1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/ipc/sem.c 4 * Copyright (C) 1992 Krishna Balasubramanian 5 * Copyright (C) 1995 Eric Schenk, Bruno Haible 6 * 7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> 8 * 9 * SMP-threaded, sysctl's added 10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com> 11 * Enforced range limit on SEM_UNDO 12 * (c) 2001 Red Hat Inc 13 * Lockless wakeup 14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com> 15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net> 16 * Further wakeup optimizations, documentation 17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com> 18 * 19 * support for audit of ipc object properties and permission changes 20 * Dustin Kirkland <dustin.kirkland@us.ibm.com> 21 * 22 * namespaces support 23 * OpenVZ, SWsoft Inc. 24 * Pavel Emelianov <xemul@openvz.org> 25 * 26 * Implementation notes: (May 2010) 27 * This file implements System V semaphores. 28 * 29 * User space visible behavior: 30 * - FIFO ordering for semop() operations (just FIFO, not starvation 31 * protection) 32 * - multiple semaphore operations that alter the same semaphore in 33 * one semop() are handled. 34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and 35 * SETALL calls. 36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. 37 * - undo adjustments at process exit are limited to 0..SEMVMX. 38 * - namespace are supported. 39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing 40 * to /proc/sys/kernel/sem. 41 * - statistics about the usage are reported in /proc/sysvipc/sem. 42 * 43 * Internals: 44 * - scalability: 45 * - all global variables are read-mostly. 46 * - semop() calls and semctl(RMID) are synchronized by RCU. 47 * - most operations do write operations (actually: spin_lock calls) to 48 * the per-semaphore array structure. 49 * Thus: Perfect SMP scaling between independent semaphore arrays. 50 * If multiple semaphores in one array are used, then cache line 51 * trashing on the semaphore array spinlock will limit the scaling. 52 * - semncnt and semzcnt are calculated on demand in count_semcnt() 53 * - the task that performs a successful semop() scans the list of all 54 * sleeping tasks and completes any pending operations that can be fulfilled. 55 * Semaphores are actively given to waiting tasks (necessary for FIFO). 56 * (see update_queue()) 57 * - To improve the scalability, the actual wake-up calls are performed after 58 * dropping all locks. (see wake_up_sem_queue_prepare()) 59 * - All work is done by the waker, the woken up task does not have to do 60 * anything - not even acquiring a lock or dropping a refcount. 61 * - A woken up task may not even touch the semaphore array anymore, it may 62 * have been destroyed already by a semctl(RMID). 63 * - UNDO values are stored in an array (one per process and per 64 * semaphore array, lazily allocated). For backwards compatibility, multiple 65 * modes for the UNDO variables are supported (per process, per thread) 66 * (see copy_semundo, CLONE_SYSVSEM) 67 * - There are two lists of the pending operations: a per-array list 68 * and per-semaphore list (stored in the array). This allows to achieve FIFO 69 * ordering without always scanning all pending operations. 70 * The worst-case behavior is nevertheless O(N^2) for N wakeups. 71 */ 72 73 #include <linux/compat.h> 74 #include <linux/slab.h> 75 #include <linux/spinlock.h> 76 #include <linux/init.h> 77 #include <linux/proc_fs.h> 78 #include <linux/time.h> 79 #include <linux/security.h> 80 #include <linux/syscalls.h> 81 #include <linux/audit.h> 82 #include <linux/capability.h> 83 #include <linux/seq_file.h> 84 #include <linux/rwsem.h> 85 #include <linux/nsproxy.h> 86 #include <linux/ipc_namespace.h> 87 #include <linux/sched/wake_q.h> 88 #include <linux/nospec.h> 89 #include <linux/rhashtable.h> 90 91 #include <linux/uaccess.h> 92 #include "util.h" 93 94 /* One semaphore structure for each semaphore in the system. */ 95 struct sem { 96 int semval; /* current value */ 97 /* 98 * PID of the process that last modified the semaphore. For 99 * Linux, specifically these are: 100 * - semop 101 * - semctl, via SETVAL and SETALL. 102 * - at task exit when performing undo adjustments (see exit_sem). 103 */ 104 struct pid *sempid; 105 spinlock_t lock; /* spinlock for fine-grained semtimedop */ 106 struct list_head pending_alter; /* pending single-sop operations */ 107 /* that alter the semaphore */ 108 struct list_head pending_const; /* pending single-sop operations */ 109 /* that do not alter the semaphore*/ 110 time64_t sem_otime; /* candidate for sem_otime */ 111 } ____cacheline_aligned_in_smp; 112 113 /* One sem_array data structure for each set of semaphores in the system. */ 114 struct sem_array { 115 struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */ 116 time64_t sem_ctime; /* create/last semctl() time */ 117 struct list_head pending_alter; /* pending operations */ 118 /* that alter the array */ 119 struct list_head pending_const; /* pending complex operations */ 120 /* that do not alter semvals */ 121 struct list_head list_id; /* undo requests on this array */ 122 int sem_nsems; /* no. of semaphores in array */ 123 int complex_count; /* pending complex operations */ 124 unsigned int use_global_lock;/* >0: global lock required */ 125 126 struct sem sems[]; 127 } __randomize_layout; 128 129 /* One queue for each sleeping process in the system. */ 130 struct sem_queue { 131 struct list_head list; /* queue of pending operations */ 132 struct task_struct *sleeper; /* this process */ 133 struct sem_undo *undo; /* undo structure */ 134 struct pid *pid; /* process id of requesting process */ 135 int status; /* completion status of operation */ 136 struct sembuf *sops; /* array of pending operations */ 137 struct sembuf *blocking; /* the operation that blocked */ 138 int nsops; /* number of operations */ 139 bool alter; /* does *sops alter the array? */ 140 bool dupsop; /* sops on more than one sem_num */ 141 }; 142 143 /* Each task has a list of undo requests. They are executed automatically 144 * when the process exits. 145 */ 146 struct sem_undo { 147 struct list_head list_proc; /* per-process list: * 148 * all undos from one process 149 * rcu protected */ 150 struct rcu_head rcu; /* rcu struct for sem_undo */ 151 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */ 152 struct list_head list_id; /* per semaphore array list: 153 * all undos for one array */ 154 int semid; /* semaphore set identifier */ 155 short *semadj; /* array of adjustments */ 156 /* one per semaphore */ 157 }; 158 159 /* sem_undo_list controls shared access to the list of sem_undo structures 160 * that may be shared among all a CLONE_SYSVSEM task group. 161 */ 162 struct sem_undo_list { 163 refcount_t refcnt; 164 spinlock_t lock; 165 struct list_head list_proc; 166 }; 167 168 169 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) 170 171 static int newary(struct ipc_namespace *, struct ipc_params *); 172 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); 173 #ifdef CONFIG_PROC_FS 174 static int sysvipc_sem_proc_show(struct seq_file *s, void *it); 175 #endif 176 177 #define SEMMSL_FAST 256 /* 512 bytes on stack */ 178 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ 179 180 /* 181 * Switching from the mode suitable for simple ops 182 * to the mode for complex ops is costly. Therefore: 183 * use some hysteresis 184 */ 185 #define USE_GLOBAL_LOCK_HYSTERESIS 10 186 187 /* 188 * Locking: 189 * a) global sem_lock() for read/write 190 * sem_undo.id_next, 191 * sem_array.complex_count, 192 * sem_array.pending{_alter,_const}, 193 * sem_array.sem_undo 194 * 195 * b) global or semaphore sem_lock() for read/write: 196 * sem_array.sems[i].pending_{const,alter}: 197 * 198 * c) special: 199 * sem_undo_list.list_proc: 200 * * undo_list->lock for write 201 * * rcu for read 202 * use_global_lock: 203 * * global sem_lock() for write 204 * * either local or global sem_lock() for read. 205 * 206 * Memory ordering: 207 * Most ordering is enforced by using spin_lock() and spin_unlock(). 208 * The special case is use_global_lock: 209 * Setting it from non-zero to 0 is a RELEASE, this is ensured by 210 * using smp_store_release(). 211 * Testing if it is non-zero is an ACQUIRE, this is ensured by using 212 * smp_load_acquire(). 