xref: /openbmc/linux/ipc/sem.c (revision d8bcaabe)
1 /*
2  * linux/ipc/sem.c
3  * Copyright (C) 1992 Krishna Balasubramanian
4  * Copyright (C) 1995 Eric Schenk, Bruno Haible
5  *
6  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7  *
8  * SMP-threaded, sysctl's added
9  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10  * Enforced range limit on SEM_UNDO
11  * (c) 2001 Red Hat Inc
12  * Lockless wakeup
13  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14  * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
15  * Further wakeup optimizations, documentation
16  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
17  *
18  * support for audit of ipc object properties and permission changes
19  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
20  *
21  * namespaces support
22  * OpenVZ, SWsoft Inc.
23  * Pavel Emelianov <xemul@openvz.org>
24  *
25  * Implementation notes: (May 2010)
26  * This file implements System V semaphores.
27  *
28  * User space visible behavior:
29  * - FIFO ordering for semop() operations (just FIFO, not starvation
30  *   protection)
31  * - multiple semaphore operations that alter the same semaphore in
32  *   one semop() are handled.
33  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
34  *   SETALL calls.
35  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
36  * - undo adjustments at process exit are limited to 0..SEMVMX.
37  * - namespace are supported.
38  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
39  *   to /proc/sys/kernel/sem.
40  * - statistics about the usage are reported in /proc/sysvipc/sem.
41  *
42  * Internals:
43  * - scalability:
44  *   - all global variables are read-mostly.
45  *   - semop() calls and semctl(RMID) are synchronized by RCU.
46  *   - most operations do write operations (actually: spin_lock calls) to
47  *     the per-semaphore array structure.
48  *   Thus: Perfect SMP scaling between independent semaphore arrays.
49  *         If multiple semaphores in one array are used, then cache line
50  *         trashing on the semaphore array spinlock will limit the scaling.
51  * - semncnt and semzcnt are calculated on demand in count_semcnt()
52  * - the task that performs a successful semop() scans the list of all
53  *   sleeping tasks and completes any pending operations that can be fulfilled.
54  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
55  *   (see update_queue())
56  * - To improve the scalability, the actual wake-up calls are performed after
57  *   dropping all locks. (see wake_up_sem_queue_prepare())
58  * - All work is done by the waker, the woken up task does not have to do
59  *   anything - not even acquiring a lock or dropping a refcount.
60  * - A woken up task may not even touch the semaphore array anymore, it may
61  *   have been destroyed already by a semctl(RMID).
62  * - UNDO values are stored in an array (one per process and per
63  *   semaphore array, lazily allocated). For backwards compatibility, multiple
64  *   modes for the UNDO variables are supported (per process, per thread)
65  *   (see copy_semundo, CLONE_SYSVSEM)
66  * - There are two lists of the pending operations: a per-array list
67  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
68  *   ordering without always scanning all pending operations.
69  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
70  */
71 
72 #include <linux/slab.h>
73 #include <linux/spinlock.h>
74 #include <linux/init.h>
75 #include <linux/proc_fs.h>
76 #include <linux/time.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/audit.h>
80 #include <linux/capability.h>
81 #include <linux/seq_file.h>
82 #include <linux/rwsem.h>
83 #include <linux/nsproxy.h>
84 #include <linux/ipc_namespace.h>
85 #include <linux/sched/wake_q.h>
86 
87 #include <linux/uaccess.h>
88 #include "util.h"
89 
90 
91 /* One queue for each sleeping process in the system. */
92 struct sem_queue {
93 	struct list_head	list;	 /* queue of pending operations */
94 	struct task_struct	*sleeper; /* this process */
95 	struct sem_undo		*undo;	 /* undo structure */
96 	int			pid;	 /* process id of requesting process */
97 	int			status;	 /* completion status of operation */
98 	struct sembuf		*sops;	 /* array of pending operations */
99 	struct sembuf		*blocking; /* the operation that blocked */
100 	int			nsops;	 /* number of operations */
101 	bool			alter;	 /* does *sops alter the array? */
102 	bool                    dupsop;	 /* sops on more than one sem_num */
103 };
104 
105 /* Each task has a list of undo requests. They are executed automatically
106  * when the process exits.
107  */
108 struct sem_undo {
109 	struct list_head	list_proc;	/* per-process list: *
110 						 * all undos from one process
111 						 * rcu protected */
112 	struct rcu_head		rcu;		/* rcu struct for sem_undo */
113 	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
114 	struct list_head	list_id;	/* per semaphore array list:
115 						 * all undos for one array */
116 	int			semid;		/* semaphore set identifier */
117 	short			*semadj;	/* array of adjustments */
118 						/* one per semaphore */
119 };
120 
121 /* sem_undo_list controls shared access to the list of sem_undo structures
122  * that may be shared among all a CLONE_SYSVSEM task group.
123  */
124 struct sem_undo_list {
125 	refcount_t		refcnt;
126 	spinlock_t		lock;
127 	struct list_head	list_proc;
128 };
129 
130 
131 #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
132 
133 static int newary(struct ipc_namespace *, struct ipc_params *);
134 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
135 #ifdef CONFIG_PROC_FS
136 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
137 #endif
138 
139 #define SEMMSL_FAST	256 /* 512 bytes on stack */
140 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
141 
142 /*
143  * Switching from the mode suitable for simple ops
144  * to the mode for complex ops is costly. Therefore:
145  * use some hysteresis
146  */
147 #define USE_GLOBAL_LOCK_HYSTERESIS	10
148 
149 /*
150  * Locking:
151  * a) global sem_lock() for read/write
152  *	sem_undo.id_next,
153  *	sem_array.complex_count,
154  *	sem_array.pending{_alter,_const},
155  *	sem_array.sem_undo
156  *
157  * b) global or semaphore sem_lock() for read/write:
158  *	sem_array.sems[i].pending_{const,alter}:
159  *
160  * c) special:
161  *	sem_undo_list.list_proc:
162  *	* undo_list->lock for write
163  *	* rcu for read
164  *	use_global_lock:
165  *	* global sem_lock() for write
166  *	* either local or global sem_lock() for read.
167  *
168  * Memory ordering:
169  * Most ordering is enforced by using spin_lock() and spin_unlock().
170  * The special case is use_global_lock:
171  * Setting it from non-zero to 0 is a RELEASE, this is ensured by
172  * using smp_store_release().
173  * Testing if it is non-zero is an ACQUIRE, this is ensured by using
174  * smp_load_acquire().
175  * Setting it from 0 to non-zero must be ordered with regards to
176  * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
177  * is inside a spin_lock() and after a write from 0 to non-zero a
178  * spin_lock()+spin_unlock() is done.
179  */
180 
181 #define sc_semmsl	sem_ctls[0]
182 #define sc_semmns	sem_ctls[1]
183 #define sc_semopm	sem_ctls[2]
184 #define sc_semmni	sem_ctls[3]
185 
186 int sem_init_ns(struct ipc_namespace *ns)
187 {
188 	ns->sc_semmsl = SEMMSL;
189 	ns->sc_semmns = SEMMNS;
190 	ns->sc_semopm = SEMOPM;
191 	ns->sc_semmni = SEMMNI;
192 	ns->used_sems = 0;
193 	return ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
194 }
195 
196 #ifdef CONFIG_IPC_NS
197 void sem_exit_ns(struct ipc_namespace *ns)
198 {
199 	free_ipcs(ns, &sem_ids(ns), freeary);
200 	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
201 	rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
202 }
203 #endif
204 
205 int __init sem_init(void)
206 {
207 	const int err = sem_init_ns(&init_ipc_ns);
208 
209 	ipc_init_proc_interface("sysvipc/sem",
210 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
211 				IPC_SEM_IDS, sysvipc_sem_proc_show);
212 	return err;
213 }
214 
215 /**
216  * unmerge_queues - unmerge queues, if possible.
217  * @sma: semaphore array
218  *
219  * The function unmerges the wait queues if complex_count is 0.
220  * It must be called prior to dropping the global semaphore array lock.
221  */
222 static void unmerge_queues(struct sem_array *sma)
223 {
224 	struct sem_queue *q, *tq;
225 
226 	/* complex operations still around? */
227 	if (sma->complex_count)
228 		return;
229 	/*
230 	 * We will switch back to simple mode.
