xref: /openbmc/linux/ipc/sem.c (revision e9839402)
1 /*
2  * linux/ipc/sem.c
3  * Copyright (C) 1992 Krishna Balasubramanian
4  * Copyright (C) 1995 Eric Schenk, Bruno Haible
5  *
6  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7  *
8  * SMP-threaded, sysctl's added
9  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10  * Enforced range limit on SEM_UNDO
11  * (c) 2001 Red Hat Inc
12  * Lockless wakeup
13  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14  * Further wakeup optimizations, documentation
15  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
16  *
17  * support for audit of ipc object properties and permission changes
18  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
19  *
20  * namespaces support
21  * OpenVZ, SWsoft Inc.
22  * Pavel Emelianov <xemul@openvz.org>
23  *
24  * Implementation notes: (May 2010)
25  * This file implements System V semaphores.
26  *
27  * User space visible behavior:
28  * - FIFO ordering for semop() operations (just FIFO, not starvation
29  *   protection)
30  * - multiple semaphore operations that alter the same semaphore in
31  *   one semop() are handled.
32  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33  *   SETALL calls.
34  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35  * - undo adjustments at process exit are limited to 0..SEMVMX.
36  * - namespace are supported.
37  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38  *   to /proc/sys/kernel/sem.
39  * - statistics about the usage are reported in /proc/sysvipc/sem.
40  *
41  * Internals:
42  * - scalability:
43  *   - all global variables are read-mostly.
44  *   - semop() calls and semctl(RMID) are synchronized by RCU.
45  *   - most operations do write operations (actually: spin_lock calls) to
46  *     the per-semaphore array structure.
47  *   Thus: Perfect SMP scaling between independent semaphore arrays.
48  *         If multiple semaphores in one array are used, then cache line
49  *         trashing on the semaphore array spinlock will limit the scaling.
50  * - semncnt and semzcnt are calculated on demand in count_semcnt()
51  * - the task that performs a successful semop() scans the list of all
52  *   sleeping tasks and completes any pending operations that can be fulfilled.
53  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
54  *   (see update_queue())
55  * - To improve the scalability, the actual wake-up calls are performed after
56  *   dropping all locks. (see wake_up_sem_queue_prepare(),
57  *   wake_up_sem_queue_do())
58  * - All work is done by the waker, the woken up task does not have to do
59  *   anything - not even acquiring a lock or dropping a refcount.
60  * - A woken up task may not even touch the semaphore array anymore, it may
61  *   have been destroyed already by a semctl(RMID).
62  * - The synchronizations between wake-ups due to a timeout/signal and a
63  *   wake-up due to a completed semaphore operation is achieved by using an
64  *   intermediate state (IN_WAKEUP).
65  * - UNDO values are stored in an array (one per process and per
66  *   semaphore array, lazily allocated). For backwards compatibility, multiple
67  *   modes for the UNDO variables are supported (per process, per thread)
68  *   (see copy_semundo, CLONE_SYSVSEM)
69  * - There are two lists of the pending operations: a per-array list
70  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
71  *   ordering without always scanning all pending operations.
72  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
73  */
74 
75 #include <linux/slab.h>
76 #include <linux/spinlock.h>
77 #include <linux/init.h>
78 #include <linux/proc_fs.h>
79 #include <linux/time.h>
80 #include <linux/security.h>
81 #include <linux/syscalls.h>
82 #include <linux/audit.h>
83 #include <linux/capability.h>
84 #include <linux/seq_file.h>
85 #include <linux/rwsem.h>
86 #include <linux/nsproxy.h>
87 #include <linux/ipc_namespace.h>
88 
89 #include <linux/uaccess.h>
90 #include "util.h"
91 
92 /* One semaphore structure for each semaphore in the system. */
93 struct sem {
94 	int	semval;		/* current value */
95 	/*
96 	 * PID of the process that last modified the semaphore. For
97 	 * Linux, specifically these are:
98 	 *  - semop
99 	 *  - semctl, via SETVAL and SETALL.
100 	 *  - at task exit when performing undo adjustments (see exit_sem).
101 	 */
102 	int	sempid;
103 	spinlock_t	lock;	/* spinlock for fine-grained semtimedop */
104 	struct list_head pending_alter; /* pending single-sop operations */
105 					/* that alter the semaphore */
106 	struct list_head pending_const; /* pending single-sop operations */
107 					/* that do not alter the semaphore*/
108 	time_t	sem_otime;	/* candidate for sem_otime */
109 } ____cacheline_aligned_in_smp;
110 
111 /* One queue for each sleeping process in the system. */
112 struct sem_queue {
113 	struct list_head	list;	 /* queue of pending operations */
114 	struct task_struct	*sleeper; /* this process */
115 	struct sem_undo		*undo;	 /* undo structure */
116 	int			pid;	 /* process id of requesting process */
117 	int			status;	 /* completion status of operation */
118 	struct sembuf		*sops;	 /* array of pending operations */
119 	struct sembuf		*blocking; /* the operation that blocked */
120 	int			nsops;	 /* number of operations */
121 	int			alter;	 /* does *sops alter the array? */
122 };
123 
124 /* Each task has a list of undo requests. They are executed automatically
125  * when the process exits.
126  */
127 struct sem_undo {
128 	struct list_head	list_proc;	/* per-process list: *
129 						 * all undos from one process
130 						 * rcu protected */
131 	struct rcu_head		rcu;		/* rcu struct for sem_undo */
132 	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
133 	struct list_head	list_id;	/* per semaphore array list:
134 						 * all undos for one array */
135 	int			semid;		/* semaphore set identifier */
136 	short			*semadj;	/* array of adjustments */
137 						/* one per semaphore */
138 };
139 
140 /* sem_undo_list controls shared access to the list of sem_undo structures
141  * that may be shared among all a CLONE_SYSVSEM task group.
142  */
143 struct sem_undo_list {
144 	atomic_t		refcnt;
145 	spinlock_t		lock;
146 	struct list_head	list_proc;
147 };
148 
149 
150 #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
151 
152 #define sem_checkid(sma, semid)	ipc_checkid(&sma->sem_perm, semid)
153 
154 static int newary(struct ipc_namespace *, struct ipc_params *);
155 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
156 #ifdef CONFIG_PROC_FS
157 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
158 #endif
159 
160 #define SEMMSL_FAST	256 /* 512 bytes on stack */
161 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
162 
163 /*
164  * Locking:
165  * a) global sem_lock() for read/write
166  *	sem_undo.id_next,
167  *	sem_array.complex_count,
168  *	sem_array.complex_mode
169  *	sem_array.pending{_alter,_const},
170  *	sem_array.sem_undo
171  *
172  * b) global or semaphore sem_lock() for read/write:
173  *	sem_array.sem_base[i].pending_{const,alter}:
174  *	sem_array.complex_mode (for read)
175  *
176  * c) special:
177  *	sem_undo_list.list_proc:
178  *	* undo_list->lock for write
179  *	* rcu for read
180  */
181 
182 #define sc_semmsl	sem_ctls[0]
183 #define sc_semmns	sem_ctls[1]
184 #define sc_semopm	sem_ctls[2]
185 #define sc_semmni	sem_ctls[3]
186 
187 void sem_init_ns(struct ipc_namespace *ns)
188 {
189 	ns->sc_semmsl = SEMMSL;
190 	ns->sc_semmns = SEMMNS;
191 	ns->sc_semopm = SEMOPM;
192 	ns->sc_semmni = SEMMNI;
193 	ns->used_sems = 0;
194 	ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
195 }
196 
197 #ifdef CONFIG_IPC_NS
198 void sem_exit_ns(struct ipc_namespace *ns)
199 {
200 	free_ipcs(ns, &sem_ids(ns), freeary);
201 	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
202 }
203 #endif
204 
205 void __init sem_init(void)
206 {
207 	sem_init_ns(&init_ipc_ns);
208 	ipc_init_proc_interface("sysvipc/sem",
209 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
210 				IPC_SEM_IDS, sysvipc_sem_proc_show);
211 }
212 
213 /**
214  * unmerge_queues - unmerge queues, if possible.
215  * @sma: semaphore array
216  *
217  * The function unmerges the wait queues if complex_count is 0.
218  * It must be called prior to dropping the global semaphore array lock.
219  */
220 static void unmerge_queues(struct sem_array *sma)
221 {
222 	struct sem_queue *q, *tq;
223 
224 	/* complex operations still around? */
225 	if (sma->complex_count)
226 		return;
227 	/*
228 	 * We will switch back to simple mode.
229 	 * Move all pending operation back into the per-semaphore
230 	 * queues.
231 	 */
232 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
233 		struct sem *curr;
234 		curr = &sma->sem_base[q->sops[0].sem_num];
235 
236 		list_add_tail(&q->list, &curr->pending_alter);
237 	}
238 	INIT_LIST_HEAD(&sma->pending_alter);
239 }
240 
241 /**
242  * merge_queues - merge single semop queues into global queue
243  * @sma: semaphore array
244  *
245  * This function merges all per-semaphore queues into the global queue.
246  * It is necessary to achieve FIFO ordering for the pending single-sop
247  * operations when a multi-semop operation must sleep.
248  * Only the alter operations must be moved, the const operations can stay.
