xref: /openbmc/linux/ipc/sem.c (revision f5b06569)
1 /*
2  * linux/ipc/sem.c
3  * Copyright (C) 1992 Krishna Balasubramanian
4  * Copyright (C) 1995 Eric Schenk, Bruno Haible
5  *
6  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7  *
8  * SMP-threaded, sysctl's added
9  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10  * Enforced range limit on SEM_UNDO
11  * (c) 2001 Red Hat Inc
12  * Lockless wakeup
13  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14  * Further wakeup optimizations, documentation
15  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
16  *
17  * support for audit of ipc object properties and permission changes
18  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
19  *
20  * namespaces support
21  * OpenVZ, SWsoft Inc.
22  * Pavel Emelianov <xemul@openvz.org>
23  *
24  * Implementation notes: (May 2010)
25  * This file implements System V semaphores.
26  *
27  * User space visible behavior:
28  * - FIFO ordering for semop() operations (just FIFO, not starvation
29  *   protection)
30  * - multiple semaphore operations that alter the same semaphore in
31  *   one semop() are handled.
32  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33  *   SETALL calls.
34  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35  * - undo adjustments at process exit are limited to 0..SEMVMX.
36  * - namespace are supported.
37  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38  *   to /proc/sys/kernel/sem.
39  * - statistics about the usage are reported in /proc/sysvipc/sem.
40  *
41  * Internals:
42  * - scalability:
43  *   - all global variables are read-mostly.
44  *   - semop() calls and semctl(RMID) are synchronized by RCU.
45  *   - most operations do write operations (actually: spin_lock calls) to
46  *     the per-semaphore array structure.
47  *   Thus: Perfect SMP scaling between independent semaphore arrays.
48  *         If multiple semaphores in one array are used, then cache line
49  *         trashing on the semaphore array spinlock will limit the scaling.
50  * - semncnt and semzcnt are calculated on demand in count_semcnt()
51  * - the task that performs a successful semop() scans the list of all
52  *   sleeping tasks and completes any pending operations that can be fulfilled.
53  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
54  *   (see update_queue())
55  * - To improve the scalability, the actual wake-up calls are performed after
56  *   dropping all locks. (see wake_up_sem_queue_prepare(),
57  *   wake_up_sem_queue_do())
58  * - All work is done by the waker, the woken up task does not have to do
59  *   anything - not even acquiring a lock or dropping a refcount.
60  * - A woken up task may not even touch the semaphore array anymore, it may
61  *   have been destroyed already by a semctl(RMID).
62  * - The synchronizations between wake-ups due to a timeout/signal and a
63  *   wake-up due to a completed semaphore operation is achieved by using an
64  *   intermediate state (IN_WAKEUP).
65  * - UNDO values are stored in an array (one per process and per
66  *   semaphore array, lazily allocated). For backwards compatibility, multiple
67  *   modes for the UNDO variables are supported (per process, per thread)
68  *   (see copy_semundo, CLONE_SYSVSEM)
69  * - There are two lists of the pending operations: a per-array list
70  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
71  *   ordering without always scanning all pending operations.
72  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
73  */
74 
75 #include <linux/slab.h>
76 #include <linux/spinlock.h>
77 #include <linux/init.h>
78 #include <linux/proc_fs.h>
79 #include <linux/time.h>
80 #include <linux/security.h>
81 #include <linux/syscalls.h>
82 #include <linux/audit.h>
83 #include <linux/capability.h>
84 #include <linux/seq_file.h>
85 #include <linux/rwsem.h>
86 #include <linux/nsproxy.h>
87 #include <linux/ipc_namespace.h>
88 
89 #include <linux/uaccess.h>
90 #include "util.h"
91 
92 /* One semaphore structure for each semaphore in the system. */
93 struct sem {
94 	int	semval;		/* current value */
95 	/*
96 	 * PID of the process that last modified the semaphore. For
97 	 * Linux, specifically these are:
98 	 *  - semop
99 	 *  - semctl, via SETVAL and SETALL.
100 	 *  - at task exit when performing undo adjustments (see exit_sem).
101 	 */
102 	int	sempid;
103 	spinlock_t	lock;	/* spinlock for fine-grained semtimedop */
104 	struct list_head pending_alter; /* pending single-sop operations */
105 					/* that alter the semaphore */
106 	struct list_head pending_const; /* pending single-sop operations */
107 					/* that do not alter the semaphore*/
108 	time_t	sem_otime;	/* candidate for sem_otime */
109 } ____cacheline_aligned_in_smp;
110 
111 /* One queue for each sleeping process in the system. */
112 struct sem_queue {
113 	struct list_head	list;	 /* queue of pending operations */
114 	struct task_struct	*sleeper; /* this process */
115 	struct sem_undo		*undo;	 /* undo structure */
116 	int			pid;	 /* process id of requesting process */
117 	int			status;	 /* completion status of operation */
118 	struct sembuf		*sops;	 /* array of pending operations */
119 	struct sembuf		*blocking; /* the operation that blocked */
120 	int			nsops;	 /* number of operations */
121 	int			alter;	 /* does *sops alter the array? */
122 };
123 
124 /* Each task has a list of undo requests. They are executed automatically
125  * when the process exits.
126  */
127 struct sem_undo {
128 	struct list_head	list_proc;	/* per-process list: *
129 						 * all undos from one process
130 						 * rcu protected */
131 	struct rcu_head		rcu;		/* rcu struct for sem_undo */
132 	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
133 	struct list_head	list_id;	/* per semaphore array list:
134 						 * all undos for one array */
135 	int			semid;		/* semaphore set identifier */
136 	short			*semadj;	/* array of adjustments */
137 						/* one per semaphore */
138 };
139 
140 /* sem_undo_list controls shared access to the list of sem_undo structures
141  * that may be shared among all a CLONE_SYSVSEM task group.
142  */
143 struct sem_undo_list {
144 	atomic_t		refcnt;
145 	spinlock_t		lock;
146 	struct list_head	list_proc;
147 };
148 
149 
150 #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
151 
152 #define sem_checkid(sma, semid)	ipc_checkid(&sma->sem_perm, semid)
153 
154 static int newary(struct ipc_namespace *, struct ipc_params *);
155 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
156 #ifdef CONFIG_PROC_FS
157 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
158 #endif
159 
160 #define SEMMSL_FAST	256 /* 512 bytes on stack */
161 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
162 
163 /*
164  * Locking:
165  *	sem_undo.id_next,
166  *	sem_array.complex_count,
167  *	sem_array.pending{_alter,_cont},
168  *	sem_array.sem_undo: global sem_lock() for read/write
169  *	sem_undo.proc_next: only "current" is allowed to read/write that field.
170  *
171  *	sem_array.sem_base[i].pending_{const,alter}:
172  *		global or semaphore sem_lock() for read/write
173  */
174 
175 #define sc_semmsl	sem_ctls[0]
176 #define sc_semmns	sem_ctls[1]
177 #define sc_semopm	sem_ctls[2]
178 #define sc_semmni	sem_ctls[3]
179 
180 void sem_init_ns(struct ipc_namespace *ns)
181 {
182 	ns->sc_semmsl = SEMMSL;
183 	ns->sc_semmns = SEMMNS;
184 	ns->sc_semopm = SEMOPM;
185 	ns->sc_semmni = SEMMNI;
186 	ns->used_sems = 0;
187 	ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
188 }
189 
190 #ifdef CONFIG_IPC_NS
191 void sem_exit_ns(struct ipc_namespace *ns)
192 {
193 	free_ipcs(ns, &sem_ids(ns), freeary);
194 	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
195 }
196 #endif
197 
198 void __init sem_init(void)
199 {
200 	sem_init_ns(&init_ipc_ns);
201 	ipc_init_proc_interface("sysvipc/sem",
202 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
203 				IPC_SEM_IDS, sysvipc_sem_proc_show);
204 }
205 
206 /**
207  * unmerge_queues - unmerge queues, if possible.
208  * @sma: semaphore array
209  *
210  * The function unmerges the wait queues if complex_count is 0.
211  * It must be called prior to dropping the global semaphore array lock.
212  */
213 static void unmerge_queues(struct sem_array *sma)
214 {
215 	struct sem_queue *q, *tq;
216 
217 	/* complex operations still around? */
218 	if (sma->complex_count)
219 		return;
220 	/*
221 	 * We will switch back to simple mode.
222 	 * Move all pending operation back into the per-semaphore
223 	 * queues.
224 	 */
225 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
226 		struct sem *curr;
227 		curr = &sma->sem_base[q->sops[0].sem_num];
228 
229 		list_add_tail(&q->list, &curr->pending_alter);
230 	}
231 	INIT_LIST_HEAD(&sma->pending_alter);
232 }
233 
234 /**
235  * merge_queues - merge single semop queues into global queue
236  * @sma: semaphore array
237  *
238  * This function merges all per-semaphore queues into the global queue.
239  * It is necessary to achieve FIFO ordering for the pending single-sop
240  * operations when a multi-semop operation must sleep.
241  * Only the alter operations must be moved, the const operations can stay.