231 	 * Move all pending operation back into the per-semaphore
232 	 * queues.
233 	 */
234 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
235 		struct sem *curr;
236 		curr = &sma->sems[q->sops[0].sem_num];
237 
238 		list_add_tail(&q->list, &curr->pending_alter);
239 	}
240 	INIT_LIST_HEAD(&sma->pending_alter);
241 }
242 
243 /**
244  * merge_queues - merge single semop queues into global queue
245  * @sma: semaphore array
246  *
247  * This function merges all per-semaphore queues into the global queue.
248  * It is necessary to achieve FIFO ordering for the pending single-sop
249  * operations when a multi-semop operation must sleep.
250  * Only the alter operations must be moved, the const operations can stay.
251  */
252 static void merge_queues(struct sem_array *sma)
253 {
254 	int i;
255 	for (i = 0; i < sma->sem_nsems; i++) {
256 		struct sem *sem = &sma->sems[i];
257 
258 		list_splice_init(&sem->pending_alter, &sma->pending_alter);
259 	}
260 }
261 
262 static void sem_rcu_free(struct rcu_head *head)
263 {
264 	struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
265 	struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
266 
267 	security_sem_free(sma);
268 	kvfree(sma);
269 }
270 
271 /*
272  * Enter the mode suitable for non-simple operations:
273  * Caller must own sem_perm.lock.
274  */
275 static void complexmode_enter(struct sem_array *sma)
276 {
277 	int i;
278 	struct sem *sem;
279 
280 	if (sma->use_global_lock > 0)  {
281 		/*
282 		 * We are already in global lock mode.
283 		 * Nothing to do, just reset the
284 		 * counter until we return to simple mode.
285 		 */
286 		sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
287 		return;
288 	}
289 	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
290 
291 	for (i = 0; i < sma->sem_nsems; i++) {
292 		sem = &sma->sems[i];
293 		spin_lock(&sem->lock);
294 		spin_unlock(&sem->lock);
295 	}
296 }
297 
298 /*
299  * Try to leave the mode that disallows simple operations:
300  * Caller must own sem_perm.lock.
301  */
302 static void complexmode_tryleave(struct sem_array *sma)
303 {
304 	if (sma->complex_count)  {
305 		/* Complex ops are sleeping.
306 		 * We must stay in complex mode
307 		 */
308 		return;
309 	}
310 	if (sma->use_global_lock == 1) {
311 		/*
312 		 * Immediately after setting use_global_lock to 0,
313 		 * a simple op can start. Thus: all memory writes
314 		 * performed by the current operation must be visible
315 		 * before we set use_global_lock to 0.
316 		 */
317 		smp_store_release(&sma->use_global_lock, 0);
318 	} else {
319 		sma->use_global_lock--;
320 	}
321 }
322 
323 #define SEM_GLOBAL_LOCK	(-1)
324 /*
325  * If the request contains only one semaphore operation, and there are
326  * no complex transactions pending, lock only the semaphore involved.
327  * Otherwise, lock the entire semaphore array, since we either have
328  * multiple semaphores in our own semops, or we need to look at
329  * semaphores from other pending complex operations.
330  */
331 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
332 			      int nsops)
333 {
334 	struct sem *sem;
335 
336 	if (nsops != 1) {
337 		/* Complex operation - acquire a full lock */
338 		ipc_lock_object(&sma->sem_perm);
339 
340 		/* Prevent parallel simple ops */
341 		complexmode_enter(sma);
342 		return SEM_GLOBAL_LOCK;
343 	}
344 
345 	/*
346 	 * Only one semaphore affected - try to optimize locking.
347 	 * Optimized locking is possible if no complex operation
348 	 * is either enqueued or processed right now.
349 	 *
350 	 * Both facts are tracked by use_global_mode.
351 	 */
352 	sem = &sma->sems[sops->sem_num];
353 
354 	/*
355 	 * Initial check for use_global_lock. Just an optimization,
356 	 * no locking, no memory barrier.
357 	 */
358 	if (!sma->use_global_lock) {
359 		/*
360 		 * It appears that no complex operation is around.
361 		 * Acquire the per-semaphore lock.
362 		 */
363 		spin_lock(&sem->lock);
364 
365 		/* pairs with smp_store_release() */
366 		if (!smp_load_acquire(&sma->use_global_lock)) {
367 			/* fast path successful! */
368 			return sops->sem_num;
369 		}
370 		spin_unlock(&sem->lock);
371 	}
372 
373 	/* slow path: acquire the full lock */
374 	ipc_lock_object(&sma->sem_perm);
375 
376 	if (sma->use_global_lock == 0) {
377 		/*
378 		 * The use_global_lock mode ended while we waited for
379 		 * sma->sem_perm.lock. Thus we must switch to locking
380 		 * with sem->lock.
381 		 * Unlike in the fast path, there is no need to recheck
382 		 * sma->use_global_lock after we have acquired sem->lock:
383 		 * We own sma->sem_perm.lock, thus use_global_lock cannot
384 		 * change.
385 		 */
386 		spin_lock(&sem->lock);
387 
388 		ipc_unlock_object(&sma->sem_perm);
389 		return sops->sem_num;
390 	} else {
391 		/*
392 		 * Not a false alarm, thus continue to use the global lock
393 		 * mode. No need for complexmode_enter(), this was done by
394 		 * the caller that has set use_global_mode to non-zero.
395 		 */
396 		return SEM_GLOBAL_LOCK;
397 	}
398 }
399 
400 static inline void sem_unlock(struct sem_array *sma, int locknum)
401 {
402 	if (locknum == SEM_GLOBAL_LOCK) {
403 		unmerge_queues(sma);
404 		complexmode_tryleave(sma);
405 		ipc_unlock_object(&sma->sem_perm);
406 	} else {
407 		struct sem *sem = &sma->sems[locknum];
408 		spin_unlock(&sem->lock);
409 	}
410 }
411 
412 /*
413  * sem_lock_(check_) routines are called in the paths where the rwsem
414  * is not held.
415  *
416  * The caller holds the RCU read lock.
417  */
418 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
419 {
420 	struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
421 
422 	if (IS_ERR(ipcp))
423 		return ERR_CAST(ipcp);
424 
425 	return container_of(ipcp, struct sem_array, sem_perm);
426 }
427 
428 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
429 							int id)
430 {
431 	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
432 
433 	if (IS_ERR(ipcp))
434 		return ERR_CAST(ipcp);
435 
436 	return container_of(ipcp, struct sem_array, sem_perm);
437 }
438 
439 static inline void sem_lock_and_putref(struct sem_array *sma)
440 {
441 	sem_lock(sma, NULL, -1);
442 	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
443 }
444 
445 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
446 {
447 	ipc_rmid(&sem_ids(ns), &s->sem_perm);
448 }
449 
450 static struct sem_array *sem_alloc(size_t nsems)
451 {
452 	struct sem_array *sma;
453 	size_t size;
454 
455 	if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
456 		return NULL;
457 
458 	size = sizeof(*sma) + nsems * sizeof(sma->sems[0]);
459 	sma = kvmalloc(size, GFP_KERNEL);
460 	if (unlikely(!sma))
461 		return NULL;
462 
463 	memset(sma, 0, size);
464 
465 	return sma;
466 }
467 
468 /**
469  * newary - Create a new semaphore set
470  * @ns: namespace
471  * @params: ptr to the structure that contains key, semflg and nsems
472  *
473  * Called with sem_ids.rwsem held (as a writer)
474  */
475 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
476 {
477 	int retval;
478 	struct sem_array *sma;
479 	key_t key = params->key;
480 	int nsems = params->u.nsems;
481 	int semflg = params->flg;
482 	int i;
483 
484 	if (!nsems)
485 		return -EINVAL;
486 	if (ns->used_sems + nsems > ns->sc_semmns)
487 		return -ENOSPC;
488 
489 	sma = sem_alloc(nsems);
490 	if (!sma)
491 		return -ENOMEM;
492 
493 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
494 	sma->sem_perm.key = key;
495 
496 	sma->sem_perm.security = NULL;
497 	retval = security_sem_alloc(sma);
498 	if (retval) {
499 		kvfree(sma);
500 		return retval;
501 	}
502 
503 	for (i = 0; i < nsems; i++) {
504 		INIT_LIST_HEAD(&sma->sems[i].pending_alter);
505 		INIT_LIST_HEAD(&sma->sems[i].pending_const);
506 		spin_lock_init(&sma->sems[i].lock);
507 	}
508 
509 	sma->complex_count = 0;
510 	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
511 	INIT_LIST_HEAD(&sma->pending_alter);
512 	INIT_LIST_HEAD(&sma->pending_const);
513 	INIT_LIST_HEAD(&sma->list_id);
514 	sma->sem_nsems = nsems;
515 	sma->sem_ctime = ktime_get_real_seconds();
516 
517 	retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
518 	if (retval < 0) {
519 		call_rcu(&sma->sem_perm.rcu, sem_rcu_free);
520 		return retval;
521 	}
522 	ns->used_sems += nsems;
523 
524 	sem_unlock(sma, -1);
525 	rcu_read_unlock();
526 
527 	return sma->sem_perm.id;
528 }
529 
530 
531 /*
532  * Called with sem_ids.rwsem and ipcp locked.
