1 /* 2 * linux/ipc/sem.c 3 * Copyright (C) 1992 Krishna Balasubramanian 4 * Copyright (C) 1995 Eric Schenk, Bruno Haible 5 * 6 * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995): 7 * This code underwent a massive rewrite in order to solve some problems 8 * with the original code. In particular the original code failed to 9 * wake up processes that were waiting for semval to go to 0 if the 10 * value went to 0 and was then incremented rapidly enough. In solving 11 * this problem I have also modified the implementation so that it 12 * processes pending operations in a FIFO manner, thus give a guarantee 13 * that processes waiting for a lock on the semaphore won't starve 14 * unless another locking process fails to unlock. 15 * In addition the following two changes in behavior have been introduced: 16 * - The original implementation of semop returned the value 17 * last semaphore element examined on success. This does not 18 * match the manual page specifications, and effectively 19 * allows the user to read the semaphore even if they do not 20 * have read permissions. The implementation now returns 0 21 * on success as stated in the manual page. 22 * - There is some confusion over whether the set of undo adjustments 23 * to be performed at exit should be done in an atomic manner. 24 * That is, if we are attempting to decrement the semval should we queue 25 * up and wait until we can do so legally? 26 * The original implementation attempted to do this. 27 * The current implementation does not do so. This is because I don't 28 * think it is the right thing (TM) to do, and because I couldn't 29 * see a clean way to get the old behavior with the new design. 30 * The POSIX standard and SVID should be consulted to determine 31 * what behavior is mandated. 32 * 33 * Further notes on refinement (Christoph Rohland, December 1998): 34 * - The POSIX standard says, that the undo adjustments simply should 35 * redo. So the current implementation is o.K. 36 * - The previous code had two flaws: 37 * 1) It actively gave the semaphore to the next waiting process 38 * sleeping on the semaphore. Since this process did not have the 39 * cpu this led to many unnecessary context switches and bad 40 * performance. Now we only check which process should be able to 41 * get the semaphore and if this process wants to reduce some 42 * semaphore value we simply wake it up without doing the 43 * operation. So it has to try to get it later. Thus e.g. the 44 * running process may reacquire the semaphore during the current 45 * time slice. If it only waits for zero or increases the semaphore, 46 * we do the operation in advance and wake it up. 47 * 2) It did not wake up all zero waiting processes. We try to do 48 * better but only get the semops right which only wait for zero or 49 * increase. If there are decrement operations in the operations 50 * array we do the same as before. 51 * 52 * With the incarnation of O(1) scheduler, it becomes unnecessary to perform 53 * check/retry algorithm for waking up blocked processes as the new scheduler 54 * is better at handling thread switch than the old one. 55 * 56 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> 57 * 58 * SMP-threaded, sysctl's added 59 * (c) 1999 Manfred Spraul <manfred@colorfullife.com> 60 * Enforced range limit on SEM_UNDO 61 * (c) 2001 Red Hat Inc <alan@redhat.com> 62 * Lockless wakeup 63 * (c) 2003 Manfred Spraul <manfred@colorfullife.com> 64 * 65 * support for audit of ipc object properties and permission changes 66 * Dustin Kirkland <dustin.kirkland@us.ibm.com> 67 * 68 * namespaces support 69 * OpenVZ, SWsoft Inc. 70 * Pavel Emelianov <xemul@openvz.org> 71 */ 72 73 #include <linux/slab.h> 74 #include <linux/spinlock.h> 75 #include <linux/init.h> 76 #include <linux/proc_fs.h> 77 #include <linux/time.h> 78 #include <linux/security.h> 79 #include <linux/syscalls.h> 80 #include <linux/audit.h> 81 #include <linux/capability.h> 82 #include <linux/seq_file.h> 83 #include <linux/rwsem.h> 84 #include <linux/nsproxy.h> 85 #include <linux/ipc_namespace.h> 86 87 #include <asm/uaccess.h> 88 #include "util.h" 89 90 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) 91 92 #define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm) 93 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid) 94 #define sem_buildid(id, seq) ipc_buildid(id, seq) 95 96 static int newary(struct ipc_namespace *, struct ipc_params *); 97 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); 98 #ifdef CONFIG_PROC_FS 99 static int sysvipc_sem_proc_show(struct seq_file *s, void *it); 100 #endif 101 102 #define SEMMSL_FAST 256 /* 512 bytes on stack */ 103 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ 104 105 /* 106 * linked list protection: 107 * sem_undo.id_next, 108 * sem_array.sem_pending{,last}, 109 * sem_array.sem_undo: sem_lock() for read/write 110 * sem_undo.proc_next: only "current" is allowed to read/write that field. 