249  */
250 static void merge_queues(struct sem_array *sma)
251 {
252 	int i;
253 	for (i = 0; i < sma->sem_nsems; i++) {
254 		struct sem *sem = sma->sem_base + i;
255 
256 		list_splice_init(&sem->pending_alter, &sma->pending_alter);
257 	}
258 }
259 
260 static void sem_rcu_free(struct rcu_head *head)
261 {
262 	struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
263 	struct sem_array *sma = ipc_rcu_to_struct(p);
264 
265 	security_sem_free(sma);
266 	ipc_rcu_free(head);
267 }
268 
269 /*
270  * Enter the mode suitable for non-simple operations:
271  * Caller must own sem_perm.lock.
272  */
273 static void complexmode_enter(struct sem_array *sma)
274 {
275 	int i;
276 	struct sem *sem;
277 
278 	if (sma->complex_mode)  {
279 		/* We are already in complex_mode. Nothing to do */
280 		return;
281 	}
282 
283 	/* We need a full barrier after seting complex_mode:
284 	 * The write to complex_mode must be visible
285 	 * before we read the first sem->lock spinlock state.
286 	 */
287 	smp_store_mb(sma->complex_mode, true);
288 
289 	for (i = 0; i < sma->sem_nsems; i++) {
290 		sem = sma->sem_base + i;
291 		spin_unlock_wait(&sem->lock);
292 	}
293 	/*
294 	 * spin_unlock_wait() is not a memory barriers, it is only a
295 	 * control barrier. The code must pair with spin_unlock(&sem->lock),
296 	 * thus just the control barrier is insufficient.
297 	 *
298 	 * smp_rmb() is sufficient, as writes cannot pass the control barrier.
299 	 */
300 	smp_rmb();
301 }
302 
303 /*
304  * Try to leave the mode that disallows simple operations:
305  * Caller must own sem_perm.lock.
306  */
307 static void complexmode_tryleave(struct sem_array *sma)
308 {
309 	if (sma->complex_count)  {
310 		/* Complex ops are sleeping.
311 		 * We must stay in complex mode
312 		 */
313 		return;
314 	}
315 	/*
316 	 * Immediately after setting complex_mode to false,
317 	 * a simple op can start. Thus: all memory writes
318 	 * performed by the current operation must be visible
319 	 * before we set complex_mode to false.
320 	 */
321 	smp_store_release(&sma->complex_mode, false);
322 }
323 
324 #define SEM_GLOBAL_LOCK	(-1)
325 /*
326  * If the request contains only one semaphore operation, and there are
327  * no complex transactions pending, lock only the semaphore involved.
328  * Otherwise, lock the entire semaphore array, since we either have
329  * multiple semaphores in our own semops, or we need to look at
330  * semaphores from other pending complex operations.
331  */
332 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
333 			      int nsops)
334 {
335 	struct sem *sem;
336 
337 	if (nsops != 1) {
338 		/* Complex operation - acquire a full lock */
339 		ipc_lock_object(&sma->sem_perm);
340 
341 		/* Prevent parallel simple ops */
342 		complexmode_enter(sma);
343 		return SEM_GLOBAL_LOCK;
344 	}
345 
346 	/*
347 	 * Only one semaphore affected - try to optimize locking.
348 	 * Optimized locking is possible if no complex operation
349 	 * is either enqueued or processed right now.
350 	 *
351 	 * Both facts are tracked by complex_mode.
352 	 */
353 	sem = sma->sem_base + sops->sem_num;
354 
355 	/*
356 	 * Initial check for complex_mode. Just an optimization,
357 	 * no locking, no memory barrier.
358 	 */
359 	if (!sma->complex_mode) {
360 		/*
361 		 * It appears that no complex operation is around.
362 		 * Acquire the per-semaphore lock.
363 		 */
364 		spin_lock(&sem->lock);
365 
366 		/*
367 		 * See 51d7d5205d33
368 		 * ("powerpc: Add smp_mb() to arch_spin_is_locked()"):
369 		 * A full barrier is required: the write of sem->lock
370 		 * must be visible before the read is executed
371 		 */
372 		smp_mb();
373 
374 		if (!smp_load_acquire(&sma->complex_mode)) {
375 			/* fast path successful! */
376 			return sops->sem_num;
377 		}
378 		spin_unlock(&sem->lock);
379 	}
380 
381 	/* slow path: acquire the full lock */
382 	ipc_lock_object(&sma->sem_perm);
383 
384 	if (sma->complex_count == 0) {
385 		/* False alarm:
386 		 * There is no complex operation, thus we can switch
387 		 * back to the fast path.
388 		 */
389 		spin_lock(&sem->lock);
390 		ipc_unlock_object(&sma->sem_perm);
391 		return sops->sem_num;
392 	} else {
393 		/* Not a false alarm, thus complete the sequence for a
394 		 * full lock.
395 		 */
396 		complexmode_enter(sma);
397 		return SEM_GLOBAL_LOCK;
398 	}
399 }
400 
401 static inline void sem_unlock(struct sem_array *sma, int locknum)
402 {
403 	if (locknum == SEM_GLOBAL_LOCK) {
404 		unmerge_queues(sma);
405 		complexmode_tryleave(sma);
406 		ipc_unlock_object(&sma->sem_perm);
407 	} else {
408 		struct sem *sem = sma->sem_base + locknum;
409 		spin_unlock(&sem->lock);
410 	}
411 }
412 
413 /*
414  * sem_lock_(check_) routines are called in the paths where the rwsem
415  * is not held.
416  *
417  * The caller holds the RCU read lock.
418  */
419 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
420 			int id, struct sembuf *sops, int nsops, int *locknum)
421 {
422 	struct kern_ipc_perm *ipcp;
423 	struct sem_array *sma;
424 
425 	ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
426 	if (IS_ERR(ipcp))
427 		return ERR_CAST(ipcp);
428 
429 	sma = container_of(ipcp, struct sem_array, sem_perm);
430 	*locknum = sem_lock(sma, sops, nsops);
431 
432 	/* ipc_rmid() may have already freed the ID while sem_lock
433 	 * was spinning: verify that the structure is still valid
434 	 */
435 	if (ipc_valid_object(ipcp))
436 		return container_of(ipcp, struct sem_array, sem_perm);
437 
438 	sem_unlock(sma, *locknum);
439 	return ERR_PTR(-EINVAL);
440 }
441 
442 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
443 {
444 	struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
445 
446 	if (IS_ERR(ipcp))
447 		return ERR_CAST(ipcp);
448 
449 	return container_of(ipcp, struct sem_array, sem_perm);
450 }
451 
452 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
453 							int id)
454 {
455 	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
456 
457 	if (IS_ERR(ipcp))
458 		return ERR_CAST(ipcp);
459 
460 	return container_of(ipcp, struct sem_array, sem_perm);
461 }
462 
463 static inline void sem_lock_and_putref(struct sem_array *sma)
464 {
465 	sem_lock(sma, NULL, -1);
466 	ipc_rcu_putref(sma, sem_rcu_free);
467 }
468 
469 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
470 {
471 	ipc_rmid(&sem_ids(ns), &s->sem_perm);
472 }
473 
474 /*
475  * Lockless wakeup algorithm:
476  * Without the check/retry algorithm a lockless wakeup is possible:
477  * - queue.status is initialized to -EINTR before blocking.
478  * - wakeup is performed by
479  *	* unlinking the queue entry from the pending list
480  *	* setting queue.status to IN_WAKEUP
481  *	  This is the notification for the blocked thread that a
482  *	  result value is imminent.
483  *	* call wake_up_process
484  *	* set queue.status to the final value.
485  * - the previously blocked thread checks queue.status:
486  *	* if it's IN_WAKEUP, then it must wait until the value changes
487  *	* if it's not -EINTR, then the operation was completed by
488  *	  update_queue. semtimedop can return queue.status without
489  *	  performing any operation on the sem array.
490  *	* otherwise it must acquire the spinlock and check what's up.
491  *
492  * The two-stage algorithm is necessary to protect against the following
493  * races:
494  * - if queue.status is set after wake_up_process, then the woken up idle
495  *   thread could race forward and try (and fail) to acquire sma->lock
496  *   before update_queue had a chance to set queue.status
497  * - if queue.status is written before wake_up_process and if the
498  *   blocked process is woken up by a signal between writing
499  *   queue.status and the wake_up_process, then the woken up
500  *   process could return from semtimedop and die by calling
501  *   sys_exit before wake_up_process is called. Then wake_up_process
502  *   will oops, because the task structure is already invalid.
503  *   (yes, this happened on s390 with sysv msg).