213 * Setting it from 0 to non-zero must be ordered with regards to 214 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire() 215 * is inside a spin_lock() and after a write from 0 to non-zero a 216 * spin_lock()+spin_unlock() is done. 217 */ 218 219 #define sc_semmsl sem_ctls[0] 220 #define sc_semmns sem_ctls[1] 221 #define sc_semopm sem_ctls[2] 222 #define sc_semmni sem_ctls[3] 223 224 int sem_init_ns(struct ipc_namespace *ns) 225 { 226 ns->sc_semmsl = SEMMSL; 227 ns->sc_semmns = SEMMNS; 228 ns->sc_semopm = SEMOPM; 229 ns->sc_semmni = SEMMNI; 230 ns->used_sems = 0; 231 return ipc_init_ids(&ns->ids[IPC_SEM_IDS]); 232 } 233 234 #ifdef CONFIG_IPC_NS 235 void sem_exit_ns(struct ipc_namespace *ns) 236 { 237 free_ipcs(ns, &sem_ids(ns), freeary); 238 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); 239 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht); 240 } 241 #endif 242 243 int __init sem_init(void) 244 { 245 const int err = sem_init_ns(&init_ipc_ns); 246 247 ipc_init_proc_interface("sysvipc/sem", 248 " key semid perms nsems uid gid cuid cgid otime ctime\n", 249 IPC_SEM_IDS, sysvipc_sem_proc_show); 250 return err; 251 } 252 253 /** 254 * unmerge_queues - unmerge queues, if possible. 255 * @sma: semaphore array 256 * 257 * The function unmerges the wait queues if complex_count is 0. 258 * It must be called prior to dropping the global semaphore array lock. 259 */ 260 static void unmerge_queues(struct sem_array *sma) 261 { 262 struct sem_queue *q, *tq; 263 264 /* complex operations still around? */ 265 if (sma->complex_count) 266 return; 267 /* 268 * We will switch back to simple mode. 269 * Move all pending operation back into the per-semaphore 270 * queues. 271 */ 272 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 273 struct sem *curr; 274 curr = &sma->sems[q->sops[0].sem_num]; 275 276 list_add_tail(&q->list, &curr->pending_alter); 277 } 278 INIT_LIST_HEAD(&sma->pending_alter); 279 } 280 281 /** 282 * merge_queues - merge single semop queues into global queue 283 * @sma: semaphore array 284 * 285 * This function merges all per-semaphore queues into the global queue. 286 * It is necessary to achieve FIFO ordering for the pending single-sop 287 * operations when a multi-semop operation must sleep. 288 * Only the alter operations must be moved, the const operations can stay. 289 */ 290 static void merge_queues(struct sem_array *sma) 291 { 292 int i; 293 for (i = 0; i < sma->sem_nsems; i++) { 294 struct sem *sem = &sma->sems[i]; 295 296 list_splice_init(&sem->pending_alter, &sma->pending_alter); 297 } 298 } 299 300 static void sem_rcu_free(struct rcu_head *head) 301 { 302 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu); 303 struct sem_array *sma = container_of(p, struct sem_array, sem_perm); 304 305 security_sem_free(&sma->sem_perm); 306 kvfree(sma); 307 } 308 309 /* 310 * Enter the mode suitable for non-simple operations: 311 * Caller must own sem_perm.lock. 312 */ 313 static void complexmode_enter(struct sem_array *sma) 314 { 315 int i; 316 struct sem *sem; 317 318 if (sma->use_global_lock > 0) { 319 /* 320 * We are already in global lock mode. 321 * Nothing to do, just reset the 322 * counter until we return to simple mode. 323 */ 324 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; 325 return; 326 } 327 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; 328 329 for (i = 0; i < sma->sem_nsems; i++) { 330 sem = &sma->sems[i]; 331 spin_lock(&sem->lock); 332 spin_unlock(&sem->lock); 333 } 334 } 335 336 /* 337 * Try to leave the mode that disallows simple operations: 338 * Caller must own sem_perm.lock. 339 */ 340 static void complexmode_tryleave(struct sem_array *sma) 341 { 342 if (sma->complex_count) { 343 /* Complex ops are sleeping. 344 * We must stay in complex mode 345 */ 346 return; 347 } 348 if (sma->use_global_lock == 1) { 349 /* 350 * Immediately after setting use_global_lock to 0, 351 * a simple op can start. Thus: all memory writes 352 * performed by the current operation must be visible 353 * before we set use_global_lock to 0. 354 */ 355 smp_store_release(&sma->use_global_lock, 0); 356 } else { 357 sma->use_global_lock--; 358 } 359 } 360 361 #define SEM_GLOBAL_LOCK (-1) 362 /* 363 * If the request contains only one semaphore operation, and there are 364 * no complex transactions pending, lock only the semaphore involved. 365 * Otherwise, lock the entire semaphore array, since we either have 366 * multiple semaphores in our own semops, or we need to look at 367 * semaphores from other pending complex operations. 368 */ 369 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, 370 int nsops) 371 { 372 struct sem *sem; 373 int idx; 374 375 if (nsops != 1) { 376 /* Complex operation - acquire a full lock */ 377 ipc_lock_object(&sma->sem_perm); 378 379 /* Prevent parallel simple ops */ 380 complexmode_enter(sma); 381 return SEM_GLOBAL_LOCK; 382 } 383 384 /* 385 * Only one semaphore affected - try to optimize locking. 386 * Optimized locking is possible if no complex operation 387 * is either enqueued or processed right now. 388 * 389 * Both facts are tracked by use_global_mode. 390 */ 391 idx = array_index_nospec(sops->sem_num, sma->sem_nsems); 392 sem = &sma->sems[idx]; 393 394 /* 395 * Initial check for use_global_lock. Just an optimization, 396 * no locking, no memory barrier. 397 */ 398 if (!sma->use_global_lock) { 399 /* 400 * It appears that no complex operation is around. 401 * Acquire the per-semaphore lock. 402 */ 403 spin_lock(&sem->lock); 404 405 /* pairs with smp_store_release() */ 406 if (!smp_load_acquire(&sma->use_global_lock)) { 407 /* fast path successful! */ 408 return sops->sem_num; 409 } 410 spin_unlock(&sem->lock); 411 } 412 413 /* slow path: acquire the full lock */ 414 ipc_lock_object(&sma->sem_perm); 415 416 if (sma->use_global_lock == 0) { 417 /* 418 * The use_global_lock mode ended while we waited for 419 * sma->sem_perm.lock. Thus we must switch to locking 420 * with sem->lock. 421 * Unlike in the fast path, there is no need to recheck 422 * sma->use_global_lock after we have acquired sem->lock: 423 * We own sma->sem_perm.lock, thus use_global_lock cannot 424 * change. 425 */ 426 spin_lock(&sem->lock); 427 428 ipc_unlock_object(&sma->sem_perm); 429 return sops->sem_num; 430 } else { 431 /* 432 * Not a false alarm, thus continue to use the global lock 433 * mode. No need for complexmode_enter(), this was done by 434 * the caller that has set use_global_mode to non-zero. 435 */ 436 return SEM_GLOBAL_LOCK; 437 } 438 } 439 440 static inline void sem_unlock(struct sem_array *sma, int locknum) 441 { 442 if (locknum == SEM_GLOBAL_LOCK) { 443 unmerge_queues(sma); 444 complexmode_tryleave(sma); 445 ipc_unlock_object(&sma->sem_perm); 446 } else { 447 struct sem *sem = &sma->sems[locknum]; 448 spin_unlock(&sem->lock); 449 } 450 } 451 452 /* 453 * sem_lock_(check_) routines are called in the paths where the rwsem 454 * is not held. 455 * 456 * The caller holds the RCU read lock. 457 */ 458 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id) 459 { 460 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); 461 462 if (IS_ERR(ipcp)) 463 return ERR_CAST(ipcp); 464 465 return container_of(ipcp, struct sem_array, sem_perm); 466 } 467 468 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, 469 int id) 470 { 471 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id); 472 473 if (IS_ERR(ipcp)) 474 return ERR_CAST(ipcp); 475 476 return container_of(ipcp, struct sem_array, sem_perm); 477 } 478 479 static inline void sem_lock_and_putref(struct sem_array *sma) 480 { 481 sem_lock(sma, NULL, -1); 482 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 483 } 484 485 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) 486 { 487 ipc_rmid(&sem_ids(ns), &s->sem_perm); 488 } 489 490 static struct sem_array *sem_alloc(size_t nsems) 491 { 492 struct sem_array *sma; 493 size_t size; 494 495 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0])) 496 return NULL; 497 498 size = sizeof(*sma) + nsems * sizeof(sma->sems[0]); 499 sma = kvmalloc(size, GFP_KERNEL); 500 if (unlikely(!sma)) 501 return NULL; 502 503 memset(sma, 0, size); 504 505 return sma; 506 } 507 508 /** 509 * newary - Create a new semaphore set 510 * @ns: namespace 511 * @params: ptr to the structure that contains key, semflg and nsems 512 * 513 * Called with sem_ids.rwsem held (as a writer) 514 */ 515 static int newary(struct ipc_namespace *ns, struct ipc_params *params) 516 { 517 int retval; 518 struct sem_array *sma; 519 key_t key = params->key; 520 int nsems = params->u.nsems; 521 int semflg = params->flg; 522 int i; 523 524 if (!nsems) 525 return -EINVAL; 526 if (ns->used_sems + nsems > ns->sc_semmns) 527 return -ENOSPC; 528 529 sma = sem_alloc(nsems); 530 if (!sma) 531 return -ENOMEM; 532 533 sma->sem_perm.mode = (semflg & S_IRWXUGO); 534 sma->sem_perm.key = key; 535 536 sma->sem_perm.security = NULL; 537 retval = security_sem_alloc(&sma->sem_perm); 538 if (retval) { 539 kvfree(sma); 540 return retval; 541 } 542 543 for (i = 0; i < nsems; i++) { 544 INIT_LIST_HEAD(&sma->sems[i].pending_alter); 545 INIT_LIST_HEAD(&sma->sems[i].pending_const); 546 spin_lock_init(&sma->sems[i].lock); 547 } 548 549 sma->complex_count = 0; 550 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; 551 INIT_LIST_HEAD(&sma->pending_alter); 552 INIT_LIST_HEAD(&sma->pending_const); 553 INIT_LIST_HEAD(&sma->list_id); 554 sma->sem_nsems = nsems; 555 sma->sem_ctime = ktime_get_real_seconds(); 556 557 /* ipc_addid() locks sma upon success. */ 558 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); 559 if (retval < 0) { 560 call_rcu(&sma->sem_perm.rcu, sem_rcu_free); 561 return retval; 562 } 563 ns->used_sems += nsems; 564 565 sem_unlock(sma, -1); 566 rcu_read_unlock(); 567 568 return sma->sem_perm.id; 569 } 570 571 572 /* 573 * Called with sem_ids.rwsem and ipcp locked. 