xref: /openbmc/linux/ipc/sem.c (revision f42b3800)
1 /*
2  * linux/ipc/sem.c
3  * Copyright (C) 1992 Krishna Balasubramanian
4  * Copyright (C) 1995 Eric Schenk, Bruno Haible
5  *
6  * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995):
7  * This code underwent a massive rewrite in order to solve some problems
8  * with the original code. In particular the original code failed to
9  * wake up processes that were waiting for semval to go to 0 if the
10  * value went to 0 and was then incremented rapidly enough. In solving
11  * this problem I have also modified the implementation so that it
12  * processes pending operations in a FIFO manner, thus give a guarantee
13  * that processes waiting for a lock on the semaphore won't starve
14  * unless another locking process fails to unlock.
15  * In addition the following two changes in behavior have been introduced:
16  * - The original implementation of semop returned the value
17  *   last semaphore element examined on success. This does not
18  *   match the manual page specifications, and effectively
19  *   allows the user to read the semaphore even if they do not
20  *   have read permissions. The implementation now returns 0
21  *   on success as stated in the manual page.
22  * - There is some confusion over whether the set of undo adjustments
23  *   to be performed at exit should be done in an atomic manner.
24  *   That is, if we are attempting to decrement the semval should we queue
25  *   up and wait until we can do so legally?
26  *   The original implementation attempted to do this.
27  *   The current implementation does not do so. This is because I don't
28  *   think it is the right thing (TM) to do, and because I couldn't
29  *   see a clean way to get the old behavior with the new design.
30  *   The POSIX standard and SVID should be consulted to determine
31  *   what behavior is mandated.
32  *
33  * Further notes on refinement (Christoph Rohland, December 1998):
34  * - The POSIX standard says, that the undo adjustments simply should
35  *   redo. So the current implementation is o.K.
36  * - The previous code had two flaws:
37  *   1) It actively gave the semaphore to the next waiting process
38  *      sleeping on the semaphore. Since this process did not have the
39  *      cpu this led to many unnecessary context switches and bad
40  *      performance. Now we only check which process should be able to
41  *      get the semaphore and if this process wants to reduce some
42  *      semaphore value we simply wake it up without doing the
43  *      operation. So it has to try to get it later. Thus e.g. the
44  *      running process may reacquire the semaphore during the current
45  *      time slice. If it only waits for zero or increases the semaphore,
46  *      we do the operation in advance and wake it up.
47  *   2) It did not wake up all zero waiting processes. We try to do
48  *      better but only get the semops right which only wait for zero or
49  *      increase. If there are decrement operations in the operations
50  *      array we do the same as before.
51  *
52  * With the incarnation of O(1) scheduler, it becomes unnecessary to perform
53  * check/retry algorithm for waking up blocked processes as the new scheduler
54  * is better at handling thread switch than the old one.
55  *
56  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
57  *
58  * SMP-threaded, sysctl's added
59  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
60  * Enforced range limit on SEM_UNDO
61  * (c) 2001 Red Hat Inc <alan@redhat.com>
62  * Lockless wakeup
63  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
64  *
65  * support for audit of ipc object properties and permission changes
66  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
67  *
68  * namespaces support
69  * OpenVZ, SWsoft Inc.
70  * Pavel Emelianov <xemul@openvz.org>
71  */
72 
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/init.h>
76 #include <linux/proc_fs.h>
77 #include <linux/time.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/audit.h>
81 #include <linux/capability.h>
82 #include <linux/seq_file.h>
83 #include <linux/rwsem.h>
84 #include <linux/nsproxy.h>
85 #include <linux/ipc_namespace.h>
86 
87 #include <asm/uaccess.h>
88 #include "util.h"
89 
90 #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
91 
92 #define sem_unlock(sma)		ipc_unlock(&(sma)->sem_perm)
93 #define sem_checkid(sma, semid)	ipc_checkid(&sma->sem_perm, semid)
94 #define sem_buildid(id, seq)	ipc_buildid(id, seq)
95 
96 static int newary(struct ipc_namespace *, struct ipc_params *);
97 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
98 #ifdef CONFIG_PROC_FS
99 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
100 #endif
101 
102 #define SEMMSL_FAST	256 /* 512 bytes on stack */
103 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
104 
105 /*
106  * linked list protection:
107  *	sem_undo.id_next,
108  *	sem_array.sem_pending{,last},
109  *	sem_array.sem_undo: sem_lock() for read/write
110  *	sem_undo.proc_next: only "current" is allowed to read/write that field.
111  *
112  */
113 
114 #define sc_semmsl	sem_ctls[0]
115 #define sc_semmns	sem_ctls[1]
116 #define sc_semopm	sem_ctls[2]
117 #define sc_semmni	sem_ctls[3]
118 
119 void sem_init_ns(struct ipc_namespace *ns)
120 {
121 	ns->sc_semmsl = SEMMSL;
122 	ns->sc_semmns = SEMMNS;
123 	ns->sc_semopm = SEMOPM;
124 	ns->sc_semmni = SEMMNI;
125 	ns->used_sems = 0;
126 	ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
127 }
128 
129 #ifdef CONFIG_IPC_NS
130 void sem_exit_ns(struct ipc_namespace *ns)
131 {
132 	free_ipcs(ns, &sem_ids(ns), freeary);
133 }
134 #endif
135 
136 void __init sem_init (void)
137 {
138 	sem_init_ns(&init_ipc_ns);
139 	ipc_init_proc_interface("sysvipc/sem",
140 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
141 				IPC_SEM_IDS, sysvipc_sem_proc_show);
142 }
143 
144 /*
145  * This routine is called in the paths where the rw_mutex is held to protect
146  * access to the idr tree.