242  */
243 static void merge_queues(struct sem_array *sma)
244 {
245 	int i;
246 	for (i = 0; i < sma->sem_nsems; i++) {
247 		struct sem *sem = sma->sem_base + i;
248 
249 		list_splice_init(&sem->pending_alter, &sma->pending_alter);
250 	}
251 }
252 
253 static void sem_rcu_free(struct rcu_head *head)
254 {
255 	struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
256 	struct sem_array *sma = ipc_rcu_to_struct(p);
257 
258 	security_sem_free(sma);
259 	ipc_rcu_free(head);
260 }
261 
262 /*
263  * Wait until all currently ongoing simple ops have completed.
264  * Caller must own sem_perm.lock.
265  * New simple ops cannot start, because simple ops first check
266  * that sem_perm.lock is free.
267  * that a) sem_perm.lock is free and b) complex_count is 0.
268  */
269 static void sem_wait_array(struct sem_array *sma)
270 {
271 	int i;
272 	struct sem *sem;
273 
274 	if (sma->complex_count)  {
275 		/* The thread that increased sma->complex_count waited on
276 		 * all sem->lock locks. Thus we don't need to wait again.
277 		 */
278 		return;
279 	}
280 
281 	for (i = 0; i < sma->sem_nsems; i++) {
282 		sem = sma->sem_base + i;
283 		spin_unlock_wait(&sem->lock);
284 	}
285 }
286 
287 /*
288  * If the request contains only one semaphore operation, and there are
289  * no complex transactions pending, lock only the semaphore involved.
290  * Otherwise, lock the entire semaphore array, since we either have
291  * multiple semaphores in our own semops, or we need to look at
292  * semaphores from other pending complex operations.
293  */
294 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
295 			      int nsops)
296 {
297 	struct sem *sem;
298 
299 	if (nsops != 1) {
300 		/* Complex operation - acquire a full lock */
301 		ipc_lock_object(&sma->sem_perm);
302 
303 		/* And wait until all simple ops that are processed
304 		 * right now have dropped their locks.
305 		 */
306 		sem_wait_array(sma);
307 		return -1;
308 	}
309 
310 	/*
311 	 * Only one semaphore affected - try to optimize locking.
312 	 * The rules are:
313 	 * - optimized locking is possible if no complex operation
314 	 *   is either enqueued or processed right now.
315 	 * - The test for enqueued complex ops is simple:
316 	 *      sma->complex_count != 0
317 	 * - Testing for complex ops that are processed right now is
318 	 *   a bit more difficult. Complex ops acquire the full lock
319 	 *   and first wait that the running simple ops have completed.
320 	 *   (see above)
321 	 *   Thus: If we own a simple lock and the global lock is free
322 	 *	and complex_count is now 0, then it will stay 0 and
323 	 *	thus just locking sem->lock is sufficient.
324 	 */
325 	sem = sma->sem_base + sops->sem_num;
326 
327 	if (sma->complex_count == 0) {
328 		/*
329 		 * It appears that no complex operation is around.
330 		 * Acquire the per-semaphore lock.
331 		 */
332 		spin_lock(&sem->lock);
333 
334 		/* Then check that the global lock is free */
335 		if (!spin_is_locked(&sma->sem_perm.lock)) {
336 			/*
337 			 * We need a memory barrier with acquire semantics,
338 			 * otherwise we can race with another thread that does:
339 			 *	complex_count++;
340 			 *	spin_unlock(sem_perm.lock);
341 			 */
342 			smp_acquire__after_ctrl_dep();
343 
344 			/*
345 			 * Now repeat the test of complex_count:
346 			 * It can't change anymore until we drop sem->lock.
347 			 * Thus: if is now 0, then it will stay 0.
348 			 */
349 			if (sma->complex_count == 0) {
350 				/* fast path successful! */
351 				return sops->sem_num;
352 			}
353 		}
354 		spin_unlock(&sem->lock);
355 	}
356 
357 	/* slow path: acquire the full lock */
358 	ipc_lock_object(&sma->sem_perm);
359 
360 	if (sma->complex_count == 0) {
361 		/* False alarm:
362 		 * There is no complex operation, thus we can switch
363 		 * back to the fast path.
364 		 */
365 		spin_lock(&sem->lock);
366 		ipc_unlock_object(&sma->sem_perm);
367 		return sops->sem_num;
368 	} else {
369 		/* Not a false alarm, thus complete the sequence for a
370 		 * full lock.
371 		 */
372 		sem_wait_array(sma);
373 		return -1;
374 	}
375 }
376 
377 static inline void sem_unlock(struct sem_array *sma, int locknum)
378 {
379 	if (locknum == -1) {
380 		unmerge_queues(sma);
381 		ipc_unlock_object(&sma->sem_perm);
382 	} else {
383 		struct sem *sem = sma->sem_base + locknum;
384 		spin_unlock(&sem->lock);
385 	}
386 }
387 
388 /*
389  * sem_lock_(check_) routines are called in the paths where the rwsem
390  * is not held.
391  *
392  * The caller holds the RCU read lock.
393  */
394 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
395 			int id, struct sembuf *sops, int nsops, int *locknum)
396 {
397 	struct kern_ipc_perm *ipcp;
398 	struct sem_array *sma;
399 
400 	ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
401 	if (IS_ERR(ipcp))
402 		return ERR_CAST(ipcp);
403 
404 	sma = container_of(ipcp, struct sem_array, sem_perm);
405 	*locknum = sem_lock(sma, sops, nsops);
406 
407 	/* ipc_rmid() may have already freed the ID while sem_lock
408 	 * was spinning: verify that the structure is still valid
409 	 */
410 	if (ipc_valid_object(ipcp))
411 		return container_of(ipcp, struct sem_array, sem_perm);
412 
413 	sem_unlock(sma, *locknum);
414 	return ERR_PTR(-EINVAL);
415 }
416 
417 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
418 {
419 	struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
420 
421 	if (IS_ERR(ipcp))
422 		return ERR_CAST(ipcp);
423 
424 	return container_of(ipcp, struct sem_array, sem_perm);
425 }
426 
427 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
428 							int id)
429 {
430 	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
431 
432 	if (IS_ERR(ipcp))
433 		return ERR_CAST(ipcp);
434 
435 	return container_of(ipcp, struct sem_array, sem_perm);
436 }
437 
438 static inline void sem_lock_and_putref(struct sem_array *sma)
439 {
440 	sem_lock(sma, NULL, -1);
441 	ipc_rcu_putref(sma, sem_rcu_free);
442 }
443 
444 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
445 {
446 	ipc_rmid(&sem_ids(ns), &s->sem_perm);
447 }
448 
449 /*
450  * Lockless wakeup algorithm:
451  * Without the check/retry algorithm a lockless wakeup is possible:
452  * - queue.status is initialized to -EINTR before blocking.
453  * - wakeup is performed by
454  *	* unlinking the queue entry from the pending list
455  *	* setting queue.status to IN_WAKEUP
456  *	  This is the notification for the blocked thread that a
457  *	  result value is imminent.
458  *	* call wake_up_process
459  *	* set queue.status to the final value.
460  * - the previously blocked thread checks queue.status:
461  *	* if it's IN_WAKEUP, then it must wait until the value changes
462  *	* if it's not -EINTR, then the operation was completed by
463  *	  update_queue. semtimedop can return queue.status without
464  *	  performing any operation on the sem array.
465  *	* otherwise it must acquire the spinlock and check what's up.
466  *
467  * The two-stage algorithm is necessary to protect against the following
468  * races:
469  * - if queue.status is set after wake_up_process, then the woken up idle
470  *   thread could race forward and try (and fail) to acquire sma->lock
471  *   before update_queue had a chance to set queue.status
472  * - if queue.status is written before wake_up_process and if the
473  *   blocked process is woken up by a signal between writing
474  *   queue.status and the wake_up_process, then the woken up
475  *   process could return from semtimedop and die by calling
476  *   sys_exit before wake_up_process is called. Then wake_up_process
477  *   will oops, because the task structure is already invalid.
478  *   (yes, this happened on s390 with sysv msg).
479  *
480  */
481 #define IN_WAKEUP	1
482 
483 /**
484  * newary - Create a new semaphore set
485  * @ns: namespace
486  * @params: ptr to the structure that contains key, semflg and nsems
487  *
488  * Called with sem_ids.rwsem held (as a writer)
489  */
490 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
491 {
492 	int id;
493 	int retval;
494 	struct sem_array *sma;
495 	int size;
496 	key_t key = params->key;
497 	int nsems = params->u.nsems;
498 	int semflg = params->flg;
499 	int i;
500 
501 	if (!nsems)
502 		return -EINVAL;
503 	if (ns->used_sems + nsems > ns->sc_semmns)
504 		return -ENOSPC;
505 
506 	size = sizeof(*sma) + nsems * sizeof(struct sem);
507 	sma = ipc_rcu_alloc(size);
508 	if (!sma)
509 		return -ENOMEM;
510 
511 	memset(sma, 0, size);
512 
513 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
514 	sma->sem_perm.key = key;
515 
516 	sma->sem_perm.security = NULL;
517 	retval = security_sem_alloc(sma);
518 	if (retval) {
519 		ipc_rcu_putref(sma, ipc_rcu_free);
520 		return retval;
521 	}
522 
523 	sma->sem_base = (struct sem *) &sma[1];
524 
525 	for (i = 0; i < nsems; i++) {
526 		INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
527 		INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
528 		spin_lock_init(&sma->sem_base[i].lock);
529 	}
530 
531 	sma->complex_count = 0;
532 	INIT_LIST_HEAD(&sma->pending_alter);
533 	INIT_LIST_HEAD(&sma->pending_const);
534 	INIT_LIST_HEAD(&sma->list_id);
535 	sma->sem_nsems = nsems;
536 	sma->sem_ctime = get_seconds();
537 
538 	id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
539 	if (id < 0) {
540 		ipc_rcu_putref(sma, sem_rcu_free);
541 		return id;
542 	}
543 	ns->used_sems += nsems;
544 
545 	sem_unlock(sma, -1);
546 	rcu_read_unlock();
547 
548 	return sma->sem_perm.id;
549 }
550 
551 
552 /*
553  * Called with sem_ids.rwsem and ipcp locked.