111 * 112 */ 113 114 #define sc_semmsl sem_ctls[0] 115 #define sc_semmns sem_ctls[1] 116 #define sc_semopm sem_ctls[2] 117 #define sc_semmni sem_ctls[3] 118 119 void sem_init_ns(struct ipc_namespace *ns) 120 { 121 ns->sc_semmsl = SEMMSL; 122 ns->sc_semmns = SEMMNS; 123 ns->sc_semopm = SEMOPM; 124 ns->sc_semmni = SEMMNI; 125 ns->used_sems = 0; 126 ipc_init_ids(&ns->ids[IPC_SEM_IDS]); 127 } 128 129 #ifdef CONFIG_IPC_NS 130 void sem_exit_ns(struct ipc_namespace *ns) 131 { 132 free_ipcs(ns, &sem_ids(ns), freeary); 133 } 134 #endif 135 136 void __init sem_init (void) 137 { 138 sem_init_ns(&init_ipc_ns); 139 ipc_init_proc_interface("sysvipc/sem", 140 " key semid perms nsems uid gid cuid cgid otime ctime\n", 141 IPC_SEM_IDS, sysvipc_sem_proc_show); 142 } 143 144 /* 145 * This routine is called in the paths where the rw_mutex is held to protect 146 * access to the idr tree. 147 */ 148 static inline struct sem_array *sem_lock_check_down(struct ipc_namespace *ns, 149 int id) 150 { 151 struct kern_ipc_perm *ipcp = ipc_lock_check_down(&sem_ids(ns), id); 152 153 if (IS_ERR(ipcp)) 154 return (struct sem_array *)ipcp; 155 156 return container_of(ipcp, struct sem_array, sem_perm); 157 } 158 159 /* 160 * sem_lock_(check_) routines are called in the paths where the rw_mutex 161 * is not held. 162 */ 163 static inline struct sem_array *sem_lock(struct ipc_namespace *ns, int id) 164 { 165 struct kern_ipc_perm *ipcp = ipc_lock(&sem_ids(ns), id); 166 167 if (IS_ERR(ipcp)) 168 return (struct sem_array *)ipcp; 169 170 return container_of(ipcp, struct sem_array, sem_perm); 171 } 172 173 static inline struct sem_array *sem_lock_check(struct ipc_namespace *ns, 174 int id) 175 { 176 struct kern_ipc_perm *ipcp = ipc_lock_check(&sem_ids(ns), id); 177 178 if (IS_ERR(ipcp)) 179 return (struct sem_array *)ipcp; 180 181 return container_of(ipcp, struct sem_array, sem_perm); 182 } 183 184 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) 185 { 186 ipc_rmid(&sem_ids(ns), &s->sem_perm); 187 } 188 189 /* 190 * Lockless wakeup algorithm: 191 * Without the check/retry algorithm a lockless wakeup is possible: 192 * - queue.status is initialized to -EINTR before blocking. 193 * - wakeup is performed by 194 * * unlinking the queue entry from sma->sem_pending 195 * * setting queue.status to IN_WAKEUP 196 * This is the notification for the blocked thread that a 197 * result value is imminent. 198 * * call wake_up_process 199 * * set queue.status to the final value. 200 * - the previously blocked thread checks queue.status: 201 * * if it's IN_WAKEUP, then it must wait until the value changes 202 * * if it's not -EINTR, then the operation was completed by 203 * update_queue. semtimedop can return queue.status without 204 * performing any operation on the sem array. 205 * * otherwise it must acquire the spinlock and check what's up. 206 * 207 * The two-stage algorithm is necessary to protect against the following 208 * races: 209 * - if queue.status is set after wake_up_process, then the woken up idle 210 * thread could race forward and try (and fail) to acquire sma->lock 211 * before update_queue had a chance to set queue.status 212 * - if queue.status is written before wake_up_process and if the 213 * blocked process is woken up by a signal between writing 214 * queue.status and the wake_up_process, then the woken up 215 * process could return from semtimedop and die by calling 216 * sys_exit before wake_up_process is called. Then wake_up_process 217 * will oops, because the task structure is already invalid. 218 * (yes, this happened on s390 with sysv msg). 219 * 220 */ 221 #define IN_WAKEUP 1 222 223 /** 224 * newary - Create a new semaphore set 225 * @ns: namespace 226 * @params: ptr to the structure that contains key, semflg and nsems 227 * 228 * Called with sem_ids.rw_mutex held (as a writer) 229 */ 230 231 static int newary(struct ipc_namespace *ns, struct ipc_params *params) 232 { 233 int id; 234 int retval; 235 struct sem_array *sma; 236 int size; 237 key_t key = params->key; 238 int nsems = params->u.nsems; 239 int semflg = params->flg; 240 241 if (!nsems) 242 return -EINVAL; 243 if (ns->used_sems + nsems > ns->sc_semmns) 244 return -ENOSPC; 245 246 size = sizeof (*sma) + nsems * sizeof (struct sem); 247 sma = ipc_rcu_alloc(size); 248 if (!sma) { 249 return -ENOMEM; 250 } 251 memset (sma, 0, size); 252 253 sma->sem_perm.mode = (semflg & S_IRWXUGO); 254 sma->sem_perm.key = key; 255 256 sma->sem_perm.security = NULL; 257 retval = security_sem_alloc(sma); 258 if (retval) { 259 ipc_rcu_putref(sma); 260 return retval; 261 } 262 263 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); 264 if (id < 0) { 265 security_sem_free(sma); 266 ipc_rcu_putref(sma); 267 return id; 268 } 269 ns->used_sems += nsems; 270 271 sma->sem_perm.id = sem_buildid(id, sma->sem_perm.seq); 272 sma->sem_base = (struct sem *) &sma[1]; 273 /* sma->sem_pending = NULL; */ 274 sma->sem_pending_last = &sma->sem_pending; 275 /* sma->undo = NULL; */ 276 sma->sem_nsems = nsems; 277 sma->sem_ctime = get_seconds(); 278 sem_unlock(sma); 279 280 return sma->sem_perm.id; 281 } 282 283 284 /* 285 * Called with sem_ids.rw_mutex and ipcp locked. 