 1385 return -ENOMEM; 1386 } 1387 1388 rcu_read_lock(); 1389 sem_lock_and_putref(sma); 1390 if (!ipc_valid_object(&sma->sem_perm)) { 1391 err = -EIDRM; 1392 goto out_unlock; 1393 } 1394 } 1395 for (i = 0; i < sma->sem_nsems; i++) 1396 sem_io[i] = sma->sem_base[i].semval; 1397 sem_unlock(sma, -1); 1398 rcu_read_unlock(); 1399 err = 0; 1400 if (copy_to_user(array, sem_io, nsems*sizeof(ushort))) 1401 err = -EFAULT; 1402 goto out_free; 1403 } 1404 case SETALL: 1405 { 1406 int i; 1407 struct sem_undo *un; 1408 1409 if (!ipc_rcu_getref(sma)) { 1410 err = -EIDRM; 1411 goto out_rcu_wakeup; 1412 } 1413 rcu_read_unlock(); 1414 1415 if (nsems > SEMMSL_FAST) { 1416 sem_io = ipc_alloc(sizeof(ushort)*nsems); 1417 if (sem_io == NULL) { 1418 ipc_rcu_putref(sma, sem_rcu_free); 1419 return -ENOMEM; 1420 } 1421 } 1422 1423 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) { 1424 ipc_rcu_putref(sma, sem_rcu_free); 1425 err = -EFAULT; 1426 goto out_free; 1427 } 1428 1429 for (i = 0; i < nsems; i++) { 1430 if (sem_io[i] > SEMVMX) { 1431 ipc_rcu_putref(sma, sem_rcu_free); 1432 err = -ERANGE; 1433 goto out_free; 1434 } 1435 } 1436 rcu_read_lock(); 1437 sem_lock_and_putref(sma); 1438 if (!ipc_valid_object(&sma->sem_perm)) { 1439 err = -EIDRM; 1440 goto out_unlock; 1441 } 1442 1443 for (i = 0; i < nsems; i++) { 1444 sma->sem_base[i].semval = sem_io[i]; 1445 sma->sem_base[i].sempid = task_tgid_vnr(current); 1446 } 1447 1448 ipc_assert_locked_object(&sma->sem_perm); 1449 list_for_each_entry(un, &sma->list_id, list_id) { 1450 for (i = 0; i < nsems; i++) 1451 un->semadj[i] = 0; 1452 } 1453 sma->sem_ctime = get_seconds(); 1454 /* maybe some queued-up processes were waiting for this */ 1455 do_smart_update(sma, NULL, 0, 0, &tasks); 1456 err = 0; 1457 goto out_unlock; 1458 } 1459 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */ 1460 } 1461 err = -EINVAL; 1462 if (semnum < 0 || semnum >= nsems) 1463 goto out_rcu_wakeup; 1464 1465 sem_lock(sma, NULL, -1); 1466 if (!ipc_valid_object(&sma->sem_perm)) { 1467 err = -EIDRM; 1468 goto out_unlock; 1469 } 1470 curr = &sma->sem_base[semnum]; 1471 1472 switch (cmd) { 1473 case GETVAL: 1474 err = curr->semval; 1475 goto out_unlock; 1476 case GETPID: 1477 err = curr->sempid; 1478 goto out_unlock; 1479 case GETNCNT: 1480 err = count_semcnt(sma, semnum, 0); 1481 goto out_unlock; 1482 case GETZCNT: 1483 err = count_semcnt(sma, semnum, 1); 1484 goto out_unlock; 1485 } 1486 1487 out_unlock: 1488 sem_unlock(sma, -1); 1489 out_rcu_wakeup: 1490 rcu_read_unlock(); 1491 wake_up_sem_queue_do(&tasks); 1492 out_free: 1493 if (sem_io != fast_sem_io) 1494 ipc_free(sem_io); 1495 return err; 1496 } 1497 1498 static inline unsigned long 1499 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) 1500 { 1501 switch (version) { 1502 case IPC_64: 1503 if (copy_from_user(out, buf, sizeof(*out))) 1504 return -EFAULT; 1505 return 0; 1506 case IPC_OLD: 1507 { 1508 struct semid_ds tbuf_old; 1509 1510 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) 1511 return -EFAULT; 1512 1513 out->sem_perm.uid = tbuf_old.sem_perm.uid; 1514 out->sem_perm.gid = tbuf_old.sem_perm.gid; 1515 out->sem_perm.mode = tbuf_old.sem_perm.mode; 1516 1517 return 0; 1518 } 1519 default: 1520 return -EINVAL; 1521 } 1522 } 1523 1524 /* 1525 * This function handles some semctl commands which require the rwsem 1526 * to be held in write mode. 1527 * NOTE: no locks must be held, the rwsem is taken inside this function. 