554  */
555 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
556 {
557 	struct sem_array *sma;
558 
559 	sma = container_of(ipcp, struct sem_array, sem_perm);
560 	return security_sem_associate(sma, semflg);
561 }
562 
563 /*
564  * Called with sem_ids.rwsem and ipcp locked.
565  */
566 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
567 				struct ipc_params *params)
568 {
569 	struct sem_array *sma;
570 
571 	sma = container_of(ipcp, struct sem_array, sem_perm);
572 	if (params->u.nsems > sma->sem_nsems)
573 		return -EINVAL;
574 
575 	return 0;
576 }
577 
578 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
579 {
580 	struct ipc_namespace *ns;
581 	static const struct ipc_ops sem_ops = {
582 		.getnew = newary,
583 		.associate = sem_security,
584 		.more_checks = sem_more_checks,
585 	};
586 	struct ipc_params sem_params;
587 
588 	ns = current->nsproxy->ipc_ns;
589 
590 	if (nsems < 0 || nsems > ns->sc_semmsl)
591 		return -EINVAL;
592 
593 	sem_params.key = key;
594 	sem_params.flg = semflg;
595 	sem_params.u.nsems = nsems;
596 
597 	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
598 }
599 
600 /**
601  * perform_atomic_semop - Perform (if possible) a semaphore operation
602  * @sma: semaphore array
603  * @q: struct sem_queue that describes the operation
604  *
605  * Returns 0 if the operation was possible.
606  * Returns 1 if the operation is impossible, the caller must sleep.
607  * Negative values are error codes.
608  */
609 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
610 {
611 	int result, sem_op, nsops, pid;
612 	struct sembuf *sop;
613 	struct sem *curr;
614 	struct sembuf *sops;
615 	struct sem_undo *un;
616 
617 	sops = q->sops;
618 	nsops = q->nsops;
619 	un = q->undo;
620 
621 	for (sop = sops; sop < sops + nsops; sop++) {
622 		curr = sma->sem_base + sop->sem_num;
623 		sem_op = sop->sem_op;
624 		result = curr->semval;
625 
626 		if (!sem_op && result)
627 			goto would_block;
628 
629 		result += sem_op;
630 		if (result < 0)
631 			goto would_block;
632 		if (result > SEMVMX)
633 			goto out_of_range;
634 
635 		if (sop->sem_flg & SEM_UNDO) {
636 			int undo = un->semadj[sop->sem_num] - sem_op;
637 			/* Exceeding the undo range is an error. */
638 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
639 				goto out_of_range;
640 			un->semadj[sop->sem_num] = undo;
641 		}
642 
643 		curr->semval = result;
644 	}
645 
646 	sop--;
647 	pid = q->pid;
648 	while (sop >= sops) {
649 		sma->sem_base[sop->sem_num].sempid = pid;
650 		sop--;
651 	}
652 
653 	return 0;
654 
655 out_of_range:
656 	result = -ERANGE;
657 	goto undo;
658 
659 would_block:
660 	q->blocking = sop;
661 
662 	if (sop->sem_flg & IPC_NOWAIT)
663 		result = -EAGAIN;
664 	else
665 		result = 1;
666 
667 undo:
668 	sop--;
669 	while (sop >= sops) {
670 		sem_op = sop->sem_op;
671 		sma->sem_base[sop->sem_num].semval -= sem_op;
672 		if (sop->sem_flg & SEM_UNDO)
673 			un->semadj[sop->sem_num] += sem_op;
674 		sop--;
675 	}
676 
677 	return result;
678 }
679 
680 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
681  * @q: queue entry that must be signaled
682  * @error: Error value for the signal
683  *
684  * Prepare the wake-up of the queue entry q.
685  */
686 static void wake_up_sem_queue_prepare(struct list_head *pt,
687 				struct sem_queue *q, int error)
688 {
689 	if (list_empty(pt)) {
690 		/*
691 		 * Hold preempt off so that we don't get preempted and have the
692 		 * wakee busy-wait until we're scheduled back on.
693 		 */
694 		preempt_disable();
695 	}
696 	q->status = IN_WAKEUP;
697 	q->pid = error;
698 
699 	list_add_tail(&q->list, pt);
700 }
701 
702 /**
703  * wake_up_sem_queue_do - do the actual wake-up
704  * @pt: list of tasks to be woken up
705  *
706  * Do the actual wake-up.
707  * The function is called without any locks held, thus the semaphore array
708  * could be destroyed already and the tasks can disappear as soon as the
709  * status is set to the actual return code.
710  */
711 static void wake_up_sem_queue_do(struct list_head *pt)
712 {
713 	struct sem_queue *q, *t;
714 	int did_something;
715 
716 	did_something = !list_empty(pt);
717 	list_for_each_entry_safe(q, t, pt, list) {
718 		wake_up_process(q->sleeper);
719 		/* q can disappear immediately after writing q->status. */
720 		smp_wmb();
721 		q->status = q->pid;
722 	}
723 	if (did_something)
724 		preempt_enable();
725 }
726 
727 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
728 {
729 	list_del(&q->list);
730 	if (q->nsops > 1)
731 		sma->complex_count--;
732 }
733 
734 /** check_restart(sma, q)
735  * @sma: semaphore array
736  * @q: the operation that just completed
737  *
738  * update_queue is O(N^2) when it restarts scanning the whole queue of
739  * waiting operations. Therefore this function checks if the restart is
740  * really necessary. It is called after a previously waiting operation
741  * modified the array.
742  * Note that wait-for-zero operations are handled without restart.
743  */
744 static int check_restart(struct sem_array *sma, struct sem_queue *q)
745 {
746 	/* pending complex alter operations are too difficult to analyse */
747 	if (!list_empty(&sma->pending_alter))
748 		return 1;
749 
750 	/* we were a sleeping complex operation. Too difficult */
751 	if (q->nsops > 1)
752 		return 1;
753 
754 	/* It is impossible that someone waits for the new value:
755 	 * - complex operations always restart.
756 	 * - wait-for-zero are handled seperately.
757 	 * - q is a previously sleeping simple operation that
758 	 *   altered the array. It must be a decrement, because
759 	 *   simple increments never sleep.
760 	 * - If there are older (higher priority) decrements
761 	 *   in the queue, then they have observed the original
762 	 *   semval value and couldn't proceed. The operation
763 	 *   decremented to value - thus they won't proceed either.
764 	 */
765 	return 0;
766 }
767 
768 /**
769  * wake_const_ops - wake up non-alter tasks
770  * @sma: semaphore array.
771  * @semnum: semaphore that was modified.
772  * @pt: list head for the tasks that must be woken up.
773  *
774  * wake_const_ops must be called after a semaphore in a semaphore array
775  * was set to 0. If complex const operations are pending, wake_const_ops must
776  * be called with semnum = -1, as well as with the number of each modified
777  * semaphore.
778  * The tasks that must be woken up are added to @pt. The return code
779  * is stored in q->pid.
780  * The function returns 1 if at least one operation was completed successfully.
781  */
782 static int wake_const_ops(struct sem_array *sma, int semnum,
783 				struct list_head *pt)
784 {
785 	struct sem_queue *q;
786 	struct list_head *walk;
787 	struct list_head *pending_list;
788 	int semop_completed = 0;
789 
790 	if (semnum == -1)
791 		pending_list = &sma->pending_const;
792 	else
793 		pending_list = &sma->sem_base[semnum].pending_const;
794 
795 	walk = pending_list->next;
796 	while (walk != pending_list) {
797 		int error;
798 
799 		q = container_of(walk, struct sem_queue, list);
800 		walk = walk->next;
801 
802 		error = perform_atomic_semop(sma, q);
803 
804 		if (error <= 0) {
805 			/* operation completed, remove from queue & wakeup */
806 
807 			unlink_queue(sma, q);
808 
809 			wake_up_sem_queue_prepare(pt, q, error);
810 			if (error == 0)
811 				semop_completed = 1;
812 		}
813 	}
814 	return semop_completed;
815 }
816 
817 /**
818  * do_smart_wakeup_zero - wakeup all wait for zero tasks
819  * @sma: semaphore array
820  * @sops: operations that were performed
821  * @nsops: number of operations
822  * @pt: list head of the tasks that must be woken up.
823  *
824  * Checks all required queue for wait-for-zero operations, based
825  * on the actual changes that were performed on the semaphore array.
826  * The function returns 1 if at least one operation was completed successfully.