533  */
534 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
535 {
536 	struct sem_array *sma;
537 
538 	sma = container_of(ipcp, struct sem_array, sem_perm);
539 	return security_sem_associate(sma, semflg);
540 }
541 
542 /*
543  * Called with sem_ids.rwsem and ipcp locked.
544  */
545 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
546 				struct ipc_params *params)
547 {
548 	struct sem_array *sma;
549 
550 	sma = container_of(ipcp, struct sem_array, sem_perm);
551 	if (params->u.nsems > sma->sem_nsems)
552 		return -EINVAL;
553 
554 	return 0;
555 }
556 
557 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
558 {
559 	struct ipc_namespace *ns;
560 	static const struct ipc_ops sem_ops = {
561 		.getnew = newary,
562 		.associate = sem_security,
563 		.more_checks = sem_more_checks,
564 	};
565 	struct ipc_params sem_params;
566 
567 	ns = current->nsproxy->ipc_ns;
568 
569 	if (nsems < 0 || nsems > ns->sc_semmsl)
570 		return -EINVAL;
571 
572 	sem_params.key = key;
573 	sem_params.flg = semflg;
574 	sem_params.u.nsems = nsems;
575 
576 	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
577 }
578 
579 /**
580  * perform_atomic_semop[_slow] - Attempt to perform semaphore
581  *                               operations on a given array.
582  * @sma: semaphore array
583  * @q: struct sem_queue that describes the operation
584  *
585  * Caller blocking are as follows, based the value
586  * indicated by the semaphore operation (sem_op):
587  *
588  *  (1) >0 never blocks.
589  *  (2)  0 (wait-for-zero operation): semval is non-zero.
590  *  (3) <0 attempting to decrement semval to a value smaller than zero.
591  *
592  * Returns 0 if the operation was possible.
593  * Returns 1 if the operation is impossible, the caller must sleep.
594  * Returns <0 for error codes.
595  */
596 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
597 {
598 	int result, sem_op, nsops, pid;
599 	struct sembuf *sop;
600 	struct sem *curr;
601 	struct sembuf *sops;
602 	struct sem_undo *un;
603 
604 	sops = q->sops;
605 	nsops = q->nsops;
606 	un = q->undo;
607 
608 	for (sop = sops; sop < sops + nsops; sop++) {
609 		curr = &sma->sems[sop->sem_num];
610 		sem_op = sop->sem_op;
611 		result = curr->semval;
612 
613 		if (!sem_op && result)
614 			goto would_block;
615 
616 		result += sem_op;
617 		if (result < 0)
618 			goto would_block;
619 		if (result > SEMVMX)
620 			goto out_of_range;
621 
622 		if (sop->sem_flg & SEM_UNDO) {
623 			int undo = un->semadj[sop->sem_num] - sem_op;
624 			/* Exceeding the undo range is an error. */
625 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
626 				goto out_of_range;
627 			un->semadj[sop->sem_num] = undo;
628 		}
629 
630 		curr->semval = result;
631 	}
632 
633 	sop--;
634 	pid = q->pid;
635 	while (sop >= sops) {
636 		sma->sems[sop->sem_num].sempid = pid;
637 		sop--;
638 	}
639 
640 	return 0;
641 
642 out_of_range:
643 	result = -ERANGE;
644 	goto undo;
645 
646 would_block:
647 	q->blocking = sop;
648 
649 	if (sop->sem_flg & IPC_NOWAIT)
650 		result = -EAGAIN;
651 	else
652 		result = 1;
653 
654 undo:
655 	sop--;
656 	while (sop >= sops) {
657 		sem_op = sop->sem_op;
658 		sma->sems[sop->sem_num].semval -= sem_op;
659 		if (sop->sem_flg & SEM_UNDO)
660 			un->semadj[sop->sem_num] += sem_op;
661 		sop--;
662 	}
663 
664 	return result;
665 }
666 
667 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
668 {
669 	int result, sem_op, nsops;
670 	struct sembuf *sop;
671 	struct sem *curr;
672 	struct sembuf *sops;
673 	struct sem_undo *un;
674 
675 	sops = q->sops;
676 	nsops = q->nsops;
677 	un = q->undo;
678 
679 	if (unlikely(q->dupsop))
680 		return perform_atomic_semop_slow(sma, q);
681 
682 	/*
683 	 * We scan the semaphore set twice, first to ensure that the entire
684 	 * operation can succeed, therefore avoiding any pointless writes
685 	 * to shared memory and having to undo such changes in order to block
686 	 * until the operations can go through.
687 	 */
688 	for (sop = sops; sop < sops + nsops; sop++) {
689 		curr = &sma->sems[sop->sem_num];
690 		sem_op = sop->sem_op;
691 		result = curr->semval;
692 
693 		if (!sem_op && result)
694 			goto would_block; /* wait-for-zero */
695 
696 		result += sem_op;
697 		if (result < 0)
698 			goto would_block;
699 
700 		if (result > SEMVMX)
701 			return -ERANGE;
702 
703 		if (sop->sem_flg & SEM_UNDO) {
704 			int undo = un->semadj[sop->sem_num] - sem_op;
705 
706 			/* Exceeding the undo range is an error. */
707 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
708 				return -ERANGE;
709 		}
710 	}
711 
712 	for (sop = sops; sop < sops + nsops; sop++) {
713 		curr = &sma->sems[sop->sem_num];
714 		sem_op = sop->sem_op;
715 		result = curr->semval;
716 
717 		if (sop->sem_flg & SEM_UNDO) {
718 			int undo = un->semadj[sop->sem_num] - sem_op;
719 
720 			un->semadj[sop->sem_num] = undo;
721 		}
722 		curr->semval += sem_op;
723 		curr->sempid = q->pid;
724 	}
725 
726 	return 0;
727 
728 would_block:
729 	q->blocking = sop;
730 	return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
731 }
732 
733 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
734 					     struct wake_q_head *wake_q)
735 {
736 	wake_q_add(wake_q, q->sleeper);
737 	/*
738 	 * Rely on the above implicit barrier, such that we can
739 	 * ensure that we hold reference to the task before setting
740 	 * q->status. Otherwise we could race with do_exit if the
741 	 * task is awoken by an external event before calling
742 	 * wake_up_process().
743 	 */
744 	WRITE_ONCE(q->status, error);
745 }
746 
747 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
748 {
749 	list_del(&q->list);
750 	if (q->nsops > 1)
751 		sma->complex_count--;
752 }
753 
754 /** check_restart(sma, q)
755  * @sma: semaphore array
756  * @q: the operation that just completed
757  *
758  * update_queue is O(N^2) when it restarts scanning the whole queue of
759  * waiting operations. Therefore this function checks if the restart is
760  * really necessary. It is called after a previously waiting operation
761  * modified the array.
762  * Note that wait-for-zero operations are handled without restart.
763  */
764 static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
765 {
766 	/* pending complex alter operations are too difficult to analyse */
767 	if (!list_empty(&sma->pending_alter))
768 		return 1;
769 
770 	/* we were a sleeping complex operation. Too difficult */
771 	if (q->nsops > 1)
772 		return 1;
773 
774 	/* It is impossible that someone waits for the new value:
775 	 * - complex operations always restart.