286 */ 287 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg) 288 { 289 struct sem_array *sma; 290 291 sma = container_of(ipcp, struct sem_array, sem_perm); 292 return security_sem_associate(sma, semflg); 293 } 294 295 /* 296 * Called with sem_ids.rw_mutex and ipcp locked. 297 */ 298 static inline int sem_more_checks(struct kern_ipc_perm *ipcp, 299 struct ipc_params *params) 300 { 301 struct sem_array *sma; 302 303 sma = container_of(ipcp, struct sem_array, sem_perm); 304 if (params->u.nsems > sma->sem_nsems) 305 return -EINVAL; 306 307 return 0; 308 } 309 310 asmlinkage long sys_semget(key_t key, int nsems, int semflg) 311 { 312 struct ipc_namespace *ns; 313 struct ipc_ops sem_ops; 314 struct ipc_params sem_params; 315 316 ns = current->nsproxy->ipc_ns; 317 318 if (nsems < 0 || nsems > ns->sc_semmsl) 319 return -EINVAL; 320 321 sem_ops.getnew = newary; 322 sem_ops.associate = sem_security; 323 sem_ops.more_checks = sem_more_checks; 324 325 sem_params.key = key; 326 sem_params.flg = semflg; 327 sem_params.u.nsems = nsems; 328 329 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); 330 } 331 332 /* Manage the doubly linked list sma->sem_pending as a FIFO: 333 * insert new queue elements at the tail sma->sem_pending_last. 334 */ 335 static inline void append_to_queue (struct sem_array * sma, 336 struct sem_queue * q) 337 { 338 *(q->prev = sma->sem_pending_last) = q; 339 *(sma->sem_pending_last = &q->next) = NULL; 340 } 341 342 static inline void prepend_to_queue (struct sem_array * sma, 343 struct sem_queue * q) 344 { 345 q->next = sma->sem_pending; 346 *(q->prev = &sma->sem_pending) = q; 347 if (q->next) 348 q->next->prev = &q->next; 349 else /* sma->sem_pending_last == &sma->sem_pending */ 350 sma->sem_pending_last = &q->next; 351 } 352 353 static inline void remove_from_queue (struct sem_array * sma, 354 struct sem_queue * q) 355 { 356 *(q->prev) = q->next; 357 if (q->next) 358 q->next->prev = q->prev; 359 else /* sma->sem_pending_last == &q->next */ 360 sma->sem_pending_last = q->prev; 361 q->prev = NULL; /* mark as removed */ 362 } 363 364 /* 365 * Determine whether a sequence of semaphore operations would succeed 366 * all at once. Return 0 if yes, 1 if need to sleep, else return error code. 367 */ 368 369 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops, 370 int nsops, struct sem_undo *un, int pid) 371 { 372 int result, sem_op; 373 struct sembuf *sop; 374 struct sem * curr; 375 376 for (sop = sops; sop < sops + nsops; sop++) { 377 curr = sma->sem_base + sop->sem_num; 378 sem_op = sop->sem_op; 379 result = curr->semval; 380 381 if (!sem_op && result) 382 goto would_block; 383 384 result += sem_op; 385 if (result < 0) 386 goto would_block; 387 if (result > SEMVMX) 388 goto out_of_range; 389 if (sop->sem_flg & SEM_UNDO) { 390 int undo = un->semadj[sop->sem_num] - sem_op; 391 /* 392 * Exceeding the undo range is an error. 393 */ 394 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 395 goto out_of_range; 396 } 397 curr->semval = result; 398 } 399 400 sop--; 401 while (sop >= sops) { 402 sma->sem_base[sop->sem_num].sempid = pid; 403 if (sop->sem_flg & SEM_UNDO) 404 un->semadj[sop->sem_num] -= sop->sem_op; 405 sop--; 406 } 407 408 sma->sem_otime = get_seconds(); 409 return 0; 410 411 out_of_range: 412 result = -ERANGE; 413 goto undo; 414 415 would_block: 416 if (sop->sem_flg & IPC_NOWAIT) 417 result = -EAGAIN; 418 else 419 result = 1; 420 421 undo: 422 sop--; 423 while (sop >= sops) { 424 sma->sem_base[sop->sem_num].semval -= sop->sem_op; 425 sop--; 426 } 427 428 return result; 429 } 430 431 /* Go through the pending queue for the indicated semaphore 432 * looking for tasks that can be completed. 433 */ 434 static void update_queue (struct sem_array * sma) 435 { 436 int error; 437 struct sem_queue * q; 438 439 q = sma->sem_pending; 440 while(q) { 441 error = try_atomic_semop(sma, q->sops, q->nsops, 442 q->undo, q->pid); 443 444 /* Does q->sleeper still need to sleep? */ 445 if (error <= 0) { 446 struct sem_queue *n; 447 remove_from_queue(sma,q); 448 q->status = IN_WAKEUP; 449 /* 450 * Continue scanning. The next operation 451 * that must be checked depends on the type of the 452 * completed operation: 453 * - if the operation modified the array, then 454 * restart from the head of the queue and 455 * check for threads that might be waiting 456 * for semaphore values to become 0. 