827  */
828 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
829 					int nsops, struct list_head *pt)
830 {
831 	int i;
832 	int semop_completed = 0;
833 	int got_zero = 0;
834 
835 	/* first: the per-semaphore queues, if known */
836 	if (sops) {
837 		for (i = 0; i < nsops; i++) {
838 			int num = sops[i].sem_num;
839 
840 			if (sma->sem_base[num].semval == 0) {
841 				got_zero = 1;
842 				semop_completed |= wake_const_ops(sma, num, pt);
843 			}
844 		}
845 	} else {
846 		/*
847 		 * No sops means modified semaphores not known.
848 		 * Assume all were changed.
849 		 */
850 		for (i = 0; i < sma->sem_nsems; i++) {
851 			if (sma->sem_base[i].semval == 0) {
852 				got_zero = 1;
853 				semop_completed |= wake_const_ops(sma, i, pt);
854 			}
855 		}
856 	}
857 	/*
858 	 * If one of the modified semaphores got 0,
859 	 * then check the global queue, too.
860 	 */
861 	if (got_zero)
862 		semop_completed |= wake_const_ops(sma, -1, pt);
863 
864 	return semop_completed;
865 }
866 
867 
868 /**
869  * update_queue - look for tasks that can be completed.
870  * @sma: semaphore array.
871  * @semnum: semaphore that was modified.
872  * @pt: list head for the tasks that must be woken up.
873  *
874  * update_queue must be called after a semaphore in a semaphore array
875  * was modified. If multiple semaphores were modified, update_queue must
876  * be called with semnum = -1, as well as with the number of each modified
877  * semaphore.
878  * The tasks that must be woken up are added to @pt. The return code
879  * is stored in q->pid.
880  * The function internally checks if const operations can now succeed.
881  *
882  * The function return 1 if at least one semop was completed successfully.
883  */
884 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
885 {
886 	struct sem_queue *q;
887 	struct list_head *walk;
888 	struct list_head *pending_list;
889 	int semop_completed = 0;
890 
891 	if (semnum == -1)
892 		pending_list = &sma->pending_alter;
893 	else
894 		pending_list = &sma->sem_base[semnum].pending_alter;
895 
896 again:
897 	walk = pending_list->next;
898 	while (walk != pending_list) {
899 		int error, restart;
900 
901 		q = container_of(walk, struct sem_queue, list);
902 		walk = walk->next;
903 
904 		/* If we are scanning the single sop, per-semaphore list of
905 		 * one semaphore and that semaphore is 0, then it is not
906 		 * necessary to scan further: simple increments
907 		 * that affect only one entry succeed immediately and cannot
908 		 * be in the  per semaphore pending queue, and decrements
909 		 * cannot be successful if the value is already 0.
910 		 */
911 		if (semnum != -1 && sma->sem_base[semnum].semval == 0)
912 			break;
913 
914 		error = perform_atomic_semop(sma, q);
915 
916 		/* Does q->sleeper still need to sleep? */
917 		if (error > 0)
918 			continue;
919 
920 		unlink_queue(sma, q);
921 
922 		if (error) {
923 			restart = 0;
924 		} else {
925 			semop_completed = 1;
926 			do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
927 			restart = check_restart(sma, q);
928 		}
929 
930 		wake_up_sem_queue_prepare(pt, q, error);
931 		if (restart)
932 			goto again;
933 	}
934 	return semop_completed;
935 }
936 
937 /**
938  * set_semotime - set sem_otime
939  * @sma: semaphore array
940  * @sops: operations that modified the array, may be NULL
941  *
942  * sem_otime is replicated to avoid cache line trashing.
943  * This function sets one instance to the current time.
944  */
945 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
946 {
947 	if (sops == NULL) {
948 		sma->sem_base[0].sem_otime = get_seconds();
949 	} else {
950 		sma->sem_base[sops[0].sem_num].sem_otime =
951 							get_seconds();
952 	}
953 }
954 
955 /**
956  * do_smart_update - optimized update_queue
957  * @sma: semaphore array
958  * @sops: operations that were performed
959  * @nsops: number of operations
960  * @otime: force setting otime
961  * @pt: list head of the tasks that must be woken up.
962  *
963  * do_smart_update() does the required calls to update_queue and wakeup_zero,
964  * based on the actual changes that were performed on the semaphore array.
965  * Note that the function does not do the actual wake-up: the caller is
966  * responsible for calling wake_up_sem_queue_do(@pt).
967  * It is safe to perform this call after dropping all locks.
968  */
969 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
970 			int otime, struct list_head *pt)
971 {
972 	int i;
973 
974 	otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
975 
976 	if (!list_empty(&sma->pending_alter)) {
977 		/* semaphore array uses the global queue - just process it. */
978 		otime |= update_queue(sma, -1, pt);
979 	} else {
980 		if (!sops) {
981 			/*
982 			 * No sops, thus the modified semaphores are not
983 			 * known. Check all.
984 			 */
985 			for (i = 0; i < sma->sem_nsems; i++)
986 				otime |= update_queue(sma, i, pt);
987 		} else {
988 			/*
989 			 * Check the semaphores that were increased:
990 			 * - No complex ops, thus all sleeping ops are
991 			 *   decrease.
992 			 * - if we decreased the value, then any sleeping
993 			 *   semaphore ops wont be able to run: If the
994 			 *   previous value was too small, then the new
995 			 *   value will be too small, too.
996 			 */
997 			for (i = 0; i < nsops; i++) {
998 				if (sops[i].sem_op > 0) {
999 					otime |= update_queue(sma,
1000 							sops[i].sem_num, pt);
1001 				}
1002 			}
1003 		}
1004 	}
1005 	if (otime)
1006 		set_semotime(sma, sops);
1007 }
1008 
1009 /*
1010  * check_qop: Test if a queued operation sleeps on the semaphore semnum
1011  */
1012 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1013 			bool count_zero)
1014 {
1015 	struct sembuf *sop = q->blocking;
1016 
1017 	/*
1018 	 * Linux always (since 0.99.10) reported a task as sleeping on all
1019 	 * semaphores. This violates SUS, therefore it was changed to the
1020 	 * standard compliant behavior.
1021 	 * Give the administrators a chance to notice that an application
1022 	 * might misbehave because it relies on the Linux behavior.
1023 	 */
1024 	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1025 			"The task %s (%d) triggered the difference, watch for misbehavior.\n",
1026 			current->comm, task_pid_nr(current));
1027 
1028 	if (sop->sem_num != semnum)
1029 		return 0;
1030 
1031 	if (count_zero && sop->sem_op == 0)
1032 		return 1;
1033 	if (!count_zero && sop->sem_op < 0)
1034 		return 1;
1035 
1036 	return 0;
1037 }
1038 
1039 /* The following counts are associated to each semaphore:
1040  *   semncnt        number of tasks waiting on semval being nonzero
1041  *   semzcnt        number of tasks waiting on semval being zero
1042  *
1043  * Per definition, a task waits only on the semaphore of the first semop
1044  * that cannot proceed, even if additional operation would block, too.
1045  */
1046 static int count_semcnt(struct sem_array *sma, ushort semnum,
1047 			bool count_zero)
1048 {
1049 	struct list_head *l;
1050 	struct sem_queue *q;
1051 	int semcnt;
1052 
1053 	semcnt = 0;
1054 	/* First: check the simple operations. They are easy to evaluate */
1055 	if (count_zero)
1056 		l = &sma->sem_base[semnum].pending_const;
1057 	else
1058 		l = &sma->sem_base[semnum].pending_alter;
1059 
1060 	list_for_each_entry(q, l, list) {
1061 		/* all task on a per-semaphore list sleep on exactly
1062 		 * that semaphore
1063 		 */
1064 		semcnt++;
1065 	}
1066 
1067 	/* Then: check the complex operations. */
1068 	list_for_each_entry(q, &sma->pending_alter, list) {
1069 		semcnt += check_qop(sma, semnum, q, count_zero);
1070 	}
1071 	if (count_zero) {
1072 		list_for_each_entry(q, &sma->pending_const, list) {
1073 			semcnt += check_qop(sma, semnum, q, count_zero);
1074 		}
1075 	}
1076 	return semcnt;
1077 }
1078 
1079 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1080  * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1081  * remains locked on exit.