776 	 * - wait-for-zero are handled seperately.
777 	 * - q is a previously sleeping simple operation that
778 	 *   altered the array. It must be a decrement, because
779 	 *   simple increments never sleep.
780 	 * - If there are older (higher priority) decrements
781 	 *   in the queue, then they have observed the original
782 	 *   semval value and couldn't proceed. The operation
783 	 *   decremented to value - thus they won't proceed either.
784 	 */
785 	return 0;
786 }
787 
788 /**
789  * wake_const_ops - wake up non-alter tasks
790  * @sma: semaphore array.
791  * @semnum: semaphore that was modified.
792  * @wake_q: lockless wake-queue head.
793  *
794  * wake_const_ops must be called after a semaphore in a semaphore array
795  * was set to 0. If complex const operations are pending, wake_const_ops must
796  * be called with semnum = -1, as well as with the number of each modified
797  * semaphore.
798  * The tasks that must be woken up are added to @wake_q. The return code
799  * is stored in q->pid.
800  * The function returns 1 if at least one operation was completed successfully.
801  */
802 static int wake_const_ops(struct sem_array *sma, int semnum,
803 			  struct wake_q_head *wake_q)
804 {
805 	struct sem_queue *q, *tmp;
806 	struct list_head *pending_list;
807 	int semop_completed = 0;
808 
809 	if (semnum == -1)
810 		pending_list = &sma->pending_const;
811 	else
812 		pending_list = &sma->sems[semnum].pending_const;
813 
814 	list_for_each_entry_safe(q, tmp, pending_list, list) {
815 		int error = perform_atomic_semop(sma, q);
816 
817 		if (error > 0)
818 			continue;
819 		/* operation completed, remove from queue & wakeup */
820 		unlink_queue(sma, q);
821 
822 		wake_up_sem_queue_prepare(q, error, wake_q);
823 		if (error == 0)
824 			semop_completed = 1;
825 	}
826 
827 	return semop_completed;
828 }
829 
830 /**
831  * do_smart_wakeup_zero - wakeup all wait for zero tasks
832  * @sma: semaphore array
833  * @sops: operations that were performed
834  * @nsops: number of operations
835  * @wake_q: lockless wake-queue head
836  *
837  * Checks all required queue for wait-for-zero operations, based
838  * on the actual changes that were performed on the semaphore array.
839  * The function returns 1 if at least one operation was completed successfully.
840  */
841 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
842 				int nsops, struct wake_q_head *wake_q)
843 {
844 	int i;
845 	int semop_completed = 0;
846 	int got_zero = 0;
847 
848 	/* first: the per-semaphore queues, if known */
849 	if (sops) {
850 		for (i = 0; i < nsops; i++) {
851 			int num = sops[i].sem_num;
852 
853 			if (sma->sems[num].semval == 0) {
854 				got_zero = 1;
855 				semop_completed |= wake_const_ops(sma, num, wake_q);
856 			}
857 		}
858 	} else {
859 		/*
860 		 * No sops means modified semaphores not known.
861 		 * Assume all were changed.
862 		 */
863 		for (i = 0; i < sma->sem_nsems; i++) {
864 			if (sma->sems[i].semval == 0) {
865 				got_zero = 1;
866 				semop_completed |= wake_const_ops(sma, i, wake_q);
867 			}
868 		}
869 	}
870 	/*
871 	 * If one of the modified semaphores got 0,
872 	 * then check the global queue, too.
873 	 */
874 	if (got_zero)
875 		semop_completed |= wake_const_ops(sma, -1, wake_q);
876 
877 	return semop_completed;
878 }
879 
880 
881 /**
882  * update_queue - look for tasks that can be completed.
883  * @sma: semaphore array.
884  * @semnum: semaphore that was modified.
885  * @wake_q: lockless wake-queue head.
886  *
887  * update_queue must be called after a semaphore in a semaphore array
888  * was modified. If multiple semaphores were modified, update_queue must
889  * be called with semnum = -1, as well as with the number of each modified
890  * semaphore.
891  * The tasks that must be woken up are added to @wake_q. The return code
892  * is stored in q->pid.
893  * The function internally checks if const operations can now succeed.
894  *
895  * The function return 1 if at least one semop was completed successfully.
896  */
897 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
898 {
899 	struct sem_queue *q, *tmp;
900 	struct list_head *pending_list;
901 	int semop_completed = 0;
902 
903 	if (semnum == -1)
904 		pending_list = &sma->pending_alter;
905 	else
906 		pending_list = &sma->sems[semnum].pending_alter;
907 
908 again:
909 	list_for_each_entry_safe(q, tmp, pending_list, list) {
910 		int error, restart;
911 
912 		/* If we are scanning the single sop, per-semaphore list of
913 		 * one semaphore and that semaphore is 0, then it is not
914 		 * necessary to scan further: simple increments
915 		 * that affect only one entry succeed immediately and cannot
916 		 * be in the  per semaphore pending queue, and decrements
917 		 * cannot be successful if the value is already 0.
918 		 */
919 		if (semnum != -1 && sma->sems[semnum].semval == 0)
920 			break;
921 
922 		error = perform_atomic_semop(sma, q);
923 
924 		/* Does q->sleeper still need to sleep? */
925 		if (error > 0)
926 			continue;
927 
928 		unlink_queue(sma, q);
929 
930 		if (error) {
931 			restart = 0;
932 		} else {
933 			semop_completed = 1;
934 			do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
935 			restart = check_restart(sma, q);
936 		}
937 
938 		wake_up_sem_queue_prepare(q, error, wake_q);
939 		if (restart)
940 			goto again;
941 	}
942 	return semop_completed;
943 }
944 
945 /**
946  * set_semotime - set sem_otime
947  * @sma: semaphore array
948  * @sops: operations that modified the array, may be NULL
949  *
950  * sem_otime is replicated to avoid cache line trashing.
951  * This function sets one instance to the current time.
952  */
953 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
954 {
955 	if (sops == NULL) {
956 		sma->sems[0].sem_otime = get_seconds();
957 	} else {
958 		sma->sems[sops[0].sem_num].sem_otime =
959 							get_seconds();
960 	}
961 }
962 
963 /**
964  * do_smart_update - optimized update_queue
965  * @sma: semaphore array
966  * @sops: operations that were performed
967  * @nsops: number of operations
968  * @otime: force setting otime
969  * @wake_q: lockless wake-queue head
970  *
971  * do_smart_update() does the required calls to update_queue and wakeup_zero,
972  * based on the actual changes that were performed on the semaphore array.
973  * Note that the function does not do the actual wake-up: the caller is
974  * responsible for calling wake_up_q().
975  * It is safe to perform this call after dropping all locks.
976  */
977 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
978 			    int otime, struct wake_q_head *wake_q)
979 {
980 	int i;
981 
982 	otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
983 
984 	if (!list_empty(&sma->pending_alter)) {
985 		/* semaphore array uses the global queue - just process it. */
986 		otime |= update_queue(sma, -1, wake_q);
987 	} else {
988 		if (!sops) {
989 			/*
990 			 * No sops, thus the modified semaphores are not
991 			 * known. Check all.
992 			 */
993 			for (i = 0; i < sma->sem_nsems; i++)
994 				otime |= update_queue(sma, i, wake_q);
995 		} else {
996 			/*
997 			 * Check the semaphores that were increased:
998 			 * - No complex ops, thus all sleeping ops are
999 			 *   decrease.
1000 			 * - if we decreased the value, then any sleeping
1001 			 *   semaphore ops wont be able to run: If the
1002 			 *   previous value was too small, then the new
1003 			 *   value will be too small, too.
1004 			 */
1005 			for (i = 0; i < nsops; i++) {
1006 				if (sops[i].sem_op > 0) {
1007 					otime |= update_queue(sma,
1008 							      sops[i].sem_num, wake_q);
1009 				}
1010 			}
1011 		}
1012 	}
1013 	if (otime)
1014 		set_semotime(sma, sops);
1015 }
1016 
1017 /*
1018  * check_qop: Test if a queued operation sleeps on the semaphore semnum
1019  */
1020 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1021 			bool count_zero)
1022 {
1023 	struct sembuf *sop = q->blocking;
1024 
1025 	/*
1026 	 * Linux always (since 0.99.10) reported a task as sleeping on all
1027 	 * semaphores. This violates SUS, therefore it was changed to the
1028 	 * standard compliant behavior.