574 */ 575 static inline int sem_more_checks(struct kern_ipc_perm *ipcp, 576 struct ipc_params *params) 577 { 578 struct sem_array *sma; 579 580 sma = container_of(ipcp, struct sem_array, sem_perm); 581 if (params->u.nsems > sma->sem_nsems) 582 return -EINVAL; 583 584 return 0; 585 } 586 587 long ksys_semget(key_t key, int nsems, int semflg) 588 { 589 struct ipc_namespace *ns; 590 static const struct ipc_ops sem_ops = { 591 .getnew = newary, 592 .associate = security_sem_associate, 593 .more_checks = sem_more_checks, 594 }; 595 struct ipc_params sem_params; 596 597 ns = current->nsproxy->ipc_ns; 598 599 if (nsems < 0 || nsems > ns->sc_semmsl) 600 return -EINVAL; 601 602 sem_params.key = key; 603 sem_params.flg = semflg; 604 sem_params.u.nsems = nsems; 605 606 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); 607 } 608 609 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) 610 { 611 return ksys_semget(key, nsems, semflg); 612 } 613 614 /** 615 * perform_atomic_semop[_slow] - Attempt to perform semaphore 616 * operations on a given array. 617 * @sma: semaphore array 618 * @q: struct sem_queue that describes the operation 619 * 620 * Caller blocking are as follows, based the value 621 * indicated by the semaphore operation (sem_op): 622 * 623 * (1) >0 never blocks. 624 * (2) 0 (wait-for-zero operation): semval is non-zero. 625 * (3) <0 attempting to decrement semval to a value smaller than zero. 626 * 627 * Returns 0 if the operation was possible. 628 * Returns 1 if the operation is impossible, the caller must sleep. 629 * Returns <0 for error codes. 630 */ 631 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q) 632 { 633 int result, sem_op, nsops; 634 struct pid *pid; 635 struct sembuf *sop; 636 struct sem *curr; 637 struct sembuf *sops; 638 struct sem_undo *un; 639 640 sops = q->sops; 641 nsops = q->nsops; 642 un = q->undo; 643 644 for (sop = sops; sop < sops + nsops; sop++) { 645 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems); 646 curr = &sma->sems[idx]; 647 sem_op = sop->sem_op; 648 result = curr->semval; 649 650 if (!sem_op && result) 651 goto would_block; 652 653 result += sem_op; 654 if (result < 0) 655 goto would_block; 656 if (result > SEMVMX) 657 goto out_of_range; 658 659 if (sop->sem_flg & SEM_UNDO) { 660 int undo = un->semadj[sop->sem_num] - sem_op; 661 /* Exceeding the undo range is an error. */ 662 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 663 goto out_of_range; 664 un->semadj[sop->sem_num] = undo; 665 } 666 667 curr->semval = result; 668 } 669 670 sop--; 671 pid = q->pid; 672 while (sop >= sops) { 673 ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid); 674 sop--; 675 } 676 677 return 0; 678 679 out_of_range: 680 result = -ERANGE; 681 goto undo; 682 683 would_block: 684 q->blocking = sop; 685 686 if (sop->sem_flg & IPC_NOWAIT) 687 result = -EAGAIN; 688 else 689 result = 1; 690 691 undo: 692 sop--; 693 while (sop >= sops) { 694 sem_op = sop->sem_op; 695 sma->sems[sop->sem_num].semval -= sem_op; 696 if (sop->sem_flg & SEM_UNDO) 697 un->semadj[sop->sem_num] += sem_op; 698 sop--; 699 } 700 701 return result; 702 } 703 704 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q) 705 { 706 int result, sem_op, nsops; 707 struct sembuf *sop; 708 struct sem *curr; 709 struct sembuf *sops; 710 struct sem_undo *un; 711 712 sops = q->sops; 713 nsops = q->nsops; 714 un = q->undo; 715 716 if (unlikely(q->dupsop)) 717 return perform_atomic_semop_slow(sma, q); 718 719 /* 720 * We scan the semaphore set twice, first to ensure that the entire 721 * operation can succeed, therefore avoiding any pointless writes 722 * to shared memory and having to undo such changes in order to block 723 * until the operations can go through. 724 */ 725 for (sop = sops; sop < sops + nsops; sop++) { 726 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems); 727 728 curr = &sma->sems[idx]; 729 sem_op = sop->sem_op; 730 result = curr->semval; 731 732 if (!sem_op && result) 733 goto would_block; /* wait-for-zero */ 734 735 result += sem_op; 736 if (result < 0) 737 goto would_block; 738 739 if (result > SEMVMX) 740 return -ERANGE; 741 742 if (sop->sem_flg & SEM_UNDO) { 743 int undo = un->semadj[sop->sem_num] - sem_op; 744 745 /* Exceeding the undo range is an error. */ 746 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 747 return -ERANGE; 748 } 749 } 750 751 for (sop = sops; sop < sops + nsops; sop++) { 752 curr = &sma->sems[sop->sem_num]; 753 sem_op = sop->sem_op; 754 result = curr->semval; 755 756 if (sop->sem_flg & SEM_UNDO) { 757 int undo = un->semadj[sop->sem_num] - sem_op; 758 759 un->semadj[sop->sem_num] = undo; 760 } 761 curr->semval += sem_op; 762 ipc_update_pid(&curr->sempid, q->pid); 763 } 764 765 return 0; 766 767 would_block: 768 q->blocking = sop; 769 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1; 770 } 771 772 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error, 773 struct wake_q_head *wake_q) 774 { 775 wake_q_add(wake_q, q->sleeper); 776 /* 777 * Rely on the above implicit barrier, such that we can 778 * ensure that we hold reference to the task before setting 779 * q->status. Otherwise we could race with do_exit if the 780 * task is awoken by an external event before calling 781 * wake_up_process(). 782 */ 783 WRITE_ONCE(q->status, error); 784 } 785 786 static void unlink_queue(struct sem_array *sma, struct sem_queue *q) 787 { 788 list_del(&q->list); 789 if (q->nsops > 1) 790 sma->complex_count--; 791 } 792 793 /** check_restart(sma, q) 794 * @sma: semaphore array 795 * @q: the operation that just completed 796 * 797 * update_queue is O(N^2) when it restarts scanning the whole queue of 798 * waiting operations. Therefore this function checks if the restart is 799 * really necessary. It is called after a previously waiting operation 800 * modified the array. 801 * Note that wait-for-zero operations are handled without restart. 802 */ 803 static inline int check_restart(struct sem_array *sma, struct sem_queue *q) 804 { 805 /* pending complex alter operations are too difficult to analyse */ 806 if (!list_empty(&sma->pending_alter)) 807 return 1; 808 809 /* we were a sleeping complex operation. Too difficult */ 810 if (q->nsops > 1) 811 return 1; 812 813 /* It is impossible that someone waits for the new value: 814 * - complex operations always restart. 815 * - wait-for-zero are handled seperately. 816 * - q is a previously sleeping simple operation that 817 * altered the array. It must be a decrement, because 818 * simple increments never sleep. 819 * - If there are older (higher priority) decrements 820 * in the queue, then they have observed the original 821 * semval value and couldn't proceed. The operation 822 * decremented to value - thus they won't proceed either. 823 */ 824 return 0; 825 } 826 827 /** 828 * wake_const_ops - wake up non-alter tasks 829 * @sma: semaphore array. 830 * @semnum: semaphore that was modified. 831 * @wake_q: lockless wake-queue head. 832 * 833 * wake_const_ops must be called after a semaphore in a semaphore array 834 * was set to 0. If complex const operations are pending, wake_const_ops must 835 * be called with semnum = -1, as well as with the number of each modified 836 * semaphore. 837 * The tasks that must be woken up are added to @wake_q. The return code 838 * is stored in q->pid. 839 * The function returns 1 if at least one operation was completed successfully. 