147  */
148 static inline struct sem_array *sem_lock_check_down(struct ipc_namespace *ns,
149 						int id)
150 {
151 	struct kern_ipc_perm *ipcp = ipc_lock_check_down(&sem_ids(ns), id);
152 
153 	if (IS_ERR(ipcp))
154 		return (struct sem_array *)ipcp;
155 
156 	return container_of(ipcp, struct sem_array, sem_perm);
157 }
158 
159 /*
160  * sem_lock_(check_) routines are called in the paths where the rw_mutex
161  * is not held.
162  */
163 static inline struct sem_array *sem_lock(struct ipc_namespace *ns, int id)
164 {
165 	struct kern_ipc_perm *ipcp = ipc_lock(&sem_ids(ns), id);
166 
167 	if (IS_ERR(ipcp))
168 		return (struct sem_array *)ipcp;
169 
170 	return container_of(ipcp, struct sem_array, sem_perm);
171 }
172 
173 static inline struct sem_array *sem_lock_check(struct ipc_namespace *ns,
174 						int id)
175 {
176 	struct kern_ipc_perm *ipcp = ipc_lock_check(&sem_ids(ns), id);
177 
178 	if (IS_ERR(ipcp))
179 		return (struct sem_array *)ipcp;
180 
181 	return container_of(ipcp, struct sem_array, sem_perm);
182 }
183 
184 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
185 {
186 	ipc_rmid(&sem_ids(ns), &s->sem_perm);
187 }
188 
189 /*
190  * Lockless wakeup algorithm:
191  * Without the check/retry algorithm a lockless wakeup is possible:
192  * - queue.status is initialized to -EINTR before blocking.
193  * - wakeup is performed by
194  *	* unlinking the queue entry from sma->sem_pending
195  *	* setting queue.status to IN_WAKEUP
196  *	  This is the notification for the blocked thread that a
197  *	  result value is imminent.
198  *	* call wake_up_process
199  *	* set queue.status to the final value.
200  * - the previously blocked thread checks queue.status:
201  *   	* if it's IN_WAKEUP, then it must wait until the value changes
202  *   	* if it's not -EINTR, then the operation was completed by
203  *   	  update_queue. semtimedop can return queue.status without
204  *   	  performing any operation on the sem array.
205  *   	* otherwise it must acquire the spinlock and check what's up.
206  *
207  * The two-stage algorithm is necessary to protect against the following
208  * races:
209  * - if queue.status is set after wake_up_process, then the woken up idle
210  *   thread could race forward and try (and fail) to acquire sma->lock
211  *   before update_queue had a chance to set queue.status
212  * - if queue.status is written before wake_up_process and if the
213  *   blocked process is woken up by a signal between writing
214  *   queue.status and the wake_up_process, then the woken up
215  *   process could return from semtimedop and die by calling
216  *   sys_exit before wake_up_process is called. Then wake_up_process
217  *   will oops, because the task structure is already invalid.
218  *   (yes, this happened on s390 with sysv msg).
219  *
220  */
221 #define IN_WAKEUP	1
222 
223 /**
224  * newary - Create a new semaphore set
225  * @ns: namespace
226  * @params: ptr to the structure that contains key, semflg and nsems
227  *
228  * Called with sem_ids.rw_mutex held (as a writer)
229  */
230 
231 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
232 {
233 	int id;
234 	int retval;
235 	struct sem_array *sma;
236 	int size;
237 	key_t key = params->key;
238 	int nsems = params->u.nsems;
239 	int semflg = params->flg;
240 
241 	if (!nsems)
242 		return -EINVAL;
243 	if (ns->used_sems + nsems > ns->sc_semmns)
244 		return -ENOSPC;
245 
246 	size = sizeof (*sma) + nsems * sizeof (struct sem);
247 	sma = ipc_rcu_alloc(size);
248 	if (!sma) {
249 		return -ENOMEM;
250 	}
251 	memset (sma, 0, size);
252 
253 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
254 	sma->sem_perm.key = key;
255 
256 	sma->sem_perm.security = NULL;
257 	retval = security_sem_alloc(sma);
258 	if (retval) {
259 		ipc_rcu_putref(sma);
260 		return retval;
261 	}
262 
263 	id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
264 	if (id < 0) {
265 		security_sem_free(sma);
266 		ipc_rcu_putref(sma);
267 		return id;
268 	}
269 	ns->used_sems += nsems;
270 
271 	sma->sem_perm.id = sem_buildid(id, sma->sem_perm.seq);
272 	sma->sem_base = (struct sem *) &sma[1];
273 	/* sma->sem_pending = NULL; */
274 	sma->sem_pending_last = &sma->sem_pending;
275 	/* sma->undo = NULL; */
276 	sma->sem_nsems = nsems;
277 	sma->sem_ctime = get_seconds();
278 	sem_unlock(sma);
279 
280 	return sma->sem_perm.id;
281 }
282 
283 
284 /*
285  * Called with sem_ids.rw_mutex and ipcp locked.
286  */
287 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
288 {
289 	struct sem_array *sma;
290 
291 	sma = container_of(ipcp, struct sem_array, sem_perm);
292 	return security_sem_associate(sma, semflg);
293 }
294 
295 /*
296  * Called with sem_ids.rw_mutex and ipcp locked.
297  */
298 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
299 				struct ipc_params *params)
300 {
301 	struct sem_array *sma;
302 
303 	sma = container_of(ipcp, struct sem_array, sem_perm);
304 	if (params->u.nsems > sma->sem_nsems)
305 		return -EINVAL;
306 
307 	return 0;
308 }
309 
310 asmlinkage long sys_semget(key_t key, int nsems, int semflg)
311 {
312 	struct ipc_namespace *ns;
313 	struct ipc_ops sem_ops;
314 	struct ipc_params sem_params;
315 
316 	ns = current->nsproxy->ipc_ns;
317 
318 	if (nsems < 0 || nsems > ns->sc_semmsl)
319 		return -EINVAL;
320 
321 	sem_ops.getnew = newary;
322 	sem_ops.associate = sem_security;
323 	sem_ops.more_checks = sem_more_checks;
324 
325 	sem_params.key = key;
326 	sem_params.flg = semflg;
327 	sem_params.u.nsems = nsems;
328 
329 	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
330 }
331 
332 /* Manage the doubly linked list sma->sem_pending as a FIFO:
333  * insert new queue elements at the tail sma->sem_pending_last.