1029 	 * Give the administrators a chance to notice that an application
1030 	 * might misbehave because it relies on the Linux behavior.
1031 	 */
1032 	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1033 			"The task %s (%d) triggered the difference, watch for misbehavior.\n",
1034 			current->comm, task_pid_nr(current));
1035 
1036 	if (sop->sem_num != semnum)
1037 		return 0;
1038 
1039 	if (count_zero && sop->sem_op == 0)
1040 		return 1;
1041 	if (!count_zero && sop->sem_op < 0)
1042 		return 1;
1043 
1044 	return 0;
1045 }
1046 
1047 /* The following counts are associated to each semaphore:
1048  *   semncnt        number of tasks waiting on semval being nonzero
1049  *   semzcnt        number of tasks waiting on semval being zero
1050  *
1051  * Per definition, a task waits only on the semaphore of the first semop
1052  * that cannot proceed, even if additional operation would block, too.
1053  */
1054 static int count_semcnt(struct sem_array *sma, ushort semnum,
1055 			bool count_zero)
1056 {
1057 	struct list_head *l;
1058 	struct sem_queue *q;
1059 	int semcnt;
1060 
1061 	semcnt = 0;
1062 	/* First: check the simple operations. They are easy to evaluate */
1063 	if (count_zero)
1064 		l = &sma->sems[semnum].pending_const;
1065 	else
1066 		l = &sma->sems[semnum].pending_alter;
1067 
1068 	list_for_each_entry(q, l, list) {
1069 		/* all task on a per-semaphore list sleep on exactly
1070 		 * that semaphore
1071 		 */
1072 		semcnt++;
1073 	}
1074 
1075 	/* Then: check the complex operations. */
1076 	list_for_each_entry(q, &sma->pending_alter, list) {
1077 		semcnt += check_qop(sma, semnum, q, count_zero);
1078 	}
1079 	if (count_zero) {
1080 		list_for_each_entry(q, &sma->pending_const, list) {
1081 			semcnt += check_qop(sma, semnum, q, count_zero);
1082 		}
1083 	}
1084 	return semcnt;
1085 }
1086 
1087 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1088  * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1089  * remains locked on exit.
1090  */
1091 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1092 {
1093 	struct sem_undo *un, *tu;
1094 	struct sem_queue *q, *tq;
1095 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1096 	int i;
1097 	DEFINE_WAKE_Q(wake_q);
1098 
1099 	/* Free the existing undo structures for this semaphore set.  */
1100 	ipc_assert_locked_object(&sma->sem_perm);
1101 	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1102 		list_del(&un->list_id);
1103 		spin_lock(&un->ulp->lock);
1104 		un->semid = -1;
1105 		list_del_rcu(&un->list_proc);
1106 		spin_unlock(&un->ulp->lock);
1107 		kfree_rcu(un, rcu);
1108 	}
1109 
1110 	/* Wake up all pending processes and let them fail with EIDRM. */
1111 	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1112 		unlink_queue(sma, q);
1113 		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1114 	}
1115 
1116 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1117 		unlink_queue(sma, q);
1118 		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1119 	}
1120 	for (i = 0; i < sma->sem_nsems; i++) {
1121 		struct sem *sem = &sma->sems[i];
1122 		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1123 			unlink_queue(sma, q);
1124 			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1125 		}
1126 		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1127 			unlink_queue(sma, q);
1128 			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1129 		}
1130 	}
1131 
1132 	/* Remove the semaphore set from the IDR */
1133 	sem_rmid(ns, sma);
1134 	sem_unlock(sma, -1);
1135 	rcu_read_unlock();
1136 
1137 	wake_up_q(&wake_q);
1138 	ns->used_sems -= sma->sem_nsems;
1139 	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1140 }
1141 
1142 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1143 {
1144 	switch (version) {
1145 	case IPC_64:
1146 		return copy_to_user(buf, in, sizeof(*in));
1147 	case IPC_OLD:
1148 	    {
1149 		struct semid_ds out;
1150 
1151 		memset(&out, 0, sizeof(out));
1152 
1153 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1154 
1155 		out.sem_otime	= in->sem_otime;
1156 		out.sem_ctime	= in->sem_ctime;
1157 		out.sem_nsems	= in->sem_nsems;
1158 
1159 		return copy_to_user(buf, &out, sizeof(out));
1160 	    }
1161 	default:
1162 		return -EINVAL;
1163 	}
1164 }
1165 
1166 static time64_t get_semotime(struct sem_array *sma)
1167 {
1168 	int i;
1169 	time64_t res;
1170 
1171 	res = sma->sems[0].sem_otime;
1172 	for (i = 1; i < sma->sem_nsems; i++) {
1173 		time64_t to = sma->sems[i].sem_otime;
1174 
1175 		if (to > res)
1176 			res = to;
1177 	}
1178 	return res;
1179 }
1180 
1181 static int semctl_stat(struct ipc_namespace *ns, int semid,
1182 			 int cmd, struct semid64_ds *semid64)
1183 {
1184 	struct sem_array *sma;
1185 	int id = 0;
1186 	int err;
1187 
1188 	memset(semid64, 0, sizeof(*semid64));
1189 
1190 	rcu_read_lock();
1191 	if (cmd == SEM_STAT) {
1192 		sma = sem_obtain_object(ns, semid);
1193 		if (IS_ERR(sma)) {
1194 			err = PTR_ERR(sma);
1195 			goto out_unlock;
1196 		}
1197 		id = sma->sem_perm.id;
1198 	} else {
1199 		sma = sem_obtain_object_check(ns, semid);
1200 		if (IS_ERR(sma)) {
1201 			err = PTR_ERR(sma);
1202 			goto out_unlock;
1203 		}
1204 	}
1205 
1206 	err = -EACCES;
1207 	if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1208 		goto out_unlock;
1209 
1210 	err = security_sem_semctl(sma, cmd);
1211 	if (err)
1212 		goto out_unlock;
1213 
1214 	kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1215 	semid64->sem_otime = get_semotime(sma);
1216 	semid64->sem_ctime = sma->sem_ctime;
1217 	semid64->sem_nsems = sma->sem_nsems;
1218 	rcu_read_unlock();
1219 	return id;
1220 
1221 out_unlock:
1222 	rcu_read_unlock();
1223 	return err;
1224 }
1225 
1226 static int semctl_info(struct ipc_namespace *ns, int semid,
1227 			 int cmd, void __user *p)
1228 {
1229 	struct seminfo seminfo;
1230 	int max_id;
1231 	int err;
1232 
1233 	err = security_sem_semctl(NULL, cmd);
1234 	if (err)
1235 		return err;
1236 
1237 	memset(&seminfo, 0, sizeof(seminfo));
1238 	seminfo.semmni = ns->sc_semmni;
1239 	seminfo.semmns = ns->sc_semmns;
1240 	seminfo.semmsl = ns->sc_semmsl;
1241 	seminfo.semopm = ns->sc_semopm;
1242 	seminfo.semvmx = SEMVMX;
1243 	seminfo.semmnu = SEMMNU;
1244 	seminfo.semmap = SEMMAP;
1245 	seminfo.semume = SEMUME;
1246 	down_read(&sem_ids(ns).rwsem);
1247 	if (cmd == SEM_INFO) {
1248 		seminfo.semusz = sem_ids(ns).in_use;
1249 		seminfo.semaem = ns->used_sems;
1250 	} else {
1251 		seminfo.semusz = SEMUSZ;
1252 		seminfo.semaem = SEMAEM;
1253 	}
1254 	max_id = ipc_get_maxid(&sem_ids(ns));
1255 	up_read(&sem_ids(ns).rwsem);
1256 	if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1257 		return -EFAULT;