840 */ 841 static int wake_const_ops(struct sem_array *sma, int semnum, 842 struct wake_q_head *wake_q) 843 { 844 struct sem_queue *q, *tmp; 845 struct list_head *pending_list; 846 int semop_completed = 0; 847 848 if (semnum == -1) 849 pending_list = &sma->pending_const; 850 else 851 pending_list = &sma->sems[semnum].pending_const; 852 853 list_for_each_entry_safe(q, tmp, pending_list, list) { 854 int error = perform_atomic_semop(sma, q); 855 856 if (error > 0) 857 continue; 858 /* operation completed, remove from queue & wakeup */ 859 unlink_queue(sma, q); 860 861 wake_up_sem_queue_prepare(q, error, wake_q); 862 if (error == 0) 863 semop_completed = 1; 864 } 865 866 return semop_completed; 867 } 868 869 /** 870 * do_smart_wakeup_zero - wakeup all wait for zero tasks 871 * @sma: semaphore array 872 * @sops: operations that were performed 873 * @nsops: number of operations 874 * @wake_q: lockless wake-queue head 875 * 876 * Checks all required queue for wait-for-zero operations, based 877 * on the actual changes that were performed on the semaphore array. 878 * The function returns 1 if at least one operation was completed successfully. 879 */ 880 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops, 881 int nsops, struct wake_q_head *wake_q) 882 { 883 int i; 884 int semop_completed = 0; 885 int got_zero = 0; 886 887 /* first: the per-semaphore queues, if known */ 888 if (sops) { 889 for (i = 0; i < nsops; i++) { 890 int num = sops[i].sem_num; 891 892 if (sma->sems[num].semval == 0) { 893 got_zero = 1; 894 semop_completed |= wake_const_ops(sma, num, wake_q); 895 } 896 } 897 } else { 898 /* 899 * No sops means modified semaphores not known. 900 * Assume all were changed. 901 */ 902 for (i = 0; i < sma->sem_nsems; i++) { 903 if (sma->sems[i].semval == 0) { 904 got_zero = 1; 905 semop_completed |= wake_const_ops(sma, i, wake_q); 906 } 907 } 908 } 909 /* 910 * If one of the modified semaphores got 0, 911 * then check the global queue, too. 912 */ 913 if (got_zero) 914 semop_completed |= wake_const_ops(sma, -1, wake_q); 915 916 return semop_completed; 917 } 918 919 920 /** 921 * update_queue - look for tasks that can be completed. 922 * @sma: semaphore array. 923 * @semnum: semaphore that was modified. 924 * @wake_q: lockless wake-queue head. 925 * 926 * update_queue must be called after a semaphore in a semaphore array 927 * was modified. If multiple semaphores were modified, update_queue must 928 * be called with semnum = -1, as well as with the number of each modified 929 * semaphore. 930 * The tasks that must be woken up are added to @wake_q. The return code 931 * is stored in q->pid. 932 * The function internally checks if const operations can now succeed. 933 * 934 * The function return 1 if at least one semop was completed successfully. 935 */ 936 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q) 937 { 938 struct sem_queue *q, *tmp; 939 struct list_head *pending_list; 940 int semop_completed = 0; 941 942 if (semnum == -1) 943 pending_list = &sma->pending_alter; 944 else 945 pending_list = &sma->sems[semnum].pending_alter; 946 947 again: 948 list_for_each_entry_safe(q, tmp, pending_list, list) { 949 int error, restart; 950 951 /* If we are scanning the single sop, per-semaphore list of 952 * one semaphore and that semaphore is 0, then it is not 953 * necessary to scan further: simple increments 954 * that affect only one entry succeed immediately and cannot 955 * be in the per semaphore pending queue, and decrements 956 * cannot be successful if the value is already 0. 957 */ 958 if (semnum != -1 && sma->sems[semnum].semval == 0) 959 break; 960 961 error = perform_atomic_semop(sma, q); 962 963 /* Does q->sleeper still need to sleep? */ 964 if (error > 0) 965 continue; 966 967 unlink_queue(sma, q); 968 969 if (error) { 970 restart = 0; 971 } else { 972 semop_completed = 1; 973 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q); 974 restart = check_restart(sma, q); 975 } 976 977 wake_up_sem_queue_prepare(q, error, wake_q); 978 if (restart) 979 goto again; 980 } 981 return semop_completed; 982 } 983 984 /** 985 * set_semotime - set sem_otime 986 * @sma: semaphore array 987 * @sops: operations that modified the array, may be NULL 988 * 989 * sem_otime is replicated to avoid cache line trashing. 990 * This function sets one instance to the current time. 991 */ 992 static void set_semotime(struct sem_array *sma, struct sembuf *sops) 993 { 994 if (sops == NULL) { 995 sma->sems[0].sem_otime = ktime_get_real_seconds(); 996 } else { 997 sma->sems[sops[0].sem_num].sem_otime = 998 ktime_get_real_seconds(); 999 } 1000 } 1001 1002 /** 1003 * do_smart_update - optimized update_queue 1004 * @sma: semaphore array 1005 * @sops: operations that were performed 1006 * @nsops: number of operations 1007 * @otime: force setting otime 1008 * @wake_q: lockless wake-queue head 1009 * 1010 * do_smart_update() does the required calls to update_queue and wakeup_zero, 1011 * based on the actual changes that were performed on the semaphore array. 1012 * Note that the function does not do the actual wake-up: the caller is 1013 * responsible for calling wake_up_q(). 1014 * It is safe to perform this call after dropping all locks. 1015 */ 1016 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, 1017 int otime, struct wake_q_head *wake_q) 1018 { 1019 int i; 1020 1021 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q); 1022 1023 if (!list_empty(&sma->pending_alter)) { 1024 /* semaphore array uses the global queue - just process it. */ 1025 otime |= update_queue(sma, -1, wake_q); 1026 } else { 1027 if (!sops) { 1028 /* 1029 * No sops, thus the modified semaphores are not 1030 * known. Check all. 1031 */ 1032 for (i = 0; i < sma->sem_nsems; i++) 1033 otime |= update_queue(sma, i, wake_q); 1034 } else { 1035 /* 1036 * Check the semaphores that were increased: 1037 * - No complex ops, thus all sleeping ops are 1038 * decrease. 1039 * - if we decreased the value, then any sleeping 1040 * semaphore ops wont be able to run: If the 1041 * previous value was too small, then the new 1042 * value will be too small, too. 1043 */ 1044 for (i = 0; i < nsops; i++) { 1045 if (sops[i].sem_op > 0) { 1046 otime |= update_queue(sma, 1047 sops[i].sem_num, wake_q); 1048 } 1049 } 1050 } 1051 } 1052 if (otime) 1053 set_semotime(sma, sops); 1054 } 1055 1056 /* 1057 * check_qop: Test if a queued operation sleeps on the semaphore semnum 1058 */ 1059 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q, 1060 bool count_zero) 1061 { 1062 struct sembuf *sop = q->blocking; 1063 1064 /* 1065 * Linux always (since 0.99.10) reported a task as sleeping on all 1066 * semaphores. This violates SUS, therefore it was changed to the 1067 * standard compliant behavior. 1068 * Give the administrators a chance to notice that an application 1069 * might misbehave because it relies on the Linux behavior. 1070 */ 1071 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n" 1072 "The task %s (%d) triggered the difference, watch for misbehavior.\n", 1073 current->comm, task_pid_nr(current)); 1074 1075 if (sop->sem_num != semnum) 1076 return 0; 1077 1078 if (count_zero && sop->sem_op == 0) 1079 return 1; 1080 if (!count_zero && sop->sem_op < 0) 1081 return 1; 1082 1083 return 0; 1084 } 1085 1086 /* The following counts are associated to each semaphore: 1087 * semncnt number of tasks waiting on semval being nonzero 1088 * semzcnt number of tasks waiting on semval being zero 1089 * 1090 * Per definition, a task waits only on the semaphore of the first semop 1091 * that cannot proceed, even if additional operation would block, too. 1092 */ 1093 static int count_semcnt(struct sem_array *sma, ushort semnum, 1094 bool count_zero) 1095 { 1096 struct list_head *l; 1097 struct sem_queue *q; 1098 int semcnt; 1099 1100 semcnt = 0; 1101 /* First: check the simple operations. They are easy to evaluate */ 1102 if (count_zero) 1103 l = &sma->sems[semnum].pending_const; 1104 else 1105 l = &sma->sems[semnum].pending_alter; 1106 1107 list_for_each_entry(q, l, list) { 1108 /* all task on a per-semaphore list sleep on exactly 1109 * that semaphore 1110 */ 1111 semcnt++; 1112 } 1113 1114 /* Then: check the complex operations. */ 1115 list_for_each_entry(q, &sma->pending_alter, list) { 1116 semcnt += check_qop(sma, semnum, q, count_zero); 1117 } 1118 if (count_zero) { 1119 list_for_each_entry(q, &sma->pending_const, list) { 1120 semcnt += check_qop(sma, semnum, q, count_zero); 1121 } 1122 } 1123 return semcnt; 1124 } 1125 1126 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked 1127 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem 1128 * remains locked on exit. 1129 */ 1130 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) 1131 { 1132 struct sem_undo *un, *tu; 1133 struct sem_queue *q, *tq; 1134 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 1135 int i; 1136 DEFINE_WAKE_Q(wake_q); 1137 1138 /* Free the existing undo structures for this semaphore set. */ 1139 ipc_assert_locked_object(&sma->sem_perm); 1140 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { 1141 list_del(&un->list_id); 1142 spin_lock(&un->ulp->lock); 1143 un->semid = -1; 1144 list_del_rcu(&un->list_proc); 1145 spin_unlock(&un->ulp->lock); 1146 kfree_rcu(un, rcu); 1147 } 1148 1149 /* Wake up all pending processes and let them fail with EIDRM. */ 1150 list_for_each_entry_safe(q, tq, &sma->pending_const, list) { 1151 unlink_queue(sma, q); 1152 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1153 } 1154 1155 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 1156 unlink_queue(sma, q); 1157 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1158 } 1159 for (i = 0; i < sma->sem_nsems; i++) { 1160 struct sem *sem = &sma->sems[i]; 1161 list_for_each_entry_safe(q, tq, &sem->pending_const, list) { 1162 unlink_queue(sma, q); 1163 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1164 } 1165 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) { 1166 unlink_queue(sma, q); 1167 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1168 } 1169 ipc_update_pid(&sem->sempid, NULL); 1170 } 1171 1172 /* Remove the semaphore set from the IDR */ 1173 sem_rmid(ns, sma); 1174 sem_unlock(sma, -1); 1175 rcu_read_unlock(); 1176 1177 wake_up_q(&wake_q); 1178 ns->used_sems -= sma->sem_nsems; 1179 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1180 } 1181 1182 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) 1183 { 1184 switch (version) { 1185 case IPC_64: 1186 return copy_to_user(buf, in, sizeof(*in)); 1187 case IPC_OLD: 1188 { 1189 struct semid_ds out; 1190 1191 memset(&out, 0, sizeof(out)); 1192 1193 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); 1194 1195 out.sem_otime = in->sem_otime; 1196 out.sem_ctime = in->sem_ctime; 1197 out.sem_nsems = in->sem_nsems; 1198 1199 return copy_to_user(buf, &out, sizeof(out)); 1200 } 1201 default: 1202 return -EINVAL; 1203 } 1204 } 1205 1206 static time64_t get_semotime(struct sem_array *sma) 1207 { 1208 int i; 1209 time64_t res; 1210 1211 res = sma->sems[0].sem_otime; 1212 for (i = 1; i < sma->sem_nsems; i++) { 1213 time64_t to = sma->sems[i].sem_otime; 1214 1215 if (to > res) 1216 res = to; 1217 } 1218 return res; 1219 } 1220 1221 static int semctl_stat(struct ipc_namespace *ns, int semid, 1222 int cmd, struct semid64_ds *semid64) 1223 { 1224 struct sem_array *sma; 1225 time64_t semotime; 1226 int id = 0; 1227 int err; 1228 1229 memset(semid64, 0, sizeof(*semid64)); 1230 1231 rcu_read_lock(); 1232 if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) { 1233 sma = sem_obtain_object(ns, semid); 1234 if (IS_ERR(sma)) { 1235 err = PTR_ERR(sma); 1236 goto out_unlock; 1237 } 1238 id = sma->sem_perm.id; 1239 } else { /* IPC_STAT */ 1240 sma = sem_obtain_object_check(ns, semid); 1241 if (IS_ERR(sma)) { 1242 err = PTR_ERR(sma); 1243 goto out_unlock; 1244 } 1245 } 1246 1247 /* see comment for SHM_STAT_ANY */ 1248 if (cmd == SEM_STAT_ANY) 1249 audit_ipc_obj(&sma->sem_perm); 1250 else { 1251 err = -EACCES; 1252 if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) 1253 goto out_unlock; 1254 } 1255 1256 err = security_sem_semctl(&sma->sem_perm, cmd); 1257 if (err) 1258 goto out_unlock; 1259 1260 ipc_lock_object(&sma->sem_perm); 1261 1262 if (!ipc_valid_object(&sma->sem_perm)) { 1263 ipc_unlock_object(&sma->sem_perm); 1264 err = -EIDRM; 1265 goto out_unlock; 1266 } 1267 1268 kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm); 1269 semotime = get_semotime(sma); 1270 semid64->sem_otime = semotime; 1271 semid64->sem_ctime = sma->sem_ctime; 1272 #ifndef CONFIG_64BIT 1273 semid64->sem_otime_high = semotime >> 32; 1274 semid64->sem_ctime_high = sma->sem_ctime >> 32; 1275 #endif 1276 semid64->sem_nsems = sma->sem_nsems; 1277 1278 ipc_unlock_object(&sma->sem_perm); 1279 rcu_read_unlock(); 1280 return id; 1281 1282 out_unlock: 1283 rcu_read_unlock(); 1284 return err; 1285 } 1286 1287 static int semctl_info(struct ipc_namespace *ns, int semid, 1288 int cmd, void __user *p) 1289 { 1290 struct seminfo seminfo; 1291 int max_id; 1292 int err; 1293 1294 err = security_sem_semctl(NULL, cmd); 1295 if (err) 1296 return err; 1297 1298 memset(&seminfo, 0, sizeof(seminfo)); 1299 seminfo.semmni = ns->sc_semmni; 1300 seminfo.semmns = ns->sc_semmns; 1301 seminfo.semmsl = ns->sc_semmsl; 1302 seminfo.semopm = ns->sc_semopm; 1303 seminfo.semvmx = SEMVMX; 1304 seminfo.semmnu = SEMMNU; 1305 seminfo.semmap = SEMMAP; 1306 seminfo.semume = SEMUME; 1307 down_read(&sem_ids(ns).rwsem); 1308 if (cmd == SEM_INFO) { 1309 seminfo.semusz = sem_ids(ns).in_use; 1310 seminfo.semaem = ns->used_sems; 1311 } else { 1312 seminfo.semusz = SEMUSZ; 1313 seminfo.semaem = SEMAEM; 1314 } 1315 max_id = ipc_get_maxid(&sem_ids(ns)); 1316 up_read(&sem_ids(ns).rwsem); 1317 if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) 1318 return -EFAULT; 1319 return (max_id < 0) ? 0 : max_id; 1320 } 1321 1322 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, 1323 int val) 1324 { 1325 struct sem_undo *un; 1326 struct sem_array *sma; 1327 struct sem *curr; 1328 int err; 1329 DEFINE_WAKE_Q(wake_q); 1330 1331 if (val > SEMVMX || val < 0) 1332 return -ERANGE; 1333 1334 rcu_read_lock(); 1335 sma = sem_obtain_object_check(ns, semid); 1336 if (IS_ERR(sma)) { 1337 rcu_read_unlock(); 1338 return PTR_ERR(sma); 1339 } 1340 1341 if (semnum < 0 || semnum >= sma->sem_nsems) { 1342 rcu_read_unlock(); 1343 return -EINVAL; 1344 } 1345 1346 1347 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) { 1348 rcu_read_unlock(); 1349 return -EACCES; 1350 } 1351 1352 err = security_sem_semctl(&sma->sem_perm, SETVAL); 1353 if (err) { 1354 rcu_read_unlock(); 1355 return -EACCES; 1356 } 1357 1358 sem_lock(sma, NULL, -1); 1359 1360 if (!ipc_valid_object(&sma->sem_perm)) { 1361 sem_unlock(sma, -1); 1362 rcu_read_unlock(); 1363 return -EIDRM; 1364 } 1365 1366 semnum = array_index_nospec(semnum, sma->sem_nsems); 1367 curr = &sma->sems[semnum]; 1368 1369 ipc_assert_locked_object(&sma->sem_perm); 1370 list_for_each_entry(un, &sma->list_id, list_id) 1371 un->semadj[semnum] = 0; 1372 1373 curr->semval = val; 1374 ipc_update_pid(&curr->sempid, task_tgid(current)); 1375 sma->sem_ctime = ktime_get_real_seconds(); 1376 /* maybe some queued-up processes were waiting for this */ 1377 do_smart_update(sma, NULL, 0, 0, &wake_q); 1378 sem_unlock(sma, -1); 1379 rcu_read_unlock(); 1380 wake_up_q(&wake_q); 1381 return 0; 1382 } 1383 1384 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, 1385 int cmd, void __user *p) 1386 { 1387 struct sem_array *sma; 1388 struct sem *curr; 1389 int err, nsems; 1390 ushort fast_sem_io[SEMMSL_FAST]; 1391 ushort *sem_io = fast_sem_io; 1392 DEFINE_WAKE_Q(wake_q); 1393 1394 rcu_read_lock(); 1395 sma = sem_obtain_object_check(ns, semid); 1396 if (IS_ERR(sma)) { 1397 rcu_read_unlock(); 1398 return PTR_ERR(sma); 1399 } 1400 1401 nsems = sma->sem_nsems; 1402 1403 err = -EACCES; 1404 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO)) 1405 goto out_rcu_wakeup; 1406 1407 err = security_sem_semctl(&sma->sem_perm, cmd); 1408 if (err) 1409 goto out_rcu_wakeup; 1410 1411 err = -EACCES; 1412 switch (cmd) { 1413 case GETALL: 1414 { 1415 ushort __user *array = p; 1416 int i; 1417 1418 sem_lock(sma, NULL, -1); 1419 if (!ipc_valid_object(&sma->sem_perm)) { 1420 err = -EIDRM; 1421 goto out_unlock; 1422 } 1423 if (nsems > SEMMSL_FAST) { 1424 if (!ipc_rcu_getref(&sma->sem_perm)) { 1425 err = -EIDRM; 1426 goto out_unlock; 1427 } 1428 sem_unlock(sma, -1); 1429 rcu_read_unlock(); 1430 sem_io = kvmalloc_array(nsems, sizeof(ushort), 1431 GFP_KERNEL); 1432 if (sem_io == NULL) { 1433 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1434 return -ENOMEM; 1435 } 1436 1437 rcu_read_lock(); 1438 sem_lock_and_putref(sma); 1439 if (!ipc_valid_object(&sma->sem_perm)) { 1440 err = -EIDRM; 1441 goto out_unlock; 1442 } 1443 } 1444 for (i = 0; i < sma->sem_nsems; i++) 1445 sem_io[i] = sma->sems[i].semval; 1446 sem_unlock(sma, -1); 1447 rcu_read_unlock(); 1448 err = 0; 1449 if (copy_to_user(array, sem_io, nsems*sizeof(ushort))) 1450 err = -EFAULT; 1451 goto out_free; 1452 } 1453 case SETALL: 1454 { 1455 int i; 1456 struct sem_undo *un; 1457 1458 if (!ipc_rcu_getref(&sma->sem_perm)) { 1459 err = -EIDRM; 1460 goto out_rcu_wakeup; 1461 } 1462 rcu_read_unlock(); 1463 1464 if (nsems > SEMMSL_FAST) { 1465 sem_io = kvmalloc_array(nsems, sizeof(ushort), 1466 GFP_KERNEL); 1467 if (sem_io == NULL) { 1468 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1469 return -ENOMEM; 1470 } 1471 } 1472 1473 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) { 1474 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1475 err = -EFAULT; 1476 goto out_free; 1477 } 1478 1479 for (i = 0; i < nsems; i++) { 1480 if (sem_io[i] > SEMVMX) { 1481 