xref: /openbmc/linux/ipc/sem.c (revision e6dec923)
1 /*
2  * linux/ipc/sem.c
3  * Copyright (C) 1992 Krishna Balasubramanian
4  * Copyright (C) 1995 Eric Schenk, Bruno Haible
5  *
6  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7  *
8  * SMP-threaded, sysctl's added
9  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10  * Enforced range limit on SEM_UNDO
11  * (c) 2001 Red Hat Inc
12  * Lockless wakeup
13  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14  * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
15  * Further wakeup optimizations, documentation
16  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
17  *
18  * support for audit of ipc object properties and permission changes
19  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
20  *
21  * namespaces support
22  * OpenVZ, SWsoft Inc.
23  * Pavel Emelianov <xemul@openvz.org>
24  *
25  * Implementation notes: (May 2010)
26  * This file implements System V semaphores.
27  *
28  * User space visible behavior:
29  * - FIFO ordering for semop() operations (just FIFO, not starvation
30  *   protection)
31  * - multiple semaphore operations that alter the same semaphore in
32  *   one semop() are handled.
33  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
34  *   SETALL calls.
35  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
36  * - undo adjustments at process exit are limited to 0..SEMVMX.
37  * - namespace are supported.
38  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
39  *   to /proc/sys/kernel/sem.
40  * - statistics about the usage are reported in /proc/sysvipc/sem.
41  *
42  * Internals:
43  * - scalability:
44  *   - all global variables are read-mostly.
45  *   - semop() calls and semctl(RMID) are synchronized by RCU.
46  *   - most operations do write operations (actually: spin_lock calls) to
47  *     the per-semaphore array structure.
48  *   Thus: Perfect SMP scaling between independent semaphore arrays.
49  *         If multiple semaphores in one array are used, then cache line
50  *         trashing on the semaphore array spinlock will limit the scaling.
51  * - semncnt and semzcnt are calculated on demand in count_semcnt()
52  * - the task that performs a successful semop() scans the list of all
53  *   sleeping tasks and completes any pending operations that can be fulfilled.
54  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
55  *   (see update_queue())
56  * - To improve the scalability, the actual wake-up calls are performed after
57  *   dropping all locks. (see wake_up_sem_queue_prepare())
58  * - All work is done by the waker, the woken up task does not have to do
59  *   anything - not even acquiring a lock or dropping a refcount.
60  * - A woken up task may not even touch the semaphore array anymore, it may
61  *   have been destroyed already by a semctl(RMID).
62  * - UNDO values are stored in an array (one per process and per
63  *   semaphore array, lazily allocated). For backwards compatibility, multiple
64  *   modes for the UNDO variables are supported (per process, per thread)
65  *   (see copy_semundo, CLONE_SYSVSEM)
66  * - There are two lists of the pending operations: a per-array list
67  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
68  *   ordering without always scanning all pending operations.
69  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
70  */
71 
72 #include <linux/slab.h>
73 #include <linux/spinlock.h>
74 #include <linux/init.h>
75 #include <linux/proc_fs.h>
76 #include <linux/time.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/audit.h>
80 #include <linux/capability.h>
81 #include <linux/seq_file.h>
82 #include <linux/rwsem.h>
83 #include <linux/nsproxy.h>
84 #include <linux/ipc_namespace.h>
85 #include <linux/sched/wake_q.h>
86 
87 #include <linux/uaccess.h>
88 #include "util.h"
89 
90 
91 /* One queue for each sleeping process in the system. */
92 struct sem_queue {
93 	struct list_head	list;	 /* queue of pending operations */
94 	struct task_struct	*sleeper; /* this process */
95 	struct sem_undo		*undo;	 /* undo structure */
96 	int			pid;	 /* process id of requesting process */
97 	int			status;	 /* completion status of operation */
98 	struct sembuf		*sops;	 /* array of pending operations */
99 	struct sembuf		*blocking; /* the operation that blocked */
100 	int			nsops;	 /* number of operations */
101 	bool			alter;	 /* does *sops alter the array? */
102 	bool                    dupsop;	 /* sops on more than one sem_num */
103 };
104 
105 /* Each task has a list of undo requests. They are executed automatically
106  * when the process exits.
107  */
108 struct sem_undo {
109 	struct list_head	list_proc;	/* per-process list: *
110 						 * all undos from one process
111 						 * rcu protected */
112 	struct rcu_head		rcu;		/* rcu struct for sem_undo */
113 	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
114 	struct list_head	list_id;	/* per semaphore array list:
115 						 * all undos for one array */
116 	int			semid;		/* semaphore set identifier */
117 	short			*semadj;	/* array of adjustments */
118 						/* one per semaphore */
119 };
120 
121 /* sem_undo_list controls shared access to the list of sem_undo structures
122  * that may be shared among all a CLONE_SYSVSEM task group.
123  */
124 struct sem_undo_list {
125 	atomic_t		refcnt;
126 	spinlock_t		lock;
127 	struct list_head	list_proc;
128 };
129 
130 
131 #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
132 
133 #define sem_checkid(sma, semid)	ipc_checkid(&sma->sem_perm, semid)
134 
135 static int newary(struct ipc_namespace *, struct ipc_params *);
136 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
137 #ifdef CONFIG_PROC_FS
138 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
139 #endif
140 
141 #define SEMMSL_FAST	256 /* 512 bytes on stack */
142 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
143 
144 /*
145  * Switching from the mode suitable for simple ops
146  * to the mode for complex ops is costly. Therefore:
147  * use some hysteresis
148  */
149 #define USE_GLOBAL_LOCK_HYSTERESIS	10
150 
151 /*
152  * Locking:
153  * a) global sem_lock() for read/write
154  *	sem_undo.id_next,
155  *	sem_array.complex_count,
156  *	sem_array.pending{_alter,_const},
157  *	sem_array.sem_undo
158  *
159  * b) global or semaphore sem_lock() for read/write:
160  *	sem_array.sems[i].pending_{const,alter}:
161  *
162  * c) special:
163  *	sem_undo_list.list_proc:
164  *	* undo_list->lock for write
165  *	* rcu for read
166  *	use_global_lock:
167  *	* global sem_lock() for write
168  *	* either local or global sem_lock() for read.
169  *
170  * Memory ordering:
171  * Most ordering is enforced by using spin_lock() and spin_unlock().
172  * The special case is use_global_lock:
173  * Setting it from non-zero to 0 is a RELEASE, this is ensured by
174  * using smp_store_release().
175  * Testing if it is non-zero is an ACQUIRE, this is ensured by using
176  * smp_load_acquire().
177  * Setting it from 0 to non-zero must be ordered with regards to
178  * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
179  * is inside a spin_lock() and after a write from 0 to non-zero a
180  * spin_lock()+spin_unlock() is done.
181  */
182 
183 #define sc_semmsl	sem_ctls[0]
184 #define sc_semmns	sem_ctls[1]
185 #define sc_semopm	sem_ctls[2]
186 #define sc_semmni	sem_ctls[3]
187 
188 void sem_init_ns(struct ipc_namespace *ns)
189 {
190 	ns->sc_semmsl = SEMMSL;
191 	ns->sc_semmns = SEMMNS;
192 	ns->sc_semopm = SEMOPM;
193 	ns->sc_semmni = SEMMNI;
194 	ns->used_sems = 0;
195 	ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
196 }
197 
198 #ifdef CONFIG_IPC_NS
199 void sem_exit_ns(struct ipc_namespace *ns)
200 {
201 	free_ipcs(ns, &sem_ids(ns), freeary);
202 	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
203 }
204 #endif
205 
206 void __init sem_init(void)
207 {
208 	sem_init_ns(&init_ipc_ns);
209 	ipc_init_proc_interface("sysvipc/sem",
210 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
211 				IPC_SEM_IDS, sysvipc_sem_proc_show);
212 }
213 
214 /**
215  * unmerge_queues - unmerge queues, if possible.
216  * @sma: semaphore array
217  *
218  * The function unmerges the wait queues if complex_count is 0.
219  * It must be called prior to dropping the global semaphore array lock.
220  */
221 static void unmerge_queues(struct sem_array *sma)
222 {
223 	struct sem_queue *q, *tq;
224 
225 	/* complex operations still around? */
226 	if (sma->complex_count)
227 		return;
228 	/*
229 	 * We will switch back to simple mode.
230 	 * Move all pending operation back into the per-semaphore
231 	 * queues.
232 	 */
233 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
234 		struct sem *curr;
235 		curr = &sma->sems[q->sops[0].sem_num];
236 
237 		list_add_tail(&q->list, &curr->pending_alter);
238 	}
239 	INIT_LIST_HEAD(&sma->pending_alter);
240 }
241 
242 /**
243  * merge_queues - merge single semop queues into global queue
244  * @sma: semaphore array
245  *
246  * This function merges all per-semaphore queues into the global queue.
247  * It is necessary to achieve FIFO ordering for the pending single-sop
248  * operations when a multi-semop operation must sleep.
249  * Only the alter operations must be moved, the const operations can stay.