1082  */
1083 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1084 {
1085 	struct sem_undo *un, *tu;
1086 	struct sem_queue *q, *tq;
1087 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1088 	struct list_head tasks;
1089 	int i;
1090 
1091 	/* Free the existing undo structures for this semaphore set.  */
1092 	ipc_assert_locked_object(&sma->sem_perm);
1093 	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1094 		list_del(&un->list_id);
1095 		spin_lock(&un->ulp->lock);
1096 		un->semid = -1;
1097 		list_del_rcu(&un->list_proc);
1098 		spin_unlock(&un->ulp->lock);
1099 		kfree_rcu(un, rcu);
1100 	}
1101 
1102 	/* Wake up all pending processes and let them fail with EIDRM. */
1103 	INIT_LIST_HEAD(&tasks);
1104 	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1105 		unlink_queue(sma, q);
1106 		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1107 	}
1108 
1109 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1110 		unlink_queue(sma, q);
1111 		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1112 	}
1113 	for (i = 0; i < sma->sem_nsems; i++) {
1114 		struct sem *sem = sma->sem_base + i;
1115 		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1116 			unlink_queue(sma, q);
1117 			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1118 		}
1119 		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1120 			unlink_queue(sma, q);
1121 			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1122 		}
1123 	}
1124 
1125 	/* Remove the semaphore set from the IDR */
1126 	sem_rmid(ns, sma);
1127 	sem_unlock(sma, -1);
1128 	rcu_read_unlock();
1129 
1130 	wake_up_sem_queue_do(&tasks);
1131 	ns->used_sems -= sma->sem_nsems;
1132 	ipc_rcu_putref(sma, sem_rcu_free);
1133 }
1134 
1135 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1136 {
1137 	switch (version) {
1138 	case IPC_64:
1139 		return copy_to_user(buf, in, sizeof(*in));
1140 	case IPC_OLD:
1141 	    {
1142 		struct semid_ds out;
1143 
1144 		memset(&out, 0, sizeof(out));
1145 
1146 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1147 
1148 		out.sem_otime	= in->sem_otime;
1149 		out.sem_ctime	= in->sem_ctime;
1150 		out.sem_nsems	= in->sem_nsems;
1151 
1152 		return copy_to_user(buf, &out, sizeof(out));
1153 	    }
1154 	default:
1155 		return -EINVAL;
1156 	}
1157 }
1158 
1159 static time_t get_semotime(struct sem_array *sma)
1160 {
1161 	int i;
1162 	time_t res;
1163 
1164 	res = sma->sem_base[0].sem_otime;
1165 	for (i = 1; i < sma->sem_nsems; i++) {
1166 		time_t to = sma->sem_base[i].sem_otime;
1167 
1168 		if (to > res)
1169 			res = to;
1170 	}
1171 	return res;
1172 }
1173 
1174 static int semctl_nolock(struct ipc_namespace *ns, int semid,
1175 			 int cmd, int version, void __user *p)
1176 {
1177 	int err;
1178 	struct sem_array *sma;
1179 
1180 	switch (cmd) {
1181 	case IPC_INFO:
1182 	case SEM_INFO:
1183 	{
1184 		struct seminfo seminfo;
1185 		int max_id;
1186 
1187 		err = security_sem_semctl(NULL, cmd);
1188 		if (err)
1189 			return err;
1190 
1191 		memset(&seminfo, 0, sizeof(seminfo));
1192 		seminfo.semmni = ns->sc_semmni;
1193 		seminfo.semmns = ns->sc_semmns;
1194 		seminfo.semmsl = ns->sc_semmsl;
1195 		seminfo.semopm = ns->sc_semopm;
1196 		seminfo.semvmx = SEMVMX;
1197 		seminfo.semmnu = SEMMNU;
1198 		seminfo.semmap = SEMMAP;
1199 		seminfo.semume = SEMUME;
1200 		down_read(&sem_ids(ns).rwsem);
1201 		if (cmd == SEM_INFO) {
1202 			seminfo.semusz = sem_ids(ns).in_use;
1203 			seminfo.semaem = ns->used_sems;
1204 		} else {
1205 			seminfo.semusz = SEMUSZ;
1206 			seminfo.semaem = SEMAEM;
1207 		}
1208 		max_id = ipc_get_maxid(&sem_ids(ns));
1209 		up_read(&sem_ids(ns).rwsem);
1210 		if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1211 			return -EFAULT;
1212 		return (max_id < 0) ? 0 : max_id;
1213 	}
1214 	case IPC_STAT:
1215 	case SEM_STAT:
1216 	{
1217 		struct semid64_ds tbuf;
1218 		int id = 0;
1219 
1220 		memset(&tbuf, 0, sizeof(tbuf));
1221 
1222 		rcu_read_lock();
1223 		if (cmd == SEM_STAT) {
1224 			sma = sem_obtain_object(ns, semid);
1225 			if (IS_ERR(sma)) {
1226 				err = PTR_ERR(sma);
1227 				goto out_unlock;
1228 			}
1229 			id = sma->sem_perm.id;
1230 		} else {
1231 			sma = sem_obtain_object_check(ns, semid);
1232 			if (IS_ERR(sma)) {
1233 				err = PTR_ERR(sma);
1234 				goto out_unlock;
1235 			}
1236 		}
1237 
1238 		err = -EACCES;
1239 		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1240 			goto out_unlock;
1241 
1242 		err = security_sem_semctl(sma, cmd);
1243 		if (err)
1244 			goto out_unlock;
1245 
1246 		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1247 		tbuf.sem_otime = get_semotime(sma);
1248 		tbuf.sem_ctime = sma->sem_ctime;
1249 		tbuf.sem_nsems = sma->sem_nsems;
1250 		rcu_read_unlock();
1251 		if (copy_semid_to_user(p, &tbuf, version))
1252 			return -EFAULT;
1253 		return id;
1254 	}
1255 	default:
1256 		return -EINVAL;
1257 	}
1258 out_unlock:
1259 	rcu_read_unlock();
1260 	return err;
1261 }
1262 
1263 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1264 		unsigned long arg)
1265 {
1266 	struct sem_undo *un;
1267 	struct sem_array *sma;
1268 	struct sem *curr;
1269 	int err;
1270 	struct list_head tasks;
1271 	int val;
1272 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1273 	/* big-endian 64bit */
1274 	val = arg >> 32;
1275 #else
1276 	/* 32bit or little-endian 64bit */
1277 	val = arg;
1278 #endif
1279 
1280 	if (val > SEMVMX || val < 0)
1281 		return -ERANGE;
1282 
1283 	INIT_LIST_HEAD(&tasks);
1284 
1285 	rcu_read_lock();
1286 	sma = sem_obtain_object_check(ns, semid);
1287 	if (IS_ERR(sma)) {
1288 		rcu_read_unlock();
1289 		return PTR_ERR(sma);
1290 	}
1291 
1292 	if (semnum < 0 || semnum >= sma->sem_nsems) {
1293 		rcu_read_unlock();
1294 		return -EINVAL;
1295 	}
1296 
1297 
1298 	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1299 		rcu_read_unlock();
1300 		return -EACCES;
1301 	}
1302 
1303 	err = security_sem_semctl(sma, SETVAL);
1304 	if (err) {
1305 		rcu_read_unlock();
1306 		return -EACCES;
1307 	}
1308 
1309 	sem_lock(sma, NULL, -1);
1310 
1311 	if (!ipc_valid_object(&sma->sem_perm)) {
1312 		sem_unlock(sma, -1);
1313 		rcu_read_unlock();
1314 		return -EIDRM;
1315 	}
1316 
1317 	curr = &sma->sem_base[semnum];
1318 
1319 	ipc_assert_locked_object(&sma->sem_perm);
1320 	list_for_each_entry(un, &sma->list_id, list_id)
1321 		un->semadj[semnum] = 0;
1322 
1323 	curr->semval = val;
1324 	curr->sempid = task_tgid_vnr(current);
1325 	sma->sem_ctime = get_seconds();
1326 	/* maybe some queued-up processes were waiting for this */
1327 	do_smart_update(sma, NULL, 0, 0, &tasks);
1328 	sem_unlock(sma, -1);
1329 	rcu_read_unlock();
1330 	wake_up_sem_queue_do(&tasks);
1331 	return 0;
1332 }
1333 
1334 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1335 		int cmd, void __user *p)
1336 {
1337 	struct sem_array *sma;
1338 	struct sem *curr;
1339 	int err, nsems;
1340 	ushort fast_sem_io[SEMMSL_FAST];
1341 	ushort *sem_io = fast_sem_io;
1342 	struct list_head tasks;
1343 
1344 	INIT_LIST_HEAD(&tasks);
1345 
1346 	rcu_read_lock();
1347 	sma = sem_obtain_object_check(ns, semid);
1348 	if (IS_ERR(sma)) {
1349 		rcu_read_unlock();
1350 		return PTR_ERR(sma);
1351 	}
1352 
1353 	nsems = sma->sem_nsems;
1354 
1355 	err = -EACCES;
1356 	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1357 		goto out_rcu_wakeup;
1358 
1359 	err = security_sem_semctl(sma, cmd);
1360 	if (err)
1361 		goto out_rcu_wakeup;
1362 
1363 	err = -EACCES;
1364 	switch (cmd) {
1365 	case GETALL:
1366 	{
1367 		ushort __user *array = p;
1368 		int i;
1369 
1370 		sem_lock(sma, NULL, -1);
1371 		if (!ipc_valid_object(&sma->sem_perm)) {
1372 			err = -EIDRM;
1373 			goto out_unlock;
1374 		}
1375 		if (nsems > SEMMSL_FAST) {
1376 			if (!ipc_rcu_getref(sma)) {
1377 				err = -EIDRM;
1378 				goto out_unlock;
1379 			}
1380 			sem_unlock(sma, -1);
1381 			rcu_read_unlock();
1382 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1383 			if (sem_io == NULL) {
1384 				ipc_rcu_putref(sma, sem_rcu_free);
1385 				return -ENOMEM;