457 * - if the operation didn't modify the array, 458 * then just continue. 459 */ 460 if (q->alter) 461 n = sma->sem_pending; 462 else 463 n = q->next; 464 wake_up_process(q->sleeper); 465 /* hands-off: q will disappear immediately after 466 * writing q->status. 467 */ 468 smp_wmb(); 469 q->status = error; 470 q = n; 471 } else { 472 q = q->next; 473 } 474 } 475 } 476 477 /* The following counts are associated to each semaphore: 478 * semncnt number of tasks waiting on semval being nonzero 479 * semzcnt number of tasks waiting on semval being zero 480 * This model assumes that a task waits on exactly one semaphore. 481 * Since semaphore operations are to be performed atomically, tasks actually 482 * wait on a whole sequence of semaphores simultaneously. 483 * The counts we return here are a rough approximation, but still 484 * warrant that semncnt+semzcnt>0 if the task is on the pending queue. 485 */ 486 static int count_semncnt (struct sem_array * sma, ushort semnum) 487 { 488 int semncnt; 489 struct sem_queue * q; 490 491 semncnt = 0; 492 for (q = sma->sem_pending; q; q = q->next) { 493 struct sembuf * sops = q->sops; 494 int nsops = q->nsops; 495 int i; 496 for (i = 0; i < nsops; i++) 497 if (sops[i].sem_num == semnum 498 && (sops[i].sem_op < 0) 499 && !(sops[i].sem_flg & IPC_NOWAIT)) 500 semncnt++; 501 } 502 return semncnt; 503 } 504 static int count_semzcnt (struct sem_array * sma, ushort semnum) 505 { 506 int semzcnt; 507 struct sem_queue * q; 508 509 semzcnt = 0; 510 for (q = sma->sem_pending; q; q = q->next) { 511 struct sembuf * sops = q->sops; 512 int nsops = q->nsops; 513 int i; 514 for (i = 0; i < nsops; i++) 515 if (sops[i].sem_num == semnum 516 && (sops[i].sem_op == 0) 517 && !(sops[i].sem_flg & IPC_NOWAIT)) 518 semzcnt++; 519 } 520 return semzcnt; 521 } 522 523 /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked 524 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex 525 * remains locked on exit. 526 */ 527 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) 528 { 529 struct sem_undo *un; 530 struct sem_queue *q; 531 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 532 533 /* Invalidate the existing undo structures for this semaphore set. 534 * (They will be freed without any further action in exit_sem() 535 * or during the next semop.) 536 */ 537 for (un = sma->undo; un; un = un->id_next) 538 un->semid = -1; 539 540 /* Wake up all pending processes and let them fail with EIDRM. */ 541 q = sma->sem_pending; 542 while(q) { 543 struct sem_queue *n; 544 /* lazy remove_from_queue: we are killing the whole queue */ 545 q->prev = NULL; 546 n = q->next; 547 q->status = IN_WAKEUP; 548 wake_up_process(q->sleeper); /* doesn't sleep */ 549 smp_wmb(); 550 q->status = -EIDRM; /* hands-off q */ 551 q = n; 552 } 553 554 /* Remove the semaphore set from the IDR */ 555 sem_rmid(ns, sma); 556 sem_unlock(sma); 557 558 ns->used_sems -= sma->sem_nsems; 559 security_sem_free(sma); 560 ipc_rcu_putref(sma); 561 } 562 563 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) 564 { 565 switch(version) { 566 case IPC_64: 567 return copy_to_user(buf, in, sizeof(*in)); 568 case IPC_OLD: 569 { 570 struct semid_ds out; 571 572 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); 573 574 out.sem_otime = in->sem_otime; 575 out.sem_ctime = in->sem_ctime; 576 out.sem_nsems = in->sem_nsems; 577 578 return copy_to_user(buf, &out, sizeof(out)); 579 } 580 default: 581 return -EINVAL; 582 } 583 } 584 585 static int semctl_nolock(struct ipc_namespace *ns, int semid, 586 int cmd, int version, union semun arg) 587 { 588 int err = -EINVAL; 589 struct sem_array *sma; 590 591 switch(cmd) { 592 case IPC_INFO: 593 case SEM_INFO: 594 { 595 struct seminfo seminfo; 596 int max_id; 597 598 err = security_sem_semctl(NULL, cmd); 599 if (err) 600 return err; 601 602 memset(&seminfo,0,sizeof(seminfo)); 603 seminfo.semmni = ns->sc_semmni; 604 seminfo.semmns = ns->sc_semmns; 605 seminfo.semmsl = ns->sc_semmsl; 606 seminfo.semopm = ns->sc_semopm; 607 seminfo.semvmx = SEMVMX; 608 seminfo.semmnu = SEMMNU; 609 seminfo.semmap = SEMMAP; 610 seminfo.semume = SEMUME; 611 down_read(&sem_ids(ns).rw_mutex); 612 if (cmd == SEM_INFO) { 613 seminfo.semusz = sem_ids(ns).in_use; 614 seminfo.semaem = ns->used_sems; 615 } else { 616 seminfo.semusz = SEMUSZ; 617 seminfo.semaem = SEMAEM; 618 } 619 max_id = ipc_get_maxid(&sem_ids(ns)); 620 up_read(&sem_ids(ns).rw_mutex); 621 if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo))) 622 return -EFAULT; 623 return (max_id < 0) ? 