250  */
251 static void merge_queues(struct sem_array *sma)
252 {
253 	int i;
254 	for (i = 0; i < sma->sem_nsems; i++) {
255 		struct sem *sem = &sma->sems[i];
256 
257 		list_splice_init(&sem->pending_alter, &sma->pending_alter);
258 	}
259 }
260 
261 static void sem_rcu_free(struct rcu_head *head)
262 {
263 	struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
264 	struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
265 
266 	security_sem_free(sma);
267 	kvfree(sma);
268 }
269 
270 /*
271  * Enter the mode suitable for non-simple operations:
272  * Caller must own sem_perm.lock.
273  */
274 static void complexmode_enter(struct sem_array *sma)
275 {
276 	int i;
277 	struct sem *sem;
278 
279 	if (sma->use_global_lock > 0)  {
280 		/*
281 		 * We are already in global lock mode.
282 		 * Nothing to do, just reset the
283 		 * counter until we return to simple mode.
284 		 */
285 		sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
286 		return;
287 	}
288 	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
289 
290 	for (i = 0; i < sma->sem_nsems; i++) {
291 		sem = &sma->sems[i];
292 		spin_lock(&sem->lock);
293 		spin_unlock(&sem->lock);
294 	}
295 }
296 
297 /*
298  * Try to leave the mode that disallows simple operations:
299  * Caller must own sem_perm.lock.
300  */
301 static void complexmode_tryleave(struct sem_array *sma)
302 {
303 	if (sma->complex_count)  {
304 		/* Complex ops are sleeping.
305 		 * We must stay in complex mode
306 		 */
307 		return;
308 	}
309 	if (sma->use_global_lock == 1) {
310 		/*
311 		 * Immediately after setting use_global_lock to 0,
312 		 * a simple op can start. Thus: all memory writes
313 		 * performed by the current operation must be visible
314 		 * before we set use_global_lock to 0.
315 		 */
316 		smp_store_release(&sma->use_global_lock, 0);
317 	} else {
318 		sma->use_global_lock--;
319 	}
320 }
321 
322 #define SEM_GLOBAL_LOCK	(-1)
323 /*
324  * If the request contains only one semaphore operation, and there are
325  * no complex transactions pending, lock only the semaphore involved.
326  * Otherwise, lock the entire semaphore array, since we either have
327  * multiple semaphores in our own semops, or we need to look at
328  * semaphores from other pending complex operations.
329  */
330 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
331 			      int nsops)
332 {
333 	struct sem *sem;
334 
335 	if (nsops != 1) {
336 		/* Complex operation - acquire a full lock */
337 		ipc_lock_object(&sma->sem_perm);
338 
339 		/* Prevent parallel simple ops */
340 		complexmode_enter(sma);
341 		return SEM_GLOBAL_LOCK;
342 	}
343 
344 	/*
345 	 * Only one semaphore affected - try to optimize locking.
346 	 * Optimized locking is possible if no complex operation
347 	 * is either enqueued or processed right now.
348 	 *
349 	 * Both facts are tracked by use_global_mode.
350 	 */
351 	sem = &sma->sems[sops->sem_num];
352 
353 	/*
354 	 * Initial check for use_global_lock. Just an optimization,
355 	 * no locking, no memory barrier.
356 	 */
357 	if (!sma->use_global_lock) {
358 		/*
359 		 * It appears that no complex operation is around.
360 		 * Acquire the per-semaphore lock.
361 		 */
362 		spin_lock(&sem->lock);
363 
364 		/* pairs with smp_store_release() */
365 		if (!smp_load_acquire(&sma->use_global_lock)) {
366 			/* fast path successful! */
367 			return sops->sem_num;
368 		}
369 		spin_unlock(&sem->lock);
370 	}
371 
372 	/* slow path: acquire the full lock */
373 	ipc_lock_object(&sma->sem_perm);
374 
375 	if (sma->use_global_lock == 0) {
376 		/*
377 		 * The use_global_lock mode ended while we waited for
378 		 * sma->sem_perm.lock. Thus we must switch to locking
379 		 * with sem->lock.
380 		 * Unlike in the fast path, there is no need to recheck
381 		 * sma->use_global_lock after we have acquired sem->lock:
382 		 * We own sma->sem_perm.lock, thus use_global_lock cannot
383 		 * change.
384 		 */
385 		spin_lock(&sem->lock);
386 
387 		ipc_unlock_object(&sma->sem_perm);
388 		return sops->sem_num;
389 	} else {
390 		/*
391 		 * Not a false alarm, thus continue to use the global lock
392 		 * mode. No need for complexmode_enter(), this was done by
393 		 * the caller that has set use_global_mode to non-zero.
394 		 */
395 		return SEM_GLOBAL_LOCK;
396 	}
397 }
398 
399 static inline void sem_unlock(struct sem_array *sma, int locknum)
400 {
401 	if (locknum == SEM_GLOBAL_LOCK) {
402 		unmerge_queues(sma);
403 		complexmode_tryleave(sma);
404 		ipc_unlock_object(&sma->sem_perm);
405 	} else {
406 		struct sem *sem = &sma->sems[locknum];
407 		spin_unlock(&sem->lock);
408 	}
409 }
410 
411 /*
412  * sem_lock_(check_) routines are called in the paths where the rwsem
413  * is not held.
414  *
415  * The caller holds the RCU read lock.
416  */
417 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
418 {
419 	struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
420 
421 	if (IS_ERR(ipcp))
422 		return ERR_CAST(ipcp);
423 
424 	return container_of(ipcp, struct sem_array, sem_perm);
425 }
426 
427 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
428 							int id)
429 {
430 	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
431 
432 	if (IS_ERR(ipcp))
433 		return ERR_CAST(ipcp);
434 
435 	return container_of(ipcp, struct sem_array, sem_perm);
436 }
437 
438 static inline void sem_lock_and_putref(struct sem_array *sma)
439 {
440 	sem_lock(sma, NULL, -1);
441 	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
442 }
443 
444 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
445 {
446 	ipc_rmid(&sem_ids(ns), &s->sem_perm);
447 }
448 
449 static struct sem_array *sem_alloc(size_t nsems)
450 {
451 	struct sem_array *sma;
452 	size_t size;
453 
454 	if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
455 		return NULL;
456 
457 	size = sizeof(*sma) + nsems * sizeof(sma->sems[0]);
458 	sma = kvmalloc(size, GFP_KERNEL);
459 	if (unlikely(!sma))
460 		return NULL;
461 
462 	memset(sma, 0, size);
463 
464 	return sma;
465 }
466 
467 /**
468  * newary - Create a new semaphore set
469  * @ns: namespace
470  * @params: ptr to the structure that contains key, semflg and nsems
471  *
472  * Called with sem_ids.rwsem held (as a writer)
473  */
474 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
475 {
476 	int retval;
477 	struct sem_array *sma;
478 	key_t key = params->key;
479 	int nsems = params->u.nsems;
480 	int semflg = params->flg;
481 	int i;
482 
483 	if (!nsems)
484 		return -EINVAL;
485 	if (ns->used_sems + nsems > ns->sc_semmns)
486 		return -ENOSPC;
487 
488 	sma = sem_alloc(nsems);
489 	if (!sma)
490 		return -ENOMEM;
491 
492 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
493 	sma->sem_perm.key = key;
494 
495 	sma->sem_perm.security = NULL;
496 	retval = security_sem_alloc(sma);
497 	if (retval) {
498 		kvfree(sma);
499 		return retval;
500 	}
501 
502 	for (i = 0; i < nsems; i++) {
503 		INIT_LIST_HEAD(&sma->sems[i].pending_alter);
504 		INIT_LIST_HEAD(&sma->sems[i].pending_const);
505 		spin_lock_init(&sma->sems[i].lock);
506 	}
507 
508 	sma->complex_count = 0;
509 	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
510 	INIT_LIST_HEAD(&sma->pending_alter);
511 	INIT_LIST_HEAD(&sma->pending_const);
512 	INIT_LIST_HEAD(&sma->list_id);
513 	sma->sem_nsems = nsems;
514 	sma->sem_ctime = get_seconds();
515 
516 	retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
517 	if (retval < 0) {
518 		call_rcu(&sma->sem_perm.rcu, sem_rcu_free);
519 		return retval;
520 	}
521 	ns->used_sems += nsems;
522 
523 	sem_unlock(sma, -1);
524 	rcu_read_unlock();
525 
526 	return sma->sem_perm.id;
527 }
528 
529 
530 /*
531  * Called with sem_ids.rwsem and ipcp locked.
532  */
533 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
534 {
535 	struct sem_array *sma;
536 
537 	sma = container_of(ipcp, struct sem_array, sem_perm);
538 	return security_sem_associate(sma, semflg);
539 }
540 
541 /*
542  * Called with sem_ids.rwsem and ipcp locked.
543  */
544 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
545 				struct ipc_params *params)
546 {
547 	struct sem_array *sma;
548 
549 	sma = container_of(ipcp, struct sem_array, sem_perm);
550 	if (params->u.nsems > sma->sem_nsems)
551 		return -EINVAL;
552 
553 	return 0;
554 }
555 
556 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
557 {
558 	struct ipc_namespace *ns;
559 	static const struct ipc_ops sem_ops = {
560 		.getnew = newary,
561 		.associate = sem_security,
562 		.more_checks = sem_more_checks,
563 	};
564 	struct ipc_params sem_params;
565 
566 	ns = current->nsproxy->ipc_ns;
567 
568 	if (nsems < 0 || nsems > ns->sc_semmsl)
569 		return -EINVAL;
570 
571 	sem_params.key = key;
572 	sem_params.flg = semflg;
573 	sem_params.u.nsems = nsems;
574 
575 	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
576 }
577 
578 /**
579  * perform_atomic_semop[_slow] - Attempt to perform semaphore
580  *                               operations on a given array.