1258 	return (max_id < 0) ? 0 : max_id;
1259 }
1260 
1261 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1262 		int val)
1263 {
1264 	struct sem_undo *un;
1265 	struct sem_array *sma;
1266 	struct sem *curr;
1267 	int err;
1268 	DEFINE_WAKE_Q(wake_q);
1269 
1270 	if (val > SEMVMX || val < 0)
1271 		return -ERANGE;
1272 
1273 	rcu_read_lock();
1274 	sma = sem_obtain_object_check(ns, semid);
1275 	if (IS_ERR(sma)) {
1276 		rcu_read_unlock();
1277 		return PTR_ERR(sma);
1278 	}
1279 
1280 	if (semnum < 0 || semnum >= sma->sem_nsems) {
1281 		rcu_read_unlock();
1282 		return -EINVAL;
1283 	}
1284 
1285 
1286 	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1287 		rcu_read_unlock();
1288 		return -EACCES;
1289 	}
1290 
1291 	err = security_sem_semctl(sma, SETVAL);
1292 	if (err) {
1293 		rcu_read_unlock();
1294 		return -EACCES;
1295 	}
1296 
1297 	sem_lock(sma, NULL, -1);
1298 
1299 	if (!ipc_valid_object(&sma->sem_perm)) {
1300 		sem_unlock(sma, -1);
1301 		rcu_read_unlock();
1302 		return -EIDRM;
1303 	}
1304 
1305 	curr = &sma->sems[semnum];
1306 
1307 	ipc_assert_locked_object(&sma->sem_perm);
1308 	list_for_each_entry(un, &sma->list_id, list_id)
1309 		un->semadj[semnum] = 0;
1310 
1311 	curr->semval = val;
1312 	curr->sempid = task_tgid_vnr(current);
1313 	sma->sem_ctime = ktime_get_real_seconds();
1314 	/* maybe some queued-up processes were waiting for this */
1315 	do_smart_update(sma, NULL, 0, 0, &wake_q);
1316 	sem_unlock(sma, -1);
1317 	rcu_read_unlock();
1318 	wake_up_q(&wake_q);
1319 	return 0;
1320 }
1321 
1322 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1323 		int cmd, void __user *p)
1324 {
1325 	struct sem_array *sma;
1326 	struct sem *curr;
1327 	int err, nsems;
1328 	ushort fast_sem_io[SEMMSL_FAST];
1329 	ushort *sem_io = fast_sem_io;
1330 	DEFINE_WAKE_Q(wake_q);
1331 
1332 	rcu_read_lock();
1333 	sma = sem_obtain_object_check(ns, semid);
1334 	if (IS_ERR(sma)) {
1335 		rcu_read_unlock();
1336 		return PTR_ERR(sma);
1337 	}
1338 
1339 	nsems = sma->sem_nsems;
1340 
1341 	err = -EACCES;
1342 	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1343 		goto out_rcu_wakeup;
1344 
1345 	err = security_sem_semctl(sma, cmd);
1346 	if (err)
1347 		goto out_rcu_wakeup;
1348 
1349 	err = -EACCES;
1350 	switch (cmd) {
1351 	case GETALL:
1352 	{
1353 		ushort __user *array = p;
1354 		int i;
1355 
1356 		sem_lock(sma, NULL, -1);
1357 		if (!ipc_valid_object(&sma->sem_perm)) {
1358 			err = -EIDRM;
1359 			goto out_unlock;
1360 		}
1361 		if (nsems > SEMMSL_FAST) {
1362 			if (!ipc_rcu_getref(&sma->sem_perm)) {
1363 				err = -EIDRM;
1364 				goto out_unlock;
1365 			}
1366 			sem_unlock(sma, -1);
1367 			rcu_read_unlock();
1368 			sem_io = kvmalloc_array(nsems, sizeof(ushort),
1369 						GFP_KERNEL);
1370 			if (sem_io == NULL) {
1371 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1372 				return -ENOMEM;
1373 			}
1374 
1375 			rcu_read_lock();
1376 			sem_lock_and_putref(sma);
1377 			if (!ipc_valid_object(&sma->sem_perm)) {
1378 				err = -EIDRM;
1379 				goto out_unlock;
1380 			}
1381 		}
1382 		for (i = 0; i < sma->sem_nsems; i++)
1383 			sem_io[i] = sma->sems[i].semval;
1384 		sem_unlock(sma, -1);
1385 		rcu_read_unlock();
1386 		err = 0;
1387 		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1388 			err = -EFAULT;
1389 		goto out_free;
1390 	}
1391 	case SETALL:
1392 	{
1393 		int i;
1394 		struct sem_undo *un;
1395 
1396 		if (!ipc_rcu_getref(&sma->sem_perm)) {
1397 			err = -EIDRM;
1398 			goto out_rcu_wakeup;
1399 		}
1400 		rcu_read_unlock();
1401 
1402 		if (nsems > SEMMSL_FAST) {
1403 			sem_io = kvmalloc_array(nsems, sizeof(ushort),
1404 						GFP_KERNEL);
1405 			if (sem_io == NULL) {
1406 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1407 				return -ENOMEM;
1408 			}
1409 		}
1410 
1411 		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1412 			ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1413 			err = -EFAULT;
1414 			goto out_free;
1415 		}
1416 
1417 		for (i = 0; i < nsems; i++) {
1418 			if (sem_io[i] > SEMVMX) {
1419 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1420 				err = -ERANGE;
1421 				goto out_free;
1422 			}
1423 		}
1424 		rcu_read_lock();
1425 		sem_lock_and_putref(sma);
1426 		if (!ipc_valid_object(&sma->sem_perm)) {
1427 			err = -EIDRM;
1428 			goto out_unlock;
1429 		}
1430 
1431 		for (i = 0; i < nsems; i++) {
1432 			sma->sems[i].semval = sem_io[i];
1433 			sma->sems[i].sempid = task_tgid_vnr(current);
1434 		}
1435 
1436 		ipc_assert_locked_object(&sma->sem_perm);
1437 		list_for_each_entry(un, &sma->list_id, list_id) {
1438 			for (i = 0; i < nsems; i++)
1439 				un->semadj[i] = 0;
1440 		}
1441 		sma->sem_ctime = ktime_get_real_seconds();
1442 		/* maybe some queued-up processes were waiting for this */
1443 		do_smart_update(sma, NULL, 0, 0, &wake_q);
1444 		err = 0;
1445 		goto out_unlock;
1446 	}
1447 	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1448 	}
1449 	err = -EINVAL;
1450 	if (semnum < 0 || semnum >= nsems)
1451 		goto out_rcu_wakeup;
1452 
1453 	sem_lock(sma, NULL, -1);
1454 	if (!ipc_valid_object(&sma->sem_perm)) {
1455 		err = -EIDRM;
1456 		goto out_unlock;
1457 	}
1458 	curr = &sma->sems[semnum];
1459 
1460 	switch (cmd) {
1461 	case GETVAL:
1462 		err = curr->semval;
1463 		goto out_unlock;
1464 	case GETPID:
1465 		err = curr->sempid;
1466 		goto out_unlock;
1467 	case GETNCNT:
1468 		err = count_semcnt(sma, semnum, 0);
1469 		goto out_unlock;
1470 	case GETZCNT:
1471 		err = count_semcnt(sma, semnum, 1);
1472 		goto out_unlock;
1473 	}
1474 
1475 out_unlock:
1476 	sem_unlock(sma, -1);
1477 out_rcu_wakeup:
1478 	rcu_read_unlock();
1479 	wake_up_q(&wake_q);
1480 out_free:
1481 	if (sem_io != fast_sem_io)
1482 		kvfree(sem_io);
1483 	return err;
1484 }
1485 
1486 static inline unsigned long
1487 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1488 {
1489 	switch (version) {
1490 	case IPC_64:
1491 		if (copy_from_user(out, buf, sizeof(*out)))
1492 			return -EFAULT;
1493 		return 0;
1494 	case IPC_OLD:
1495 	    {
1496 		struct semid_ds tbuf_old;
1497 
1498 		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1499 			return -EFAULT;
1500 
1501 		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1502 		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1503 		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1504 
1505 		return 0;
1506 	    }
1507 	default:
1508 		return -EINVAL;
1509 	}
1510 }
1511 
1512 /*
1513  * This function handles some semctl commands which require the rwsem
1514  * to be held in write mode.
1515  * NOTE: no locks must be held, the rwsem is taken inside this function.