0: max_id; 624 } 625 case IPC_STAT: 626 case SEM_STAT: 627 { 628 struct semid64_ds tbuf; 629 int id; 630 631 if (cmd == SEM_STAT) { 632 sma = sem_lock(ns, semid); 633 if (IS_ERR(sma)) 634 return PTR_ERR(sma); 635 id = sma->sem_perm.id; 636 } else { 637 sma = sem_lock_check(ns, semid); 638 if (IS_ERR(sma)) 639 return PTR_ERR(sma); 640 id = 0; 641 } 642 643 err = -EACCES; 644 if (ipcperms (&sma->sem_perm, S_IRUGO)) 645 goto out_unlock; 646 647 err = security_sem_semctl(sma, cmd); 648 if (err) 649 goto out_unlock; 650 651 memset(&tbuf, 0, sizeof(tbuf)); 652 653 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); 654 tbuf.sem_otime = sma->sem_otime; 655 tbuf.sem_ctime = sma->sem_ctime; 656 tbuf.sem_nsems = sma->sem_nsems; 657 sem_unlock(sma); 658 if (copy_semid_to_user (arg.buf, &tbuf, version)) 659 return -EFAULT; 660 return id; 661 } 662 default: 663 return -EINVAL; 664 } 665 return err; 666 out_unlock: 667 sem_unlock(sma); 668 return err; 669 } 670 671 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, 672 int cmd, int version, union semun arg) 673 { 674 struct sem_array *sma; 675 struct sem* curr; 676 int err; 677 ushort fast_sem_io[SEMMSL_FAST]; 678 ushort* sem_io = fast_sem_io; 679 int nsems; 680 681 sma = sem_lock_check(ns, semid); 682 if (IS_ERR(sma)) 683 return PTR_ERR(sma); 684 685 nsems = sma->sem_nsems; 686 687 err = -EACCES; 688 if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO)) 689 goto out_unlock; 690 691 err = security_sem_semctl(sma, cmd); 692 if (err) 693 goto out_unlock; 694 695 err = -EACCES; 696 switch (cmd) { 697 case GETALL: 698 { 699 ushort __user *array = arg.array; 700 int i; 701 702 if(nsems > SEMMSL_FAST) { 703 ipc_rcu_getref(sma); 704 sem_unlock(sma); 705 706 sem_io = ipc_alloc(sizeof(ushort)*nsems); 707 if(sem_io == NULL) { 708 ipc_lock_by_ptr(&sma->sem_perm); 709 ipc_rcu_putref(sma); 710 sem_unlock(sma); 711 return -ENOMEM; 712 } 713 714 ipc_lock_by_ptr(&sma->sem_perm); 715 ipc_rcu_putref(sma); 716 if (sma->sem_perm.deleted) { 717 sem_unlock(sma); 718 err = -EIDRM; 719 goto out_free; 720 } 721 } 722 723 for (i = 0; i < sma->sem_nsems; i++) 724 sem_io[i] = sma->sem_base[i].semval; 725 sem_unlock(sma); 726 err = 0; 727 if(copy_to_user(array, sem_io, nsems*sizeof(ushort))) 728 err = -EFAULT; 729 goto out_free; 730 } 731 case SETALL: 732 { 733 int i; 734 struct sem_undo *un; 735 736 ipc_rcu_getref(sma); 737 sem_unlock(sma); 738 739 if(nsems > SEMMSL_FAST) { 740 sem_io = ipc_alloc(sizeof(ushort)*nsems); 741 if(sem_io == NULL) { 742 ipc_lock_by_ptr(&sma->sem_perm); 743 ipc_rcu_putref(sma); 744 sem_unlock(sma); 745 return -ENOMEM; 746 } 747 } 748 749 if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) { 750 ipc_lock_by_ptr(&sma->sem_perm); 751 ipc_rcu_putref(sma); 752 sem_unlock(sma); 753 err = -EFAULT; 754 goto out_free; 755 } 756 757 for (i = 0; i < nsems; i++) { 758 if (sem_io[i] > SEMVMX) { 759 ipc_lock_by_ptr(&sma->sem_perm); 760 ipc_rcu_putref(sma); 761 sem_unlock(sma); 762 err = -ERANGE; 763 goto out_free; 764 } 765 } 766 ipc_lock_by_ptr(&sma->sem_perm); 767 ipc_rcu_putref(sma); 768 if (sma->sem_perm.deleted) { 769 sem_unlock(sma); 770 err = -EIDRM; 771 goto out_free; 772 } 773 774 for (i = 0; i < nsems; i++) 775 sma->sem_base[i].semval = sem_io[i]; 776 for (un = sma->undo; un; un = un->id_next) 777 for (i = 0; i < nsems; i++) 778 un->semadj[i] = 0; 779 sma->sem_ctime = get_seconds(); 780 /* maybe some queued-up processes were waiting for this */ 781 update_queue(sma); 782 err = 0; 783 goto out_unlock; 784 } 785 /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */ 786 } 787 err = -EINVAL; 788 if(semnum < 0 || semnum >= nsems) 789 goto out_unlock; 790 791 curr = &sma->sem_base[semnum]; 792 793 switch (cmd) { 794 case GETVAL: 795 err = curr->semval; 796 goto out_unlock; 797 case GETPID: 798 err = curr->sempid; 799 goto out_unlock; 800 case GETNCNT: 801 err = count_semncnt(sma,semnum); 802 goto out_unlock; 803 case GETZCNT: 804 err = count_semzcnt(sma,semnum); 805 goto out_unlock; 806 case SETVAL: 807 { 808 int val = arg.val; 809 struct sem_undo *un; 810 err = -ERANGE; 811 if (val > SEMVMX || val < 0) 812 goto out_unlock; 813 814 for (un = sma->undo; un; un = un->id_next) 815 un->semadj[semnum] = 0; 816 curr->semval = val; 817 curr->sempid = task_tgid_vnr(current); 818 sma->sem_ctime = get_seconds(); 819 /* maybe some queued-up processes were waiting for this */ 820 update_queue(sma); 821 err = 0; 822 goto out_unlock; 823 } 824 } 825 out_unlock: 826 sem_unlock(sma); 827 out_free: 828 if(sem_io != fast_sem_io) 829 ipc_free(sem_io, sizeof(ushort)*nsems); 