581  * @sma: semaphore array
582  * @q: struct sem_queue that describes the operation
583  *
584  * Caller blocking are as follows, based the value
585  * indicated by the semaphore operation (sem_op):
586  *
587  *  (1) >0 never blocks.
588  *  (2)  0 (wait-for-zero operation): semval is non-zero.
589  *  (3) <0 attempting to decrement semval to a value smaller than zero.
590  *
591  * Returns 0 if the operation was possible.
592  * Returns 1 if the operation is impossible, the caller must sleep.
593  * Returns <0 for error codes.
594  */
595 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
596 {
597 	int result, sem_op, nsops, pid;
598 	struct sembuf *sop;
599 	struct sem *curr;
600 	struct sembuf *sops;
601 	struct sem_undo *un;
602 
603 	sops = q->sops;
604 	nsops = q->nsops;
605 	un = q->undo;
606 
607 	for (sop = sops; sop < sops + nsops; sop++) {
608 		curr = &sma->sems[sop->sem_num];
609 		sem_op = sop->sem_op;
610 		result = curr->semval;
611 
612 		if (!sem_op && result)
613 			goto would_block;
614 
615 		result += sem_op;
616 		if (result < 0)
617 			goto would_block;
618 		if (result > SEMVMX)
619 			goto out_of_range;
620 
621 		if (sop->sem_flg & SEM_UNDO) {
622 			int undo = un->semadj[sop->sem_num] - sem_op;
623 			/* Exceeding the undo range is an error. */
624 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
625 				goto out_of_range;
626 			un->semadj[sop->sem_num] = undo;
627 		}
628 
629 		curr->semval = result;
630 	}
631 
632 	sop--;
633 	pid = q->pid;
634 	while (sop >= sops) {
635 		sma->sems[sop->sem_num].sempid = pid;
636 		sop--;
637 	}
638 
639 	return 0;
640 
641 out_of_range:
642 	result = -ERANGE;
643 	goto undo;
644 
645 would_block:
646 	q->blocking = sop;
647 
648 	if (sop->sem_flg & IPC_NOWAIT)
649 		result = -EAGAIN;
650 	else
651 		result = 1;
652 
653 undo:
654 	sop--;
655 	while (sop >= sops) {
656 		sem_op = sop->sem_op;
657 		sma->sems[sop->sem_num].semval -= sem_op;
658 		if (sop->sem_flg & SEM_UNDO)
659 			un->semadj[sop->sem_num] += sem_op;
660 		sop--;
661 	}
662 
663 	return result;
664 }
665 
666 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
667 {
668 	int result, sem_op, nsops;
669 	struct sembuf *sop;
670 	struct sem *curr;
671 	struct sembuf *sops;
672 	struct sem_undo *un;
673 
674 	sops = q->sops;
675 	nsops = q->nsops;
676 	un = q->undo;
677 
678 	if (unlikely(q->dupsop))
679 		return perform_atomic_semop_slow(sma, q);
680 
681 	/*
682 	 * We scan the semaphore set twice, first to ensure that the entire
683 	 * operation can succeed, therefore avoiding any pointless writes
684 	 * to shared memory and having to undo such changes in order to block
685 	 * until the operations can go through.
686 	 */
687 	for (sop = sops; sop < sops + nsops; sop++) {
688 		curr = &sma->sems[sop->sem_num];
689 		sem_op = sop->sem_op;
690 		result = curr->semval;
691 
692 		if (!sem_op && result)
693 			goto would_block; /* wait-for-zero */
694 
695 		result += sem_op;
696 		if (result < 0)
697 			goto would_block;
698 
699 		if (result > SEMVMX)
700 			return -ERANGE;
701 
702 		if (sop->sem_flg & SEM_UNDO) {
703 			int undo = un->semadj[sop->sem_num] - sem_op;
704 
705 			/* Exceeding the undo range is an error. */
706 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
707 				return -ERANGE;
708 		}
709 	}
710 
711 	for (sop = sops; sop < sops + nsops; sop++) {
712 		curr = &sma->sems[sop->sem_num];
713 		sem_op = sop->sem_op;
714 		result = curr->semval;
715 
716 		if (sop->sem_flg & SEM_UNDO) {
717 			int undo = un->semadj[sop->sem_num] - sem_op;
718 
719 			un->semadj[sop->sem_num] = undo;
720 		}
721 		curr->semval += sem_op;
722 		curr->sempid = q->pid;
723 	}
724 
725 	return 0;
726 
727 would_block:
728 	q->blocking = sop;
729 	return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
730 }
731 
732 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
733 					     struct wake_q_head *wake_q)
734 {
735 	wake_q_add(wake_q, q->sleeper);
736 	/*
737 	 * Rely on the above implicit barrier, such that we can
738 	 * ensure that we hold reference to the task before setting
739 	 * q->status. Otherwise we could race with do_exit if the
740 	 * task is awoken by an external event before calling
741 	 * wake_up_process().
742 	 */
743 	WRITE_ONCE(q->status, error);
744 }
745 
746 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
747 {
748 	list_del(&q->list);
749 	if (q->nsops > 1)
750 		sma->complex_count--;
751 }
752 
753 /** check_restart(sma, q)
754  * @sma: semaphore array
755  * @q: the operation that just completed
756  *
757  * update_queue is O(N^2) when it restarts scanning the whole queue of
758  * waiting operations. Therefore this function checks if the restart is
759  * really necessary. It is called after a previously waiting operation
760  * modified the array.
761  * Note that wait-for-zero operations are handled without restart.
762  */
763 static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
764 {
765 	/* pending complex alter operations are too difficult to analyse */
766 	if (!list_empty(&sma->pending_alter))
767 		return 1;
768 
769 	/* we were a sleeping complex operation. Too difficult */
770 	if (q->nsops > 1)
771 		return 1;
772 
773 	/* It is impossible that someone waits for the new value:
774 	 * - complex operations always restart.
775 	 * - wait-for-zero are handled seperately.
776 	 * - q is a previously sleeping simple operation that
777 	 *   altered the array. It must be a decrement, because
778 	 *   simple increments never sleep.
779 	 * - If there are older (higher priority) decrements
780 	 *   in the queue, then they have observed the original
781 	 *   semval value and couldn't proceed. The operation
782 	 *   decremented to value - thus they won't proceed either.
783 	 */
784 	return 0;
785 }
786 
787 /**
788  * wake_const_ops - wake up non-alter tasks
789  * @sma: semaphore array.
790  * @semnum: semaphore that was modified.
791  * @wake_q: lockless wake-queue head.
792  *
793  * wake_const_ops must be called after a semaphore in a semaphore array
794  * was set to 0. If complex const operations are pending, wake_const_ops must
795  * be called with semnum = -1, as well as with the number of each modified
796  * semaphore.
797  * The tasks that must be woken up are added to @wake_q. The return code
798  * is stored in q->pid.
799  * The function returns 1 if at least one operation was completed successfully.
800  */
801 static int wake_const_ops(struct sem_array *sma, int semnum,
802 			  struct wake_q_head *wake_q)
803 {
804 	struct sem_queue *q, *tmp;
805 	struct list_head *pending_list;
806 	int semop_completed = 0;
807 
808 	if (semnum == -1)
809 		pending_list = &sma->pending_const;
810 	else
811 		pending_list = &sma->sems[semnum].pending_const;
812 
813 	list_for_each_entry_safe(q, tmp, pending_list, list) {
814 		int error = perform_atomic_semop(sma, q);
815 
816 		if (error > 0)
817 			continue;
818 		/* operation completed, remove from queue & wakeup */
819 		unlink_queue(sma, q);
820 
821 		wake_up_sem_queue_prepare(q, error, wake_q);
822 		if (error == 0)
823 			semop_completed = 1;
824 	}
825 
826 	return semop_completed;
827 }
828 
829 /**
830  * do_smart_wakeup_zero - wakeup all wait for zero tasks
831  * @sma: semaphore array
832  * @sops: operations that were performed
833  * @nsops: number of operations
834  * @wake_q: lockless wake-queue head
835  *
836  * Checks all required queue for wait-for-zero operations, based
837  * on the actual changes that were performed on the semaphore array.
838  * The function returns 1 if at least one operation was completed successfully.
839  */
840 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
841 				int nsops, struct wake_q_head *wake_q)
842 {
843 	int i;
844 	int semop_completed = 0;
845 	int got_zero = 0;
846 
847 	/* first: the per-semaphore queues, if known */
848 	if (sops) {
849 		for (i = 0; i < nsops; i++) {
850 			int num = sops[i].sem_num;
851 
852 			if (sma->sems[num].semval == 0) {
853 				got_zero = 1;
854 				semop_completed |= wake_const_ops(sma, num, wake_q);
855 			}
856 		}
857 	} else {
858 		/*
859 		 * No sops means modified semaphores not known.