1516  */
1517 static int semctl_down(struct ipc_namespace *ns, int semid,
1518 		       int cmd, struct semid64_ds *semid64)
1519 {
1520 	struct sem_array *sma;
1521 	int err;
1522 	struct kern_ipc_perm *ipcp;
1523 
1524 	down_write(&sem_ids(ns).rwsem);
1525 	rcu_read_lock();
1526 
1527 	ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1528 				      &semid64->sem_perm, 0);
1529 	if (IS_ERR(ipcp)) {
1530 		err = PTR_ERR(ipcp);
1531 		goto out_unlock1;
1532 	}
1533 
1534 	sma = container_of(ipcp, struct sem_array, sem_perm);
1535 
1536 	err = security_sem_semctl(sma, cmd);
1537 	if (err)
1538 		goto out_unlock1;
1539 
1540 	switch (cmd) {
1541 	case IPC_RMID:
1542 		sem_lock(sma, NULL, -1);
1543 		/* freeary unlocks the ipc object and rcu */
1544 		freeary(ns, ipcp);
1545 		goto out_up;
1546 	case IPC_SET:
1547 		sem_lock(sma, NULL, -1);
1548 		err = ipc_update_perm(&semid64->sem_perm, ipcp);
1549 		if (err)
1550 			goto out_unlock0;
1551 		sma->sem_ctime = ktime_get_real_seconds();
1552 		break;
1553 	default:
1554 		err = -EINVAL;
1555 		goto out_unlock1;
1556 	}
1557 
1558 out_unlock0:
1559 	sem_unlock(sma, -1);
1560 out_unlock1:
1561 	rcu_read_unlock();
1562 out_up:
1563 	up_write(&sem_ids(ns).rwsem);
1564 	return err;
1565 }
1566 
1567 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1568 {
1569 	int version;
1570 	struct ipc_namespace *ns;
1571 	void __user *p = (void __user *)arg;
1572 	struct semid64_ds semid64;
1573 	int err;
1574 
1575 	if (semid < 0)
1576 		return -EINVAL;
1577 
1578 	version = ipc_parse_version(&cmd);
1579 	ns = current->nsproxy->ipc_ns;
1580 
1581 	switch (cmd) {
1582 	case IPC_INFO:
1583 	case SEM_INFO:
1584 		return semctl_info(ns, semid, cmd, p);
1585 	case IPC_STAT:
1586 	case SEM_STAT:
1587 		err = semctl_stat(ns, semid, cmd, &semid64);
1588 		if (err < 0)
1589 			return err;
1590 		if (copy_semid_to_user(p, &semid64, version))
1591 			err = -EFAULT;
1592 		return err;
1593 	case GETALL:
1594 	case GETVAL:
1595 	case GETPID:
1596 	case GETNCNT:
1597 	case GETZCNT:
1598 	case SETALL:
1599 		return semctl_main(ns, semid, semnum, cmd, p);
1600 	case SETVAL: {
1601 		int val;
1602 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1603 		/* big-endian 64bit */
1604 		val = arg >> 32;
1605 #else
1606 		/* 32bit or little-endian 64bit */
1607 		val = arg;
1608 #endif
1609 		return semctl_setval(ns, semid, semnum, val);
1610 	}
1611 	case IPC_SET:
1612 		if (copy_semid_from_user(&semid64, p, version))
1613 			return -EFAULT;
1614 	case IPC_RMID:
1615 		return semctl_down(ns, semid, cmd, &semid64);
1616 	default:
1617 		return -EINVAL;
1618 	}
1619 }
1620 
1621 #ifdef CONFIG_COMPAT
1622 
1623 struct compat_semid_ds {
1624 	struct compat_ipc_perm sem_perm;
1625 	compat_time_t sem_otime;
1626 	compat_time_t sem_ctime;
1627 	compat_uptr_t sem_base;
1628 	compat_uptr_t sem_pending;
1629 	compat_uptr_t sem_pending_last;
1630 	compat_uptr_t undo;
1631 	unsigned short sem_nsems;
1632 };
1633 
1634 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1635 					int version)
1636 {
1637 	memset(out, 0, sizeof(*out));
1638 	if (version == IPC_64) {
1639 		struct compat_semid64_ds *p = buf;
1640 		return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1641 	} else {
1642 		struct compat_semid_ds *p = buf;
1643 		return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1644 	}
1645 }
1646 
1647 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1648 					int version)
1649 {
1650 	if (version == IPC_64) {
1651 		struct compat_semid64_ds v;
1652 		memset(&v, 0, sizeof(v));
1653 		to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1654 		v.sem_otime = in->sem_otime;
1655 		v.sem_ctime = in->sem_ctime;
1656 		v.sem_nsems = in->sem_nsems;
1657 		return copy_to_user(buf, &v, sizeof(v));
1658 	} else {
1659 		struct compat_semid_ds v;
1660 		memset(&v, 0, sizeof(v));
1661 		to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1662 		v.sem_otime = in->sem_otime;
1663 		v.sem_ctime = in->sem_ctime;
1664 		v.sem_nsems = in->sem_nsems;
1665 		return copy_to_user(buf, &v, sizeof(v));
1666 	}
1667 }
1668 
1669 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1670 {
1671 	void __user *p = compat_ptr(arg);
1672 	struct ipc_namespace *ns;
1673 	struct semid64_ds semid64;
1674 	int version = compat_ipc_parse_version(&cmd);
1675 	int err;
1676 
1677 	ns = current->nsproxy->ipc_ns;
1678 
1679 	if (semid < 0)
1680 		return -EINVAL;
1681 
1682 	switch (cmd & (~IPC_64)) {
1683 	case IPC_INFO:
1684 	case SEM_INFO:
1685 		return semctl_info(ns, semid, cmd, p);
1686 	case IPC_STAT:
1687 	case SEM_STAT:
1688 		err = semctl_stat(ns, semid, cmd, &semid64);
1689 		if (err < 0)
1690 			return err;
1691 		if (copy_compat_semid_to_user(p, &semid64, version))
1692 			err = -EFAULT;
1693 		return err;
1694 	case GETVAL:
1695 	case GETPID:
1696 	case GETNCNT:
1697 	case GETZCNT:
1698 	case GETALL:
1699 	case SETALL:
1700 		return semctl_main(ns, semid, semnum, cmd, p);
1701 	case SETVAL:
1702 		return semctl_setval(ns, semid, semnum, arg);
1703 	case IPC_SET:
1704 		if (copy_compat_semid_from_user(&semid64, p, version))
1705 			return -EFAULT;
1706 		/* fallthru */
1707 	case IPC_RMID:
1708 		return semctl_down(ns, semid, cmd, &semid64);
1709 	default:
1710 		return -EINVAL;
1711 	}
1712 }
1713 #endif
1714 
1715 /* If the task doesn't already have a undo_list, then allocate one
1716  * here.  We guarantee there is only one thread using this undo list,
1717  * and current is THE ONE
1718  *
1719  * If this allocation and assignment succeeds, but later
1720  * portions of this code fail, there is no need to free the sem_undo_list.
1721  * Just let it stay associated with the task, and it'll be freed later
1722  * at exit time.
1723  *
1724  * This can block, so callers must hold no locks.
1725  */
1726 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1727 {
1728 	struct sem_undo_list *undo_list;
1729 
1730 	undo_list = current->sysvsem.undo_list;
1731 	if (!undo_list) {
1732 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1733 		if (undo_list == NULL)
1734 			return -ENOMEM;
1735 		spin_lock_init(&undo_list->lock);
1736 		refcount_set(&undo_list->refcnt, 1);
1737 		INIT_LIST_HEAD(&undo_list->list_proc);
1738 
1739 		current->sysvsem.undo_list = undo_list;
1740 	}
1741 	*undo_listp = undo_list;
1742 	return 0;
1743 }
1744 
1745 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1746 {
1747 	struct sem_undo *un;
1748 
1749 	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1750 		if (un->semid == semid)
1751 			return un;
1752 	}
1753 	return NULL;
1754 }
1755 
1756 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1757 {
1758 	struct sem_undo *un;
1759 
1760 	assert_spin_locked(&ulp->lock);
1761 
1762 	un = __lookup_undo(ulp, semid);
1763 	if (un) {
1764 		list_del_rcu(&un->list_proc);
1765 		list_add_rcu(&un->list_proc, &ulp->list_proc);
1766 	}
1767 	return un;
1768 }
1769 
1770 /**
1771  * find_alloc_undo - lookup (and if not present create) undo array
1772  * @ns: namespace
1773  * @semid: semaphore array id
1774  *
1775  * The function looks up (and if not present creates) the undo structure.