1528 */ 1529 static int semctl_down(struct ipc_namespace *ns, int semid, 1530 int cmd, int version, void __user *p) 1531 { 1532 struct sem_array *sma; 1533 int err; 1534 struct semid64_ds semid64; 1535 struct kern_ipc_perm *ipcp; 1536 1537 if (cmd == IPC_SET) { 1538 if (copy_semid_from_user(&semid64, p, version)) 1539 return -EFAULT; 1540 } 1541 1542 down_write(&sem_ids(ns).rwsem); 1543 rcu_read_lock(); 1544 1545 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd, 1546 &semid64.sem_perm, 0); 1547 if (IS_ERR(ipcp)) { 1548 err = PTR_ERR(ipcp); 1549 goto out_unlock1; 1550 } 1551 1552 sma = container_of(ipcp, struct sem_array, sem_perm); 1553 1554 err = security_sem_semctl(sma, cmd); 1555 if (err) 1556 goto out_unlock1; 1557 1558 switch (cmd) { 1559 case IPC_RMID: 1560 sem_lock(sma, NULL, -1); 1561 /* freeary unlocks the ipc object and rcu */ 1562 freeary(ns, ipcp); 1563 goto out_up; 1564 case IPC_SET: 1565 sem_lock(sma, NULL, -1); 1566 err = ipc_update_perm(&semid64.sem_perm, ipcp); 1567 if (err) 1568 goto out_unlock0; 1569 sma->sem_ctime = get_seconds(); 1570 break; 1571 default: 1572 err = -EINVAL; 1573 goto out_unlock1; 1574 } 1575 1576 out_unlock0: 1577 sem_unlock(sma, -1); 1578 out_unlock1: 1579 rcu_read_unlock(); 1580 out_up: 1581 up_write(&sem_ids(ns).rwsem); 1582 return err; 1583 } 1584 1585 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) 1586 { 1587 int version; 1588 struct ipc_namespace *ns; 1589 void __user *p = (void __user *)arg; 1590 1591 if (semid < 0) 1592 return -EINVAL; 1593 1594 version = ipc_parse_version(&cmd); 1595 ns = current->nsproxy->ipc_ns; 1596 1597 switch (cmd) { 1598 case IPC_INFO: 1599 case SEM_INFO: 1600 case IPC_STAT: 1601 case SEM_STAT: 1602 return semctl_nolock(ns, semid, cmd, version, p); 1603 case GETALL: 1604 case GETVAL: 1605 case GETPID: 1606 case GETNCNT: 1607 case GETZCNT: 1608 case SETALL: 1609 return semctl_main(ns, semid, semnum, cmd, p); 1610 case SETVAL: 1611 return semctl_setval(ns, semid, semnum, arg); 1612 case IPC_RMID: 1613 case IPC_SET: 1614 return semctl_down(ns, semid, cmd, version, p); 1615 default: 1616 return -EINVAL; 1617 } 1618 } 1619 1620 /* If the task doesn't already have a undo_list, then allocate one 1621 * here. We guarantee there is only one thread using this undo list, 1622 * and current is THE ONE 1623 * 1624 * If this allocation and assignment succeeds, but later 1625 * portions of this code fail, there is no need to free the sem_undo_list. 1626 * Just let it stay associated with the task, and it'll be freed later 1627 * at exit time. 1628 * 1629 * This can block, so callers must hold no locks. 