860 		 * Assume all were changed.
861 		 */
862 		for (i = 0; i < sma->sem_nsems; i++) {
863 			if (sma->sems[i].semval == 0) {
864 				got_zero = 1;
865 				semop_completed |= wake_const_ops(sma, i, wake_q);
866 			}
867 		}
868 	}
869 	/*
870 	 * If one of the modified semaphores got 0,
871 	 * then check the global queue, too.
872 	 */
873 	if (got_zero)
874 		semop_completed |= wake_const_ops(sma, -1, wake_q);
875 
876 	return semop_completed;
877 }
878 
879 
880 /**
881  * update_queue - look for tasks that can be completed.
882  * @sma: semaphore array.
883  * @semnum: semaphore that was modified.
884  * @wake_q: lockless wake-queue head.
885  *
886  * update_queue must be called after a semaphore in a semaphore array
887  * was modified. If multiple semaphores were modified, update_queue must
888  * be called with semnum = -1, as well as with the number of each modified
889  * semaphore.
890  * The tasks that must be woken up are added to @wake_q. The return code
891  * is stored in q->pid.
892  * The function internally checks if const operations can now succeed.
893  *
894  * The function return 1 if at least one semop was completed successfully.
895  */
896 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
897 {
898 	struct sem_queue *q, *tmp;
899 	struct list_head *pending_list;
900 	int semop_completed = 0;
901 
902 	if (semnum == -1)
903 		pending_list = &sma->pending_alter;
904 	else
905 		pending_list = &sma->sems[semnum].pending_alter;
906 
907 again:
908 	list_for_each_entry_safe(q, tmp, pending_list, list) {
909 		int error, restart;
910 
911 		/* If we are scanning the single sop, per-semaphore list of
912 		 * one semaphore and that semaphore is 0, then it is not
913 		 * necessary to scan further: simple increments
914 		 * that affect only one entry succeed immediately and cannot
915 		 * be in the  per semaphore pending queue, and decrements
916 		 * cannot be successful if the value is already 0.
917 		 */
918 		if (semnum != -1 && sma->sems[semnum].semval == 0)
919 			break;
920 
921 		error = perform_atomic_semop(sma, q);
922 
923 		/* Does q->sleeper still need to sleep? */
924 		if (error > 0)
925 			continue;
926 
927 		unlink_queue(sma, q);
928 
929 		if (error) {
930 			restart = 0;
931 		} else {
932 			semop_completed = 1;
933 			do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
934 			restart = check_restart(sma, q);
935 		}
936 
937 		wake_up_sem_queue_prepare(q, error, wake_q);
938 		if (restart)
939 			goto again;
940 	}
941 	return semop_completed;
942 }
943 
944 /**
945  * set_semotime - set sem_otime
946  * @sma: semaphore array
947  * @sops: operations that modified the array, may be NULL
948  *
949  * sem_otime is replicated to avoid cache line trashing.
950  * This function sets one instance to the current time.
951  */
952 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
953 {
954 	if (sops == NULL) {
955 		sma->sems[0].sem_otime = get_seconds();
956 	} else {
957 		sma->sems[sops[0].sem_num].sem_otime =
958 							get_seconds();
959 	}
960 }
961 
962 /**
963  * do_smart_update - optimized update_queue
964  * @sma: semaphore array
965  * @sops: operations that were performed
966  * @nsops: number of operations
967  * @otime: force setting otime
968  * @wake_q: lockless wake-queue head
969  *
970  * do_smart_update() does the required calls to update_queue and wakeup_zero,
971  * based on the actual changes that were performed on the semaphore array.
972  * Note that the function does not do the actual wake-up: the caller is
973  * responsible for calling wake_up_q().
974  * It is safe to perform this call after dropping all locks.
975  */
976 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
977 			    int otime, struct wake_q_head *wake_q)
978 {
979 	int i;
980 
981 	otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
982 
983 	if (!list_empty(&sma->pending_alter)) {
984 		/* semaphore array uses the global queue - just process it. */
985 		otime |= update_queue(sma, -1, wake_q);
986 	} else {
987 		if (!sops) {
988 			/*
989 			 * No sops, thus the modified semaphores are not
990 			 * known. Check all.
991 			 */
992 			for (i = 0; i < sma->sem_nsems; i++)
993 				otime |= update_queue(sma, i, wake_q);
994 		} else {
995 			/*
996 			 * Check the semaphores that were increased:
997 			 * - No complex ops, thus all sleeping ops are
998 			 *   decrease.
999 			 * - if we decreased the value, then any sleeping
1000 			 *   semaphore ops wont be able to run: If the
1001 			 *   previous value was too small, then the new
1002 			 *   value will be too small, too.
1003 			 */
1004 			for (i = 0; i < nsops; i++) {
1005 				if (sops[i].sem_op > 0) {
1006 					otime |= update_queue(sma,
1007 							      sops[i].sem_num, wake_q);
1008 				}
1009 			}
1010 		}
1011 	}
1012 	if (otime)
1013 		set_semotime(sma, sops);
1014 }
1015 
1016 /*
1017  * check_qop: Test if a queued operation sleeps on the semaphore semnum
1018  */
1019 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1020 			bool count_zero)
1021 {
1022 	struct sembuf *sop = q->blocking;
1023 
1024 	/*
1025 	 * Linux always (since 0.99.10) reported a task as sleeping on all
1026 	 * semaphores. This violates SUS, therefore it was changed to the
1027 	 * standard compliant behavior.
1028 	 * Give the administrators a chance to notice that an application
1029 	 * might misbehave because it relies on the Linux behavior.
1030 	 */
1031 	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1032 			"The task %s (%d) triggered the difference, watch for misbehavior.\n",
1033 			current->comm, task_pid_nr(current));
1034 
1035 	if (sop->sem_num != semnum)
1036 		return 0;
1037 
1038 	if (count_zero && sop->sem_op == 0)
1039 		return 1;
1040 	if (!count_zero && sop->sem_op < 0)
1041 		return 1;
1042 
1043 	return 0;
1044 }
1045 
1046 /* The following counts are associated to each semaphore:
1047  *   semncnt        number of tasks waiting on semval being nonzero
1048  *   semzcnt        number of tasks waiting on semval being zero
1049  *
1050  * Per definition, a task waits only on the semaphore of the first semop
1051  * that cannot proceed, even if additional operation would block, too.
1052  */
1053 static int count_semcnt(struct sem_array *sma, ushort semnum,
1054 			bool count_zero)
1055 {
1056 	struct list_head *l;
1057 	struct sem_queue *q;
1058 	int semcnt;
1059 
1060 	semcnt = 0;
1061 	/* First: check the simple operations. They are easy to evaluate */
1062 	if (count_zero)
1063 		l = &sma->sems[semnum].pending_const;
1064 	else
1065 		l = &sma->sems[semnum].pending_alter;
1066 
1067 	list_for_each_entry(q, l, list) {
1068 		/* all task on a per-semaphore list sleep on exactly
1069 		 * that semaphore
1070 		 */
1071 		semcnt++;
1072 	}
1073 
1074 	/* Then: check the complex operations. */
1075 	list_for_each_entry(q, &sma->pending_alter, list) {
1076 		semcnt += check_qop(sma, semnum, q, count_zero);
1077 	}
1078 	if (count_zero) {
1079 		list_for_each_entry(q, &sma->pending_const, list) {
1080 			semcnt += check_qop(sma, semnum, q, count_zero);
1081 		}
1082 	}
1083 	return semcnt;
1084 }
1085 
1086 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1087  * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1088  * remains locked on exit.