830 return err; 831 } 832 833 struct sem_setbuf { 834 uid_t uid; 835 gid_t gid; 836 mode_t mode; 837 }; 838 839 static inline unsigned long copy_semid_from_user(struct sem_setbuf *out, void __user *buf, int version) 840 { 841 switch(version) { 842 case IPC_64: 843 { 844 struct semid64_ds tbuf; 845 846 if(copy_from_user(&tbuf, buf, sizeof(tbuf))) 847 return -EFAULT; 848 849 out->uid = tbuf.sem_perm.uid; 850 out->gid = tbuf.sem_perm.gid; 851 out->mode = tbuf.sem_perm.mode; 852 853 return 0; 854 } 855 case IPC_OLD: 856 { 857 struct semid_ds tbuf_old; 858 859 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) 860 return -EFAULT; 861 862 out->uid = tbuf_old.sem_perm.uid; 863 out->gid = tbuf_old.sem_perm.gid; 864 out->mode = tbuf_old.sem_perm.mode; 865 866 return 0; 867 } 868 default: 869 return -EINVAL; 870 } 871 } 872 873 static int semctl_down(struct ipc_namespace *ns, int semid, int semnum, 874 int cmd, int version, union semun arg) 875 { 876 struct sem_array *sma; 877 int err; 878 struct sem_setbuf uninitialized_var(setbuf); 879 struct kern_ipc_perm *ipcp; 880 881 if(cmd == IPC_SET) { 882 if(copy_semid_from_user (&setbuf, arg.buf, version)) 883 return -EFAULT; 884 } 885 sma = sem_lock_check_down(ns, semid); 886 if (IS_ERR(sma)) 887 return PTR_ERR(sma); 888 889 ipcp = &sma->sem_perm; 890 891 err = audit_ipc_obj(ipcp); 892 if (err) 893 goto out_unlock; 894 895 if (cmd == IPC_SET) { 896 err = audit_ipc_set_perm(0, setbuf.uid, setbuf.gid, setbuf.mode); 897 if (err) 898 goto out_unlock; 899 } 900 if (current->euid != ipcp->cuid && 901 current->euid != ipcp->uid && !capable(CAP_SYS_ADMIN)) { 902 err=-EPERM; 903 goto out_unlock; 904 } 905 906 err = security_sem_semctl(sma, cmd); 907 if (err) 908 goto out_unlock; 909 910 switch(cmd){ 911 case IPC_RMID: 912 freeary(ns, ipcp); 913 err = 0; 914 break; 915 case IPC_SET: 916 ipcp->uid = setbuf.uid; 917 ipcp->gid = setbuf.gid; 918 ipcp->mode = (ipcp->mode & ~S_IRWXUGO) 919 | (setbuf.mode & S_IRWXUGO); 920 sma->sem_ctime = get_seconds(); 921 sem_unlock(sma); 922 err = 0; 923 break; 924 default: 925 sem_unlock(sma); 926 err = -EINVAL; 927 break; 928 } 929 return err; 930 931 out_unlock: 932 sem_unlock(sma); 933 return err; 934 } 935 936 asmlinkage long sys_semctl (int semid, int semnum, int cmd, union semun arg) 937 { 938 int err = -EINVAL; 939 int version; 940 struct ipc_namespace *ns; 941 942 if (semid < 0) 943 return -EINVAL; 944 945 version = ipc_parse_version(&cmd); 946 ns = current->nsproxy->ipc_ns; 947 948 switch(cmd) { 949 case IPC_INFO: 950 case SEM_INFO: 951 case IPC_STAT: 952 case SEM_STAT: 953 err = semctl_nolock(ns, semid, cmd, version, arg); 954 return err; 955 case GETALL: 956 case GETVAL: 957 case GETPID: 958 case GETNCNT: 959 case GETZCNT: 960 case SETVAL: 961 case SETALL: 962 err = semctl_main(ns,semid,semnum,cmd,version,arg); 963 return err; 964 case IPC_RMID: 965 case IPC_SET: 966 down_write(&sem_ids(ns).rw_mutex); 967 err = semctl_down(ns,semid,semnum,cmd,version,arg); 968 up_write(&sem_ids(ns).rw_mutex); 969 return err; 970 default: 971 return -EINVAL; 972 } 973 } 974 975 /* If the task doesn't already have a undo_list, then allocate one 976 * here. We guarantee there is only one thread using this undo list, 977 * and current is THE ONE 978 * 979 * If this allocation and assignment succeeds, but later 980 * portions of this code fail, there is no need to free the sem_undo_list. 981 * Just let it stay associated with the task, and it'll be freed later 982 * at exit time. 983 * 984 * This can block, so callers must hold no locks. 985 */ 986 static inline int get_undo_list(struct sem_undo_list **undo_listp) 987 { 988 struct sem_undo_list *undo_list; 989 990 undo_list = current->sysvsem.undo_list; 991 if (!undo_list) { 992 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); 993 if (undo_list == NULL) 994 return -ENOMEM; 995 spin_lock_init(&undo_list->lock); 996 atomic_set(&undo_list->refcnt, 1); 997 current->sysvsem.undo_list = undo_list; 998 } 999 *undo_listp = undo_list; 1000 return 0; 1001 } 1002 1003 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) 1004 { 1005 struct sem_undo **last, *un; 1006 1007 last = &ulp->proc_list; 1008 un = *last; 1009 while(un != NULL) { 1010 if(un->semid==semid) 1011 break; 1012 if(un->semid==-1) { 1013 *last=un->proc_next; 1014 kfree(un); 1015 } else { 1016 last=&un->proc_next; 1017 } 1018 un=*last; 1019 } 1020 return un; 1021 } 1022 1023 static struct sem_undo *find_undo(struct ipc_namespace *ns, int semid) 1024 { 1025 struct sem_array *sma; 1026 struct sem_undo_list *ulp; 1027 struct sem_undo *un, *new; 1028 int nsems; 1029 int error; 1030 1031 error = get_undo_list(&ulp); 1032 if (error) 1033 return ERR_PTR(error); 1034 1035 spin_lock(&ulp->lock); 1036 un = lookup_undo(ulp, semid); 1037 spin_unlock(&ulp->lock); 1038 if (likely(un!