504  *
505  */
506 #define IN_WAKEUP	1
507 
508 /**
509  * newary - Create a new semaphore set
510  * @ns: namespace
511  * @params: ptr to the structure that contains key, semflg and nsems
512  *
513  * Called with sem_ids.rwsem held (as a writer)
514  */
515 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
516 {
517 	int id;
518 	int retval;
519 	struct sem_array *sma;
520 	int size;
521 	key_t key = params->key;
522 	int nsems = params->u.nsems;
523 	int semflg = params->flg;
524 	int i;
525 
526 	if (!nsems)
527 		return -EINVAL;
528 	if (ns->used_sems + nsems > ns->sc_semmns)
529 		return -ENOSPC;
530 
531 	size = sizeof(*sma) + nsems * sizeof(struct sem);
532 	sma = ipc_rcu_alloc(size);
533 	if (!sma)
534 		return -ENOMEM;
535 
536 	memset(sma, 0, size);
537 
538 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
539 	sma->sem_perm.key = key;
540 
541 	sma->sem_perm.security = NULL;
542 	retval = security_sem_alloc(sma);
543 	if (retval) {
544 		ipc_rcu_putref(sma, ipc_rcu_free);
545 		return retval;
546 	}
547 
548 	sma->sem_base = (struct sem *) &sma[1];
549 
550 	for (i = 0; i < nsems; i++) {
551 		INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
552 		INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
553 		spin_lock_init(&sma->sem_base[i].lock);
554 	}
555 
556 	sma->complex_count = 0;
557 	sma->complex_mode = true; /* dropped by sem_unlock below */
558 	INIT_LIST_HEAD(&sma->pending_alter);
559 	INIT_LIST_HEAD(&sma->pending_const);
560 	INIT_LIST_HEAD(&sma->list_id);
561 	sma->sem_nsems = nsems;
562 	sma->sem_ctime = get_seconds();
563 
564 	id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
565 	if (id < 0) {
566 		ipc_rcu_putref(sma, sem_rcu_free);
567 		return id;
568 	}
569 	ns->used_sems += nsems;
570 
571 	sem_unlock(sma, -1);
572 	rcu_read_unlock();
573 
574 	return sma->sem_perm.id;
575 }
576 
577 
578 /*
579  * Called with sem_ids.rwsem and ipcp locked.
580  */
581 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
582 {
583 	struct sem_array *sma;
584 
585 	sma = container_of(ipcp, struct sem_array, sem_perm);
586 	return security_sem_associate(sma, semflg);
587 }
588 
589 /*
590  * Called with sem_ids.rwsem and ipcp locked.
591  */
592 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
593 				struct ipc_params *params)
594 {
595 	struct sem_array *sma;
596 
597 	sma = container_of(ipcp, struct sem_array, sem_perm);
598 	if (params->u.nsems > sma->sem_nsems)
599 		return -EINVAL;
600 
601 	return 0;
602 }
603 
604 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
605 {
606 	struct ipc_namespace *ns;
607 	static const struct ipc_ops sem_ops = {
608 		.getnew = newary,
609 		.associate = sem_security,
610 		.more_checks = sem_more_checks,
611 	};
612 	struct ipc_params sem_params;
613 
614 	ns = current->nsproxy->ipc_ns;
615 
616 	if (nsems < 0 || nsems > ns->sc_semmsl)
617 		return -EINVAL;
618 
619 	sem_params.key = key;
620 	sem_params.flg = semflg;
621 	sem_params.u.nsems = nsems;
622 
623 	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
624 }
625 
626 /**
627  * perform_atomic_semop - Perform (if possible) a semaphore operation
628  * @sma: semaphore array
629  * @q: struct sem_queue that describes the operation
630  *
631  * Returns 0 if the operation was possible.
632  * Returns 1 if the operation is impossible, the caller must sleep.
633  * Negative values are error codes.
634  */
635 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
636 {
637 	int result, sem_op, nsops, pid;
638 	struct sembuf *sop;
639 	struct sem *curr;
640 	struct sembuf *sops;
641 	struct sem_undo *un;
642 
643 	sops = q->sops;
644 	nsops = q->nsops;
645 	un = q->undo;
646 
647 	for (sop = sops; sop < sops + nsops; sop++) {
648 		curr = sma->sem_base + sop->sem_num;
649 		sem_op = sop->sem_op;
650 		result = curr->semval;
651 
652 		if (!sem_op && result)
653 			goto would_block;
654 
655 		result += sem_op;
656 		if (result < 0)
657 			goto would_block;
658 		if (result > SEMVMX)
659 			goto out_of_range;
660 
661 		if (sop->sem_flg & SEM_UNDO) {
662 			int undo = un->semadj[sop->sem_num] - sem_op;
663 			/* Exceeding the undo range is an error. */
664 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
665 				goto out_of_range;
666 			un->semadj[sop->sem_num] = undo;
667 		}
668 
669 		curr->semval = result;
670 	}
671 
672 	sop--;
673 	pid = q->pid;
674 	while (sop >= sops) {
675 		sma->sem_base[sop->sem_num].sempid = pid;
676 		sop--;
677 	}
678 
679 	return 0;
680 
681 out_of_range:
682 	result = -ERANGE;
683 	goto undo;
684 
685 would_block:
686 	q->blocking = sop;
687 
688 	if (sop->sem_flg & IPC_NOWAIT)
689 		result = -EAGAIN;
690 	else
691 		result = 1;
692 
693 undo:
694 	sop--;
695 	while (sop >= sops) {
696 		sem_op = sop->sem_op;
697 		sma->sem_base[sop->sem_num].semval -= sem_op;
698 		if (sop->sem_flg & SEM_UNDO)
699 			un->semadj[sop->sem_num] += sem_op;
700 		sop--;
701 	}
702 
703 	return result;
704 }
705 
706 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
707  * @q: queue entry that must be signaled
708  * @error: Error value for the signal
709  *
710  * Prepare the wake-up of the queue entry q.
711  */
712 static void wake_up_sem_queue_prepare(struct list_head *pt,
713 				struct sem_queue *q, int error)
714 {
715 	if (list_empty(pt)) {
716 		/*
717 		 * Hold preempt off so that we don't get preempted and have the
718 		 * wakee busy-wait until we're scheduled back on.
719 		 */
720 		preempt_disable();
721 	}
722 	q->status = IN_WAKEUP;
723 	q->pid = error;
724 
725 	list_add_tail(&q->list, pt);
726 }
727 
728 /**
729  * wake_up_sem_queue_do - do the actual wake-up
730  * @pt: list of tasks to be woken up
731  *
732  * Do the actual wake-up.
733  * The function is called without any locks held, thus the semaphore array
734  * could be destroyed already and the tasks can disappear as soon as the
735  * status is set to the actual return code.
736  */
737 static void wake_up_sem_queue_do(struct list_head *pt)
738 {
739 	struct sem_queue *q, *t;
740 	int did_something;
741 
742 	did_something = !list_empty(pt);
743 	list_for_each_entry_safe(q, t, pt, list) {
744 		wake_up_process(q->sleeper);
745 		/* q can disappear immediately after writing q->status. */
746 		smp_wmb();
747 		q->status = q->pid;
748 	}
749 	if (did_something)
750 		preempt_enable();
751 }
752 
753 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
754 {
755 	list_del(&q->list);
756 	if (q->nsops > 1)
757 		sma->complex_count--;
758 }
759 
760 /** check_restart(sma, q)
761  * @sma: semaphore array
762  * @q: the operation that just completed
763  *
764  * update_queue is O(N^2) when it restarts scanning the whole queue of
765  * waiting operations. Therefore this function checks if the restart is
766  * really necessary. It is called after a previously waiting operation
767  * modified the array.
768  * Note that wait-for-zero operations are handled without restart.
769  */
770 static int check_restart(struct sem_array *sma, struct sem_queue *q)
771 {
772 	/* pending complex alter operations are too difficult to analyse */
773 	if (!list_empty(&sma->pending_alter))
774 		return 1;
775 
776 	/* we were a sleeping complex operation. Too difficult */
777 	if (q->nsops > 1)
778 		return 1;
779 
780 	/* It is impossible that someone waits for the new value:
781 	 * - complex operations always restart.
782 	 * - wait-for-zero are handled seperately.
783 	 * - q is a previously sleeping simple operation that
784 	 *   altered the array. It must be a decrement, because
785 	 *   simple increments never sleep.
786 	 * - If there are older (higher priority) decrements
787 	 *   in the queue, then they have observed the original
788 	 *   semval value and couldn't proceed. The operation
789 	 *   decremented to value - thus they won't proceed either.
790 	 */
791 	return 0;
792 }
793 
794 /**
795  * wake_const_ops - wake up non-alter tasks
796  * @sma: semaphore array.
797  * @semnum: semaphore that was modified.
798  * @pt: list head for the tasks that must be woken up.
799  *
800  * wake_const_ops must be called after a semaphore in a semaphore array
801  * was set to 0. If complex const operations are pending, wake_const_ops must
802  * be called with semnum = -1, as well as with the number of each modified
803  * semaphore.
804  * The tasks that must be woken up are added to @pt. The return code
805  * is stored in q->pid.
806  * The function returns 1 if at least one operation was completed successfully.
807  */
808 static int wake_const_ops(struct sem_array *sma, int semnum,
809 				struct list_head *pt)
810 {
811 	struct sem_queue *q;
812 	struct list_head *walk;
813 	struct list_head *pending_list;
814 	int semop_completed = 0;
815 
816 	if (semnum == -1)
817 		pending_list = &sma->pending_const;
818 	else
819 		pending_list = &sma->sem_base[semnum].pending_const;
820 
821 	walk = pending_list->next;
822 	while (walk != pending_list) {
823 		int error;
824 
825 		q = container_of(walk, struct sem_queue, list);
826 		walk = walk->next;
827 
828 		error = perform_atomic_semop(sma, q);
829 
830 		if (error <= 0) {
831 			/* operation completed, remove from queue & wakeup */
832 
833 			unlink_queue(sma, q);
834 
835 			wake_up_sem_queue_prepare(pt, q, error);
836 			if (error == 0)
837 				semop_completed = 1;
838 		}
839 	}
840 	return semop_completed;
841 }
842 
843 /**
844  * do_smart_wakeup_zero - wakeup all wait for zero tasks
845  * @sma: semaphore array
846  * @sops: operations that were performed
847  * @nsops: number of operations
848  * @pt: list head of the tasks that must be woken up.