1089  */
1090 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1091 {
1092 	struct sem_undo *un, *tu;
1093 	struct sem_queue *q, *tq;
1094 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1095 	int i;
1096 	DEFINE_WAKE_Q(wake_q);
1097 
1098 	/* Free the existing undo structures for this semaphore set.  */
1099 	ipc_assert_locked_object(&sma->sem_perm);
1100 	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1101 		list_del(&un->list_id);
1102 		spin_lock(&un->ulp->lock);
1103 		un->semid = -1;
1104 		list_del_rcu(&un->list_proc);
1105 		spin_unlock(&un->ulp->lock);
1106 		kfree_rcu(un, rcu);
1107 	}
1108 
1109 	/* Wake up all pending processes and let them fail with EIDRM. */
1110 	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1111 		unlink_queue(sma, q);
1112 		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1113 	}
1114 
1115 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1116 		unlink_queue(sma, q);
1117 		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1118 	}
1119 	for (i = 0; i < sma->sem_nsems; i++) {
1120 		struct sem *sem = &sma->sems[i];
1121 		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1122 			unlink_queue(sma, q);
1123 			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1124 		}
1125 		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1126 			unlink_queue(sma, q);
1127 			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1128 		}
1129 	}
1130 
1131 	/* Remove the semaphore set from the IDR */
1132 	sem_rmid(ns, sma);
1133 	sem_unlock(sma, -1);
1134 	rcu_read_unlock();
1135 
1136 	wake_up_q(&wake_q);
1137 	ns->used_sems -= sma->sem_nsems;
1138 	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1139 }
1140 
1141 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1142 {
1143 	switch (version) {
1144 	case IPC_64:
1145 		return copy_to_user(buf, in, sizeof(*in));
1146 	case IPC_OLD:
1147 	    {
1148 		struct semid_ds out;
1149 
1150 		memset(&out, 0, sizeof(out));
1151 
1152 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1153 
1154 		out.sem_otime	= in->sem_otime;
1155 		out.sem_ctime	= in->sem_ctime;
1156 		out.sem_nsems	= in->sem_nsems;
1157 
1158 		return copy_to_user(buf, &out, sizeof(out));
1159 	    }
1160 	default:
1161 		return -EINVAL;
1162 	}
1163 }
1164 
1165 static time_t get_semotime(struct sem_array *sma)
1166 {
1167 	int i;
1168 	time_t res;
1169 
1170 	res = sma->sems[0].sem_otime;
1171 	for (i = 1; i < sma->sem_nsems; i++) {
1172 		time_t to = sma->sems[i].sem_otime;
1173 
1174 		if (to > res)
1175 			res = to;
1176 	}
1177 	return res;
1178 }
1179 
1180 static int semctl_nolock(struct ipc_namespace *ns, int semid,
1181 			 int cmd, int version, void __user *p)
1182 {
1183 	int err;
1184 	struct sem_array *sma;
1185 
1186 	switch (cmd) {
1187 	case IPC_INFO:
1188 	case SEM_INFO:
1189 	{
1190 		struct seminfo seminfo;
1191 		int max_id;
1192 
1193 		err = security_sem_semctl(NULL, cmd);
1194 		if (err)
1195 			return err;
1196 
1197 		memset(&seminfo, 0, sizeof(seminfo));
1198 		seminfo.semmni = ns->sc_semmni;
1199 		seminfo.semmns = ns->sc_semmns;
1200 		seminfo.semmsl = ns->sc_semmsl;
1201 		seminfo.semopm = ns->sc_semopm;
1202 		seminfo.semvmx = SEMVMX;
1203 		seminfo.semmnu = SEMMNU;
1204 		seminfo.semmap = SEMMAP;
1205 		seminfo.semume = SEMUME;
1206 		down_read(&sem_ids(ns).rwsem);
1207 		if (cmd == SEM_INFO) {
1208 			seminfo.semusz = sem_ids(ns).in_use;
1209 			seminfo.semaem = ns->used_sems;
1210 		} else {
1211 			seminfo.semusz = SEMUSZ;
1212 			seminfo.semaem = SEMAEM;
1213 		}
1214 		max_id = ipc_get_maxid(&sem_ids(ns));
1215 		up_read(&sem_ids(ns).rwsem);
1216 		if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1217 			return -EFAULT;
1218 		return (max_id < 0) ? 0 : max_id;
1219 	}
1220 	case IPC_STAT:
1221 	case SEM_STAT:
1222 	{
1223 		struct semid64_ds tbuf;
1224 		int id = 0;
1225 
1226 		memset(&tbuf, 0, sizeof(tbuf));
1227 
1228 		rcu_read_lock();
1229 		if (cmd == SEM_STAT) {
1230 			sma = sem_obtain_object(ns, semid);
1231 			if (IS_ERR(sma)) {
1232 				err = PTR_ERR(sma);
1233 				goto out_unlock;
1234 			}
1235 			id = sma->sem_perm.id;
1236 		} else {
1237 			sma = sem_obtain_object_check(ns, semid);
1238 			if (IS_ERR(sma)) {
1239 				err = PTR_ERR(sma);
1240 				goto out_unlock;
1241 			}
1242 		}
1243 
1244 		err = -EACCES;
1245 		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1246 			goto out_unlock;
1247 
1248 		err = security_sem_semctl(sma, cmd);
1249 		if (err)
1250 			goto out_unlock;
1251 
1252 		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1253 		tbuf.sem_otime = get_semotime(sma);
1254 		tbuf.sem_ctime = sma->sem_ctime;
1255 		tbuf.sem_nsems = sma->sem_nsems;
1256 		rcu_read_unlock();
1257 		if (copy_semid_to_user(p, &tbuf, version))
1258 			return -EFAULT;
1259 		return id;
1260 	}
1261 	default:
1262 		return -EINVAL;
1263 	}
1264 out_unlock:
1265 	rcu_read_unlock();
1266 	return err;
1267 }
1268 
1269 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1270 		unsigned long arg)
1271 {
1272 	struct sem_undo *un;
1273 	struct sem_array *sma;
1274 	struct sem *curr;
1275 	int err, val;
1276 	DEFINE_WAKE_Q(wake_q);
1277 
1278 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1279 	/* big-endian 64bit */
1280 	val = arg >> 32;
1281 #else
1282 	/* 32bit or little-endian 64bit */
1283 	val = arg;
1284 #endif
1285 
1286 	if (val > SEMVMX || val < 0)
1287 		return -ERANGE;
1288 
1289 	rcu_read_lock();
1290 	sma = sem_obtain_object_check(ns, semid);
1291 	if (IS_ERR(sma)) {
1292 		rcu_read_unlock();
1293 		return PTR_ERR(sma);
1294 	}
1295 
1296 	if (semnum < 0 || semnum >= sma->sem_nsems) {
1297 		rcu_read_unlock();
1298 		return -EINVAL;
1299 	}
1300 
1301 
1302 	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1303 		rcu_read_unlock();
1304 		return -EACCES;
1305 	}
1306 
1307 	err = security_sem_semctl(sma, SETVAL);
1308 	if (err) {
1309 		rcu_read_unlock();
1310 		return -EACCES;
1311 	}
1312 
1313 	sem_lock(sma, NULL, -1);
1314 
1315 	if (!ipc_valid_object(&sma->sem_perm)) {
1316 		sem_unlock(sma, -1);
1317 		rcu_read_unlock();
1318 		return -EIDRM;
1319 	}
1320 
1321 	curr = &sma->sems[semnum];
1322 
1323 	ipc_assert_locked_object(&sma->sem_perm);
1324 	list_for_each_entry(un, &sma->list_id, list_id)
1325 		un->semadj[semnum] = 0;
1326 
1327 	curr->semval = val;
1328 	curr->sempid = task_tgid_vnr(current);
1329 	sma->sem_ctime = get_seconds();
1330 	/* maybe some queued-up processes were waiting for this */
1331 	do_smart_update(sma, NULL, 0, 0, &wake_q);
1332 	sem_unlock(sma, -1);
1333 	rcu_read_unlock();
1334 	wake_up_q(&wake_q);
1335 	return 0;
1336 }
1337 
1338 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1339 		int cmd, void __user *p)
1340 {
1341 	struct sem_array *sma;
1342 	struct sem *curr;
1343 	int err, nsems;
1344 	ushort fast_sem_io[SEMMSL_FAST];
1345 	ushort *sem_io = fast_sem_io;
1346 	DEFINE_WAKE_Q(wake_q);
1347 
1348 	rcu_read_lock();
1349 	sma = sem_obtain_object_check(ns, semid);
1350 	if (IS_ERR(sma)) {
1351 		rcu_read_unlock();
1352 		return PTR_ERR(sma);
1353 	}
1354 
1355 	nsems = sma->sem_nsems;
1356 
1357 	err = -EACCES;
1358 	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1359 		goto out_rcu_wakeup;
1360 
1361 	err = security_sem_semctl(sma, cmd);
1362 	if (err)
1363 		goto out_rcu_wakeup;
1364 
1365 	err = -EACCES;
1366 	switch (cmd) {
1367 	case GETALL:
1368 	{
1369 		ushort __user *array = p;
1370 		int i;
1371 
1372 		sem_lock(sma, NULL, -1);
1373 		if (!ipc_valid_object(&sma->sem_perm)) {
1374 			err = -EIDRM;
1375 			goto out_unlock;
1376 		}
1377 		if (nsems > SEMMSL_FAST) {
1378 			if (!ipc_rcu_getref(&sma->sem_perm)) {
1379 				err = -EIDRM;
1380 				goto out_unlock;
1381 			}
1382 			sem_unlock(sma, -1);
1383 			rcu_read_unlock();
1384 			sem_io = kvmalloc_array(nsems, sizeof(ushort),
1385 						GFP_KERNEL);
1386 			if (sem_io == NULL) {
1387 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1388 				return -ENOMEM;
1389 			}
1390 
1391 			rcu_read_lock();
1392 			sem_lock_and_putref(sma);