334  */
335 static inline void append_to_queue (struct sem_array * sma,
336 				    struct sem_queue * q)
337 {
338 	*(q->prev = sma->sem_pending_last) = q;
339 	*(sma->sem_pending_last = &q->next) = NULL;
340 }
341 
342 static inline void prepend_to_queue (struct sem_array * sma,
343 				     struct sem_queue * q)
344 {
345 	q->next = sma->sem_pending;
346 	*(q->prev = &sma->sem_pending) = q;
347 	if (q->next)
348 		q->next->prev = &q->next;
349 	else /* sma->sem_pending_last == &sma->sem_pending */
350 		sma->sem_pending_last = &q->next;
351 }
352 
353 static inline void remove_from_queue (struct sem_array * sma,
354 				      struct sem_queue * q)
355 {
356 	*(q->prev) = q->next;
357 	if (q->next)
358 		q->next->prev = q->prev;
359 	else /* sma->sem_pending_last == &q->next */
360 		sma->sem_pending_last = q->prev;
361 	q->prev = NULL; /* mark as removed */
362 }
363 
364 /*
365  * Determine whether a sequence of semaphore operations would succeed
366  * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
367  */
368 
369 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
370 			     int nsops, struct sem_undo *un, int pid)
371 {
372 	int result, sem_op;
373 	struct sembuf *sop;
374 	struct sem * curr;
375 
376 	for (sop = sops; sop < sops + nsops; sop++) {
377 		curr = sma->sem_base + sop->sem_num;
378 		sem_op = sop->sem_op;
379 		result = curr->semval;
380 
381 		if (!sem_op && result)
382 			goto would_block;
383 
384 		result += sem_op;
385 		if (result < 0)
386 			goto would_block;
387 		if (result > SEMVMX)
388 			goto out_of_range;
389 		if (sop->sem_flg & SEM_UNDO) {
390 			int undo = un->semadj[sop->sem_num] - sem_op;
391 			/*
392 	 		 *	Exceeding the undo range is an error.
393 			 */
394 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
395 				goto out_of_range;
396 		}
397 		curr->semval = result;
398 	}
399 
400 	sop--;
401 	while (sop >= sops) {
402 		sma->sem_base[sop->sem_num].sempid = pid;
403 		if (sop->sem_flg & SEM_UNDO)
404 			un->semadj[sop->sem_num] -= sop->sem_op;
405 		sop--;
406 	}
407 
408 	sma->sem_otime = get_seconds();
409 	return 0;
410 
411 out_of_range:
412 	result = -ERANGE;
413 	goto undo;
414 
415 would_block:
416 	if (sop->sem_flg & IPC_NOWAIT)
417 		result = -EAGAIN;
418 	else
419 		result = 1;
420 
421 undo:
422 	sop--;
423 	while (sop >= sops) {
424 		sma->sem_base[sop->sem_num].semval -= sop->sem_op;
425 		sop--;
426 	}
427 
428 	return result;
429 }
430 
431 /* Go through the pending queue for the indicated semaphore
432  * looking for tasks that can be completed.
433  */
434 static void update_queue (struct sem_array * sma)
435 {
436 	int error;
437 	struct sem_queue * q;
438 
439 	q = sma->sem_pending;
440 	while(q) {
441 		error = try_atomic_semop(sma, q->sops, q->nsops,
442 					 q->undo, q->pid);
443 
444 		/* Does q->sleeper still need to sleep? */
445 		if (error <= 0) {
446 			struct sem_queue *n;
447 			remove_from_queue(sma,q);
448 			q->status = IN_WAKEUP;
449 			/*
450 			 * Continue scanning. The next operation
451 			 * that must be checked depends on the type of the
452 			 * completed operation:
453 			 * - if the operation modified the array, then
454 			 *   restart from the head of the queue and
455 			 *   check for threads that might be waiting
456 			 *   for semaphore values to become 0.
457 			 * - if the operation didn't modify the array,
458 			 *   then just continue.
459 			 */
460 			if (q->alter)
461 				n = sma->sem_pending;
462 			else
463 				n = q->next;
464 			wake_up_process(q->sleeper);
465 			/* hands-off: q will disappear immediately after
466 			 * writing q->status.
467 			 */
468 			smp_wmb();
469 			q->status = error;
470 			q = n;
471 		} else {
472 			q = q->next;
473 		}
474 	}
475 }
476 
477 /* The following counts are associated to each semaphore:
478  *   semncnt        number of tasks waiting on semval being nonzero
479  *   semzcnt        number of tasks waiting on semval being zero
480  * This model assumes that a task waits on exactly one semaphore.
481  * Since semaphore operations are to be performed atomically, tasks actually
482  * wait on a whole sequence of semaphores simultaneously.
483  * The counts we return here are a rough approximation, but still
484  * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
485  */
486 static int count_semncnt (struct sem_array * sma, ushort semnum)
487 {
488 	int semncnt;
489 	struct sem_queue * q;
490 
491 	semncnt = 0;
492 	for (q = sma->sem_pending; q; q = q->next) {
493 		struct sembuf * sops = q->sops;
494 		int nsops = q->nsops;
495 		int i;
496 		for (i = 0; i < nsops; i++)
497 			if (sops[i].sem_num == semnum
498 			    && (sops[i].sem_op < 0)
499 			    && !(sops[i].sem_flg & IPC_NOWAIT))
500 				semncnt++;
501 	}
502 	return semncnt;
503 }
504 static int count_semzcnt (struct sem_array * sma, ushort semnum)
505 {
506 	int semzcnt;
507 	struct sem_queue * q;
508 
509 	semzcnt = 0;
510 	for (q = sma->sem_pending; q; q = q->next) {
511 		struct sembuf * sops = q->sops;
512 		int nsops = q->nsops;
513 		int i;
514 		for (i = 0; i < nsops; i++)
515 			if (sops[i].sem_num == semnum
516 			    && (sops[i].sem_op == 0)
517 			    && !(sops[i].sem_flg & IPC_NOWAIT))
518 				semzcnt++;
519 	}
520 	return semzcnt;
521 }
522 
523 /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
524  * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
525  * remains locked on exit.