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1482 err = -ERANGE; 1483 goto out_free; 1484 } 1485 } 1486 rcu_read_lock(); 1487 sem_lock_and_putref(sma); 1488 if (!ipc_valid_object(&sma->sem_perm)) { 1489 err = -EIDRM; 1490 goto out_unlock; 1491 } 1492 1493 for (i = 0; i < nsems; i++) { 1494 sma->sems[i].semval = sem_io[i]; 1495 ipc_update_pid(&sma->sems[i].sempid, task_tgid(current)); 1496 } 1497 1498 ipc_assert_locked_object(&sma->sem_perm); 1499 list_for_each_entry(un, &sma->list_id, list_id) { 1500 for (i = 0; i < nsems; i++) 1501 un->semadj[i] = 0; 1502 } 1503 sma->sem_ctime = ktime_get_real_seconds(); 1504 /* maybe some queued-up processes were waiting for this */ 1505 do_smart_update(sma, NULL, 0, 0, &wake_q); 1506 err = 0; 1507 goto out_unlock; 1508 } 1509 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */ 1510 } 1511 err = -EINVAL; 1512 if (semnum < 0 || semnum >= nsems) 1513 goto out_rcu_wakeup; 1514 1515 sem_lock(sma, NULL, -1); 1516 if (!ipc_valid_object(&sma->sem_perm)) { 1517 err = -EIDRM; 1518 goto out_unlock; 1519 } 1520 1521 semnum = array_index_nospec(semnum, nsems); 1522 curr = &sma->sems[semnum]; 1523 1524 switch (cmd) { 1525 case GETVAL: 1526 err = curr->semval; 1527 goto out_unlock; 1528 case GETPID: 1529 err = pid_vnr(curr->sempid); 1530 goto out_unlock; 1531 case GETNCNT: 1532 err = count_semcnt(sma, semnum, 0); 1533 goto out_unlock; 1534 case GETZCNT: 1535 err = count_semcnt(sma, semnum, 1); 1536 goto out_unlock; 1537 } 1538 1539 out_unlock: 1540 sem_unlock(sma, -1); 1541 out_rcu_wakeup: 1542 rcu_read_unlock(); 1543 wake_up_q(&wake_q); 1544 out_free: 1545 if (sem_io != fast_sem_io) 1546 kvfree(sem_io); 1547 return err; 1548 } 1549 1550 static inline unsigned long 1551 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) 1552 { 1553 switch (version) { 1554 case IPC_64: 1555 if (copy_from_user(out, buf, sizeof(*out))) 1556 return -EFAULT; 1557 return 0; 1558 case IPC_OLD: 1559 { 1560 struct semid_ds tbuf_old; 1561 1562 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) 1563 return -EFAULT; 1564 1565 out->sem_perm.uid = tbuf_old.sem_perm.uid; 1566 out->sem_perm.gid = tbuf_old.sem_perm.gid; 1567 out->sem_perm.mode = tbuf_old.sem_perm.mode; 1568 1569 return 0; 1570 } 1571 default: 1572 return -EINVAL; 1573 } 1574 } 1575 1576 /* 1577 * This function handles some semctl commands which require the rwsem 1578 * to be held in write mode. 1579 * NOTE: no locks must be held, the rwsem is taken inside this function. 1580 */ 1581 static int semctl_down(struct ipc_namespace *ns, int semid, 1582 int cmd, struct semid64_ds *semid64) 1583 { 1584 struct sem_array *sma; 1585 int err; 1586 struct kern_ipc_perm *ipcp; 1587 1588 down_write(&sem_ids(ns).rwsem); 1589 rcu_read_lock(); 1590 1591 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd, 1592 &semid64->sem_perm, 0); 1593 if (IS_ERR(ipcp)) { 1594 err = PTR_ERR(ipcp); 1595 goto out_unlock1; 1596 } 1597 1598 sma = container_of(ipcp, struct sem_array, sem_perm); 1599 1600 err = security_sem_semctl(&sma->sem_perm, cmd); 1601 if (err) 1602 goto out_unlock1; 1603 1604 switch (cmd) { 1605 case IPC_RMID: 1606 sem_lock(sma, NULL, -1); 1607 /* freeary unlocks the ipc object and rcu */ 1608 freeary(ns, ipcp); 1609 goto out_up; 1610 case IPC_SET: 1611 sem_lock(sma, NULL, -1); 1612 err = ipc_update_perm(&semid64->sem_perm, ipcp); 1613 if (err) 1614 goto out_unlock0; 1615 sma->sem_ctime = ktime_get_real_seconds(); 1616 break; 1617 default: 1618 err = -EINVAL; 1619 goto out_unlock1; 1620 } 1621 1622 out_unlock0: 1623 sem_unlock(sma, -1); 1624 out_unlock1: 1625 rcu_read_unlock(); 1626 out_up: 1627 up_write(&sem_ids(ns).rwsem); 1628 return err; 1629 } 1630 1631 long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg) 1632 { 1633 int version; 1634 struct ipc_namespace *ns; 1635 void __user *p = (void __user *)arg; 1636 struct semid64_ds semid64; 1637 int err; 1638 1639 if (semid < 0) 1640 return -EINVAL; 1641 1642 version = ipc_parse_version(&cmd); 1643 ns = current->nsproxy->ipc_ns; 1644 1645 switch (cmd) { 1646 case IPC_INFO: 1647 case SEM_INFO: 1648 return semctl_info(ns, semid, cmd, p); 1649 case IPC_STAT: 1650 case SEM_STAT: 1651 case SEM_STAT_ANY: 1652 err = semctl_stat(ns, semid, cmd, &semid64); 1653 if (err < 0) 1654 return err; 1655 if (copy_semid_to_user(p, &semid64, version)) 1656 err = -EFAULT; 1657 return err; 1658 case GETALL: 1659 case GETVAL: 1660 case GETPID: 1661 case GETNCNT: 1662 case GETZCNT: 1663 case SETALL: 1664 return semctl_main(ns, semid, semnum, cmd, p); 1665 case SETVAL: { 1666 int val; 1667 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) 1668 /* big-endian 64bit */ 1669 val = arg >> 32; 1670 #else 1671 /* 32bit or little-endian 64bit */ 1672 val = arg; 1673 #endif 1674 return semctl_setval(ns, semid, semnum, val); 1675 } 1676 case IPC_SET: 1677 if (copy_semid_from_user(&semid64, p, version)) 1678 return -EFAULT; 1679 case IPC_RMID: 1680 return semctl_down(ns, semid, cmd, &semid64); 1681 default: 1682 return -EINVAL; 1683 } 1684 } 1685 1686 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) 1687 { 1688 return ksys_semctl(semid, semnum, cmd, arg); 1689 } 1690 1691 #ifdef CONFIG_COMPAT 1692 1693 struct compat_semid_ds { 1694 struct compat_ipc_perm sem_perm; 1695 compat_time_t sem_otime; 1696 compat_time_t sem_ctime; 1697 compat_uptr_t sem_base; 1698 compat_uptr_t sem_pending; 1699 compat_uptr_t sem_pending_last; 1700 compat_uptr_t undo; 1701 unsigned short sem_nsems; 1702 }; 1703 1704 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf, 1705 int version) 1706 { 1707 memset(out, 0, sizeof(*out)); 1708 if (version == IPC_64) { 1709 struct compat_semid64_ds __user *p = buf; 1710 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm); 1711 } else { 1712 struct compat_semid_ds __user *p = buf; 1713 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm); 1714 } 1715 } 1716 1717 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in, 1718 int version) 1719 { 1720 if (version == IPC_64) { 1721 struct compat_semid64_ds v; 1722 memset(&v, 0, sizeof(v)); 1723 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm); 1724 v.sem_otime = lower_32_bits(in->sem_otime); 1725 v.sem_otime_high = upper_32_bits(in->sem_otime); 1726 v.sem_ctime = lower_32_bits(in->sem_ctime); 1727 v.sem_ctime_high = upper_32_bits(in->sem_ctime); 1728 v.sem_nsems = in->sem_nsems; 1729 return copy_to_user(buf, &v, sizeof(v)); 1730 } else { 1731 struct compat_semid_ds v; 1732 memset(&v, 0, sizeof(v)); 1733 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm); 1734 v.sem_otime = in->sem_otime; 1735 v.sem_ctime = in->sem_ctime; 1736 v.sem_nsems = in->sem_nsems; 1737 return copy_to_user(buf, &v, sizeof(v)); 1738 } 1739 } 1740 1741 long compat_ksys_semctl(int semid, int semnum, int cmd, int arg) 1742 { 1743 void __user *p = compat_ptr(arg); 1744 struct ipc_namespace *ns; 1745 struct semid64_ds semid64; 1746 int version = compat_ipc_parse_version(&cmd); 1747 int err; 1748 1749 ns = current->nsproxy->ipc_ns; 1750 1751 if (semid < 0) 1752 return -EINVAL; 1753 1754 switch (cmd & (~IPC_64)) { 1755 case IPC_INFO: 1756 case SEM_INFO: 1757 return semctl_info(ns, semid, cmd, p); 1758 case IPC_STAT: 1759 case SEM_STAT: 1760 case SEM_STAT_ANY: 1761 err = semctl_stat(ns, semid, cmd, &semid64); 1762 if (err < 0) 1763 return err; 1764 if (copy_compat_semid_to_user(p, &semid64, version)) 1765 err = -EFAULT; 1766 return err; 1767 case GETVAL: 1768 case GETPID: 1769 case GETNCNT: 1770 case GETZCNT: 1771 case GETALL: 1772 case SETALL: 1773 return semctl_main(ns, semid, semnum, cmd, p); 1774 case SETVAL: 1775 return semctl_setval(ns, semid, semnum, arg); 1776 case IPC_SET: 1777 if (copy_compat_semid_from_user(&semid64, p, version)) 1778 return -EFAULT; 1779 /* fallthru */ 1780 case IPC_RMID: 1781 return semctl_down(ns, semid, cmd, &semid64); 1782 default: 1783 return -EINVAL; 1784 } 1785 } 1786 1787 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg) 1788 { 1789 return compat_ksys_semctl(semid, semnum, cmd, arg); 1790 } 1791 #endif 1792 1793 /* If the task doesn't already have a undo_list, then allocate one 1794 * here. We guarantee there is only one thread using this undo list, 1795 * and current is THE ONE 1796 * 1797 * If this allocation and assignment succeeds, but later 1798 * portions of this code fail, there is no need to free the sem_undo_list. 1799 * Just let it stay associated with the task, and it'll be freed later 1800 * at exit time. 1801 * 1802 * This can block, so callers must hold no locks. 