849  *
850  * Checks all required queue for wait-for-zero operations, based
851  * on the actual changes that were performed on the semaphore array.
852  * The function returns 1 if at least one operation was completed successfully.
853  */
854 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
855 					int nsops, struct list_head *pt)
856 {
857 	int i;
858 	int semop_completed = 0;
859 	int got_zero = 0;
860 
861 	/* first: the per-semaphore queues, if known */
862 	if (sops) {
863 		for (i = 0; i < nsops; i++) {
864 			int num = sops[i].sem_num;
865 
866 			if (sma->sem_base[num].semval == 0) {
867 				got_zero = 1;
868 				semop_completed |= wake_const_ops(sma, num, pt);
869 			}
870 		}
871 	} else {
872 		/*
873 		 * No sops means modified semaphores not known.
874 		 * Assume all were changed.
875 		 */
876 		for (i = 0; i < sma->sem_nsems; i++) {
877 			if (sma->sem_base[i].semval == 0) {
878 				got_zero = 1;
879 				semop_completed |= wake_const_ops(sma, i, pt);
880 			}
881 		}
882 	}
883 	/*
884 	 * If one of the modified semaphores got 0,
885 	 * then check the global queue, too.
886 	 */
887 	if (got_zero)
888 		semop_completed |= wake_const_ops(sma, -1, pt);
889 
890 	return semop_completed;
891 }
892 
893 
894 /**
895  * update_queue - look for tasks that can be completed.
896  * @sma: semaphore array.
897  * @semnum: semaphore that was modified.
898  * @pt: list head for the tasks that must be woken up.
899  *
900  * update_queue must be called after a semaphore in a semaphore array
901  * was modified. If multiple semaphores were modified, update_queue must
902  * be called with semnum = -1, as well as with the number of each modified
903  * semaphore.
904  * The tasks that must be woken up are added to @pt. The return code
905  * is stored in q->pid.
906  * The function internally checks if const operations can now succeed.
907  *
908  * The function return 1 if at least one semop was completed successfully.
909  */
910 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
911 {
912 	struct sem_queue *q;
913 	struct list_head *walk;
914 	struct list_head *pending_list;
915 	int semop_completed = 0;
916 
917 	if (semnum == -1)
918 		pending_list = &sma->pending_alter;
919 	else
920 		pending_list = &sma->sem_base[semnum].pending_alter;
921 
922 again:
923 	walk = pending_list->next;
924 	while (walk != pending_list) {
925 		int error, restart;
926 
927 		q = container_of(walk, struct sem_queue, list);
928 		walk = walk->next;
929 
930 		/* If we are scanning the single sop, per-semaphore list of
931 		 * one semaphore and that semaphore is 0, then it is not
932 		 * necessary to scan further: simple increments
933 		 * that affect only one entry succeed immediately and cannot
934 		 * be in the  per semaphore pending queue, and decrements
935 		 * cannot be successful if the value is already 0.
936 		 */
937 		if (semnum != -1 && sma->sem_base[semnum].semval == 0)
938 			break;
939 
940 		error = perform_atomic_semop(sma, q);
941 
942 		/* Does q->sleeper still need to sleep? */
943 		if (error > 0)
944 			continue;
945 
946 		unlink_queue(sma, q);
947 
948 		if (error) {
949 			restart = 0;
950 		} else {
951 			semop_completed = 1;
952 			do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
953 			restart = check_restart(sma, q);
954 		}
955 
956 		wake_up_sem_queue_prepare(pt, q, error);
957 		if (restart)
958 			goto again;
959 	}
960 	return semop_completed;
961 }
962 
963 /**
964  * set_semotime - set sem_otime
965  * @sma: semaphore array
966  * @sops: operations that modified the array, may be NULL
967  *
968  * sem_otime is replicated to avoid cache line trashing.
969  * This function sets one instance to the current time.
970  */
971 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
972 {
973 	if (sops == NULL) {
974 		sma->sem_base[0].sem_otime = get_seconds();
975 	} else {
976 		sma->sem_base[sops[0].sem_num].sem_otime =
977 							get_seconds();
978 	}
979 }
980 
981 /**
982  * do_smart_update - optimized update_queue
983  * @sma: semaphore array
984  * @sops: operations that were performed
985  * @nsops: number of operations
986  * @otime: force setting otime
987  * @pt: list head of the tasks that must be woken up.
988  *
989  * do_smart_update() does the required calls to update_queue and wakeup_zero,
990  * based on the actual changes that were performed on the semaphore array.
991  * Note that the function does not do the actual wake-up: the caller is
992  * responsible for calling wake_up_sem_queue_do(@pt).
993  * It is safe to perform this call after dropping all locks.
994  */
995 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
996 			int otime, struct list_head *pt)
997 {
998 	int i;
999 
1000 	otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
1001 
1002 	if (!list_empty(&sma->pending_alter)) {
1003 		/* semaphore array uses the global queue - just process it. */
1004 		otime |= update_queue(sma, -1, pt);
1005 	} else {
1006 		if (!sops) {
1007 			/*
1008 			 * No sops, thus the modified semaphores are not
1009 			 * known. Check all.
1010 			 */
1011 			for (i = 0; i < sma->sem_nsems; i++)
1012 				otime |= update_queue(sma, i, pt);
1013 		} else {
1014 			/*
1015 			 * Check the semaphores that were increased:
1016 			 * - No complex ops, thus all sleeping ops are
1017 			 *   decrease.
1018 			 * - if we decreased the value, then any sleeping
1019 			 *   semaphore ops wont be able to run: If the
1020 			 *   previous value was too small, then the new
1021 			 *   value will be too small, too.
1022 			 */
1023 			for (i = 0; i < nsops; i++) {
1024 				if (sops[i].sem_op > 0) {
1025 					otime |= update_queue(sma,
1026 							sops[i].sem_num, pt);
1027 				}
1028 			}
1029 		}
1030 	}
1031 	if (otime)
1032 		set_semotime(sma, sops);
1033 }
1034 
1035 /*
1036  * check_qop: Test if a queued operation sleeps on the semaphore semnum
1037  */
1038 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1039 			bool count_zero)
1040 {
1041 	struct sembuf *sop = q->blocking;
1042 
1043 	/*
1044 	 * Linux always (since 0.99.10) reported a task as sleeping on all
1045 	 * semaphores. This violates SUS, therefore it was changed to the
1046 	 * standard compliant behavior.
1047 	 * Give the administrators a chance to notice that an application
1048 	 * might misbehave because it relies on the Linux behavior.
1049 	 */
1050 	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1051 			"The task %s (%d) triggered the difference, watch for misbehavior.\n",
1052 			current->comm, task_pid_nr(current));
1053 
1054 	if (sop->sem_num != semnum)
1055 		return 0;
1056 
1057 	if (count_zero && sop->sem_op == 0)
1058 		return 1;
1059 	if (!count_zero && sop->sem_op < 0)
1060 		return 1;
1061 
1062 	return 0;
1063 }
1064 
1065 /* The following counts are associated to each semaphore:
1066  *   semncnt        number of tasks waiting on semval being nonzero
1067  *   semzcnt        number of tasks waiting on semval being zero
1068  *
1069  * Per definition, a task waits only on the semaphore of the first semop
1070  * that cannot proceed, even if additional operation would block, too.
1071  */
1072 static int count_semcnt(struct sem_array *sma, ushort semnum,
1073 			bool count_zero)
1074 {
1075 	struct list_head *l;
1076 	struct sem_queue *q;
1077 	int semcnt;
1078 
1079 	semcnt = 0;
1080 	/* First: check the simple operations. They are easy to evaluate */
1081 	if (count_zero)
1082 		l = &sma->sem_base[semnum].pending_const;
1083 	else
1084 		l = &sma->sem_base[semnum].pending_alter;
1085 
1086 	list_for_each_entry(q, l, list) {
1087 		/* all task on a per-semaphore list sleep on exactly
1088 		 * that semaphore
1089 		 */
1090 		semcnt++;
1091 	}
1092 
1093 	/* Then: check the complex operations. */
1094 	list_for_each_entry(q, &sma->pending_alter, list) {
1095 		semcnt += check_qop(sma, semnum, q, count_zero);
1096 	}
1097 	if (count_zero) {
1098 		list_for_each_entry(q, &sma->pending_const, list) {
1099 			semcnt += check_qop(sma, semnum, q, count_zero);
1100 		}
1101 	}
1102 	return semcnt;
1103 }
1104 
1105 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1106  * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1107  * remains locked on exit.