526  */
527 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
528 {
529 	struct sem_undo *un;
530 	struct sem_queue *q;
531 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
532 
533 	/* Invalidate the existing undo structures for this semaphore set.
534 	 * (They will be freed without any further action in exit_sem()
535 	 * or during the next semop.)
536 	 */
537 	for (un = sma->undo; un; un = un->id_next)
538 		un->semid = -1;
539 
540 	/* Wake up all pending processes and let them fail with EIDRM. */
541 	q = sma->sem_pending;
542 	while(q) {
543 		struct sem_queue *n;
544 		/* lazy remove_from_queue: we are killing the whole queue */
545 		q->prev = NULL;
546 		n = q->next;
547 		q->status = IN_WAKEUP;
548 		wake_up_process(q->sleeper); /* doesn't sleep */
549 		smp_wmb();
550 		q->status = -EIDRM;	/* hands-off q */
551 		q = n;
552 	}
553 
554 	/* Remove the semaphore set from the IDR */
555 	sem_rmid(ns, sma);
556 	sem_unlock(sma);
557 
558 	ns->used_sems -= sma->sem_nsems;
559 	security_sem_free(sma);
560 	ipc_rcu_putref(sma);
561 }
562 
563 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
564 {
565 	switch(version) {
566 	case IPC_64:
567 		return copy_to_user(buf, in, sizeof(*in));
568 	case IPC_OLD:
569 	    {
570 		struct semid_ds out;
571 
572 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
573 
574 		out.sem_otime	= in->sem_otime;
575 		out.sem_ctime	= in->sem_ctime;
576 		out.sem_nsems	= in->sem_nsems;
577 
578 		return copy_to_user(buf, &out, sizeof(out));
579 	    }
580 	default:
581 		return -EINVAL;
582 	}
583 }
584 
585 static int semctl_nolock(struct ipc_namespace *ns, int semid,
586 			 int cmd, int version, union semun arg)
587 {
588 	int err = -EINVAL;
589 	struct sem_array *sma;
590 
591 	switch(cmd) {
592 	case IPC_INFO:
593 	case SEM_INFO:
594 	{
595 		struct seminfo seminfo;
596 		int max_id;
597 
598 		err = security_sem_semctl(NULL, cmd);
599 		if (err)
600 			return err;
601 
602 		memset(&seminfo,0,sizeof(seminfo));
603 		seminfo.semmni = ns->sc_semmni;
604 		seminfo.semmns = ns->sc_semmns;
605 		seminfo.semmsl = ns->sc_semmsl;
606 		seminfo.semopm = ns->sc_semopm;
607 		seminfo.semvmx = SEMVMX;
608 		seminfo.semmnu = SEMMNU;
609 		seminfo.semmap = SEMMAP;
610 		seminfo.semume = SEMUME;
611 		down_read(&sem_ids(ns).rw_mutex);
612 		if (cmd == SEM_INFO) {
613 			seminfo.semusz = sem_ids(ns).in_use;
614 			seminfo.semaem = ns->used_sems;
615 		} else {
616 			seminfo.semusz = SEMUSZ;
617 			seminfo.semaem = SEMAEM;
618 		}
619 		max_id = ipc_get_maxid(&sem_ids(ns));
620 		up_read(&sem_ids(ns).rw_mutex);
621 		if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo)))
622 			return -EFAULT;
623 		return (max_id < 0) ? 0: max_id;
624 	}
625 	case IPC_STAT:
626 	case SEM_STAT:
627 	{
628 		struct semid64_ds tbuf;
629 		int id;
630 
631 		if (cmd == SEM_STAT) {
632 			sma = sem_lock(ns, semid);
633 			if (IS_ERR(sma))
634 				return PTR_ERR(sma);
635 			id = sma->sem_perm.id;
636 		} else {
637 			sma = sem_lock_check(ns, semid);
638 			if (IS_ERR(sma))
639 				return PTR_ERR(sma);
640 			id = 0;
641 		}
642 
643 		err = -EACCES;
644 		if (ipcperms (&sma->sem_perm, S_IRUGO))
645 			goto out_unlock;
646 
647 		err = security_sem_semctl(sma, cmd);
648 		if (err)
649 			goto out_unlock;
650 
651 		memset(&tbuf, 0, sizeof(tbuf));
652 
653 		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
654 		tbuf.sem_otime  = sma->sem_otime;
655 		tbuf.sem_ctime  = sma->sem_ctime;
656 		tbuf.sem_nsems  = sma->sem_nsems;
657 		sem_unlock(sma);
658 		if (copy_semid_to_user (arg.buf, &tbuf, version))
659 			return -EFAULT;
660 		return id;
661 	}
662 	default:
663 		return -EINVAL;
664 	}
665 	return err;
666 out_unlock:
667 	sem_unlock(sma);
668 	return err;
669 }
670 
671 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
672 		int cmd, int version, union semun arg)
673 {
674 	struct sem_array *sma;
675 	struct sem* curr;
676 	int err;
677 	ushort fast_sem_io[SEMMSL_FAST];
678 	ushort* sem_io = fast_sem_io;
679 	int nsems;
680 
681 	sma = sem_lock_check(ns, semid);
682 	if (IS_ERR(sma))
683 		return PTR_ERR(sma);
684 
685 	nsems = sma->sem_nsems;
686 
687 	err = -EACCES;
688 	if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO))
689 		goto out_unlock;
690 
691 	err = security_sem_semctl(sma, cmd);
692 	if (err)
693 		goto out_unlock;
694 
695 	err = -EACCES;
696 	switch (cmd) {
697 	case GETALL:
698 	{
699 		ushort __user *array = arg.array;
700 		int i;
701 
702 		if(nsems > SEMMSL_FAST) {
703 			ipc_rcu_getref(sma);
704 			sem_unlock(sma);
705 
706 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
707 			if(sem_io == NULL) {