1803 */ 1804 static inline int get_undo_list(struct sem_undo_list **undo_listp) 1805 { 1806 struct sem_undo_list *undo_list; 1807 1808 undo_list = current->sysvsem.undo_list; 1809 if (!undo_list) { 1810 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); 1811 if (undo_list == NULL) 1812 return -ENOMEM; 1813 spin_lock_init(&undo_list->lock); 1814 refcount_set(&undo_list->refcnt, 1); 1815 INIT_LIST_HEAD(&undo_list->list_proc); 1816 1817 current->sysvsem.undo_list = undo_list; 1818 } 1819 *undo_listp = undo_list; 1820 return 0; 1821 } 1822 1823 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) 1824 { 1825 struct sem_undo *un; 1826 1827 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) { 1828 if (un->semid == semid) 1829 return un; 1830 } 1831 return NULL; 1832 } 1833 1834 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) 1835 { 1836 struct sem_undo *un; 1837 1838 assert_spin_locked(&ulp->lock); 1839 1840 un = __lookup_undo(ulp, semid); 1841 if (un) { 1842 list_del_rcu(&un->list_proc); 1843 list_add_rcu(&un->list_proc, &ulp->list_proc); 1844 } 1845 return un; 1846 } 1847 1848 /** 1849 * find_alloc_undo - lookup (and if not present create) undo array 1850 * @ns: namespace 1851 * @semid: semaphore array id 1852 * 1853 * The function looks up (and if not present creates) the undo structure. 1854 * The size of the undo structure depends on the size of the semaphore 1855 * array, thus the alloc path is not that straightforward. 1856 * Lifetime-rules: sem_undo is rcu-protected, on success, the function 1857 * performs a rcu_read_lock(). 1858 */ 1859 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) 1860 { 1861 struct sem_array *sma; 1862 struct sem_undo_list *ulp; 1863 struct sem_undo *un, *new; 1864 int nsems, error; 1865 1866 error = get_undo_list(&ulp); 1867 if (error) 1868 return ERR_PTR(error); 1869 1870 rcu_read_lock(); 1871 spin_lock(&ulp->lock); 1872 un = lookup_undo(ulp, semid); 1873 spin_unlock(&ulp->lock); 1874 if (likely(un != NULL)) 1875 goto out; 1876 1877 /* no undo structure around - allocate one. */ 1878 /* step 1: figure out the size of the semaphore array */ 1879 sma = sem_obtain_object_check(ns, semid); 1880 if (IS_ERR(sma)) { 1881 rcu_read_unlock(); 1882 return ERR_CAST(sma); 1883 } 1884 1885 nsems = sma->sem_nsems; 1886 if (!ipc_rcu_getref(&sma->sem_perm)) { 1887 rcu_read_unlock(); 1888 un = ERR_PTR(-EIDRM); 1889 goto out; 1890 } 1891 rcu_read_unlock(); 1892 1893 /* step 2: allocate new undo structure */ 1894 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); 1895 if (!new) { 1896 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1897 return ERR_PTR(-ENOMEM); 1898 } 1899 1900 /* step 3: Acquire the lock on semaphore array */ 1901 rcu_read_lock(); 1902 sem_lock_and_putref(sma); 1903 if (!ipc_valid_object(&sma->sem_perm)) { 1904 sem_unlock(sma, -1); 1905 rcu_read_unlock(); 1906 kfree(new); 1907 un = ERR_PTR(-EIDRM); 1908 goto out; 1909 } 1910 spin_lock(&ulp->lock); 1911 1912 /* 1913 * step 4: check for races: did someone else allocate the undo struct? 1914 */ 1915 un = lookup_undo(ulp, semid); 1916 if (un) { 1917 kfree(new); 1918 goto success; 1919 } 1920 /* step 5: initialize & link new undo structure */ 1921 new->semadj = (short *) &new[1]; 1922 new->ulp = ulp; 1923 new->semid = semid; 1924 assert_spin_locked(&ulp->lock); 1925 list_add_rcu(&new->list_proc, &ulp->list_proc); 1926 ipc_assert_locked_object(&sma->sem_perm); 1927 list_add(&new->list_id, &sma->list_id); 1928 un = new; 1929 1930 success: 1931 spin_unlock(&ulp->lock); 1932 sem_unlock(sma, -1); 1933 out: 1934 return un; 1935 } 1936 1937 static long do_semtimedop(int semid, struct sembuf __user *tsops, 1938 unsigned nsops, const struct timespec64 *timeout) 1939 { 1940 int error = -EINVAL; 1941 struct sem_array *sma; 1942 struct sembuf fast_sops[SEMOPM_FAST]; 1943 struct sembuf *sops = fast_sops, *sop; 1944 struct sem_undo *un; 1945 int max, locknum; 1946 bool undos = false, alter = false, dupsop = false; 1947 struct sem_queue queue; 1948 unsigned long dup = 0, jiffies_left = 0; 1949 struct ipc_namespace *ns; 1950 1951 ns = current->nsproxy->ipc_ns; 1952 1953 if (nsops < 1 || semid < 0) 1954 return -EINVAL; 1955 if (nsops > ns->sc_semopm) 1956 return -E2BIG; 1957 if (nsops > SEMOPM_FAST) { 1958 sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL); 1959 if (sops == NULL) 1960 return -ENOMEM; 1961 } 1962 1963 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) { 1964 error = -EFAULT; 1965 goto out_free; 1966 } 1967 1968 if (timeout) { 1969 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 || 1970 timeout->tv_nsec >= 1000000000L) { 1971 error = -EINVAL; 1972 goto out_free; 1973 } 1974 jiffies_left = timespec64_to_jiffies(timeout); 1975 } 1976 1977 max = 0; 1978 for (sop = sops; sop < sops + nsops; sop++) { 1979 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG); 1980 1981 if (sop->sem_num >= max) 1982 max = sop->sem_num; 1983 if (sop->sem_flg & SEM_UNDO) 1984 undos = true; 1985 if (dup & mask) { 1986 /* 1987 * There was a previous alter access that appears 1988 * to have accessed the same semaphore, thus use 1989 * the dupsop logic. "appears", because the detection 1990 * can only check % BITS_PER_LONG. 1991 */ 1992 dupsop = true; 1993 } 1994 if (sop->sem_op != 0) { 1995 alter = true; 1996 dup |= mask; 1997 } 1998 } 1999 2000 if (undos) { 2001 /* On success, find_alloc_undo takes the rcu_read_lock */ 2002 un = find_alloc_undo(ns, semid); 2003 if (IS_ERR(un)) { 2004 error = PTR_ERR(un); 2005 goto out_free; 2006 } 2007 } else { 2008 un = NULL; 2009 rcu_read_lock(); 2010 } 2011 2012 sma = sem_obtain_object_check(ns, semid); 2013 if (IS_ERR(sma)) { 2014 rcu_read_unlock(); 2015 error = PTR_ERR(sma); 2016 goto out_free; 2017 } 2018 2019 error = -EFBIG; 2020 if (max >= sma->sem_nsems) { 2021 rcu_read_unlock(); 2022 goto out_free; 2023 } 2024 2025 error = -EACCES; 2026 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) { 2027 rcu_read_unlock(); 2028 goto out_free; 2029 } 2030 2031 error = security_sem_semop(&sma->sem_perm, sops, nsops, alter); 2032 if (error) { 2033 rcu_read_unlock(); 2034 goto out_free; 2035 } 2036 2037 error = -EIDRM; 2038 locknum = sem_lock(sma, sops, nsops); 2039 /* 2040 * We eventually might perform the following check in a lockless 2041 * fashion, considering ipc_valid_object() locking constraints. 2042 * If nsops == 1 and there is no contention for sem_perm.lock, then 2043 * only a per-semaphore lock is held and it's OK to proceed with the 2044 * check below. More details on the fine grained locking scheme 2045 * entangled here and why it's RMID race safe on comments at sem_lock() 2046 */ 2047 if (!ipc_valid_object(&sma->sem_perm)) 2048 goto out_unlock_free; 2049 /* 2050 * semid identifiers are not unique - find_alloc_undo may have 2051 * allocated an undo structure, it was invalidated by an RMID 2052 * and now a new array with received the same id. Check and fail. 2053 * This case can be detected checking un->semid. The existence of 2054 * "un" itself is guaranteed by rcu. 2055 */ 2056 if (un && un->semid == -1) 2057 goto out_unlock_free; 2058 2059 queue.sops = sops; 2060 queue.nsops = nsops; 2061 queue.undo = un; 2062 queue.pid = task_tgid(current); 2063 queue.alter = alter; 2064 queue.dupsop = dupsop; 2065 2066 error = perform_atomic_semop(sma, &queue); 2067 if (error == 0) { /* non-blocking succesfull path */ 2068 DEFINE_WAKE_Q(wake_q); 2069 2070 /* 2071 * If the operation was successful, then do 2072 * the required updates. 2073 */ 2074 if (alter) 2075 do_smart_update(sma, sops, nsops, 1, &wake_q); 2076 else 2077 set_semotime(sma, sops); 2078 2079 sem_unlock(sma, locknum); 2080 rcu_read_unlock(); 2081 wake_up_q(&wake_q); 2082 2083 goto out_free; 2084 } 2085 if (error < 0) /* non-blocking error path */ 2086 goto out_unlock_free; 2087 2088 /* 2089 * We need to sleep on this operation, so we put the current 2090 * task into the pending queue and go to sleep. 2091 */ 2092 if (nsops == 1) { 2093 struct sem *curr; 2094 int idx = array_index_nospec(sops->sem_num, sma->sem_nsems); 2095 curr = &sma->sems[idx]; 2096 2097 if (alter) { 2098 if (sma->complex_count) { 2099 list_add_tail(&queue.list, 2100 &sma->pending_alter); 2101 } else { 2102 2103 list_add_tail(&queue.list, 2104 &curr->pending_alter); 2105 } 2106 } else { 2107 list_add_tail(&queue.list, &curr->pending_const); 2108 } 2109 } else { 2110 if (!sma->complex_count) 2111 merge_queues(sma); 2112 2113 if (alter) 2114 list_add_tail(&queue.list, &sma->pending_alter); 2115 else 2116 list_add_tail(&queue.list, &sma->pending_const); 2117 2118 sma->complex_count++; 2119 } 2120 2121 do { 2122 WRITE_ONCE(queue.status, -EINTR); 2123 queue.sleeper = current; 2124 2125 __set_current_state(TASK_INTERRUPTIBLE); 2126 sem_unlock(sma, locknum); 2127 rcu_read_unlock(); 2128 2129 if (timeout) 2130 jiffies_left = schedule_timeout(jiffies_left); 2131 else 2132 schedule(); 2133 2134 /* 2135 * fastpath: the semop has completed, either successfully or 2136 * not, from the syscall pov, is quite irrelevant to us at this 2137 * point; we're done. 2138 * 2139 * We _do_ care, nonetheless, about being awoken by a signal or 2140 * spuriously. The queue.status is checked again in the 2141 * slowpath (aka after taking sem_lock), such that we can detect 2142 * scenarios where we were awakened externally, during the 2143 * window between wake_q_add() and wake_up_q(). 