1386 			}
1387 
1388 			rcu_read_lock();
1389 			sem_lock_and_putref(sma);
1390 			if (!ipc_valid_object(&sma->sem_perm)) {
1391 				err = -EIDRM;
1392 				goto out_unlock;
1393 			}
1394 		}
1395 		for (i = 0; i < sma->sem_nsems; i++)
1396 			sem_io[i] = sma->sem_base[i].semval;
1397 		sem_unlock(sma, -1);
1398 		rcu_read_unlock();
1399 		err = 0;
1400 		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1401 			err = -EFAULT;
1402 		goto out_free;
1403 	}
1404 	case SETALL:
1405 	{
1406 		int i;
1407 		struct sem_undo *un;
1408 
1409 		if (!ipc_rcu_getref(sma)) {
1410 			err = -EIDRM;
1411 			goto out_rcu_wakeup;
1412 		}
1413 		rcu_read_unlock();
1414 
1415 		if (nsems > SEMMSL_FAST) {
1416 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1417 			if (sem_io == NULL) {
1418 				ipc_rcu_putref(sma, sem_rcu_free);
1419 				return -ENOMEM;
1420 			}
1421 		}
1422 
1423 		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1424 			ipc_rcu_putref(sma, sem_rcu_free);
1425 			err = -EFAULT;
1426 			goto out_free;
1427 		}
1428 
1429 		for (i = 0; i < nsems; i++) {
1430 			if (sem_io[i] > SEMVMX) {
1431 				ipc_rcu_putref(sma, sem_rcu_free);
1432 				err = -ERANGE;
1433 				goto out_free;
1434 			}
1435 		}
1436 		rcu_read_lock();
1437 		sem_lock_and_putref(sma);
1438 		if (!ipc_valid_object(&sma->sem_perm)) {
1439 			err = -EIDRM;
1440 			goto out_unlock;
1441 		}
1442 
1443 		for (i = 0; i < nsems; i++) {
1444 			sma->sem_base[i].semval = sem_io[i];
1445 			sma->sem_base[i].sempid = task_tgid_vnr(current);
1446 		}
1447 
1448 		ipc_assert_locked_object(&sma->sem_perm);
1449 		list_for_each_entry(un, &sma->list_id, list_id) {
1450 			for (i = 0; i < nsems; i++)
1451 				un->semadj[i] = 0;
1452 		}
1453 		sma->sem_ctime = get_seconds();
1454 		/* maybe some queued-up processes were waiting for this */
1455 		do_smart_update(sma, NULL, 0, 0, &tasks);
1456 		err = 0;
1457 		goto out_unlock;
1458 	}
1459 	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1460 	}
1461 	err = -EINVAL;
1462 	if (semnum < 0 || semnum >= nsems)
1463 		goto out_rcu_wakeup;
1464 
1465 	sem_lock(sma, NULL, -1);
1466 	if (!ipc_valid_object(&sma->sem_perm)) {
1467 		err = -EIDRM;
1468 		goto out_unlock;
1469 	}
1470 	curr = &sma->sem_base[semnum];
1471 
1472 	switch (cmd) {
1473 	case GETVAL:
1474 		err = curr->semval;
1475 		goto out_unlock;
1476 	case GETPID:
1477 		err = curr->sempid;
1478 		goto out_unlock;
1479 	case GETNCNT:
1480 		err = count_semcnt(sma, semnum, 0);
1481 		goto out_unlock;
1482 	case GETZCNT:
1483 		err = count_semcnt(sma, semnum, 1);
1484 		goto out_unlock;
1485 	}
1486 
1487 out_unlock:
1488 	sem_unlock(sma, -1);
1489 out_rcu_wakeup:
1490 	rcu_read_unlock();
1491 	wake_up_sem_queue_do(&tasks);
1492 out_free:
1493 	if (sem_io != fast_sem_io)
1494 		ipc_free(sem_io);
1495 	return err;
1496 }
1497 
1498 static inline unsigned long
1499 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1500 {
1501 	switch (version) {
1502 	case IPC_64:
1503 		if (copy_from_user(out, buf, sizeof(*out)))
1504 			return -EFAULT;
1505 		return 0;
1506 	case IPC_OLD:
1507 	    {
1508 		struct semid_ds tbuf_old;
1509 
1510 		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1511 			return -EFAULT;
1512 
1513 		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1514 		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1515 		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1516 
1517 		return 0;
1518 	    }
1519 	default:
1520 		return -EINVAL;
1521 	}
1522 }
1523 
1524 /*
1525  * This function handles some semctl commands which require the rwsem
1526  * to be held in write mode.
1527  * NOTE: no locks must be held, the rwsem is taken inside this function.
1528  */
1529 static int semctl_down(struct ipc_namespace *ns, int semid,
1530 		       int cmd, int version, void __user *p)
1531 {
1532 	struct sem_array *sma;
1533 	int err;
1534 	struct semid64_ds semid64;
1535 	struct kern_ipc_perm *ipcp;
1536 
1537 	if (cmd == IPC_SET) {
1538 		if (copy_semid_from_user(&semid64, p, version))
1539 			return -EFAULT;
1540 	}
1541 
1542 	down_write(&sem_ids(ns).rwsem);
1543 	rcu_read_lock();
1544 
1545 	ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1546 				      &semid64.sem_perm, 0);
1547 	if (IS_ERR(ipcp)) {
1548 		err = PTR_ERR(ipcp);
1549 		goto out_unlock1;
1550 	}
1551 
1552 	sma = container_of(ipcp, struct sem_array, sem_perm);
1553 
1554 	err = security_sem_semctl(sma, cmd);
1555 	if (err)
1556 		goto out_unlock1;
1557 
1558 	switch (cmd) {
1559 	case IPC_RMID:
1560 		sem_lock(sma, NULL, -1);
1561 		/* freeary unlocks the ipc object and rcu */
1562 		freeary(ns, ipcp);
1563 		goto out_up;
1564 	case IPC_SET:
1565 		sem_lock(sma, NULL, -1);
1566 		err = ipc_update_perm(&semid64.sem_perm, ipcp);
1567 		if (err)
1568 			goto out_unlock0;
1569 		sma->sem_ctime = get_seconds();
1570 		break;
1571 	default:
1572 		err = -EINVAL;
1573 		goto out_unlock1;
1574 	}
1575 
1576 out_unlock0:
1577 	sem_unlock(sma, -1);
1578 out_unlock1:
1579 	rcu_read_unlock();
1580 out_up:
1581 	up_write(&sem_ids(ns).rwsem);
1582 	return err;
1583 }
1584 
1585 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1586 {
1587 	int version;
1588 	struct ipc_namespace *ns;
1589 	void __user *p = (void __user *)arg;
1590 
1591 	if (semid < 0)
1592 		return -EINVAL;
1593 
1594 	version = ipc_parse_version(&cmd);
1595 	ns = current->nsproxy->ipc_ns;
1596 
1597 	switch (cmd) {
1598 	case IPC_INFO:
1599 	case SEM_INFO:
1600 	case IPC_STAT:
1601 	case SEM_STAT:
1602 		return semctl_nolock(ns, semid, cmd, version, p);
1603 	case GETALL:
1604 	case GETVAL:
1605 	case GETPID:
1606 	case GETNCNT:
1607 	case GETZCNT:
1608 	case SETALL:
1609 		return semctl_main(ns, semid, semnum, cmd, p);
1610 	case SETVAL:
1611 		return semctl_setval(ns, semid, semnum, arg);
1612 	case IPC_RMID:
1613 	case IPC_SET:
1614 		return semctl_down(ns, semid, cmd, version, p);
1615 	default:
1616 		return -EINVAL;
1617 	}
1618 }
1619 
1620 /* If the task doesn't already have a undo_list, then allocate one
1621  * here.  We guarantee there is only one thread using this undo list,
1622  * and current is THE ONE
1623  *
1624  * If this allocation and assignment succeeds, but later
1625  * portions of this code fail, there is no need to free the sem_undo_list.
1626  * Just let it stay associated with the task, and it'll be freed later
1627  * at exit time.
1628  *
1629  * This can block, so callers must hold no locks.
1630  */
1631 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1632 {
1633 	struct sem_undo_list *undo_list;
1634 
1635 	undo_list = current->sysvsem.undo_list;
1636 	if (!undo_list) {
1637 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1638 		if (undo_list == NULL)
1639 			return -ENOMEM;
1640 		spin_lock_init(&undo_list->lock);
1641 		atomic_set(&undo_list->refcnt, 1);
1642 		INIT_LIST_HEAD(&undo_list->list_proc);
1643 
1644 		current->sysvsem.undo_list = undo_list;
1645 	}
1646 	*undo_listp = undo_list;
1647 	return 0;
1648 }
1649 
1650 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1651 {
1652 	struct sem_undo *un;
1653 
1654 	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1655 		if (un->semid == semid)
1656 			return un;
1657 	}
1658 	return NULL;
1659 }
1660 
1661 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1662 {
1663 	struct sem_undo *un;
1664 
1665 	assert_spin_locked(&ulp->lock);
1666 
1667 	un = __lookup_undo(ulp, semid);
1668 	if (un) {
1669 		list_del_rcu(&un->list_proc);
1670 		list_add_rcu(&un->list_proc, &ulp->list_proc);
1671 	}
1672 	return un;
1673 }
1674 
1675 /**
1676  * find_alloc_undo - lookup (and if not present create) undo array
1677  * @ns: namespace
1678  * @semid: semaphore array id
1679  *
1680  * The function looks up (and if not present creates) the undo structure.
1681  * The size of the undo structure depends on the size of the semaphore
1682  * array, thus the alloc path is not that straightforward.
1683  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1684  * performs a rcu_read_lock().