708 				ipc_lock_by_ptr(&sma->sem_perm);
709 				ipc_rcu_putref(sma);
710 				sem_unlock(sma);
711 				return -ENOMEM;
712 			}
713 
714 			ipc_lock_by_ptr(&sma->sem_perm);
715 			ipc_rcu_putref(sma);
716 			if (sma->sem_perm.deleted) {
717 				sem_unlock(sma);
718 				err = -EIDRM;
719 				goto out_free;
720 			}
721 		}
722 
723 		for (i = 0; i < sma->sem_nsems; i++)
724 			sem_io[i] = sma->sem_base[i].semval;
725 		sem_unlock(sma);
726 		err = 0;
727 		if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
728 			err = -EFAULT;
729 		goto out_free;
730 	}
731 	case SETALL:
732 	{
733 		int i;
734 		struct sem_undo *un;
735 
736 		ipc_rcu_getref(sma);
737 		sem_unlock(sma);
738 
739 		if(nsems > SEMMSL_FAST) {
740 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
741 			if(sem_io == NULL) {
742 				ipc_lock_by_ptr(&sma->sem_perm);
743 				ipc_rcu_putref(sma);
744 				sem_unlock(sma);
745 				return -ENOMEM;
746 			}
747 		}
748 
749 		if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
750 			ipc_lock_by_ptr(&sma->sem_perm);
751 			ipc_rcu_putref(sma);
752 			sem_unlock(sma);
753 			err = -EFAULT;
754 			goto out_free;
755 		}
756 
757 		for (i = 0; i < nsems; i++) {
758 			if (sem_io[i] > SEMVMX) {
759 				ipc_lock_by_ptr(&sma->sem_perm);
760 				ipc_rcu_putref(sma);
761 				sem_unlock(sma);
762 				err = -ERANGE;
763 				goto out_free;
764 			}
765 		}
766 		ipc_lock_by_ptr(&sma->sem_perm);
767 		ipc_rcu_putref(sma);
768 		if (sma->sem_perm.deleted) {
769 			sem_unlock(sma);
770 			err = -EIDRM;
771 			goto out_free;
772 		}
773 
774 		for (i = 0; i < nsems; i++)
775 			sma->sem_base[i].semval = sem_io[i];
776 		for (un = sma->undo; un; un = un->id_next)
777 			for (i = 0; i < nsems; i++)
778 				un->semadj[i] = 0;
779 		sma->sem_ctime = get_seconds();
780 		/* maybe some queued-up processes were waiting for this */
781 		update_queue(sma);
782 		err = 0;
783 		goto out_unlock;
784 	}
785 	/* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
786 	}
787 	err = -EINVAL;
788 	if(semnum < 0 || semnum >= nsems)
789 		goto out_unlock;
790 
791 	curr = &sma->sem_base[semnum];
792 
793 	switch (cmd) {
794 	case GETVAL:
795 		err = curr->semval;
796 		goto out_unlock;
797 	case GETPID:
798 		err = curr->sempid;
799 		goto out_unlock;
800 	case GETNCNT:
801 		err = count_semncnt(sma,semnum);
802 		goto out_unlock;
803 	case GETZCNT:
804 		err = count_semzcnt(sma,semnum);
805 		goto out_unlock;
806 	case SETVAL:
807 	{
808 		int val = arg.val;
809 		struct sem_undo *un;
810 		err = -ERANGE;
811 		if (val > SEMVMX || val < 0)
812 			goto out_unlock;
813 
814 		for (un = sma->undo; un; un = un->id_next)
815 			un->semadj[semnum] = 0;
816 		curr->semval = val;
817 		curr->sempid = task_tgid_vnr(current);
818 		sma->sem_ctime = get_seconds();
819 		/* maybe some queued-up processes were waiting for this */
820 		update_queue(sma);
821 		err = 0;
822 		goto out_unlock;
823 	}
824 	}
825 out_unlock:
826 	sem_unlock(sma);
827 out_free:
828 	if(sem_io != fast_sem_io)
829 		ipc_free(sem_io, sizeof(ushort)*nsems);
830 	return err;
831 }
832 
833 struct sem_setbuf {
834 	uid_t	uid;
835 	gid_t	gid;
836 	mode_t	mode;
837 };
838 
839 static inline unsigned long copy_semid_from_user(struct sem_setbuf *out, void __user *buf, int version)
840 {
841 	switch(version) {
842 	case IPC_64:
843 	    {
844 		struct semid64_ds tbuf;
845 
846 		if(copy_from_user(&tbuf, buf, sizeof(tbuf)))
847 			return -EFAULT;
848 
849 		out->uid	= tbuf.sem_perm.uid;
850 		out->gid	= tbuf.sem_perm.gid;
851 		out->mode	= tbuf.sem_perm.mode;
852 
853 		return 0;
854 	    }
855 	case IPC_OLD:
856 	    {
857 		struct semid_ds tbuf_old;
858 
859 		if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
860 			return -EFAULT;
861 
862 		out->uid	= tbuf_old.sem_perm.uid;
863 		out->gid	= tbuf_old.sem_perm.gid;
864 		out->mode	= tbuf_old.sem_perm.mode;
865 
866 		return 0;
867 	    }
868 	default:
869 		return -EINVAL;
870 	}
871 }
872 
873 static int semctl_down(struct ipc_namespace *ns, int semid, int semnum,
874 		int cmd, int version, union semun arg)
875 {
876 	struct sem_array *sma;
877 	int err;
878 	struct sem_setbuf uninitialized_var(setbuf);
879 	struct kern_ipc_perm *ipcp;
880 
881 	if(cmd == IPC_SET) {
882 		if(copy_semid_from_user (&setbuf, arg.buf, version))
883 			return -EFAULT;
884 	}
885 	sma = sem_lock_check_down(ns, semid);
886 	if (IS_ERR(sma))
887 		return PTR_ERR(sma);
888 
889 	ipcp = &sma->sem_perm;
890 
891 	err = audit_ipc_obj(ipcp);
892 	if (err)
893 		goto out_unlock;
894 
895 	if (cmd == IPC_SET) {
896 		err = audit_ipc_set_perm(0, setbuf.uid, setbuf.gid, setbuf.mode);
897 		if (err)
898 			goto out_unlock;
899 	}