2144 */ 2145 error = READ_ONCE(queue.status); 2146 if (error != -EINTR) { 2147 /* 2148 * User space could assume that semop() is a memory 2149 * barrier: Without the mb(), the cpu could 2150 * speculatively read in userspace stale data that was 2151 * overwritten by the previous owner of the semaphore. 2152 */ 2153 smp_mb(); 2154 goto out_free; 2155 } 2156 2157 rcu_read_lock(); 2158 locknum = sem_lock(sma, sops, nsops); 2159 2160 if (!ipc_valid_object(&sma->sem_perm)) 2161 goto out_unlock_free; 2162 2163 error = READ_ONCE(queue.status); 2164 2165 /* 2166 * If queue.status != -EINTR we are woken up by another process. 2167 * Leave without unlink_queue(), but with sem_unlock(). 2168 */ 2169 if (error != -EINTR) 2170 goto out_unlock_free; 2171 2172 /* 2173 * If an interrupt occurred we have to clean up the queue. 2174 */ 2175 if (timeout && jiffies_left == 0) 2176 error = -EAGAIN; 2177 } while (error == -EINTR && !signal_pending(current)); /* spurious */ 2178 2179 unlink_queue(sma, &queue); 2180 2181 out_unlock_free: 2182 sem_unlock(sma, locknum); 2183 rcu_read_unlock(); 2184 out_free: 2185 if (sops != fast_sops) 2186 kvfree(sops); 2187 return error; 2188 } 2189 2190 long ksys_semtimedop(int semid, struct sembuf __user *tsops, 2191 unsigned int nsops, const struct __kernel_timespec __user *timeout) 2192 { 2193 if (timeout) { 2194 struct timespec64 ts; 2195 if (get_timespec64(&ts, timeout)) 2196 return -EFAULT; 2197 return do_semtimedop(semid, tsops, nsops, &ts); 2198 } 2199 return do_semtimedop(semid, tsops, nsops, NULL); 2200 } 2201 2202 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, 2203 unsigned int, nsops, const struct __kernel_timespec __user *, timeout) 2204 { 2205 return ksys_semtimedop(semid, tsops, nsops, timeout); 2206 } 2207 2208 #ifdef CONFIG_COMPAT_32BIT_TIME 2209 long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems, 2210 unsigned int nsops, 2211 const struct compat_timespec __user *timeout) 2212 { 2213 if (timeout) { 2214 struct timespec64 ts; 2215 if (compat_get_timespec64(&ts, timeout)) 2216 return -EFAULT; 2217 return do_semtimedop(semid, tsems, nsops, &ts); 2218 } 2219 return do_semtimedop(semid, tsems, nsops, NULL); 2220 } 2221 2222 COMPAT_SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsems, 2223 unsigned int, nsops, 2224 const struct compat_timespec __user *, timeout) 2225 { 2226 return compat_ksys_semtimedop(semid, tsems, nsops, timeout); 2227 } 2228 #endif 2229 2230 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, 2231 unsigned, nsops) 2232 { 2233 return do_semtimedop(semid, tsops, nsops, NULL); 2234 } 2235 2236 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between 2237 * parent and child tasks. 2238 */ 2239 2240 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) 2241 { 2242 struct sem_undo_list *undo_list; 2243 int error; 2244 2245 if (clone_flags & CLONE_SYSVSEM) { 2246 error = get_undo_list(&undo_list); 2247 if (error) 2248 return error; 2249 refcount_inc(&undo_list->refcnt); 2250 tsk->sysvsem.undo_list = undo_list; 2251 } else 2252 tsk->sysvsem.undo_list = NULL; 2253 2254 return 0; 2255 } 2256 2257 /* 2258 * add semadj values to semaphores, free undo structures. 2259 * undo structures are not freed when semaphore arrays are destroyed 2260 * so some of them may be out of date. 2261 * IMPLEMENTATION NOTE: There is some confusion over whether the 2262 * set of adjustments that needs to be done should be done in an atomic 2263 * manner or not. That is, if we are attempting to decrement the semval 2264 * should we queue up and wait until we can do so legally? 2265 * The original implementation attempted to do this (queue and wait). 2266 * The current implementation does not do so. The POSIX standard 2267 * and SVID should be consulted to determine what behavior is mandated. 2268 */ 2269 void exit_sem(struct task_struct *tsk) 2270 { 2271 struct sem_undo_list *ulp; 2272 2273 ulp = tsk->sysvsem.undo_list; 2274 if (!ulp) 2275 return; 2276 tsk->sysvsem.undo_list = NULL; 2277 2278 if (!refcount_dec_and_test(&ulp->refcnt)) 2279 return; 2280 2281 for (;;) { 2282 struct sem_array *sma; 2283 struct sem_undo *un; 2284 int semid, i; 2285 DEFINE_WAKE_Q(wake_q); 2286 2287 cond_resched(); 2288 2289 rcu_read_lock(); 2290 un = list_entry_rcu(ulp->list_proc.next, 2291 struct sem_undo, list_proc); 2292 if (&un->list_proc == &ulp->list_proc) { 2293 /* 2294 * We must wait for freeary() before freeing this ulp, 2295 * in case we raced with last sem_undo. There is a small 2296 * possibility where we exit while freeary() didn't 2297 * finish unlocking sem_undo_list. 2298 */ 2299 spin_lock(&ulp->lock); 2300 spin_unlock(&ulp->lock); 2301 rcu_read_unlock(); 2302 break; 2303 } 2304 spin_lock(&ulp->lock); 2305 semid = un->semid; 2306 spin_unlock(&ulp->lock); 2307 2308 /* exit_sem raced with IPC_RMID, nothing to do */ 2309 if (semid == -1) { 2310 rcu_read_unlock(); 2311 continue; 2312 } 2313 2314 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid); 2315 /* exit_sem raced with IPC_RMID, nothing to do */ 2316 if (IS_ERR(sma)) { 2317 rcu_read_unlock(); 2318 continue; 2319 } 2320 2321 sem_lock(sma, NULL, -1); 2322 /* exit_sem raced with IPC_RMID, nothing to do */ 2323 if (!ipc_valid_object(&sma->sem_perm)) { 2324 sem_unlock(sma, -1); 2325 rcu_read_unlock(); 2326 continue; 2327 } 2328 un = __lookup_undo(ulp, semid); 2329 if (un == NULL) { 2330 /* exit_sem raced with IPC_RMID+semget() that created 2331 * exactly the same semid. Nothing to do. 2332 */ 2333 sem_unlock(sma, -1); 2334 rcu_read_unlock(); 2335 continue; 2336 } 2337 2338 /* remove un from the linked lists */ 2339 ipc_assert_locked_object(&sma->sem_perm); 2340 list_del(&un->list_id); 2341 2342 /* we are the last process using this ulp, acquiring ulp->lock 2343 * isn't required. Besides that, we are also protected against 2344 * IPC_RMID as we hold sma->sem_perm lock now 2345 */ 2346 list_del_rcu(&un->list_proc); 2347 2348 /* perform adjustments registered in un */ 2349 for (i = 0; i < sma->sem_nsems; i++) { 2350 struct sem *semaphore = &sma->sems[i]; 2351 if (un->semadj[i]) { 2352 semaphore->semval += un->semadj[i]; 2353 /* 2354 * Range checks of the new semaphore value, 2355 * not defined by sus: 2356 * - Some unices ignore the undo entirely 2357 * (e.g. HP UX 11i 11.22, Tru64 V5.1) 2358 * - some cap the value (e.g. FreeBSD caps 2359 * at 0, but doesn't enforce SEMVMX) 2360 * 2361 * Linux caps the semaphore value, both at 0 2362 * and at SEMVMX. 2363 * 2364 * Manfred <manfred@colorfullife.com> 2365 */ 2366 if (semaphore->semval < 0) 2367 semaphore->semval = 0; 2368 if (semaphore->semval > SEMVMX) 2369 semaphore->semval = SEMVMX; 2370 ipc_update_pid(&semaphore->sempid, task_tgid(current)); 2371 } 2372 } 2373 /* maybe some queued-up processes were waiting for this */ 2374 do_smart_update(sma, NULL, 0, 1, &wake_q); 2375 sem_unlock(sma, -1); 2376 rcu_read_unlock(); 2377 wake_up_q(&wake_q); 2378 2379 kfree_rcu(un, rcu); 2380 } 2381 kfree(ulp); 2382 } 2383 2384 #ifdef CONFIG_PROC_FS 2385 static int sysvipc_sem_proc_show(struct seq_file *s, void *it) 2386 { 2387 struct user_namespace *user_ns = seq_user_ns(s); 2388 struct kern_ipc_perm *ipcp = it; 2389 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 2390 time64_t sem_otime; 2391 2392 /* 2393 * The proc interface isn't aware of sem_lock(), it calls 2394 * ipc_lock_object() directly (in sysvipc_find_ipc). 2395 * In order to stay compatible with sem_lock(), we must 2396 * enter / leave complex_mode. 2397 */ 2398 complexmode_enter(sma); 2399 2400 sem_otime = get_semotime(sma); 2401 2402 seq_printf(s, 2403 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n", 2404 sma->sem_perm.key, 2405 sma->sem_perm.id, 2406 sma->sem_perm.mode, 2407 sma->sem_nsems, 2408 from_kuid_munged(user_ns, sma->sem_perm.uid), 2409 from_kgid_munged(user_ns, sma->sem_perm.gid), 2410 from_kuid_munged(user_ns, sma->sem_perm.cuid), 2411 from_kgid_munged(user_ns, sma->sem_perm.cgid), 2412 sem_otime, 2413 sma->sem_ctime); 2414 2415 complexmode_tryleave(sma); 2416 2417 return 0; 2418 } 2419 #endif 2420