=NULL)) 1039 goto out; 1040 1041 /* no undo structure around - allocate one. */ 1042 sma = sem_lock_check(ns, semid); 1043 if (IS_ERR(sma)) 1044 return ERR_PTR(PTR_ERR(sma)); 1045 1046 nsems = sma->sem_nsems; 1047 ipc_rcu_getref(sma); 1048 sem_unlock(sma); 1049 1050 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); 1051 if (!new) { 1052 ipc_lock_by_ptr(&sma->sem_perm); 1053 ipc_rcu_putref(sma); 1054 sem_unlock(sma); 1055 return ERR_PTR(-ENOMEM); 1056 } 1057 new->semadj = (short *) &new[1]; 1058 new->semid = semid; 1059 1060 spin_lock(&ulp->lock); 1061 un = lookup_undo(ulp, semid); 1062 if (un) { 1063 spin_unlock(&ulp->lock); 1064 kfree(new); 1065 ipc_lock_by_ptr(&sma->sem_perm); 1066 ipc_rcu_putref(sma); 1067 sem_unlock(sma); 1068 goto out; 1069 } 1070 ipc_lock_by_ptr(&sma->sem_perm); 1071 ipc_rcu_putref(sma); 1072 if (sma->sem_perm.deleted) { 1073 sem_unlock(sma); 1074 spin_unlock(&ulp->lock); 1075 kfree(new); 1076 un = ERR_PTR(-EIDRM); 1077 goto out; 1078 } 1079 new->proc_next = ulp->proc_list; 1080 ulp->proc_list = new; 1081 new->id_next = sma->undo; 1082 sma->undo = new; 1083 sem_unlock(sma); 1084 un = new; 1085 spin_unlock(&ulp->lock); 1086 out: 1087 return un; 1088 } 1089 1090 asmlinkage long sys_semtimedop(int semid, struct sembuf __user *tsops, 1091 unsigned nsops, const struct timespec __user *timeout) 1092 { 1093 int error = -EINVAL; 1094 struct sem_array *sma; 1095 struct sembuf fast_sops[SEMOPM_FAST]; 1096 struct sembuf* sops = fast_sops, *sop; 1097 struct sem_undo *un; 1098 int undos = 0, alter = 0, max; 1099 struct sem_queue queue; 1100 unsigned long jiffies_left = 0; 1101 struct ipc_namespace *ns; 1102 1103 ns = current->nsproxy->ipc_ns; 1104 1105 if (nsops < 1 || semid < 0) 1106 return -EINVAL; 1107 if (nsops > ns->sc_semopm) 1108 return -E2BIG; 1109 if(nsops > SEMOPM_FAST) { 1110 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL); 1111 if(sops==NULL) 1112 return -ENOMEM; 1113 } 1114 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) { 1115 error=-EFAULT; 1116 goto out_free; 1117 } 1118 if (timeout) { 1119 struct timespec _timeout; 1120 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) { 1121 error = -EFAULT; 1122 goto out_free; 1123 } 1124 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 || 1125 _timeout.tv_nsec >= 1000000000L) { 1126 error = -EINVAL; 1127 goto out_free; 1128 } 1129 jiffies_left = timespec_to_jiffies(&_timeout); 1130 } 1131 max = 0; 1132 for (sop = sops; sop < sops + nsops; sop++) { 1133 if (sop->sem_num >= max) 1134 max = sop->sem_num; 1135 if (sop->sem_flg & SEM_UNDO) 1136 undos = 1; 1137 if (sop->sem_op != 0) 1138 alter = 1; 1139 } 1140 1141 retry_undos: 1142 if (undos) { 1143 un = find_undo(ns, semid); 1144 if (IS_ERR(un)) { 1145 error = PTR_ERR(un); 1146 goto out_free; 1147 } 1148 } else 1149 un = NULL; 1150 1151 sma = sem_lock_check(ns, semid); 1152 if (IS_ERR(sma)) { 1153 error = PTR_ERR(sma); 1154 goto out_free; 1155 } 1156 1157 /* 1158 * semid identifiers are not unique - find_undo may have 1159 * allocated an undo structure, it was invalidated by an RMID 1160 * and now a new array with received the same id. Check and retry. 1161 */ 1162 if (un && un->semid == -1) { 1163 sem_unlock(sma); 1164 goto retry_undos; 1165 } 1166 error = -EFBIG; 1167 if (max >= sma->sem_nsems) 1168 goto out_unlock_free; 1169 1170 error = -EACCES; 1171 if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) 1172 goto out_unlock_free; 1173 1174 error = security_sem_semop(sma, sops, nsops, alter); 1175 if (error) 1176 goto out_unlock_free; 1177 1178 error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current)); 1179 if (error <= 0) { 1180 if (alter && error == 0) 1181 update_queue (sma); 1182 goto out_unlock_free; 1183 } 1184 1185 /* We need to sleep on this operation, so we put the current 1186 * task into the pending queue and go to sleep. 1187 */ 1188 1189 queue.sma = sma; 1190 queue.sops = sops; 1191 queue.nsops = nsops; 1192 queue.undo = un; 1193 queue.pid = task_tgid_vnr(current); 1194 queue.id = semid; 1195 queue.alter = alter; 1196 if (alter) 1197 append_to_queue(sma ,&queue); 1198 else 1199 prepend_to_queue(sma ,&queue); 1200 1201 queue.status = -EINTR; 1202 queue.sleeper = current; 1203 current->state = TASK_INTERRUPTIBLE; 1204 sem_unlock(sma); 1205 1206 if (timeout) 1207 jiffies_left = schedule_timeout(jiffies_left); 1208 else 1209 schedule(); 1210 1211 error = queue.status; 1212 while(unlikely(error == IN_WAKEUP)) { 1213 cpu_relax(); 1214 error = queue.status; 1215 } 1216 1217 if (error != -EINTR) { 1218 /* fast path: update_queue already obtained all requested 1219 * resources */ 1220 goto out_free; 1221 } 1222 1223 sma = sem_lock(ns, semid); 1224 if (IS_ERR(sma)) { 1225 BUG_ON(queue.prev != NULL); 1226 error = -EIDRM; 1227 goto out_free; 1228 } 1229 1230 /* 1231 * If queue.status != -EINTR we are woken up by another process 1232 */ 1233 error = queue.status; 1234 if (error != -EINTR) { 1235 goto out_unlock_free; 1236 } 1237 1238 /* 1239 * If an interrupt occurred we have to clean up the queue 1240 */ 1241 if (timeout && jiffies_left == 0) 1242 error = -EAGAIN; 1243 remove_from_queue(sma,&queue); 1244 goto out_unlock_free; 1245 1246 out_unlock_free: 1247 sem_unlock(sma); 1248 out_free: 1249 if(sops != fast_sops) 1250 kfree(sops); 1251 return error; 1252 } 1253 1254 asmlinkage long sys_semop (int semid, struct sembuf __user *tsops, unsigned nsops) 1255 { 1256 return sys_semtimedop(semid, tsops, nsops, NULL); 1257 } 1258 1259 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between 1260 * parent and child tasks. 1261 */ 1262 1263 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) 1264 { 1265 struct sem_undo_list *undo_list; 1266 int error; 1267 1268 if (clone_flags & CLONE_SYSVSEM) { 1269 error = get_undo_list(&undo_list); 1270 if (error) 1271 return error; 1272 atomic_inc(&undo_list->refcnt); 1273 tsk->sysvsem.undo_list = undo_list; 1274 } else 1275 tsk->sysvsem.undo_list = NULL; 1276 1277 return 0; 1278 } 1279 1280 /* 1281 * add semadj values to semaphores, free undo structures. 1282 * undo structures are not freed when semaphore arrays are destroyed 1283 * so some of them may be out of date. 1284 * IMPLEMENTATION NOTE: There is some confusion over whether the 1285 * set of adjustments that needs to be done should be done in an atomic 1286 * manner or not. That is, if we are attempting to decrement the semval 1287 * should we queue up and wait until we can do so legally? 1288 * The original implementation attempted to do this (queue and wait). 1289 * The current implementation does not do so. The POSIX standard 1290 * and SVID should be consulted to determine what behavior is mandated. 1291 */ 1292 void exit_sem(struct task_struct *tsk) 1293 { 1294 struct sem_undo_list *undo_list; 1295 struct sem_undo *u, **up; 1296 struct ipc_namespace *ns; 1297 1298 undo_list = tsk->sysvsem.undo_list; 1299 if (!undo_list) 1300 return; 1301 1302 if (!atomic_dec_and_test(&undo_list->refcnt)) 1303 return; 1304 1305 ns = tsk->nsproxy->ipc_ns; 1306 /* There's no need to hold the semundo list lock, as current 1307 * is the last task exiting for this undo list. 1308 */ 1309 for (up = &undo_list->proc_list; (u = *up); *up = u->proc_next, kfree(u)) { 1310 struct sem_array *sma; 1311 int nsems, i; 1312 struct sem_undo *un, **unp; 1313 int semid; 1314 1315 semid = u->semid; 1316 1317 if(semid == -1) 1318 continue; 1319 sma = sem_lock(ns, semid); 1320 if (IS_ERR(sma)) 1321 continue; 1322 1323 if (u->semid == -1) 1324 goto next_entry; 1325 1326 BUG_ON(sem_checkid(sma, u->semid)); 1327 1328 /* remove u from the sma->undo list */ 1329 for (unp = &sma->undo; (un = *unp); unp = &un->id_next) { 1330 if (u == un) 1331 goto found; 1332 } 1333 printk ("exit_sem undo list error id=%d\n", u->semid); 1334 goto next_entry; 1335 found: 1336 *unp = un->id_next; 1337 /* perform adjustments registered in u */ 1338 nsems = sma->sem_nsems; 1339 for (i = 0; i < nsems; i++) { 1340 struct sem * semaphore = &sma->sem_base[i]; 1341 if (u->semadj[i]) { 1342 semaphore->semval += u->semadj[i]; 1343 /* 1344 * Range checks of the new semaphore value, 1345 * not defined by sus: 1346 * - Some unices ignore the undo entirely 1347 * (e.g. HP UX 11i 11.22, Tru64 V5.1) 1348 * - some cap the value (e.g. FreeBSD caps 1349 * at 0, but doesn't enforce SEMVMX) 1350 * 1351 * Linux caps the semaphore value, both at 0 1352 * and at SEMVMX. 1353 * 1354 * Manfred <manfred@colorfullife.com> 1355 */ 1356 if (semaphore->semval < 0) 1357 semaphore->semval = 0; 1358 if (semaphore->semval > SEMVMX) 1359 semaphore->semval = SEMVMX; 1360 semaphore->sempid = task_tgid_vnr(current); 1361 } 1362 } 1363 sma->sem_otime = get_seconds(); 1364 /* maybe some queued-up processes were waiting for this */ 1365 update_queue(sma); 1366 next_entry: 1367 sem_unlock(sma); 1368 } 1369 kfree(undo_list); 1370 } 1371 1372 #ifdef CONFIG_PROC_FS 1373 static int sysvipc_sem_proc_show(struct seq_file *s, void *it) 1374 { 1375 struct sem_array *sma = it; 1376 1377 return seq_printf(s, 1378 "%10d %10d %4o %10lu %5u %5u %5u %5u %10lu %10lu\n", 1379 sma->sem_perm.key, 1380 sma->sem_perm.id, 1381 sma->sem_perm.mode, 1382 sma->sem_nsems, 1383 sma->sem_perm.uid, 1384 sma->sem_perm.gid, 1385 sma->sem_perm.cuid, 1386 sma->sem_perm.cgid, 1387 sma->sem_otime, 1388 sma->sem_ctime); 1389 } 1390 #endif 1391