900 	if (current->euid != ipcp->cuid &&
901 	    current->euid != ipcp->uid && !capable(CAP_SYS_ADMIN)) {
902 	    	err=-EPERM;
903 		goto out_unlock;
904 	}
905 
906 	err = security_sem_semctl(sma, cmd);
907 	if (err)
908 		goto out_unlock;
909 
910 	switch(cmd){
911 	case IPC_RMID:
912 		freeary(ns, ipcp);
913 		err = 0;
914 		break;
915 	case IPC_SET:
916 		ipcp->uid = setbuf.uid;
917 		ipcp->gid = setbuf.gid;
918 		ipcp->mode = (ipcp->mode & ~S_IRWXUGO)
919 				| (setbuf.mode & S_IRWXUGO);
920 		sma->sem_ctime = get_seconds();
921 		sem_unlock(sma);
922 		err = 0;
923 		break;
924 	default:
925 		sem_unlock(sma);
926 		err = -EINVAL;
927 		break;
928 	}
929 	return err;
930 
931 out_unlock:
932 	sem_unlock(sma);
933 	return err;
934 }
935 
936 asmlinkage long sys_semctl (int semid, int semnum, int cmd, union semun arg)
937 {
938 	int err = -EINVAL;
939 	int version;
940 	struct ipc_namespace *ns;
941 
942 	if (semid < 0)
943 		return -EINVAL;
944 
945 	version = ipc_parse_version(&cmd);
946 	ns = current->nsproxy->ipc_ns;
947 
948 	switch(cmd) {
949 	case IPC_INFO:
950 	case SEM_INFO:
951 	case IPC_STAT:
952 	case SEM_STAT:
953 		err = semctl_nolock(ns, semid, cmd, version, arg);
954 		return err;
955 	case GETALL:
956 	case GETVAL:
957 	case GETPID:
958 	case GETNCNT:
959 	case GETZCNT:
960 	case SETVAL:
961 	case SETALL:
962 		err = semctl_main(ns,semid,semnum,cmd,version,arg);
963 		return err;
964 	case IPC_RMID:
965 	case IPC_SET:
966 		down_write(&sem_ids(ns).rw_mutex);
967 		err = semctl_down(ns,semid,semnum,cmd,version,arg);
968 		up_write(&sem_ids(ns).rw_mutex);
969 		return err;
970 	default:
971 		return -EINVAL;
972 	}
973 }
974 
975 /* If the task doesn't already have a undo_list, then allocate one
976  * here.  We guarantee there is only one thread using this undo list,
977  * and current is THE ONE
978  *
979  * If this allocation and assignment succeeds, but later
980  * portions of this code fail, there is no need to free the sem_undo_list.
981  * Just let it stay associated with the task, and it'll be freed later
982  * at exit time.
983  *
984  * This can block, so callers must hold no locks.
985  */
986 static inline int get_undo_list(struct sem_undo_list **undo_listp)
987 {
988 	struct sem_undo_list *undo_list;
989 
990 	undo_list = current->sysvsem.undo_list;
991 	if (!undo_list) {
992 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
993 		if (undo_list == NULL)
994 			return -ENOMEM;
995 		spin_lock_init(&undo_list->lock);
996 		atomic_set(&undo_list->refcnt, 1);
997 		current->sysvsem.undo_list = undo_list;
998 	}
999 	*undo_listp = undo_list;
1000 	return 0;
1001 }
1002 
1003 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1004 {
1005 	struct sem_undo **last, *un;
1006 
1007 	last = &ulp->proc_list;
1008 	un = *last;
1009 	while(un != NULL) {
1010 		if(un->semid==semid)
1011 			break;
1012 		if(un->semid==-1) {
1013 			*last=un->proc_next;
1014 			kfree(un);
1015 		} else {
1016 			last=&un->proc_next;
1017 		}
1018 		un=*last;
1019 	}
1020 	return un;
1021 }
1022 
1023 static struct sem_undo *find_undo(struct ipc_namespace *ns, int semid)
1024 {
1025 	struct sem_array *sma;
1026 	struct sem_undo_list *ulp;
1027 	struct sem_undo *un, *new;
1028 	int nsems;
1029 	int error;
1030 
1031 	error = get_undo_list(&ulp);
1032 	if (error)
1033 		return ERR_PTR(error);
1034 
1035 	spin_lock(&ulp->lock);
1036 	un = lookup_undo(ulp, semid);
1037 	spin_unlock(&ulp->lock);
1038 	if (likely(un!=NULL))
1039 		goto out;
1040 
1041 	/* no undo structure around - allocate one. */
1042 	sma = sem_lock_check(ns, semid);
1043 	if (IS_ERR(sma))
1044 		return ERR_PTR(PTR_ERR(sma));
1045 
1046 	nsems = sma->sem_nsems;
1047 	ipc_rcu_getref(sma);
1048 	sem_unlock(sma);
1049 
1050 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1051 	if (!new) {
1052 		ipc_lock_by_ptr(&sma->sem_perm);
1053 		ipc_rcu_putref(sma);
1054 		sem_unlock(sma);
1055 		return ERR_PTR(-ENOMEM);
1056 	}
1057 	new->semadj = (short *) &new[1];
1058 	new->semid = semid;
1059 
1060 	spin_lock(&ulp->lock);
1061 	un = lookup_undo(ulp, semid);
1062 	if (un) {
1063 		spin_unlock(&ulp->lock);
1064 		kfree(new);
1065 		ipc_lock_by_ptr(&sma->sem_perm);
1066 		ipc_rcu_putref(sma);
1067 		sem_unlock(sma);
1068 		goto out;
1069 	}
1070 	ipc_lock_by_ptr(&sma->sem_perm);
1071 	ipc_rcu_putref(sma);
1072 	if (sma->sem_perm.deleted) {
1073 		sem_unlock(sma);
1074 		spin_unlock(&ulp->lock);
1075 		kfree(new);
1076 		un = ERR_PTR(-EIDRM);
1077 		goto out;
1078 	}
1079 	new->proc_next = ulp->proc_list;
1080 	ulp->proc_list = new;
1081 	new->id_next = sma->undo;
1082 	sma->undo = new;
1083 	sem_unlock(sma);
1084 	un = new;