1393 			if (!ipc_valid_object(&sma->sem_perm)) {
1394 				err = -EIDRM;
1395 				goto out_unlock;
1396 			}
1397 		}
1398 		for (i = 0; i < sma->sem_nsems; i++)
1399 			sem_io[i] = sma->sems[i].semval;
1400 		sem_unlock(sma, -1);
1401 		rcu_read_unlock();
1402 		err = 0;
1403 		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1404 			err = -EFAULT;
1405 		goto out_free;
1406 	}
1407 	case SETALL:
1408 	{
1409 		int i;
1410 		struct sem_undo *un;
1411 
1412 		if (!ipc_rcu_getref(&sma->sem_perm)) {
1413 			err = -EIDRM;
1414 			goto out_rcu_wakeup;
1415 		}
1416 		rcu_read_unlock();
1417 
1418 		if (nsems > SEMMSL_FAST) {
1419 			sem_io = kvmalloc_array(nsems, sizeof(ushort),
1420 						GFP_KERNEL);
1421 			if (sem_io == NULL) {
1422 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1423 				return -ENOMEM;
1424 			}
1425 		}
1426 
1427 		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1428 			ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1429 			err = -EFAULT;
1430 			goto out_free;
1431 		}
1432 
1433 		for (i = 0; i < nsems; i++) {
1434 			if (sem_io[i] > SEMVMX) {
1435 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1436 				err = -ERANGE;
1437 				goto out_free;
1438 			}
1439 		}
1440 		rcu_read_lock();
1441 		sem_lock_and_putref(sma);
1442 		if (!ipc_valid_object(&sma->sem_perm)) {
1443 			err = -EIDRM;
1444 			goto out_unlock;
1445 		}
1446 
1447 		for (i = 0; i < nsems; i++) {
1448 			sma->sems[i].semval = sem_io[i];
1449 			sma->sems[i].sempid = task_tgid_vnr(current);
1450 		}
1451 
1452 		ipc_assert_locked_object(&sma->sem_perm);
1453 		list_for_each_entry(un, &sma->list_id, list_id) {
1454 			for (i = 0; i < nsems; i++)
1455 				un->semadj[i] = 0;
1456 		}
1457 		sma->sem_ctime = get_seconds();
1458 		/* maybe some queued-up processes were waiting for this */
1459 		do_smart_update(sma, NULL, 0, 0, &wake_q);
1460 		err = 0;
1461 		goto out_unlock;
1462 	}
1463 	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1464 	}
1465 	err = -EINVAL;
1466 	if (semnum < 0 || semnum >= nsems)
1467 		goto out_rcu_wakeup;
1468 
1469 	sem_lock(sma, NULL, -1);
1470 	if (!ipc_valid_object(&sma->sem_perm)) {
1471 		err = -EIDRM;
1472 		goto out_unlock;
1473 	}
1474 	curr = &sma->sems[semnum];
1475 
1476 	switch (cmd) {
1477 	case GETVAL:
1478 		err = curr->semval;
1479 		goto out_unlock;
1480 	case GETPID:
1481 		err = curr->sempid;
1482 		goto out_unlock;
1483 	case GETNCNT:
1484 		err = count_semcnt(sma, semnum, 0);
1485 		goto out_unlock;
1486 	case GETZCNT:
1487 		err = count_semcnt(sma, semnum, 1);
1488 		goto out_unlock;
1489 	}
1490 
1491 out_unlock:
1492 	sem_unlock(sma, -1);
1493 out_rcu_wakeup:
1494 	rcu_read_unlock();
1495 	wake_up_q(&wake_q);
1496 out_free:
1497 	if (sem_io != fast_sem_io)
1498 		kvfree(sem_io);
1499 	return err;
1500 }
1501 
1502 static inline unsigned long
1503 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1504 {
1505 	switch (version) {
1506 	case IPC_64:
1507 		if (copy_from_user(out, buf, sizeof(*out)))
1508 			return -EFAULT;
1509 		return 0;
1510 	case IPC_OLD:
1511 	    {
1512 		struct semid_ds tbuf_old;
1513 
1514 		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1515 			return -EFAULT;
1516 
1517 		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1518 		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1519 		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1520 
1521 		return 0;
1522 	    }
1523 	default:
1524 		return -EINVAL;
1525 	}
1526 }
1527 
1528 /*
1529  * This function handles some semctl commands which require the rwsem
1530  * to be held in write mode.
1531  * NOTE: no locks must be held, the rwsem is taken inside this function.
1532  */
1533 static int semctl_down(struct ipc_namespace *ns, int semid,
1534 		       int cmd, int version, void __user *p)
1535 {
1536 	struct sem_array *sma;
1537 	int err;
1538 	struct semid64_ds semid64;
1539 	struct kern_ipc_perm *ipcp;
1540 
1541 	if (cmd == IPC_SET) {
1542 		if (copy_semid_from_user(&semid64, p, version))
1543 			return -EFAULT;
1544 	}
1545 
1546 	down_write(&sem_ids(ns).rwsem);
1547 	rcu_read_lock();
1548 
1549 	ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1550 				      &semid64.sem_perm, 0);
1551 	if (IS_ERR(ipcp)) {
1552 		err = PTR_ERR(ipcp);
1553 		goto out_unlock1;
1554 	}
1555 
1556 	sma = container_of(ipcp, struct sem_array, sem_perm);
1557 
1558 	err = security_sem_semctl(sma, cmd);
1559 	if (err)
1560 		goto out_unlock1;
1561 
1562 	switch (cmd) {
1563 	case IPC_RMID:
1564 		sem_lock(sma, NULL, -1);
1565 		/* freeary unlocks the ipc object and rcu */
1566 		freeary(ns, ipcp);
1567 		goto out_up;
1568 	case IPC_SET:
1569 		sem_lock(sma, NULL, -1);
1570 		err = ipc_update_perm(&semid64.sem_perm, ipcp);
1571 		if (err)
1572 			goto out_unlock0;
1573 		sma->sem_ctime = get_seconds();
1574 		break;
1575 	default:
1576 		err = -EINVAL;
1577 		goto out_unlock1;
1578 	}
1579 
1580 out_unlock0:
1581 	sem_unlock(sma, -1);
1582 out_unlock1:
1583 	rcu_read_unlock();
1584 out_up:
1585 	up_write(&sem_ids(ns).rwsem);
1586 	return err;
1587 }
1588 
1589 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1590 {
1591 	int version;
1592 	struct ipc_namespace *ns;
1593 	void __user *p = (void __user *)arg;
1594 
1595 	if (semid < 0)
1596 		return -EINVAL;
1597 
1598 	version = ipc_parse_version(&cmd);
1599 	ns = current->nsproxy->ipc_ns;
1600 
1601 	switch (cmd) {
1602 	case IPC_INFO:
1603 	case SEM_INFO:
1604 	case IPC_STAT:
1605 	case SEM_STAT:
1606 		return semctl_nolock(ns, semid, cmd, version, p);
1607 	case GETALL:
1608 	case GETVAL:
1609 	case GETPID:
1610 	case GETNCNT:
1611 	case GETZCNT:
1612 	case SETALL:
1613 		return semctl_main(ns, semid, semnum, cmd, p);
1614 	case SETVAL:
1615 		return semctl_setval(ns, semid, semnum, arg);
1616 	case IPC_RMID:
1617 	case IPC_SET:
1618 		return semctl_down(ns, semid, cmd, version, p);
1619 	default:
1620 		return -EINVAL;
1621 	}
1622 }
1623 
1624 /* If the task doesn't already have a undo_list, then allocate one
1625  * here.  We guarantee there is only one thread using this undo list,
1626  * and current is THE ONE
1627  *
1628  * If this allocation and assignment succeeds, but later
1629  * portions of this code fail, there is no need to free the sem_undo_list.
1630  * Just let it stay associated with the task, and it'll be freed later
1631  * at exit time.
1632  *
1633  * This can block, so callers must hold no locks.
1634  */
1635 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1636 {
1637 	struct sem_undo_list *undo_list;
1638 
1639 	undo_list = current->sysvsem.undo_list;
1640 	if (!undo_list) {
1641 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1642 		if (undo_list == NULL)
1643 			return -ENOMEM;
1644 		spin_lock_init(&undo_list->lock);
1645 		atomic_set(&undo_list->refcnt, 1);
1646 		INIT_LIST_HEAD(&undo_list->list_proc);
1647 
1648 		current->sysvsem.undo_list = undo_list;
1649 	}
1650 	*undo_listp = undo_list;
1651 	return 0;
1652 }
1653 
1654 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1655 {
1656 	struct sem_undo *un;
1657 
1658 	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1659 		if (un->semid == semid)
1660 			return un;
1661 	}
1662 	return NULL;
1663 }
1664 
1665 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1666 {
1667 	struct sem_undo *un;
1668 
1669 	assert_spin_locked(&ulp->lock);
1670 
1671 	un = __lookup_undo(ulp, semid);
1672 	if (un) {
1673 		list_del_rcu(&un->list_proc);
1674 		list_add_rcu(&un->list_proc, &ulp->list_proc);
1675 	}
1676 	return un;
1677 }
1678 
1679 /**
1680  * find_alloc_undo - lookup (and if not present create) undo array
1681  * @ns: namespace
1682  * @semid: semaphore array id
1683  *
1684  * The function looks up (and if not present creates) the undo structure.
1685  * The size of the undo structure depends on the size of the semaphore
1686  * array, thus the alloc path is not that straightforward.
1687  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1688  * performs a rcu_read_lock().