1108  */
1109 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1110 {
1111 	struct sem_undo *un, *tu;
1112 	struct sem_queue *q, *tq;
1113 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1114 	struct list_head tasks;
1115 	int i;
1116 
1117 	/* Free the existing undo structures for this semaphore set.  */
1118 	ipc_assert_locked_object(&sma->sem_perm);
1119 	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1120 		list_del(&un->list_id);
1121 		spin_lock(&un->ulp->lock);
1122 		un->semid = -1;
1123 		list_del_rcu(&un->list_proc);
1124 		spin_unlock(&un->ulp->lock);
1125 		kfree_rcu(un, rcu);
1126 	}
1127 
1128 	/* Wake up all pending processes and let them fail with EIDRM. */
1129 	INIT_LIST_HEAD(&tasks);
1130 	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1131 		unlink_queue(sma, q);
1132 		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1133 	}
1134 
1135 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1136 		unlink_queue(sma, q);
1137 		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1138 	}
1139 	for (i = 0; i < sma->sem_nsems; i++) {
1140 		struct sem *sem = sma->sem_base + i;
1141 		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1142 			unlink_queue(sma, q);
1143 			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1144 		}
1145 		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1146 			unlink_queue(sma, q);
1147 			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1148 		}
1149 	}
1150 
1151 	/* Remove the semaphore set from the IDR */
1152 	sem_rmid(ns, sma);
1153 	sem_unlock(sma, -1);
1154 	rcu_read_unlock();
1155 
1156 	wake_up_sem_queue_do(&tasks);
1157 	ns->used_sems -= sma->sem_nsems;
1158 	ipc_rcu_putref(sma, sem_rcu_free);
1159 }
1160 
1161 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1162 {
1163 	switch (version) {
1164 	case IPC_64:
1165 		return copy_to_user(buf, in, sizeof(*in));
1166 	case IPC_OLD:
1167 	    {
1168 		struct semid_ds out;
1169 
1170 		memset(&out, 0, sizeof(out));
1171 
1172 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1173 
1174 		out.sem_otime	= in->sem_otime;
1175 		out.sem_ctime	= in->sem_ctime;
1176 		out.sem_nsems	= in->sem_nsems;
1177 
1178 		return copy_to_user(buf, &out, sizeof(out));
1179 	    }
1180 	default:
1181 		return -EINVAL;
1182 	}
1183 }
1184 
1185 static time_t get_semotime(struct sem_array *sma)
1186 {
1187 	int i;
1188 	time_t res;
1189 
1190 	res = sma->sem_base[0].sem_otime;
1191 	for (i = 1; i < sma->sem_nsems; i++) {
1192 		time_t to = sma->sem_base[i].sem_otime;
1193 
1194 		if (to > res)
1195 			res = to;
1196 	}
1197 	return res;
1198 }
1199 
1200 static int semctl_nolock(struct ipc_namespace *ns, int semid,
1201 			 int cmd, int version, void __user *p)
1202 {
1203 	int err;
1204 	struct sem_array *sma;
1205 
1206 	switch (cmd) {
1207 	case IPC_INFO:
1208 	case SEM_INFO:
1209 	{
1210 		struct seminfo seminfo;
1211 		int max_id;
1212 
1213 		err = security_sem_semctl(NULL, cmd);
1214 		if (err)
1215 			return err;
1216 
1217 		memset(&seminfo, 0, sizeof(seminfo));
1218 		seminfo.semmni = ns->sc_semmni;
1219 		seminfo.semmns = ns->sc_semmns;
1220 		seminfo.semmsl = ns->sc_semmsl;
1221 		seminfo.semopm = ns->sc_semopm;
1222 		seminfo.semvmx = SEMVMX;
1223 		seminfo.semmnu = SEMMNU;
1224 		seminfo.semmap = SEMMAP;
1225 		seminfo.semume = SEMUME;
1226 		down_read(&sem_ids(ns).rwsem);
1227 		if (cmd == SEM_INFO) {
1228 			seminfo.semusz = sem_ids(ns).in_use;
1229 			seminfo.semaem = ns->used_sems;
1230 		} else {
1231 			seminfo.semusz = SEMUSZ;
1232 			seminfo.semaem = SEMAEM;
1233 		}
1234 		max_id = ipc_get_maxid(&sem_ids(ns));
1235 		up_read(&sem_ids(ns).rwsem);
1236 		if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1237 			return -EFAULT;
1238 		return (max_id < 0) ? 0 : max_id;
1239 	}
1240 	case IPC_STAT:
1241 	case SEM_STAT:
1242 	{
1243 		struct semid64_ds tbuf;
1244 		int id = 0;
1245 
1246 		memset(&tbuf, 0, sizeof(tbuf));
1247 
1248 		rcu_read_lock();
1249 		if (cmd == SEM_STAT) {
1250 			sma = sem_obtain_object(ns, semid);
1251 			if (IS_ERR(sma)) {
1252 				err = PTR_ERR(sma);
1253 				goto out_unlock;
1254 			}
1255 			id = sma->sem_perm.id;
1256 		} else {
1257 			sma = sem_obtain_object_check(ns, semid);
1258 			if (IS_ERR(sma)) {
1259 				err = PTR_ERR(sma);
1260 				goto out_unlock;
1261 			}
1262 		}
1263 
1264 		err = -EACCES;
1265 		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1266 			goto out_unlock;
1267 
1268 		err = security_sem_semctl(sma, cmd);
1269 		if (err)
1270 			goto out_unlock;
1271 
1272 		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1273 		tbuf.sem_otime = get_semotime(sma);
1274 		tbuf.sem_ctime = sma->sem_ctime;
1275 		tbuf.sem_nsems = sma->sem_nsems;
1276 		rcu_read_unlock();
1277 		if (copy_semid_to_user(p, &tbuf, version))
1278 			return -EFAULT;
1279 		return id;
1280 	}
1281 	default:
1282 		return -EINVAL;
1283 	}
1284 out_unlock:
1285 	rcu_read_unlock();
1286 	return err;
1287 }
1288 
1289 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1290 		unsigned long arg)
1291 {
1292 	struct sem_undo *un;
1293 	struct sem_array *sma;
1294 	struct sem *curr;
1295 	int err;
1296 	struct list_head tasks;
1297 	int val;
1298 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1299 	/* big-endian 64bit */
1300 	val = arg >> 32;
1301 #else
1302 	/* 32bit or little-endian 64bit */
1303 	val = arg;
1304 #endif
1305 
1306 	if (val > SEMVMX || val < 0)
1307 		return -ERANGE;
1308 
1309 	INIT_LIST_HEAD(&tasks);
1310 
1311 	rcu_read_lock();
1312 	sma = sem_obtain_object_check(ns, semid);
1313 	if (IS_ERR(sma)) {
1314 		rcu_read_unlock();
1315 		return PTR_ERR(sma);
1316 	}
1317 
1318 	if (semnum < 0 || semnum >= sma->sem_nsems) {
1319 		rcu_read_unlock();
1320 		return -EINVAL;
1321 	}
1322 
1323 
1324 	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1325 		rcu_read_unlock();
1326 		return -EACCES;
1327 	}
1328 
1329 	err = security_sem_semctl(sma, SETVAL);
1330 	if (err) {
1331 		rcu_read_unlock();
1332 		return -EACCES;
1333 	}
1334 
1335 	sem_lock(sma, NULL, -1);
1336 
1337 	if (!ipc_valid_object(&sma->sem_perm)) {
1338 		sem_unlock(sma, -1);
1339 		rcu_read_unlock();
1340 		return -EIDRM;
1341 	}
1342 
1343 	curr = &sma->sem_base[semnum];
1344 
1345 	ipc_assert_locked_object(&sma->sem_perm);
1346 	list_for_each_entry(un, &sma->list_id, list_id)
1347 		un->semadj[semnum] = 0;
1348 
1349 	curr->semval = val;
1350 	curr->sempid = task_tgid_vnr(current);
1351 	sma->sem_ctime = get_seconds();
1352 	/* maybe some queued-up processes were waiting for this */
1353 	do_smart_update(sma, NULL, 0, 0, &tasks);
1354 	sem_unlock(sma, -1);
1355 	rcu_read_unlock();
1356 	wake_up_sem_queue_do(&tasks);
1357 	return 0;
1358 }
1359 
1360 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1361 		int cmd, void __user *p)
1362 {
1363 	struct sem_array *sma;
1364 	struct sem *curr;
1365 	int err, nsems;
1366 	ushort fast_sem_io[SEMMSL_FAST];
1367 	ushort *sem_io = fast_sem_io;
1368 	struct list_head tasks;
1369 
1370 	INIT_LIST_HEAD(&tasks);
1371 
1372 	rcu_read_lock();
1373 	sma = sem_obtain_object_check(ns, semid);
1374 	if (IS_ERR(sma)) {
1375 		rcu_read_unlock();
1376 		return PTR_ERR(sma);
1377 	}
1378 
1379 	nsems = sma->sem_nsems;
1380 
1381 	err = -EACCES;
1382 	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1383 		goto out_rcu_wakeup;
1384 
1385 	err = security_sem_semctl(sma, cmd);
1386 	if (err)
1387 		goto out_rcu_wakeup;
1388 
1389 	err = -EACCES;
1390 	switch (cmd) {
1391 	case GETALL:
1392 	{
1393 		ushort __user *array = p;
1394 		int i;
1395 
1396 		sem_lock(sma, NULL, -1);
1397 		if (!ipc_valid_object(&sma->sem_perm)) {
1398 			err = -EIDRM;
1399 			goto out_unlock;
1400 		}
1401 		if (nsems > SEMMSL_FAST) {
1402 			if (!ipc_rcu_getref(sma)) {
1403 				err = -EIDRM;
1404 				goto out_unlock;
1405 			}
1406 			sem_unlock(sma, -1);
1407 			rcu_read_unlock();