1630 */ 1631 static inline int get_undo_list(struct sem_undo_list **undo_listp) 1632 { 1633 struct sem_undo_list *undo_list; 1634 1635 undo_list = current->sysvsem.undo_list; 1636 if (!undo_list) { 1637 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); 1638 if (undo_list == NULL) 1639 return -ENOMEM; 1640 spin_lock_init(&undo_list->lock); 1641 atomic_set(&undo_list->refcnt, 1); 1642 INIT_LIST_HEAD(&undo_list->list_proc); 1643 1644 current->sysvsem.undo_list = undo_list; 1645 } 1646 *undo_listp = undo_list; 1647 return 0; 1648 } 1649 1650 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) 1651 { 1652 struct sem_undo *un; 1653 1654 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) { 1655 if (un->semid == semid) 1656 return un; 1657 } 1658 return NULL; 1659 } 1660 1661 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) 1662 { 1663 struct sem_undo *un; 1664 1665 assert_spin_locked(&ulp->lock); 1666 1667 un = __lookup_undo(ulp, semid); 1668 if (un) { 1669 list_del_rcu(&un->list_proc); 1670 list_add_rcu(&un->list_proc, &ulp->list_proc); 1671 } 1672 return un; 1673 } 1674 1675 /** 1676 * find_alloc_undo - lookup (and if not present create) undo array 1677 * @ns: namespace 1678 * @semid: semaphore array id 1679 * 1680 * The function looks up (and if not present creates) the undo structure. 1681 * The size of the undo structure depends on the size of the semaphore 1682 * array, thus the alloc path is not that straightforward. 1683 * Lifetime-rules: sem_undo is rcu-protected, on success, the function 1684 * performs a rcu_read_lock(). 1685 */ 1686 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) 1687 { 1688 struct sem_array *sma; 1689 struct sem_undo_list *ulp; 1690 struct sem_undo *un, *new; 1691 int nsems, error; 1692 1693 error = get_undo_list(&ulp); 1694 if (error) 1695 return ERR_PTR(error); 1696 1697 rcu_read_lock(); 1698 spin_lock(&ulp->lock); 1699 un = lookup_undo(ulp, semid); 1700 spin_unlock(&ulp->lock); 1701 if (likely(un != NULL)) 1702 goto out; 1703 1704 /* no undo structure around - allocate one. */ 1705 /* step 1: figure out the size of the semaphore array */ 1706 sma = sem_obtain_object_check(ns, semid); 1707 if (IS_ERR(sma)) { 1708 rcu_read_unlock(); 1709 return ERR_CAST(sma); 1710 } 1711 1712 nsems = sma->sem_nsems; 1713 if (!ipc_rcu_getref(sma)) { 1714 rcu_read_unlock(); 1715 un = ERR_PTR(-EIDRM); 1716 goto out; 1717 } 1718 rcu_read_unlock(); 1719 1720 /* step 2: allocate new undo structure */ 1721 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); 1722 if (!new) { 1723 ipc_rcu_putref(sma, sem_rcu_free); 1724 return ERR_PTR(-ENOMEM); 1725 } 1726 1727 /* step 3: Acquire the lock on semaphore array */ 1728 rcu_read_lock(); 1729 sem_lock_and_putref(sma); 1730 if (!ipc_valid_object(&sma->sem_perm)) { 1731 sem_unlock(sma, -1); 1732 rcu_read_unlock(); 1733 kfree(new); 1734 un = ERR_PTR(-EIDRM); 1735 goto out; 1736 } 1737 spin_lock(&ulp->lock); 1738 1739 /* 1740 * step 4: check for races: did someone else allocate the undo struct? 