1085 	spin_unlock(&ulp->lock);
1086 out:
1087 	return un;
1088 }
1089 
1090 asmlinkage long sys_semtimedop(int semid, struct sembuf __user *tsops,
1091 			unsigned nsops, const struct timespec __user *timeout)
1092 {
1093 	int error = -EINVAL;
1094 	struct sem_array *sma;
1095 	struct sembuf fast_sops[SEMOPM_FAST];
1096 	struct sembuf* sops = fast_sops, *sop;
1097 	struct sem_undo *un;
1098 	int undos = 0, alter = 0, max;
1099 	struct sem_queue queue;
1100 	unsigned long jiffies_left = 0;
1101 	struct ipc_namespace *ns;
1102 
1103 	ns = current->nsproxy->ipc_ns;
1104 
1105 	if (nsops < 1 || semid < 0)
1106 		return -EINVAL;
1107 	if (nsops > ns->sc_semopm)
1108 		return -E2BIG;
1109 	if(nsops > SEMOPM_FAST) {
1110 		sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1111 		if(sops==NULL)
1112 			return -ENOMEM;
1113 	}
1114 	if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1115 		error=-EFAULT;
1116 		goto out_free;
1117 	}
1118 	if (timeout) {
1119 		struct timespec _timeout;
1120 		if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1121 			error = -EFAULT;
1122 			goto out_free;
1123 		}
1124 		if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1125 			_timeout.tv_nsec >= 1000000000L) {
1126 			error = -EINVAL;
1127 			goto out_free;
1128 		}
1129 		jiffies_left = timespec_to_jiffies(&_timeout);
1130 	}
1131 	max = 0;
1132 	for (sop = sops; sop < sops + nsops; sop++) {
1133 		if (sop->sem_num >= max)
1134 			max = sop->sem_num;
1135 		if (sop->sem_flg & SEM_UNDO)
1136 			undos = 1;
1137 		if (sop->sem_op != 0)
1138 			alter = 1;
1139 	}
1140 
1141 retry_undos:
1142 	if (undos) {
1143 		un = find_undo(ns, semid);
1144 		if (IS_ERR(un)) {
1145 			error = PTR_ERR(un);
1146 			goto out_free;
1147 		}
1148 	} else
1149 		un = NULL;
1150 
1151 	sma = sem_lock_check(ns, semid);
1152 	if (IS_ERR(sma)) {
1153 		error = PTR_ERR(sma);
1154 		goto out_free;
1155 	}
1156 
1157 	/*
1158 	 * semid identifiers are not unique - find_undo may have
1159 	 * allocated an undo structure, it was invalidated by an RMID
1160 	 * and now a new array with received the same id. Check and retry.
1161 	 */
1162 	if (un && un->semid == -1) {
1163 		sem_unlock(sma);
1164 		goto retry_undos;
1165 	}
1166 	error = -EFBIG;
1167 	if (max >= sma->sem_nsems)
1168 		goto out_unlock_free;
1169 
1170 	error = -EACCES;
1171 	if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1172 		goto out_unlock_free;
1173 
1174 	error = security_sem_semop(sma, sops, nsops, alter);
1175 	if (error)
1176 		goto out_unlock_free;
1177 
1178 	error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current));
1179 	if (error <= 0) {
1180 		if (alter && error == 0)
1181 			update_queue (sma);
1182 		goto out_unlock_free;
1183 	}
1184 
1185 	/* We need to sleep on this operation, so we put the current
1186 	 * task into the pending queue and go to sleep.
1187 	 */
1188 
1189 	queue.sma = sma;
1190 	queue.sops = sops;
1191 	queue.nsops = nsops;
1192 	queue.undo = un;
1193 	queue.pid = task_tgid_vnr(current);
1194 	queue.id = semid;
1195 	queue.alter = alter;
1196 	if (alter)
1197 		append_to_queue(sma ,&queue);
1198 	else
1199 		prepend_to_queue(sma ,&queue);
1200 
1201 	queue.status = -EINTR;
1202 	queue.sleeper = current;
1203 	current->state = TASK_INTERRUPTIBLE;
1204 	sem_unlock(sma);
1205 
1206 	if (timeout)
1207 		jiffies_left = schedule_timeout(jiffies_left);
1208 	else
1209 		schedule();
1210 
1211 	error = queue.status;
1212 	while(unlikely(error == IN_WAKEUP)) {
1213 		cpu_relax();
1214 		error = queue.status;
1215 	}
1216 
1217 	if (error != -EINTR) {
1218 		/* fast path: update_queue already obtained all requested
1219 		 * resources */
1220 		goto out_free;
1221 	}
1222 
1223 	sma = sem_lock(ns, semid);
1224 	if (IS_ERR(sma)) {
1225 		BUG_ON(queue.prev != NULL);
1226 		error = -EIDRM;
1227 		goto out_free;
1228 	}
1229 
1230 	/*
1231 	 * If queue.status != -EINTR we are woken up by another process
1232 	 */
1233 	error = queue.status;
1234 	if (error != -EINTR) {
1235 		goto out_unlock_free;
1236 	}
1237 
1238 	/*
1239 	 * If an interrupt occurred we have to clean up the queue
1240 	 */
1241 	if (timeout && jiffies_left == 0)
1242 		error = -EAGAIN;
1243 	remove_from_queue(sma,&queue);
1244 	goto out_unlock_free;
1245 
1246 out_unlock_free:
1247 	sem_unlock(sma);
1248 out_free:
1249 	if(sops != fast_sops)
1250 		kfree(sops);
1251 	return error;
1252 }
1253 
1254 asmlinkage long sys_semop (int semid, struct sembuf __user *tsops, unsigned nsops)
1255 {
1256 	return sys_semtimedop(semid, tsops, nsops, NULL);
1257 }
1258 
1259 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1260  * parent and child tasks.