1408 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1409 			if (sem_io == NULL) {
1410 				ipc_rcu_putref(sma, sem_rcu_free);
1411 				return -ENOMEM;
1412 			}
1413 
1414 			rcu_read_lock();
1415 			sem_lock_and_putref(sma);
1416 			if (!ipc_valid_object(&sma->sem_perm)) {
1417 				err = -EIDRM;
1418 				goto out_unlock;
1419 			}
1420 		}
1421 		for (i = 0; i < sma->sem_nsems; i++)
1422 			sem_io[i] = sma->sem_base[i].semval;
1423 		sem_unlock(sma, -1);
1424 		rcu_read_unlock();
1425 		err = 0;
1426 		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1427 			err = -EFAULT;
1428 		goto out_free;
1429 	}
1430 	case SETALL:
1431 	{
1432 		int i;
1433 		struct sem_undo *un;
1434 
1435 		if (!ipc_rcu_getref(sma)) {
1436 			err = -EIDRM;
1437 			goto out_rcu_wakeup;
1438 		}
1439 		rcu_read_unlock();
1440 
1441 		if (nsems > SEMMSL_FAST) {
1442 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1443 			if (sem_io == NULL) {
1444 				ipc_rcu_putref(sma, sem_rcu_free);
1445 				return -ENOMEM;
1446 			}
1447 		}
1448 
1449 		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1450 			ipc_rcu_putref(sma, sem_rcu_free);
1451 			err = -EFAULT;
1452 			goto out_free;
1453 		}
1454 
1455 		for (i = 0; i < nsems; i++) {
1456 			if (sem_io[i] > SEMVMX) {
1457 				ipc_rcu_putref(sma, sem_rcu_free);
1458 				err = -ERANGE;
1459 				goto out_free;
1460 			}
1461 		}
1462 		rcu_read_lock();
1463 		sem_lock_and_putref(sma);
1464 		if (!ipc_valid_object(&sma->sem_perm)) {
1465 			err = -EIDRM;
1466 			goto out_unlock;
1467 		}
1468 
1469 		for (i = 0; i < nsems; i++) {
1470 			sma->sem_base[i].semval = sem_io[i];
1471 			sma->sem_base[i].sempid = task_tgid_vnr(current);
1472 		}
1473 
1474 		ipc_assert_locked_object(&sma->sem_perm);
1475 		list_for_each_entry(un, &sma->list_id, list_id) {
1476 			for (i = 0; i < nsems; i++)
1477 				un->semadj[i] = 0;
1478 		}
1479 		sma->sem_ctime = get_seconds();
1480 		/* maybe some queued-up processes were waiting for this */
1481 		do_smart_update(sma, NULL, 0, 0, &tasks);
1482 		err = 0;
1483 		goto out_unlock;
1484 	}
1485 	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1486 	}
1487 	err = -EINVAL;
1488 	if (semnum < 0 || semnum >= nsems)
1489 		goto out_rcu_wakeup;
1490 
1491 	sem_lock(sma, NULL, -1);
1492 	if (!ipc_valid_object(&sma->sem_perm)) {
1493 		err = -EIDRM;
1494 		goto out_unlock;
1495 	}
1496 	curr = &sma->sem_base[semnum];
1497 
1498 	switch (cmd) {
1499 	case GETVAL:
1500 		err = curr->semval;
1501 		goto out_unlock;
1502 	case GETPID:
1503 		err = curr->sempid;
1504 		goto out_unlock;
1505 	case GETNCNT:
1506 		err = count_semcnt(sma, semnum, 0);
1507 		goto out_unlock;
1508 	case GETZCNT:
1509 		err = count_semcnt(sma, semnum, 1);
1510 		goto out_unlock;
1511 	}
1512 
1513 out_unlock:
1514 	sem_unlock(sma, -1);
1515 out_rcu_wakeup:
1516 	rcu_read_unlock();
1517 	wake_up_sem_queue_do(&tasks);
1518 out_free:
1519 	if (sem_io != fast_sem_io)
1520 		ipc_free(sem_io);
1521 	return err;
1522 }
1523 
1524 static inline unsigned long
1525 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1526 {
1527 	switch (version) {
1528 	case IPC_64:
1529 		if (copy_from_user(out, buf, sizeof(*out)))
1530 			return -EFAULT;
1531 		return 0;
1532 	case IPC_OLD:
1533 	    {
1534 		struct semid_ds tbuf_old;
1535 
1536 		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1537 			return -EFAULT;
1538 
1539 		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1540 		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1541 		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1542 
1543 		return 0;
1544 	    }
1545 	default:
1546 		return -EINVAL;
1547 	}
1548 }
1549 
1550 /*
1551  * This function handles some semctl commands which require the rwsem
1552  * to be held in write mode.
1553  * NOTE: no locks must be held, the rwsem is taken inside this function.
1554  */
1555 static int semctl_down(struct ipc_namespace *ns, int semid,
1556 		       int cmd, int version, void __user *p)
1557 {
1558 	struct sem_array *sma;
1559 	int err;
1560 	struct semid64_ds semid64;
1561 	struct kern_ipc_perm *ipcp;
1562 
1563 	if (cmd == IPC_SET) {
1564 		if (copy_semid_from_user(&semid64, p, version))
1565 			return -EFAULT;
1566 	}
1567 
1568 	down_write(&sem_ids(ns).rwsem);
1569 	rcu_read_lock();
1570 
1571 	ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1572 				      &semid64.sem_perm, 0);
1573 	if (IS_ERR(ipcp)) {
1574 		err = PTR_ERR(ipcp);
1575 		goto out_unlock1;
1576 	}
1577 
1578 	sma = container_of(ipcp, struct sem_array, sem_perm);
1579 
1580 	err = security_sem_semctl(sma, cmd);
1581 	if (err)
1582 		goto out_unlock1;
1583 
1584 	switch (cmd) {
1585 	case IPC_RMID:
1586 		sem_lock(sma, NULL, -1);
1587 		/* freeary unlocks the ipc object and rcu */
1588 		freeary(ns, ipcp);
1589 		goto out_up;
1590 	case IPC_SET:
1591 		sem_lock(sma, NULL, -1);
1592 		err = ipc_update_perm(&semid64.sem_perm, ipcp);
1593 		if (err)
1594 			goto out_unlock0;
1595 		sma->sem_ctime = get_seconds();
1596 		break;
1597 	default:
1598 		err = -EINVAL;
1599 		goto out_unlock1;
1600 	}
1601 
1602 out_unlock0:
1603 	sem_unlock(sma, -1);
1604 out_unlock1:
1605 	rcu_read_unlock();
1606 out_up:
1607 	up_write(&sem_ids(ns).rwsem);
1608 	return err;
1609 }
1610 
1611 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1612 {
1613 	int version;
1614 	struct ipc_namespace *ns;
1615 	void __user *p = (void __user *)arg;
1616 
1617 	if (semid < 0)
1618 		return -EINVAL;
1619 
1620 	version = ipc_parse_version(&cmd);
1621 	ns = current->nsproxy->ipc_ns;
1622 
1623 	switch (cmd) {
1624 	case IPC_INFO:
1625 	case SEM_INFO:
1626 	case IPC_STAT:
1627 	case SEM_STAT:
1628 		return semctl_nolock(ns, semid, cmd, version, p);
1629 	case GETALL:
1630 	case GETVAL:
1631 	case GETPID:
1632 	case GETNCNT:
1633 	case GETZCNT:
1634 	case SETALL:
1635 		return semctl_main(ns, semid, semnum, cmd, p);
1636 	case SETVAL:
1637 		return semctl_setval(ns, semid, semnum, arg);
1638 	case IPC_RMID:
1639 	case IPC_SET:
1640 		return semctl_down(ns, semid, cmd, version, p);
1641 	default:
1642 		return -EINVAL;
1643 	}
1644 }
1645 
1646 /* If the task doesn't already have a undo_list, then allocate one
1647  * here.  We guarantee there is only one thread using this undo list,
1648  * and current is THE ONE
1649  *
1650  * If this allocation and assignment succeeds, but later
1651  * portions of this code fail, there is no need to free the sem_undo_list.
1652  * Just let it stay associated with the task, and it'll be freed later
1653  * at exit time.
1654  *
1655  * This can block, so callers must hold no locks.
1656  */
1657 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1658 {
1659 	struct sem_undo_list *undo_list;
1660 
1661 	undo_list = current->sysvsem.undo_list;
1662 	if (!undo_list) {
1663 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1664 		if (undo_list == NULL)
1665 			return -ENOMEM;
1666 		spin_lock_init(&undo_list->lock);
1667 		atomic_set(&undo_list->refcnt, 1);
1668 		INIT_LIST_HEAD(&undo_list->list_proc);
1669 
1670 		current->sysvsem.undo_list = undo_list;
1671 	}
1672 	*undo_listp = undo_list;
1673 	return 0;
1674 }
1675 
1676 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1677 {
1678 	struct sem_undo *un;
1679 
1680 	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1681 		if (un->semid == semid)
1682 			return un;
1683 	}
1684 	return NULL;
1685 }
1686 
1687 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1688 {
1689 	struct sem_undo *un;
1690 
1691 	assert_spin_locked(&ulp->lock);
1692 
1693 	un = __lookup_undo(ulp, semid);
1694 	if (un) {
1695 		list_del_rcu(&un->list_proc);
1696 		list_add_rcu(&un->list_proc, &ulp->list_proc);
1697 	}
1698 	return un;
1699 }
1700 
1701 /**
1702  * find_alloc_undo - lookup (and if not present create) undo array
1703  * @ns: namespace
1704  * @semid: semaphore array id
1705  *
1706  * The function looks up (and if not present creates) the undo structure.