1741 */ 1742 un = lookup_undo(ulp, semid); 1743 if (un) { 1744 kfree(new); 1745 goto success; 1746 } 1747 /* step 5: initialize & link new undo structure */ 1748 new->semadj = (short *) &new[1]; 1749 new->ulp = ulp; 1750 new->semid = semid; 1751 assert_spin_locked(&ulp->lock); 1752 list_add_rcu(&new->list_proc, &ulp->list_proc); 1753 ipc_assert_locked_object(&sma->sem_perm); 1754 list_add(&new->list_id, &sma->list_id); 1755 un = new; 1756 1757 success: 1758 spin_unlock(&ulp->lock); 1759 sem_unlock(sma, -1); 1760 out: 1761 return un; 1762 } 1763 1764 1765 /** 1766 * get_queue_result - retrieve the result code from sem_queue 1767 * @q: Pointer to queue structure 1768 * 1769 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in 1770 * q->status, then we must loop until the value is replaced with the final 1771 * value: This may happen if a task is woken up by an unrelated event (e.g. 1772 * signal) and in parallel the task is woken up by another task because it got 1773 * the requested semaphores. 1774 * 1775 * The function can be called with or without holding the semaphore spinlock. 1776 */ 1777 static int get_queue_result(struct sem_queue *q) 1778 { 1779 int error; 1780 1781 error = q->status; 1782 while (unlikely(error == IN_WAKEUP)) { 1783 cpu_relax(); 1784 error = q->status; 1785 } 1786 1787 return error; 1788 } 1789 1790 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, 1791 unsigned, nsops, const struct timespec __user *, timeout) 1792 { 1793 int error = -EINVAL; 1794 struct sem_array *sma; 1795 struct sembuf fast_sops[SEMOPM_FAST]; 1796 struct sembuf *sops = fast_sops, *sop; 1797 struct sem_undo *un; 1798 int undos = 0, alter = 0, max, locknum; 1799 struct sem_queue queue; 1800 unsigned long jiffies_left = 0; 1801 struct ipc_namespace *ns; 1802 struct list_head tasks; 1803 1804 ns = current->nsproxy->ipc_ns; 1805 1806 if (nsops < 1 || semid < 0) 1807 return -EINVAL; 1808 if (nsops > ns->sc_semopm) 1809 return -E2BIG; 1810 if (nsops > SEMOPM_FAST) { 1811 sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL); 1812 if (sops == NULL) 1813 return -ENOMEM; 1814 } 1815 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) { 1816 error = -EFAULT; 1817 goto out_free; 1818 } 1819 if (timeout) { 1820 struct timespec _timeout; 1821 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) { 1822 error = -EFAULT; 1823 goto out_free; 1824 } 1825 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 || 1826 _timeout.tv_nsec >= 1000000000L) { 1827 error = -EINVAL; 1828 goto out_free; 1829 } 1830 jiffies_left = timespec_to_jiffies(&_timeout); 1831 } 1832 max = 0; 1833 for (sop = sops; sop < sops + nsops; sop++) { 1834 if (sop->sem_num >= max) 1835 max = sop->sem_num; 1836 if (sop->sem_flg & SEM_UNDO) 1837 undos = 1; 1838 if (sop->sem_op != 0) 1839 alter = 1; 1840 } 1841 1842 INIT_LIST_HEAD(&tasks); 1843 1844 if (undos) { 1845 /* On success, find_alloc_undo takes the rcu_read_lock */ 1846 un = find_alloc_undo(ns, semid); 1847 if (IS_ERR(un)) { 1848 error = PTR_ERR(un); 1849 goto out_free; 1850 } 1851 } else { 1852 un = NULL; 1853 rcu_read_lock(); 1854 } 1855 1856 sma = sem_obtain_object_check(ns, semid); 1857 if (IS_ERR(sma)) { 1858 rcu_read_unlock(); 1859 error = PTR_ERR(sma); 1860 goto out_free; 1861 } 1862 1863 error = -EFBIG; 1864 if (max >= sma->sem_nsems) 1865 goto out_rcu_wakeup; 1866 1867 error = -EACCES; 1868 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) 1869 goto out_rcu_wakeup; 1870 1871 error = security_sem_semop(sma, sops, nsops, alter); 1872 if (error) 1873 goto out_rcu_wakeup; 1874 1875 error = -EIDRM; 1876 locknum = sem_lock(sma, sops, nsops); 1877 /* 1878 * We eventually might perform the following check in a lockless 1879 * fashion, considering ipc_valid_object() locking constraints. 