1685  */
1686 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1687 {
1688 	struct sem_array *sma;
1689 	struct sem_undo_list *ulp;
1690 	struct sem_undo *un, *new;
1691 	int nsems, error;
1692 
1693 	error = get_undo_list(&ulp);
1694 	if (error)
1695 		return ERR_PTR(error);
1696 
1697 	rcu_read_lock();
1698 	spin_lock(&ulp->lock);
1699 	un = lookup_undo(ulp, semid);
1700 	spin_unlock(&ulp->lock);
1701 	if (likely(un != NULL))
1702 		goto out;
1703 
1704 	/* no undo structure around - allocate one. */
1705 	/* step 1: figure out the size of the semaphore array */
1706 	sma = sem_obtain_object_check(ns, semid);
1707 	if (IS_ERR(sma)) {
1708 		rcu_read_unlock();
1709 		return ERR_CAST(sma);
1710 	}
1711 
1712 	nsems = sma->sem_nsems;
1713 	if (!ipc_rcu_getref(sma)) {
1714 		rcu_read_unlock();
1715 		un = ERR_PTR(-EIDRM);
1716 		goto out;
1717 	}
1718 	rcu_read_unlock();
1719 
1720 	/* step 2: allocate new undo structure */
1721 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1722 	if (!new) {
1723 		ipc_rcu_putref(sma, sem_rcu_free);
1724 		return ERR_PTR(-ENOMEM);
1725 	}
1726 
1727 	/* step 3: Acquire the lock on semaphore array */
1728 	rcu_read_lock();
1729 	sem_lock_and_putref(sma);
1730 	if (!ipc_valid_object(&sma->sem_perm)) {
1731 		sem_unlock(sma, -1);
1732 		rcu_read_unlock();
1733 		kfree(new);
1734 		un = ERR_PTR(-EIDRM);
1735 		goto out;
1736 	}
1737 	spin_lock(&ulp->lock);
1738 
1739 	/*
1740 	 * step 4: check for races: did someone else allocate the undo struct?
1741 	 */
1742 	un = lookup_undo(ulp, semid);
1743 	if (un) {
1744 		kfree(new);
1745 		goto success;
1746 	}
1747 	/* step 5: initialize & link new undo structure */
1748 	new->semadj = (short *) &new[1];
1749 	new->ulp = ulp;
1750 	new->semid = semid;
1751 	assert_spin_locked(&ulp->lock);
1752 	list_add_rcu(&new->list_proc, &ulp->list_proc);
1753 	ipc_assert_locked_object(&sma->sem_perm);
1754 	list_add(&new->list_id, &sma->list_id);
1755 	un = new;
1756 
1757 success:
1758 	spin_unlock(&ulp->lock);
1759 	sem_unlock(sma, -1);
1760 out:
1761 	return un;
1762 }
1763 
1764 
1765 /**
1766  * get_queue_result - retrieve the result code from sem_queue
1767  * @q: Pointer to queue structure
1768  *
1769  * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1770  * q->status, then we must loop until the value is replaced with the final
1771  * value: This may happen if a task is woken up by an unrelated event (e.g.
1772  * signal) and in parallel the task is woken up by another task because it got
1773  * the requested semaphores.
1774  *
1775  * The function can be called with or without holding the semaphore spinlock.
1776  */
1777 static int get_queue_result(struct sem_queue *q)
1778 {
1779 	int error;
1780 
1781 	error = q->status;
1782 	while (unlikely(error == IN_WAKEUP)) {
1783 		cpu_relax();
1784 		error = q->status;
1785 	}
1786 
1787 	return error;
1788 }
1789 
1790 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1791 		unsigned, nsops, const struct timespec __user *, timeout)
1792 {
1793 	int error = -EINVAL;
1794 	struct sem_array *sma;
1795 	struct sembuf fast_sops[SEMOPM_FAST];
1796 	struct sembuf *sops = fast_sops, *sop;
1797 	struct sem_undo *un;
1798 	int undos = 0, alter = 0, max, locknum;
1799 	struct sem_queue queue;
1800 	unsigned long jiffies_left = 0;
1801 	struct ipc_namespace *ns;
1802 	struct list_head tasks;
1803 
1804 	ns = current->nsproxy->ipc_ns;
1805 
1806 	if (nsops < 1 || semid < 0)
1807 		return -EINVAL;
1808 	if (nsops > ns->sc_semopm)
1809 		return -E2BIG;
1810 	if (nsops > SEMOPM_FAST) {
1811 		sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1812 		if (sops == NULL)
1813 			return -ENOMEM;
1814 	}
1815 	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1816 		error =  -EFAULT;
1817 		goto out_free;
1818 	}
1819 	if (timeout) {
1820 		struct timespec _timeout;
1821 		if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1822 			error = -EFAULT;
1823 			goto out_free;
1824 		}
1825 		if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1826 			_timeout.tv_nsec >= 1000000000L) {
1827 			error = -EINVAL;
1828 			goto out_free;
1829 		}
1830 		jiffies_left = timespec_to_jiffies(&_timeout);
1831 	}
1832 	max = 0;
1833 	for (sop = sops; sop < sops + nsops; sop++) {
1834 		if (sop->sem_num >= max)
1835 			max = sop->sem_num;
1836 		if (sop->sem_flg & SEM_UNDO)
1837 			undos = 1;
1838 		if (sop->sem_op != 0)
1839 			alter = 1;
1840 	}
1841 
1842 	INIT_LIST_HEAD(&tasks);
1843 
1844 	if (undos) {
1845 		/* On success, find_alloc_undo takes the rcu_read_lock */
1846 		un = find_alloc_undo(ns, semid);
1847 		if (IS_ERR(un)) {
1848 			error = PTR_ERR(un);
1849 			goto out_free;
1850 		}
1851 	} else {
1852 		un = NULL;
1853 		rcu_read_lock();
1854 	}
1855 
1856 	sma = sem_obtain_object_check(ns, semid);
1857 	if (IS_ERR(sma)) {
1858 		rcu_read_unlock();
1859 		error = PTR_ERR(sma);
1860 		goto out_free;
1861 	}
1862 
1863 	error = -EFBIG;
1864 	if (max >= sma->sem_nsems)
1865 		goto out_rcu_wakeup;
1866 
1867 	error = -EACCES;
1868 	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1869 		goto out_rcu_wakeup;
1870 
1871 	error = security_sem_semop(sma, sops, nsops, alter);
1872 	if (error)
1873 		goto out_rcu_wakeup;
1874 
1875 	error = -EIDRM;
1876 	locknum = sem_lock(sma, sops, nsops);
1877 	/*
1878 	 * We eventually might perform the following check in a lockless
1879 	 * fashion, considering ipc_valid_object() locking constraints.
1880 	 * If nsops == 1 and there is no contention for sem_perm.lock, then
1881 	 * only a per-semaphore lock is held and it's OK to proceed with the
1882 	 * check below. More details on the fine grained locking scheme
1883 	 * entangled here and why it's RMID race safe on comments at sem_lock()
1884 	 */
1885 	if (!ipc_valid_object(&sma->sem_perm))
1886 		goto out_unlock_free;
1887 	/*
1888 	 * semid identifiers are not unique - find_alloc_undo may have
1889 	 * allocated an undo structure, it was invalidated by an RMID
1890 	 * and now a new array with received the same id. Check and fail.
1891 	 * This case can be detected checking un->semid. The existence of
1892 	 * "un" itself is guaranteed by rcu.
1893 	 */
1894 	if (un && un->semid == -1)
1895 		goto out_unlock_free;
1896 
1897 	queue.sops = sops;
1898 	queue.nsops = nsops;
1899 	queue.undo = un;
1900 	queue.pid = task_tgid_vnr(current);
1901 	queue.alter = alter;
1902 
1903 	error = perform_atomic_semop(sma, &queue);
1904 	if (error == 0) {
1905 		/* If the operation was successful, then do
1906 		 * the required updates.
1907 		 */
1908 		if (alter)
1909 			do_smart_update(sma, sops, nsops, 1, &tasks);
1910 		else
1911 			set_semotime(sma, sops);
1912 	}
1913 	if (error <= 0)
1914 		goto out_unlock_free;
1915 
1916 	/* We need to sleep on this operation, so we put the current
1917 	 * task into the pending queue and go to sleep.
1918 	 */
1919 
1920 	if (nsops == 1) {
1921 		struct sem *curr;
1922 		curr = &sma->sem_base[sops->sem_num];
1923 
1924 		if (alter) {
1925 			if (sma->complex_count) {
1926 				list_add_tail(&queue.list,
1927 						&sma->pending_alter);
1928 			} else {
1929 
1930 				list_add_tail(&queue.list,
1931 						&curr->pending_alter);
1932 			}
1933 		} else {
1934 			list_add_tail(&queue.list, &curr->pending_const);
1935 		}
1936 	} else {
1937 		if (!sma->complex_count)
1938 			merge_queues(sma);
1939 
1940 		if (alter)
1941 			list_add_tail(&queue.list, &sma->pending_alter);
1942 		else
1943 			list_add_tail(&queue.list, &sma->pending_const);
1944 
1945 		sma->complex_count++;
1946 	}
1947 
1948 	queue.status = -EINTR;
1949 	queue.sleeper = current;
1950 
1951 sleep_again:
1952 	__set_current_state(TASK_INTERRUPTIBLE);
1953 	sem_unlock(sma, locknum);
1954 	rcu_read_unlock();
1955 
1956 	if (timeout)
1957 		jiffies_left = schedule_timeout(jiffies_left);
1958 	else
1959 		schedule();
1960 
1961 	error = get_queue_result(&queue);
1962 
1963 	if (error != -EINTR) {
1964 		/* fast path: update_queue already obtained all requested
1965 		 * resources.