1707  * The size of the undo structure depends on the size of the semaphore
1708  * array, thus the alloc path is not that straightforward.
1709  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1710  * performs a rcu_read_lock().
1711  */
1712 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1713 {
1714 	struct sem_array *sma;
1715 	struct sem_undo_list *ulp;
1716 	struct sem_undo *un, *new;
1717 	int nsems, error;
1718 
1719 	error = get_undo_list(&ulp);
1720 	if (error)
1721 		return ERR_PTR(error);
1722 
1723 	rcu_read_lock();
1724 	spin_lock(&ulp->lock);
1725 	un = lookup_undo(ulp, semid);
1726 	spin_unlock(&ulp->lock);
1727 	if (likely(un != NULL))
1728 		goto out;
1729 
1730 	/* no undo structure around - allocate one. */
1731 	/* step 1: figure out the size of the semaphore array */
1732 	sma = sem_obtain_object_check(ns, semid);
1733 	if (IS_ERR(sma)) {
1734 		rcu_read_unlock();
1735 		return ERR_CAST(sma);
1736 	}
1737 
1738 	nsems = sma->sem_nsems;
1739 	if (!ipc_rcu_getref(sma)) {
1740 		rcu_read_unlock();
1741 		un = ERR_PTR(-EIDRM);
1742 		goto out;
1743 	}
1744 	rcu_read_unlock();
1745 
1746 	/* step 2: allocate new undo structure */
1747 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1748 	if (!new) {
1749 		ipc_rcu_putref(sma, sem_rcu_free);
1750 		return ERR_PTR(-ENOMEM);
1751 	}
1752 
1753 	/* step 3: Acquire the lock on semaphore array */
1754 	rcu_read_lock();
1755 	sem_lock_and_putref(sma);
1756 	if (!ipc_valid_object(&sma->sem_perm)) {
1757 		sem_unlock(sma, -1);
1758 		rcu_read_unlock();
1759 		kfree(new);
1760 		un = ERR_PTR(-EIDRM);
1761 		goto out;
1762 	}
1763 	spin_lock(&ulp->lock);
1764 
1765 	/*
1766 	 * step 4: check for races: did someone else allocate the undo struct?
1767 	 */
1768 	un = lookup_undo(ulp, semid);
1769 	if (un) {
1770 		kfree(new);
1771 		goto success;
1772 	}
1773 	/* step 5: initialize & link new undo structure */
1774 	new->semadj = (short *) &new[1];
1775 	new->ulp = ulp;
1776 	new->semid = semid;
1777 	assert_spin_locked(&ulp->lock);
1778 	list_add_rcu(&new->list_proc, &ulp->list_proc);
1779 	ipc_assert_locked_object(&sma->sem_perm);
1780 	list_add(&new->list_id, &sma->list_id);
1781 	un = new;
1782 
1783 success:
1784 	spin_unlock(&ulp->lock);
1785 	sem_unlock(sma, -1);
1786 out:
1787 	return un;
1788 }
1789 
1790 
1791 /**
1792  * get_queue_result - retrieve the result code from sem_queue
1793  * @q: Pointer to queue structure
1794  *
1795  * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1796  * q->status, then we must loop until the value is replaced with the final
1797  * value: This may happen if a task is woken up by an unrelated event (e.g.
1798  * signal) and in parallel the task is woken up by another task because it got
1799  * the requested semaphores.
1800  *
1801  * The function can be called with or without holding the semaphore spinlock.
1802  */
1803 static int get_queue_result(struct sem_queue *q)
1804 {
1805 	int error;
1806 
1807 	error = q->status;
1808 	while (unlikely(error == IN_WAKEUP)) {
1809 		cpu_relax();
1810 		error = q->status;
1811 	}
1812 
1813 	return error;
1814 }
1815 
1816 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1817 		unsigned, nsops, const struct timespec __user *, timeout)
1818 {
1819 	int error = -EINVAL;
1820 	struct sem_array *sma;
1821 	struct sembuf fast_sops[SEMOPM_FAST];
1822 	struct sembuf *sops = fast_sops, *sop;
1823 	struct sem_undo *un;
1824 	int undos = 0, alter = 0, max, locknum;
1825 	struct sem_queue queue;
1826 	unsigned long jiffies_left = 0;
1827 	struct ipc_namespace *ns;
1828 	struct list_head tasks;
1829 
1830 	ns = current->nsproxy->ipc_ns;
1831 
1832 	if (nsops < 1 || semid < 0)
1833 		return -EINVAL;
1834 	if (nsops > ns->sc_semopm)
1835 		return -E2BIG;
1836 	if (nsops > SEMOPM_FAST) {
1837 		sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1838 		if (sops == NULL)
1839 			return -ENOMEM;
1840 	}
1841 	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1842 		error =  -EFAULT;
1843 		goto out_free;
1844 	}
1845 	if (timeout) {
1846 		struct timespec _timeout;
1847 		if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1848 			error = -EFAULT;
1849 			goto out_free;
1850 		}
1851 		if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1852 			_timeout.tv_nsec >= 1000000000L) {
1853 			error = -EINVAL;
1854 			goto out_free;
1855 		}
1856 		jiffies_left = timespec_to_jiffies(&_timeout);
1857 	}
1858 	max = 0;
1859 	for (sop = sops; sop < sops + nsops; sop++) {
1860 		if (sop->sem_num >= max)
1861 			max = sop->sem_num;
1862 		if (sop->sem_flg & SEM_UNDO)
1863 			undos = 1;
1864 		if (sop->sem_op != 0)
1865 			alter = 1;
1866 	}
1867 
1868 	INIT_LIST_HEAD(&tasks);
1869 
1870 	if (undos) {
1871 		/* On success, find_alloc_undo takes the rcu_read_lock */
1872 		un = find_alloc_undo(ns, semid);
1873 		if (IS_ERR(un)) {
1874 			error = PTR_ERR(un);
1875 			goto out_free;
1876 		}
1877 	} else {
1878 		un = NULL;
1879 		rcu_read_lock();
1880 	}
1881 
1882 	sma = sem_obtain_object_check(ns, semid);
1883 	if (IS_ERR(sma)) {
1884 		rcu_read_unlock();
1885 		error = PTR_ERR(sma);
1886 		goto out_free;
1887 	}
1888 
1889 	error = -EFBIG;
1890 	if (max >= sma->sem_nsems)
1891 		goto out_rcu_wakeup;
1892 
1893 	error = -EACCES;
1894 	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1895 		goto out_rcu_wakeup;
1896 
1897 	error = security_sem_semop(sma, sops, nsops, alter);
1898 	if (error)
1899 		goto out_rcu_wakeup;
1900 
1901 	error = -EIDRM;
1902 	locknum = sem_lock(sma, sops, nsops);
1903 	/*
1904 	 * We eventually might perform the following check in a lockless
1905 	 * fashion, considering ipc_valid_object() locking constraints.
1906 	 * If nsops == 1 and there is no contention for sem_perm.lock, then
1907 	 * only a per-semaphore lock is held and it's OK to proceed with the
1908 	 * check below. More details on the fine grained locking scheme
1909 	 * entangled here and why it's RMID race safe on comments at sem_lock()
1910 	 */
1911 	if (!ipc_valid_object(&sma->sem_perm))
1912 		goto out_unlock_free;
1913 	/*
1914 	 * semid identifiers are not unique - find_alloc_undo may have
1915 	 * allocated an undo structure, it was invalidated by an RMID
1916 	 * and now a new array with received the same id. Check and fail.
1917 	 * This case can be detected checking un->semid. The existence of
1918 	 * "un" itself is guaranteed by rcu.
1919 	 */
1920 	if (un && un->semid == -1)
1921 		goto out_unlock_free;
1922 
1923 	queue.sops = sops;
1924 	queue.nsops = nsops;
1925 	queue.undo = un;
1926 	queue.pid = task_tgid_vnr(current);
1927 	queue.alter = alter;
1928 
1929 	error = perform_atomic_semop(sma, &queue);
1930 	if (error == 0) {
1931 		/* If the operation was successful, then do
1932 		 * the required updates.
1933 		 */
1934 		if (alter)
1935 			do_smart_update(sma, sops, nsops, 1, &tasks);
1936 		else
1937 			set_semotime(sma, sops);
1938 	}
1939 	if (error <= 0)
1940 		goto out_unlock_free;
1941 
1942 	/* We need to sleep on this operation, so we put the current
1943 	 * task into the pending queue and go to sleep.
1944 	 */
1945 
1946 	if (nsops == 1) {
1947 		struct sem *curr;
1948 		curr = &sma->sem_base[sops->sem_num];
1949 
1950 		if (alter) {
1951 			if (sma->complex_count) {
1952 				list_add_tail(&queue.list,
1953 						&sma->pending_alter);
1954 			} else {
1955 
1956 				list_add_tail(&queue.list,
1957 						&curr->pending_alter);
1958 			}
1959 		} else {
1960 			list_add_tail(&queue.list, &curr->pending_const);
1961 		}
1962 	} else {
1963 		if (!sma->complex_count)
1964 			merge_queues(sma);
1965 
1966 		if (alter)
1967 			list_add_tail(&queue.list, &sma->pending_alter);
1968 		else
1969 			list_add_tail(&queue.list, &sma->pending_const);
1970 
1971 		sma->complex_count++;
1972 	}
1973 
1974 	queue.status = -EINTR;
1975 	queue.sleeper = current;
1976 
1977 sleep_again:
1978 	__set_current_state(TASK_INTERRUPTIBLE);
1979 	sem_unlock(sma, locknum);
1980 	rcu_read_unlock();
1981 
1982 	if (timeout)
1983 		jiffies_left = schedule_timeout(jiffies_left);
1984 	else
1985 		schedule();
1986 
1987 	error = get_queue_result(&queue);
1988 
1989 	if (error != -EINTR) {
1990 		/* fast path: update_queue already obtained all requested
1991 		 * resources.