1880 * If nsops == 1 and there is no contention for sem_perm.lock, then 1881 * only a per-semaphore lock is held and it's OK to proceed with the 1882 * check below. More details on the fine grained locking scheme 1883 * entangled here and why it's RMID race safe on comments at sem_lock() 1884 */ 1885 if (!ipc_valid_object(&sma->sem_perm)) 1886 goto out_unlock_free; 1887 /* 1888 * semid identifiers are not unique - find_alloc_undo may have 1889 * allocated an undo structure, it was invalidated by an RMID 1890 * and now a new array with received the same id. Check and fail. 1891 * This case can be detected checking un->semid. The existence of 1892 * "un" itself is guaranteed by rcu. 1893 */ 1894 if (un && un->semid == -1) 1895 goto out_unlock_free; 1896 1897 queue.sops = sops; 1898 queue.nsops = nsops; 1899 queue.undo = un; 1900 queue.pid = task_tgid_vnr(current); 1901 queue.alter = alter; 1902 1903 error = perform_atomic_semop(sma, &queue); 1904 if (error == 0) { 1905 /* If the operation was successful, then do 1906 * the required updates. 1907 */ 1908 if (alter) 1909 do_smart_update(sma, sops, nsops, 1, &tasks); 1910 else 1911 set_semotime(sma, sops); 1912 } 1913 if (error <= 0) 1914 goto out_unlock_free; 1915 1916 /* We need to sleep on this operation, so we put the current 1917 * task into the pending queue and go to sleep. 1918 */ 1919 1920 if (nsops == 1) { 1921 struct sem *curr; 1922 curr = &sma->sem_base[sops->sem_num]; 1923 1924 if (alter) { 1925 if (sma->complex_count) { 1926 list_add_tail(&queue.list, 1927 &sma->pending_alter); 1928 } else { 1929 1930 list_add_tail(&queue.list, 1931 &curr->pending_alter); 1932 } 1933 } else { 1934 list_add_tail(&queue.list, &curr->pending_const); 1935 } 1936 } else { 1937 if (!sma->complex_count) 1938 merge_queues(sma); 1939 1940 if (alter) 1941 list_add_tail(&queue.list, &sma->pending_alter); 1942 else 1943 list_add_tail(&queue.list, &sma->pending_const); 1944 1945 sma->complex_count++; 1946 } 1947 1948 queue.status = -EINTR; 1949 queue.sleeper = current; 1950 1951 sleep_again: 1952 __set_current_state(TASK_INTERRUPTIBLE); 1953 sem_unlock(sma, locknum); 1954 rcu_read_unlock(); 1955 1956 if (timeout) 1957 jiffies_left = schedule_timeout(jiffies_left); 1958 else 1959 schedule(); 1960 1961 error = get_queue_result(&queue); 1962 1963 if (error != -EINTR) { 1964 /* fast path: update_queue already obtained all requested 1965 * resources. 1966 * Perform a smp_mb(): User space could assume that semop() 1967 * is a memory barrier: Without the mb(), the cpu could 1968 * speculatively read in user space stale data that was 1969 * overwritten by the previous owner of the semaphore. 1970 */ 1971 smp_mb(); 1972 1973 goto out_free; 1974 } 1975 1976 rcu_read_lock(); 1977 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum); 1978 1979 /* 1980 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing. 1981 */ 1982 error = get_queue_result(&queue); 1983 1984 /* 1985 * Array removed? If yes, leave without sem_unlock(). 