1689  */
1690 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1691 {
1692 	struct sem_array *sma;
1693 	struct sem_undo_list *ulp;
1694 	struct sem_undo *un, *new;
1695 	int nsems, error;
1696 
1697 	error = get_undo_list(&ulp);
1698 	if (error)
1699 		return ERR_PTR(error);
1700 
1701 	rcu_read_lock();
1702 	spin_lock(&ulp->lock);
1703 	un = lookup_undo(ulp, semid);
1704 	spin_unlock(&ulp->lock);
1705 	if (likely(un != NULL))
1706 		goto out;
1707 
1708 	/* no undo structure around - allocate one. */
1709 	/* step 1: figure out the size of the semaphore array */
1710 	sma = sem_obtain_object_check(ns, semid);
1711 	if (IS_ERR(sma)) {
1712 		rcu_read_unlock();
1713 		return ERR_CAST(sma);
1714 	}
1715 
1716 	nsems = sma->sem_nsems;
1717 	if (!ipc_rcu_getref(&sma->sem_perm)) {
1718 		rcu_read_unlock();
1719 		un = ERR_PTR(-EIDRM);
1720 		goto out;
1721 	}
1722 	rcu_read_unlock();
1723 
1724 	/* step 2: allocate new undo structure */
1725 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1726 	if (!new) {
1727 		ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1728 		return ERR_PTR(-ENOMEM);
1729 	}
1730 
1731 	/* step 3: Acquire the lock on semaphore array */
1732 	rcu_read_lock();
1733 	sem_lock_and_putref(sma);
1734 	if (!ipc_valid_object(&sma->sem_perm)) {
1735 		sem_unlock(sma, -1);
1736 		rcu_read_unlock();
1737 		kfree(new);
1738 		un = ERR_PTR(-EIDRM);
1739 		goto out;
1740 	}
1741 	spin_lock(&ulp->lock);
1742 
1743 	/*
1744 	 * step 4: check for races: did someone else allocate the undo struct?
1745 	 */
1746 	un = lookup_undo(ulp, semid);
1747 	if (un) {
1748 		kfree(new);
1749 		goto success;
1750 	}
1751 	/* step 5: initialize & link new undo structure */
1752 	new->semadj = (short *) &new[1];
1753 	new->ulp = ulp;
1754 	new->semid = semid;
1755 	assert_spin_locked(&ulp->lock);
1756 	list_add_rcu(&new->list_proc, &ulp->list_proc);
1757 	ipc_assert_locked_object(&sma->sem_perm);
1758 	list_add(&new->list_id, &sma->list_id);
1759 	un = new;
1760 
1761 success:
1762 	spin_unlock(&ulp->lock);
1763 	sem_unlock(sma, -1);
1764 out:
1765 	return un;
1766 }
1767 
1768 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1769 		unsigned, nsops, const struct timespec __user *, timeout)
1770 {
1771 	int error = -EINVAL;
1772 	struct sem_array *sma;
1773 	struct sembuf fast_sops[SEMOPM_FAST];
1774 	struct sembuf *sops = fast_sops, *sop;
1775 	struct sem_undo *un;
1776 	int max, locknum;
1777 	bool undos = false, alter = false, dupsop = false;
1778 	struct sem_queue queue;
1779 	unsigned long dup = 0, jiffies_left = 0;
1780 	struct ipc_namespace *ns;
1781 
1782 	ns = current->nsproxy->ipc_ns;
1783 
1784 	if (nsops < 1 || semid < 0)
1785 		return -EINVAL;
1786 	if (nsops > ns->sc_semopm)
1787 		return -E2BIG;
1788 	if (nsops > SEMOPM_FAST) {
1789 		sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1790 		if (sops == NULL)
1791 			return -ENOMEM;
1792 	}
1793 
1794 	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1795 		error =  -EFAULT;
1796 		goto out_free;
1797 	}
1798 
1799 	if (timeout) {
1800 		struct timespec _timeout;
1801 		if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1802 			error = -EFAULT;
1803 			goto out_free;
1804 		}
1805 		if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1806 			_timeout.tv_nsec >= 1000000000L) {
1807 			error = -EINVAL;
1808 			goto out_free;
1809 		}
1810 		jiffies_left = timespec_to_jiffies(&_timeout);
1811 	}
1812 
1813 	max = 0;
1814 	for (sop = sops; sop < sops + nsops; sop++) {
1815 		unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
1816 
1817 		if (sop->sem_num >= max)
1818 			max = sop->sem_num;
1819 		if (sop->sem_flg & SEM_UNDO)
1820 			undos = true;
1821 		if (dup & mask) {
1822 			/*
1823 			 * There was a previous alter access that appears
1824 			 * to have accessed the same semaphore, thus use
1825 			 * the dupsop logic. "appears", because the detection
1826 			 * can only check % BITS_PER_LONG.
1827 			 */
1828 			dupsop = true;
1829 		}
1830 		if (sop->sem_op != 0) {
1831 			alter = true;
1832 			dup |= mask;
1833 		}
1834 	}
1835 
1836 	if (undos) {
1837 		/* On success, find_alloc_undo takes the rcu_read_lock */
1838 		un = find_alloc_undo(ns, semid);
1839 		if (IS_ERR(un)) {
1840 			error = PTR_ERR(un);
1841 			goto out_free;
1842 		}
1843 	} else {
1844 		un = NULL;
1845 		rcu_read_lock();
1846 	}
1847 
1848 	sma = sem_obtain_object_check(ns, semid);
1849 	if (IS_ERR(sma)) {
1850 		rcu_read_unlock();
1851 		error = PTR_ERR(sma);
1852 		goto out_free;
1853 	}
1854 
1855 	error = -EFBIG;
1856 	if (max >= sma->sem_nsems) {
1857 		rcu_read_unlock();
1858 		goto out_free;
1859 	}
1860 
1861 	error = -EACCES;
1862 	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
1863 		rcu_read_unlock();
1864 		goto out_free;
1865 	}
1866 
1867 	error = security_sem_semop(sma, sops, nsops, alter);
1868 	if (error) {
1869 		rcu_read_unlock();
1870 		goto out_free;
1871 	}
1872 
1873 	error = -EIDRM;
1874 	locknum = sem_lock(sma, sops, nsops);
1875 	/*
1876 	 * We eventually might perform the following check in a lockless
1877 	 * fashion, considering ipc_valid_object() locking constraints.
1878 	 * If nsops == 1 and there is no contention for sem_perm.lock, then
1879 	 * only a per-semaphore lock is held and it's OK to proceed with the
1880 	 * check below. More details on the fine grained locking scheme
1881 	 * entangled here and why it's RMID race safe on comments at sem_lock()
1882 	 */
1883 	if (!ipc_valid_object(&sma->sem_perm))
1884 		goto out_unlock_free;
1885 	/*
1886 	 * semid identifiers are not unique - find_alloc_undo may have
1887 	 * allocated an undo structure, it was invalidated by an RMID
1888 	 * and now a new array with received the same id. Check and fail.
1889 	 * This case can be detected checking un->semid. The existence of
1890 	 * "un" itself is guaranteed by rcu.
1891 	 */
1892 	if (un && un->semid == -1)
1893 		goto out_unlock_free;
1894 
1895 	queue.sops = sops;
1896 	queue.nsops = nsops;
1897 	queue.undo = un;
1898 	queue.pid = task_tgid_vnr(current);
1899 	queue.alter = alter;
1900 	queue.dupsop = dupsop;
1901 
1902 	error = perform_atomic_semop(sma, &queue);
1903 	if (error == 0) { /* non-blocking succesfull path */
1904 		DEFINE_WAKE_Q(wake_q);
1905 
1906 		/*
1907 		 * If the operation was successful, then do
1908 		 * the required updates.
1909 		 */
1910 		if (alter)
1911 			do_smart_update(sma, sops, nsops, 1, &wake_q);
1912 		else
1913 			set_semotime(sma, sops);
1914 
1915 		sem_unlock(sma, locknum);
1916 		rcu_read_unlock();
1917 		wake_up_q(&wake_q);
1918 
1919 		goto out_free;
1920 	}
1921 	if (error < 0) /* non-blocking error path */
1922 		goto out_unlock_free;
1923 
1924 	/*
1925 	 * We need to sleep on this operation, so we put the current
1926 	 * task into the pending queue and go to sleep.
1927 	 */
1928 	if (nsops == 1) {
1929 		struct sem *curr;
1930 		curr = &sma->sems[sops->sem_num];
1931 
1932 		if (alter) {
1933 			if (sma->complex_count) {
1934 				list_add_tail(&queue.list,
1935 						&sma->pending_alter);
1936 			} else {
1937 
1938 				list_add_tail(&queue.list,
1939 						&curr->pending_alter);
1940 			}
1941 		} else {
1942 			list_add_tail(&queue.list, &curr->pending_const);
1943 		}
1944 	} else {
1945 		if (!sma->complex_count)
1946 			merge_queues(sma);
1947 
1948 		if (alter)
1949 			list_add_tail(&queue.list, &sma->pending_alter);
1950 		else
1951 			list_add_tail(&queue.list, &sma->pending_const);
1952 
1953 		sma->complex_count++;
1954 	}
1955 
1956 	do {
1957 		queue.status = -EINTR;
1958 		queue.sleeper = current;
1959 
1960 		__set_current_state(TASK_INTERRUPTIBLE);
1961 		sem_unlock(sma, locknum);
1962 		rcu_read_unlock();
1963 
1964 		if (timeout)
1965 			jiffies_left = schedule_timeout(jiffies_left);
1966 		else
1967 			schedule();
1968 
1969 		/*
1970 		 * fastpath: the semop has completed, either successfully or
1971 		 * not, from the syscall pov, is quite irrelevant to us at this
1972 		 * point; we're done.