1992 		 * Perform a smp_mb(): User space could assume that semop()
1993 		 * is a memory barrier: Without the mb(), the cpu could
1994 		 * speculatively read in user space stale data that was
1995 		 * overwritten by the previous owner of the semaphore.
1996 		 */
1997 		smp_mb();
1998 
1999 		goto out_free;
2000 	}
2001 
2002 	rcu_read_lock();
2003 	sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
2004 
2005 	/*
2006 	 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
2007 	 */
2008 	error = get_queue_result(&queue);
2009 
2010 	/*
2011 	 * Array removed? If yes, leave without sem_unlock().
2012 	 */
2013 	if (IS_ERR(sma)) {
2014 		rcu_read_unlock();
2015 		goto out_free;
2016 	}
2017 
2018 
2019 	/*
2020 	 * If queue.status != -EINTR we are woken up by another process.
2021 	 * Leave without unlink_queue(), but with sem_unlock().
2022 	 */
2023 	if (error != -EINTR)
2024 		goto out_unlock_free;
2025 
2026 	/*
2027 	 * If an interrupt occurred we have to clean up the queue
2028 	 */
2029 	if (timeout && jiffies_left == 0)
2030 		error = -EAGAIN;
2031 
2032 	/*
2033 	 * If the wakeup was spurious, just retry
2034 	 */
2035 	if (error == -EINTR && !signal_pending(current))
2036 		goto sleep_again;
2037 
2038 	unlink_queue(sma, &queue);
2039 
2040 out_unlock_free:
2041 	sem_unlock(sma, locknum);
2042 out_rcu_wakeup:
2043 	rcu_read_unlock();
2044 	wake_up_sem_queue_do(&tasks);
2045 out_free:
2046 	if (sops != fast_sops)
2047 		kfree(sops);
2048 	return error;
2049 }
2050 
2051 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2052 		unsigned, nsops)
2053 {
2054 	return sys_semtimedop(semid, tsops, nsops, NULL);
2055 }
2056 
2057 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2058  * parent and child tasks.
2059  */
2060 
2061 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2062 {
2063 	struct sem_undo_list *undo_list;
2064 	int error;
2065 
2066 	if (clone_flags & CLONE_SYSVSEM) {
2067 		error = get_undo_list(&undo_list);
2068 		if (error)
2069 			return error;
2070 		atomic_inc(&undo_list->refcnt);
2071 		tsk->sysvsem.undo_list = undo_list;
2072 	} else
2073 		tsk->sysvsem.undo_list = NULL;
2074 
2075 	return 0;
2076 }
2077 
2078 /*
2079  * add semadj values to semaphores, free undo structures.
2080  * undo structures are not freed when semaphore arrays are destroyed
2081  * so some of them may be out of date.
2082  * IMPLEMENTATION NOTE: There is some confusion over whether the
2083  * set of adjustments that needs to be done should be done in an atomic
2084  * manner or not. That is, if we are attempting to decrement the semval
2085  * should we queue up and wait until we can do so legally?
2086  * The original implementation attempted to do this (queue and wait).
2087  * The current implementation does not do so. The POSIX standard
2088  * and SVID should be consulted to determine what behavior is mandated.
2089  */
2090 void exit_sem(struct task_struct *tsk)
2091 {
2092 	struct sem_undo_list *ulp;
2093 
2094 	ulp = tsk->sysvsem.undo_list;
2095 	if (!ulp)
2096 		return;
2097 	tsk->sysvsem.undo_list = NULL;
2098 
2099 	if (!atomic_dec_and_test(&ulp->refcnt))
2100 		return;
2101 
2102 	for (;;) {
2103 		struct sem_array *sma;
2104 		struct sem_undo *un;
2105 		struct list_head tasks;
2106 		int semid, i;
2107 
2108 		cond_resched();
2109 
2110 		rcu_read_lock();
2111 		un = list_entry_rcu(ulp->list_proc.next,
2112 				    struct sem_undo, list_proc);
2113 		if (&un->list_proc == &ulp->list_proc) {
2114 			/*
2115 			 * We must wait for freeary() before freeing this ulp,
2116 			 * in case we raced with last sem_undo. There is a small
2117 			 * possibility where we exit while freeary() didn't
2118 			 * finish unlocking sem_undo_list.
2119 			 */
2120 			spin_unlock_wait(&ulp->lock);
2121 			rcu_read_unlock();
2122 			break;
2123 		}
2124 		spin_lock(&ulp->lock);
2125 		semid = un->semid;
2126 		spin_unlock(&ulp->lock);
2127 
2128 		/* exit_sem raced with IPC_RMID, nothing to do */
2129 		if (semid == -1) {
2130 			rcu_read_unlock();
2131 			continue;
2132 		}
2133 
2134 		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2135 		/* exit_sem raced with IPC_RMID, nothing to do */
2136 		if (IS_ERR(sma)) {
2137 			rcu_read_unlock();
2138 			continue;
2139 		}
2140 
2141 		sem_lock(sma, NULL, -1);
2142 		/* exit_sem raced with IPC_RMID, nothing to do */
2143 		if (!ipc_valid_object(&sma->sem_perm)) {
2144 			sem_unlock(sma, -1);
2145 			rcu_read_unlock();
2146 			continue;
2147 		}
2148 		un = __lookup_undo(ulp, semid);
2149 		if (un == NULL) {
2150 			/* exit_sem raced with IPC_RMID+semget() that created
2151 			 * exactly the same semid. Nothing to do.
2152 			 */
2153 			sem_unlock(sma, -1);
2154 			rcu_read_unlock();
2155 			continue;
2156 		}
2157 
2158 		/* remove un from the linked lists */
2159 		ipc_assert_locked_object(&sma->sem_perm);
2160 		list_del(&un->list_id);
2161 
2162 		/* we are the last process using this ulp, acquiring ulp->lock
2163 		 * isn't required. Besides that, we are also protected against
2164 		 * IPC_RMID as we hold sma->sem_perm lock now
2165 		 */
2166 		list_del_rcu(&un->list_proc);
2167 
2168 		/* perform adjustments registered in un */
2169 		for (i = 0; i < sma->sem_nsems; i++) {
2170 			struct sem *semaphore = &sma->sem_base[i];
2171 			if (un->semadj[i]) {
2172 				semaphore->semval += un->semadj[i];
2173 				/*
2174 				 * Range checks of the new semaphore value,
2175 				 * not defined by sus:
2176 				 * - Some unices ignore the undo entirely
2177 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2178 				 * - some cap the value (e.g. FreeBSD caps
2179 				 *   at 0, but doesn't enforce SEMVMX)
2180 				 *
2181 				 * Linux caps the semaphore value, both at 0
2182 				 * and at SEMVMX.
2183 				 *
2184 				 *	Manfred <manfred@colorfullife.com>
2185 				 */
2186 				if (semaphore->semval < 0)
2187 					semaphore->semval = 0;
2188 				if (semaphore->semval > SEMVMX)
2189 					semaphore->semval = SEMVMX;
2190 				semaphore->sempid = task_tgid_vnr(current);
2191 			}
2192 		}
2193 		/* maybe some queued-up processes were waiting for this */
2194 		INIT_LIST_HEAD(&tasks);
2195 		do_smart_update(sma, NULL, 0, 1, &tasks);
2196 		sem_unlock(sma, -1);
2197 		rcu_read_unlock();
2198 		wake_up_sem_queue_do(&tasks);
2199 
2200 		kfree_rcu(un, rcu);
2201 	}
2202 	kfree(ulp);
2203 }
2204 
2205 #ifdef CONFIG_PROC_FS
2206 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2207 {
2208 	struct user_namespace *user_ns = seq_user_ns(s);
2209 	struct sem_array *sma = it;
2210 	time_t sem_otime;
2211 
2212 	/*
2213 	 * The proc interface isn't aware of sem_lock(), it calls
2214 	 * ipc_lock_object() directly (in sysvipc_find_ipc).
2215 	 * In order to stay compatible with sem_lock(), we must
2216 	 * enter / leave complex_mode.
2217 	 */
2218 	complexmode_enter(sma);
2219 
2220 	sem_otime = get_semotime(sma);
2221 
2222 	seq_printf(s,
2223 		   "%10d %10d  %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2224 		   sma->sem_perm.key,
2225 		   sma->sem_perm.id,
2226 		   sma->sem_perm.mode,
2227 		   sma->sem_nsems,
2228 		   from_kuid_munged(user_ns, sma->sem_perm.uid),
2229 		   from_kgid_munged(user_ns, sma->sem_perm.gid),
2230 		   from_kuid_munged(user_ns, sma->sem_perm.cuid),
2231 		   from_kgid_munged(user_ns, sma->sem_perm.cgid),
2232 		   sem_otime,
2233 		   sma->sem_ctime);
2234 
2235 	complexmode_tryleave(sma);
2236 
2237 	return 0;
2238 }
2239 #endif
2240