1986 */ 1987 if (IS_ERR(sma)) { 1988 rcu_read_unlock(); 1989 goto out_free; 1990 } 1991 1992 1993 /* 1994 * If queue.status != -EINTR we are woken up by another process. 1995 * Leave without unlink_queue(), but with sem_unlock(). 1996 */ 1997 if (error != -EINTR) 1998 goto out_unlock_free; 1999 2000 /* 2001 * If an interrupt occurred we have to clean up the queue 2002 */ 2003 if (timeout && jiffies_left == 0) 2004 error = -EAGAIN; 2005 2006 /* 2007 * If the wakeup was spurious, just retry 2008 */ 2009 if (error == -EINTR && !signal_pending(current)) 2010 goto sleep_again; 2011 2012 unlink_queue(sma, &queue); 2013 2014 out_unlock_free: 2015 sem_unlock(sma, locknum); 2016 out_rcu_wakeup: 2017 rcu_read_unlock(); 2018 wake_up_sem_queue_do(&tasks); 2019 out_free: 2020 if (sops != fast_sops) 2021 kfree(sops); 2022 return error; 2023 } 2024 2025 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, 2026 unsigned, nsops) 2027 { 2028 return sys_semtimedop(semid, tsops, nsops, NULL); 2029 } 2030 2031 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between 2032 * parent and child tasks. 2033 */ 2034 2035 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) 2036 { 2037 struct sem_undo_list *undo_list; 2038 int error; 2039 2040 if (clone_flags & CLONE_SYSVSEM) { 2041 error = get_undo_list(&undo_list); 2042 if (error) 2043 return error; 2044 atomic_inc(&undo_list->refcnt); 2045 tsk->sysvsem.undo_list = undo_list; 2046 } else 2047 tsk->sysvsem.undo_list = NULL; 2048 2049 return 0; 2050 } 2051 2052 /* 2053 * add semadj values to semaphores, free undo structures. 2054 * undo structures are not freed when semaphore arrays are destroyed 2055 * so some of them may be out of date. 2056 * IMPLEMENTATION NOTE: There is some confusion over whether the 2057 * set of adjustments that needs to be done should be done in an atomic 2058 * manner or not. That is, if we are attempting to decrement the semval 2059 * should we queue up and wait until we can do so legally? 2060 * The original implementation attempted to do this (queue and wait). 2061 * The current implementation does not do so. The POSIX standard 2062 * and SVID should be consulted to determine what behavior is mandated. 2063 */ 2064 void exit_sem(struct task_struct *tsk) 2065 { 2066 struct sem_undo_list *ulp; 2067 2068 ulp = tsk->sysvsem.undo_list; 2069 if (!ulp) 2070 return; 2071 tsk->sysvsem.undo_list = NULL; 2072 2073 if (!atomic_dec_and_test(&ulp->refcnt)) 2074 return; 2075 2076 for (;;) { 2077 struct sem_array *sma; 2078 struct sem_undo *un; 2079 struct list_head tasks; 2080 int semid, i; 2081 2082 rcu_read_lock(); 2083 un = list_entry_rcu(ulp->list_proc.next, 2084 struct sem_undo, list_proc); 2085 if (&un->list_proc == &ulp->list_proc) { 2086 /* 2087 * We must wait for freeary() before freeing this ulp, 2088 * in case we raced with last sem_undo. There is a small 2089 * possibility where we exit while freeary() didn't 2090 * finish unlocking sem_undo_list. 2091 */ 2092 spin_unlock_wait(&ulp->lock); 2093 rcu_read_unlock(); 2094 break; 2095 } 2096 spin_lock(&ulp->lock); 2097 semid = un->semid; 2098 spin_unlock(&ulp->lock); 2099 2100 /* exit_sem raced with IPC_RMID, nothing to do */ 2101 if (semid == -1) { 2102 rcu_read_unlock(); 2103 continue; 2104 } 2105 2106 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid); 2107 /* exit_sem raced with IPC_RMID, nothing to do */ 2108 if (IS_ERR(sma)) { 2109 rcu_read_unlock(); 2110 continue; 2111 } 2112 2113 sem_lock(sma, NULL, -1); 2114 /* exit_sem raced with IPC_RMID, nothing to do */ 2115 if (!ipc_valid_object(&sma->sem_perm)) { 2116 sem_unlock(sma, -1); 2117 rcu_read_unlock(); 2118 continue; 2119 } 2120 un = __lookup_undo(ulp, semid); 2121 if (un == NULL) { 2122 /* exit_sem raced with IPC_RMID+semget() that created 2123 * exactly the same semid. Nothing to do. 2124 */ 2125 sem_unlock(sma, -1); 2126 rcu_read_unlock(); 2127 continue; 2128 } 2129 2130 /* remove un from the linked lists */ 2131 ipc_assert_locked_object(&sma->sem_perm); 2132 list_del(&un->list_id); 2133 2134 /* we are the last process using this ulp, acquiring ulp->lock 2135 * isn't required. Besides that, we are also protected against 2136 * IPC_RMID as we hold sma->sem_perm lock now 2137 */ 2138 list_del_rcu(&un->list_proc); 2139 2140 /* perform adjustments registered in un */ 2141 for (i = 0; i < sma->sem_nsems; i++) { 2142 struct sem *semaphore = &sma->sem_base[i]; 2143 if (un->semadj[i]) { 2144 semaphore->semval += un->semadj[i]; 2145 /* 2146 * Range checks of the new semaphore value, 2147 * not defined by sus: 2148 * - Some unices ignore the undo entirely 2149 * (e.g. HP UX 11i 11.22, Tru64 V5.1) 2150 * - some cap the value (e.g. FreeBSD caps 2151 * at 0, but doesn't enforce SEMVMX) 2152 * 2153 * Linux caps the semaphore value, both at 0 2154 * and at SEMVMX. 2155 * 2156 * Manfred <manfred@colorfullife.com> 2157 */ 2158 if (semaphore->semval < 0) 2159 semaphore->semval = 0; 2160 if (semaphore->semval > SEMVMX) 2161 semaphore->semval = SEMVMX; 2162 semaphore->sempid = task_tgid_vnr(current); 2163 } 2164 } 2165 /* maybe some queued-up processes were waiting for this */ 2166 INIT_LIST_HEAD(&tasks); 2167 do_smart_update(sma, NULL, 0, 1, &tasks); 2168 sem_unlock(sma, -1); 2169 rcu_read_unlock(); 2170 wake_up_sem_queue_do(&tasks); 2171 2172 kfree_rcu(un, rcu); 2173 } 2174 kfree(ulp); 2175 } 2176 2177 #ifdef CONFIG_PROC_FS 2178 static int sysvipc_sem_proc_show(struct seq_file *s, void *it) 2179 { 2180 struct user_namespace *user_ns = seq_user_ns(s); 2181 struct sem_array *sma = it; 2182 time_t sem_otime; 2183 2184 /* 2185 * The proc interface isn't aware of sem_lock(), it calls 2186 * ipc_lock_object() directly (in sysvipc_find_ipc). 2187 * In order to stay compatible with sem_lock(), we must wait until 2188 * all simple semop() calls have left their critical regions. 2189 */ 2190 sem_wait_array(sma); 2191 2192 sem_otime = get_semotime(sma); 2193 2194 seq_printf(s, 2195 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n", 2196 sma->sem_perm.key, 2197 sma->sem_perm.id, 2198 sma->sem_perm.mode, 2199 sma->sem_nsems, 2200 from_kuid_munged(user_ns, sma->sem_perm.uid), 2201 from_kgid_munged(user_ns, sma->sem_perm.gid), 2202 from_kuid_munged(user_ns, sma->sem_perm.cuid), 2203 from_kgid_munged(user_ns, sma->sem_perm.cgid), 2204 sem_otime, 2205 sma->sem_ctime); 2206 2207 return 0; 2208 } 2209 #endif 2210