1973 		 *
1974 		 * We _do_ care, nonetheless, about being awoken by a signal or
1975 		 * spuriously.  The queue.status is checked again in the
1976 		 * slowpath (aka after taking sem_lock), such that we can detect
1977 		 * scenarios where we were awakened externally, during the
1978 		 * window between wake_q_add() and wake_up_q().
1979 		 */
1980 		error = READ_ONCE(queue.status);
1981 		if (error != -EINTR) {
1982 			/*
1983 			 * User space could assume that semop() is a memory
1984 			 * barrier: Without the mb(), the cpu could
1985 			 * speculatively read in userspace stale data that was
1986 			 * overwritten by the previous owner of the semaphore.
1987 			 */
1988 			smp_mb();
1989 			goto out_free;
1990 		}
1991 
1992 		rcu_read_lock();
1993 		locknum = sem_lock(sma, sops, nsops);
1994 
1995 		if (!ipc_valid_object(&sma->sem_perm))
1996 			goto out_unlock_free;
1997 
1998 		error = READ_ONCE(queue.status);
1999 
2000 		/*
2001 		 * If queue.status != -EINTR we are woken up by another process.
2002 		 * Leave without unlink_queue(), but with sem_unlock().
2003 		 */
2004 		if (error != -EINTR)
2005 			goto out_unlock_free;
2006 
2007 		/*
2008 		 * If an interrupt occurred we have to clean up the queue.
2009 		 */
2010 		if (timeout && jiffies_left == 0)
2011 			error = -EAGAIN;
2012 	} while (error == -EINTR && !signal_pending(current)); /* spurious */
2013 
2014 	unlink_queue(sma, &queue);
2015 
2016 out_unlock_free:
2017 	sem_unlock(sma, locknum);
2018 	rcu_read_unlock();
2019 out_free:
2020 	if (sops != fast_sops)
2021 		kfree(sops);
2022 	return error;
2023 }
2024 
2025 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2026 		unsigned, nsops)
2027 {
2028 	return sys_semtimedop(semid, tsops, nsops, NULL);
2029 }
2030 
2031 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2032  * parent and child tasks.
2033  */
2034 
2035 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2036 {
2037 	struct sem_undo_list *undo_list;
2038 	int error;
2039 
2040 	if (clone_flags & CLONE_SYSVSEM) {
2041 		error = get_undo_list(&undo_list);
2042 		if (error)
2043 			return error;
2044 		atomic_inc(&undo_list->refcnt);
2045 		tsk->sysvsem.undo_list = undo_list;
2046 	} else
2047 		tsk->sysvsem.undo_list = NULL;
2048 
2049 	return 0;
2050 }
2051 
2052 /*
2053  * add semadj values to semaphores, free undo structures.
2054  * undo structures are not freed when semaphore arrays are destroyed
2055  * so some of them may be out of date.
2056  * IMPLEMENTATION NOTE: There is some confusion over whether the
2057  * set of adjustments that needs to be done should be done in an atomic
2058  * manner or not. That is, if we are attempting to decrement the semval
2059  * should we queue up and wait until we can do so legally?
2060  * The original implementation attempted to do this (queue and wait).
2061  * The current implementation does not do so. The POSIX standard
2062  * and SVID should be consulted to determine what behavior is mandated.
2063  */
2064 void exit_sem(struct task_struct *tsk)
2065 {
2066 	struct sem_undo_list *ulp;
2067 
2068 	ulp = tsk->sysvsem.undo_list;
2069 	if (!ulp)
2070 		return;
2071 	tsk->sysvsem.undo_list = NULL;
2072 
2073 	if (!atomic_dec_and_test(&ulp->refcnt))
2074 		return;
2075 
2076 	for (;;) {
2077 		struct sem_array *sma;
2078 		struct sem_undo *un;
2079 		int semid, i;
2080 		DEFINE_WAKE_Q(wake_q);
2081 
2082 		cond_resched();
2083 
2084 		rcu_read_lock();
2085 		un = list_entry_rcu(ulp->list_proc.next,
2086 				    struct sem_undo, list_proc);
2087 		if (&un->list_proc == &ulp->list_proc) {
2088 			/*
2089 			 * We must wait for freeary() before freeing this ulp,
2090 			 * in case we raced with last sem_undo. There is a small
2091 			 * possibility where we exit while freeary() didn't
2092 			 * finish unlocking sem_undo_list.
2093 			 */
2094 			spin_unlock_wait(&ulp->lock);
2095 			rcu_read_unlock();
2096 			break;
2097 		}
2098 		spin_lock(&ulp->lock);
2099 		semid = un->semid;
2100 		spin_unlock(&ulp->lock);
2101 
2102 		/* exit_sem raced with IPC_RMID, nothing to do */
2103 		if (semid == -1) {
2104 			rcu_read_unlock();
2105 			continue;
2106 		}
2107 
2108 		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2109 		/* exit_sem raced with IPC_RMID, nothing to do */
2110 		if (IS_ERR(sma)) {
2111 			rcu_read_unlock();
2112 			continue;
2113 		}
2114 
2115 		sem_lock(sma, NULL, -1);
2116 		/* exit_sem raced with IPC_RMID, nothing to do */
2117 		if (!ipc_valid_object(&sma->sem_perm)) {
2118 			sem_unlock(sma, -1);
2119 			rcu_read_unlock();
2120 			continue;
2121 		}
2122 		un = __lookup_undo(ulp, semid);
2123 		if (un == NULL) {
2124 			/* exit_sem raced with IPC_RMID+semget() that created
2125 			 * exactly the same semid. Nothing to do.
2126 			 */
2127 			sem_unlock(sma, -1);
2128 			rcu_read_unlock();
2129 			continue;
2130 		}
2131 
2132 		/* remove un from the linked lists */
2133 		ipc_assert_locked_object(&sma->sem_perm);
2134 		list_del(&un->list_id);
2135 
2136 		/* we are the last process using this ulp, acquiring ulp->lock
2137 		 * isn't required. Besides that, we are also protected against
2138 		 * IPC_RMID as we hold sma->sem_perm lock now
2139 		 */
2140 		list_del_rcu(&un->list_proc);
2141 
2142 		/* perform adjustments registered in un */
2143 		for (i = 0; i < sma->sem_nsems; i++) {
2144 			struct sem *semaphore = &sma->sems[i];
2145 			if (un->semadj[i]) {
2146 				semaphore->semval += un->semadj[i];
2147 				/*
2148 				 * Range checks of the new semaphore value,
2149 				 * not defined by sus:
2150 				 * - Some unices ignore the undo entirely
2151 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2152 				 * - some cap the value (e.g. FreeBSD caps
2153 				 *   at 0, but doesn't enforce SEMVMX)
2154 				 *
2155 				 * Linux caps the semaphore value, both at 0
2156 				 * and at SEMVMX.
2157 				 *
2158 				 *	Manfred <manfred@colorfullife.com>
2159 				 */
2160 				if (semaphore->semval < 0)
2161 					semaphore->semval = 0;
2162 				if (semaphore->semval > SEMVMX)
2163 					semaphore->semval = SEMVMX;
2164 				semaphore->sempid = task_tgid_vnr(current);
2165 			}
2166 		}
2167 		/* maybe some queued-up processes were waiting for this */
2168 		do_smart_update(sma, NULL, 0, 1, &wake_q);
2169 		sem_unlock(sma, -1);
2170 		rcu_read_unlock();
2171 		wake_up_q(&wake_q);
2172 
2173 		kfree_rcu(un, rcu);
2174 	}
2175 	kfree(ulp);
2176 }
2177 
2178 #ifdef CONFIG_PROC_FS
2179 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2180 {
2181 	struct user_namespace *user_ns = seq_user_ns(s);
2182 	struct sem_array *sma = it;
2183 	time_t sem_otime;
2184 
2185 	/*
2186 	 * The proc interface isn't aware of sem_lock(), it calls
2187 	 * ipc_lock_object() directly (in sysvipc_find_ipc).
2188 	 * In order to stay compatible with sem_lock(), we must
2189 	 * enter / leave complex_mode.
2190 	 */
2191 	complexmode_enter(sma);
2192 
2193 	sem_otime = get_semotime(sma);
2194 
2195 	seq_printf(s,
2196 		   "%10d %10d  %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2197 		   sma->sem_perm.key,
2198 		   sma->sem_perm.id,
2199 		   sma->sem_perm.mode,
2200 		   sma->sem_nsems,
2201 		   from_kuid_munged(user_ns, sma->sem_perm.uid),
2202 		   from_kgid_munged(user_ns, sma->sem_perm.gid),
2203 		   from_kuid_munged(user_ns, sma->sem_perm.cuid),
2204 		   from_kgid_munged(user_ns, sma->sem_perm.cgid),
2205 		   sem_otime,
2206 		   sma->sem_ctime);
2207 
2208 	complexmode_tryleave(sma);
2209 
2210 	return 0;
2211 }
2212 #endif
2213