1966 		 * Perform a smp_mb(): User space could assume that semop()
1967 		 * is a memory barrier: Without the mb(), the cpu could
1968 		 * speculatively read in user space stale data that was
1969 		 * overwritten by the previous owner of the semaphore.
1970 		 */
1971 		smp_mb();
1972 
1973 		goto out_free;
1974 	}
1975 
1976 	rcu_read_lock();
1977 	sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
1978 
1979 	/*
1980 	 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1981 	 */
1982 	error = get_queue_result(&queue);
1983 
1984 	/*
1985 	 * Array removed? If yes, leave without sem_unlock().
1986 	 */
1987 	if (IS_ERR(sma)) {
1988 		rcu_read_unlock();
1989 		goto out_free;
1990 	}
1991 
1992 
1993 	/*
1994 	 * If queue.status != -EINTR we are woken up by another process.
1995 	 * Leave without unlink_queue(), but with sem_unlock().
1996 	 */
1997 	if (error != -EINTR)
1998 		goto out_unlock_free;
1999 
2000 	/*
2001 	 * If an interrupt occurred we have to clean up the queue
2002 	 */
2003 	if (timeout && jiffies_left == 0)
2004 		error = -EAGAIN;
2005 
2006 	/*
2007 	 * If the wakeup was spurious, just retry
2008 	 */
2009 	if (error == -EINTR && !signal_pending(current))
2010 		goto sleep_again;
2011 
2012 	unlink_queue(sma, &queue);
2013 
2014 out_unlock_free:
2015 	sem_unlock(sma, locknum);
2016 out_rcu_wakeup:
2017 	rcu_read_unlock();
2018 	wake_up_sem_queue_do(&tasks);
2019 out_free:
2020 	if (sops != fast_sops)
2021 		kfree(sops);
2022 	return error;
2023 }
2024 
2025 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2026 		unsigned, nsops)
2027 {
2028 	return sys_semtimedop(semid, tsops, nsops, NULL);
2029 }
2030 
2031 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2032  * parent and child tasks.
2033  */
2034 
2035 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2036 {
2037 	struct sem_undo_list *undo_list;
2038 	int error;
2039 
2040 	if (clone_flags & CLONE_SYSVSEM) {
2041 		error = get_undo_list(&undo_list);
2042 		if (error)
2043 			return error;
2044 		atomic_inc(&undo_list->refcnt);
2045 		tsk->sysvsem.undo_list = undo_list;
2046 	} else
2047 		tsk->sysvsem.undo_list = NULL;
2048 
2049 	return 0;
2050 }
2051 
2052 /*
2053  * add semadj values to semaphores, free undo structures.
2054  * undo structures are not freed when semaphore arrays are destroyed
2055  * so some of them may be out of date.
2056  * IMPLEMENTATION NOTE: There is some confusion over whether the
2057  * set of adjustments that needs to be done should be done in an atomic
2058  * manner or not. That is, if we are attempting to decrement the semval
2059  * should we queue up and wait until we can do so legally?
2060  * The original implementation attempted to do this (queue and wait).
2061  * The current implementation does not do so. The POSIX standard
2062  * and SVID should be consulted to determine what behavior is mandated.
2063  */
2064 void exit_sem(struct task_struct *tsk)
2065 {
2066 	struct sem_undo_list *ulp;
2067 
2068 	ulp = tsk->sysvsem.undo_list;
2069 	if (!ulp)
2070 		return;
2071 	tsk->sysvsem.undo_list = NULL;
2072 
2073 	if (!atomic_dec_and_test(&ulp->refcnt))
2074 		return;
2075 
2076 	for (;;) {
2077 		struct sem_array *sma;
2078 		struct sem_undo *un;
2079 		struct list_head tasks;
2080 		int semid, i;
2081 
2082 		rcu_read_lock();
2083 		un = list_entry_rcu(ulp->list_proc.next,
2084 				    struct sem_undo, list_proc);
2085 		if (&un->list_proc == &ulp->list_proc) {
2086 			/*
2087 			 * We must wait for freeary() before freeing this ulp,
2088 			 * in case we raced with last sem_undo. There is a small
2089 			 * possibility where we exit while freeary() didn't
2090 			 * finish unlocking sem_undo_list.
2091 			 */
2092 			spin_unlock_wait(&ulp->lock);
2093 			rcu_read_unlock();
2094 			break;
2095 		}
2096 		spin_lock(&ulp->lock);
2097 		semid = un->semid;
2098 		spin_unlock(&ulp->lock);
2099 
2100 		/* exit_sem raced with IPC_RMID, nothing to do */
2101 		if (semid == -1) {
2102 			rcu_read_unlock();
2103 			continue;
2104 		}
2105 
2106 		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2107 		/* exit_sem raced with IPC_RMID, nothing to do */
2108 		if (IS_ERR(sma)) {
2109 			rcu_read_unlock();
2110 			continue;
2111 		}
2112 
2113 		sem_lock(sma, NULL, -1);
2114 		/* exit_sem raced with IPC_RMID, nothing to do */
2115 		if (!ipc_valid_object(&sma->sem_perm)) {
2116 			sem_unlock(sma, -1);
2117 			rcu_read_unlock();
2118 			continue;
2119 		}
2120 		un = __lookup_undo(ulp, semid);
2121 		if (un == NULL) {
2122 			/* exit_sem raced with IPC_RMID+semget() that created
2123 			 * exactly the same semid. Nothing to do.
2124 			 */
2125 			sem_unlock(sma, -1);
2126 			rcu_read_unlock();
2127 			continue;
2128 		}
2129 
2130 		/* remove un from the linked lists */
2131 		ipc_assert_locked_object(&sma->sem_perm);
2132 		list_del(&un->list_id);
2133 
2134 		/* we are the last process using this ulp, acquiring ulp->lock
2135 		 * isn't required. Besides that, we are also protected against
2136 		 * IPC_RMID as we hold sma->sem_perm lock now
2137 		 */
2138 		list_del_rcu(&un->list_proc);
2139 
2140 		/* perform adjustments registered in un */
2141 		for (i = 0; i < sma->sem_nsems; i++) {
2142 			struct sem *semaphore = &sma->sem_base[i];
2143 			if (un->semadj[i]) {
2144 				semaphore->semval += un->semadj[i];
2145 				/*
2146 				 * Range checks of the new semaphore value,
2147 				 * not defined by sus:
2148 				 * - Some unices ignore the undo entirely
2149 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2150 				 * - some cap the value (e.g. FreeBSD caps
2151 				 *   at 0, but doesn't enforce SEMVMX)
2152 				 *
2153 				 * Linux caps the semaphore value, both at 0
2154 				 * and at SEMVMX.
2155 				 *
2156 				 *	Manfred <manfred@colorfullife.com>
2157 				 */
2158 				if (semaphore->semval < 0)
2159 					semaphore->semval = 0;
2160 				if (semaphore->semval > SEMVMX)
2161 					semaphore->semval = SEMVMX;
2162 				semaphore->sempid = task_tgid_vnr(current);
2163 			}
2164 		}
2165 		/* maybe some queued-up processes were waiting for this */
2166 		INIT_LIST_HEAD(&tasks);
2167 		do_smart_update(sma, NULL, 0, 1, &tasks);
2168 		sem_unlock(sma, -1);
2169 		rcu_read_unlock();
2170 		wake_up_sem_queue_do(&tasks);
2171 
2172 		kfree_rcu(un, rcu);
2173 	}
2174 	kfree(ulp);
2175 }
2176 
2177 #ifdef CONFIG_PROC_FS
2178 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2179 {
2180 	struct user_namespace *user_ns = seq_user_ns(s);
2181 	struct sem_array *sma = it;
2182 	time_t sem_otime;
2183 
2184 	/*
2185 	 * The proc interface isn't aware of sem_lock(), it calls
2186 	 * ipc_lock_object() directly (in sysvipc_find_ipc).
2187 	 * In order to stay compatible with sem_lock(), we must wait until
2188 	 * all simple semop() calls have left their critical regions.
2189 	 */
2190 	sem_wait_array(sma);
2191 
2192 	sem_otime = get_semotime(sma);
2193 
2194 	seq_printf(s,
2195 		   "%10d %10d  %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2196 		   sma->sem_perm.key,
2197 		   sma->sem_perm.id,
2198 		   sma->sem_perm.mode,
2199 		   sma->sem_nsems,
2200 		   from_kuid_munged(user_ns, sma->sem_perm.uid),
2201 		   from_kgid_munged(user_ns, sma->sem_perm.gid),
2202 		   from_kuid_munged(user_ns, sma->sem_perm.cuid),
2203 		   from_kgid_munged(user_ns, sma->sem_perm.cgid),
2204 		   sem_otime,
2205 		   sma->sem_ctime);
2206 
2207 	return 0;
2208 }
2209 #endif
2210