1261  */
1262 
1263 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1264 {
1265 	struct sem_undo_list *undo_list;
1266 	int error;
1267 
1268 	if (clone_flags & CLONE_SYSVSEM) {
1269 		error = get_undo_list(&undo_list);
1270 		if (error)
1271 			return error;
1272 		atomic_inc(&undo_list->refcnt);
1273 		tsk->sysvsem.undo_list = undo_list;
1274 	} else
1275 		tsk->sysvsem.undo_list = NULL;
1276 
1277 	return 0;
1278 }
1279 
1280 /*
1281  * add semadj values to semaphores, free undo structures.
1282  * undo structures are not freed when semaphore arrays are destroyed
1283  * so some of them may be out of date.
1284  * IMPLEMENTATION NOTE: There is some confusion over whether the
1285  * set of adjustments that needs to be done should be done in an atomic
1286  * manner or not. That is, if we are attempting to decrement the semval
1287  * should we queue up and wait until we can do so legally?
1288  * The original implementation attempted to do this (queue and wait).
1289  * The current implementation does not do so. The POSIX standard
1290  * and SVID should be consulted to determine what behavior is mandated.
1291  */
1292 void exit_sem(struct task_struct *tsk)
1293 {
1294 	struct sem_undo_list *undo_list;
1295 	struct sem_undo *u, **up;
1296 	struct ipc_namespace *ns;
1297 
1298 	undo_list = tsk->sysvsem.undo_list;
1299 	if (!undo_list)
1300 		return;
1301 
1302 	if (!atomic_dec_and_test(&undo_list->refcnt))
1303 		return;
1304 
1305 	ns = tsk->nsproxy->ipc_ns;
1306 	/* There's no need to hold the semundo list lock, as current
1307          * is the last task exiting for this undo list.
1308 	 */
1309 	for (up = &undo_list->proc_list; (u = *up); *up = u->proc_next, kfree(u)) {
1310 		struct sem_array *sma;
1311 		int nsems, i;
1312 		struct sem_undo *un, **unp;
1313 		int semid;
1314 
1315 		semid = u->semid;
1316 
1317 		if(semid == -1)
1318 			continue;
1319 		sma = sem_lock(ns, semid);
1320 		if (IS_ERR(sma))
1321 			continue;
1322 
1323 		if (u->semid == -1)
1324 			goto next_entry;
1325 
1326 		BUG_ON(sem_checkid(sma, u->semid));
1327 
1328 		/* remove u from the sma->undo list */
1329 		for (unp = &sma->undo; (un = *unp); unp = &un->id_next) {
1330 			if (u == un)
1331 				goto found;
1332 		}
1333 		printk ("exit_sem undo list error id=%d\n", u->semid);
1334 		goto next_entry;
1335 found:
1336 		*unp = un->id_next;
1337 		/* perform adjustments registered in u */
1338 		nsems = sma->sem_nsems;
1339 		for (i = 0; i < nsems; i++) {
1340 			struct sem * semaphore = &sma->sem_base[i];
1341 			if (u->semadj[i]) {
1342 				semaphore->semval += u->semadj[i];
1343 				/*
1344 				 * Range checks of the new semaphore value,
1345 				 * not defined by sus:
1346 				 * - Some unices ignore the undo entirely
1347 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
1348 				 * - some cap the value (e.g. FreeBSD caps
1349 				 *   at 0, but doesn't enforce SEMVMX)
1350 				 *
1351 				 * Linux caps the semaphore value, both at 0
1352 				 * and at SEMVMX.
1353 				 *
1354 				 * 	Manfred <manfred@colorfullife.com>
1355 				 */
1356 				if (semaphore->semval < 0)
1357 					semaphore->semval = 0;
1358 				if (semaphore->semval > SEMVMX)
1359 					semaphore->semval = SEMVMX;
1360 				semaphore->sempid = task_tgid_vnr(current);
1361 			}
1362 		}
1363 		sma->sem_otime = get_seconds();
1364 		/* maybe some queued-up processes were waiting for this */
1365 		update_queue(sma);
1366 next_entry:
1367 		sem_unlock(sma);
1368 	}
1369 	kfree(undo_list);
1370 }
1371 
1372 #ifdef CONFIG_PROC_FS
1373 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1374 {
1375 	struct sem_array *sma = it;
1376 
1377 	return seq_printf(s,
1378 			  "%10d %10d  %4o %10lu %5u %5u %5u %5u %10lu %10lu\n",
1379 			  sma->sem_perm.key,
1380 			  sma->sem_perm.id,
1381 			  sma->sem_perm.mode,
1382 			  sma->sem_nsems,
1383 			  sma->sem_perm.uid,
1384 			  sma->sem_perm.gid,
1385 			  sma->sem_perm.cuid,
1386 			  sma->sem_perm.cgid,
1387 			  sma->sem_otime,
1388 			  sma->sem_ctime);
1389 }
1390 #endif
1391