1776  * The size of the undo structure depends on the size of the semaphore
1777  * array, thus the alloc path is not that straightforward.
1778  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1779  * performs a rcu_read_lock().
1780  */
1781 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1782 {
1783 	struct sem_array *sma;
1784 	struct sem_undo_list *ulp;
1785 	struct sem_undo *un, *new;
1786 	int nsems, error;
1787 
1788 	error = get_undo_list(&ulp);
1789 	if (error)
1790 		return ERR_PTR(error);
1791 
1792 	rcu_read_lock();
1793 	spin_lock(&ulp->lock);
1794 	un = lookup_undo(ulp, semid);
1795 	spin_unlock(&ulp->lock);
1796 	if (likely(un != NULL))
1797 		goto out;
1798 
1799 	/* no undo structure around - allocate one. */
1800 	/* step 1: figure out the size of the semaphore array */
1801 	sma = sem_obtain_object_check(ns, semid);
1802 	if (IS_ERR(sma)) {
1803 		rcu_read_unlock();
1804 		return ERR_CAST(sma);
1805 	}
1806 
1807 	nsems = sma->sem_nsems;
1808 	if (!ipc_rcu_getref(&sma->sem_perm)) {
1809 		rcu_read_unlock();
1810 		un = ERR_PTR(-EIDRM);
1811 		goto out;
1812 	}
1813 	rcu_read_unlock();
1814 
1815 	/* step 2: allocate new undo structure */
1816 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1817 	if (!new) {
1818 		ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1819 		return ERR_PTR(-ENOMEM);
1820 	}
1821 
1822 	/* step 3: Acquire the lock on semaphore array */
1823 	rcu_read_lock();
1824 	sem_lock_and_putref(sma);
1825 	if (!ipc_valid_object(&sma->sem_perm)) {
1826 		sem_unlock(sma, -1);
1827 		rcu_read_unlock();
1828 		kfree(new);
1829 		un = ERR_PTR(-EIDRM);
1830 		goto out;
1831 	}
1832 	spin_lock(&ulp->lock);
1833 
1834 	/*
1835 	 * step 4: check for races: did someone else allocate the undo struct?
1836 	 */
1837 	un = lookup_undo(ulp, semid);
1838 	if (un) {
1839 		kfree(new);
1840 		goto success;
1841 	}
1842 	/* step 5: initialize & link new undo structure */
1843 	new->semadj = (short *) &new[1];
1844 	new->ulp = ulp;
1845 	new->semid = semid;
1846 	assert_spin_locked(&ulp->lock);
1847 	list_add_rcu(&new->list_proc, &ulp->list_proc);
1848 	ipc_assert_locked_object(&sma->sem_perm);
1849 	list_add(&new->list_id, &sma->list_id);
1850 	un = new;
1851 
1852 success:
1853 	spin_unlock(&ulp->lock);
1854 	sem_unlock(sma, -1);
1855 out:
1856 	return un;
1857 }
1858 
1859 static long do_semtimedop(int semid, struct sembuf __user *tsops,
1860 		unsigned nsops, const struct timespec64 *timeout)
1861 {
1862 	int error = -EINVAL;
1863 	struct sem_array *sma;
1864 	struct sembuf fast_sops[SEMOPM_FAST];
1865 	struct sembuf *sops = fast_sops, *sop;
1866 	struct sem_undo *un;
1867 	int max, locknum;
1868 	bool undos = false, alter = false, dupsop = false;
1869 	struct sem_queue queue;
1870 	unsigned long dup = 0, jiffies_left = 0;
1871 	struct ipc_namespace *ns;
1872 
1873 	ns = current->nsproxy->ipc_ns;
1874 
1875 	if (nsops < 1 || semid < 0)
1876 		return -EINVAL;
1877 	if (nsops > ns->sc_semopm)
1878 		return -E2BIG;
1879 	if (nsops > SEMOPM_FAST) {
1880 		sops = kvmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1881 		if (sops == NULL)
1882 			return -ENOMEM;
1883 	}
1884 
1885 	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1886 		error =  -EFAULT;
1887 		goto out_free;
1888 	}
1889 
1890 	if (timeout) {
1891 		if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
1892 			timeout->tv_nsec >= 1000000000L) {
1893 			error = -EINVAL;
1894 			goto out_free;
1895 		}
1896 		jiffies_left = timespec64_to_jiffies(timeout);
1897 	}
1898 
1899 	max = 0;
1900 	for (sop = sops; sop < sops + nsops; sop++) {
1901 		unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
1902 
1903 		if (sop->sem_num >= max)
1904 			max = sop->sem_num;
1905 		if (sop->sem_flg & SEM_UNDO)
1906 			undos = true;
1907 		if (dup & mask) {
1908 			/*
1909 			 * There was a previous alter access that appears
1910 			 * to have accessed the same semaphore, thus use
1911 			 * the dupsop logic. "appears", because the detection
1912 			 * can only check % BITS_PER_LONG.
1913 			 */
1914 			dupsop = true;
1915 		}
1916 		if (sop->sem_op != 0) {
1917 			alter = true;
1918 			dup |= mask;
1919 		}
1920 	}
1921 
1922 	if (undos) {
1923 		/* On success, find_alloc_undo takes the rcu_read_lock */
1924 		un = find_alloc_undo(ns, semid);
1925 		if (IS_ERR(un)) {
1926 			error = PTR_ERR(un);
1927 			goto out_free;
1928 		}
1929 	} else {
1930 		un = NULL;
1931 		rcu_read_lock();
1932 	}
1933 
1934 	sma = sem_obtain_object_check(ns, semid);
1935 	if (IS_ERR(sma)) {
1936 		rcu_read_unlock();
1937 		error = PTR_ERR(sma);
1938 		goto out_free;
1939 	}
1940 
1941 	error = -EFBIG;
1942 	if (max >= sma->sem_nsems) {
1943 		rcu_read_unlock();
1944 		goto out_free;
1945 	}
1946 
1947 	error = -EACCES;
1948 	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
1949 		rcu_read_unlock();
1950 		goto out_free;
1951 	}
1952 
1953 	error = security_sem_semop(sma, sops, nsops, alter);
1954 	if (error) {
1955 		rcu_read_unlock();
1956 		goto out_free;
1957 	}
1958 
1959 	error = -EIDRM;
1960 	locknum = sem_lock(sma, sops, nsops);
1961 	/*
1962 	 * We eventually might perform the following check in a lockless
1963 	 * fashion, considering ipc_valid_object() locking constraints.
1964 	 * If nsops == 1 and there is no contention for sem_perm.lock, then
1965 	 * only a per-semaphore lock is held and it's OK to proceed with the
1966 	 * check below. More details on the fine grained locking scheme
1967 	 * entangled here and why it's RMID race safe on comments at sem_lock()
1968 	 */
1969 	if (!ipc_valid_object(&sma->sem_perm))
1970 		goto out_unlock_free;
1971 	/*
1972 	 * semid identifiers are not unique - find_alloc_undo may have
1973 	 * allocated an undo structure, it was invalidated by an RMID
1974 	 * and now a new array with received the same id. Check and fail.
1975 	 * This case can be detected checking un->semid. The existence of
1976 	 * "un" itself is guaranteed by rcu.
1977 	 */
1978 	if (un && un->semid == -1)
1979 		goto out_unlock_free;
1980 
1981 	queue.sops = sops;
1982 	queue.nsops = nsops;
1983 	queue.undo = un;
1984 	queue.pid = task_tgid_vnr(current);
1985 	queue.alter = alter;
1986 	queue.dupsop = dupsop;
1987 
1988 	error = perform_atomic_semop(sma, &queue);
1989 	if (error == 0) { /* non-blocking succesfull path */
1990 		DEFINE_WAKE_Q(wake_q);
1991 
1992 		/*
1993 		 * If the operation was successful, then do
1994 		 * the required updates.
1995 		 */
1996 		if (alter)
1997 			do_smart_update(sma, sops, nsops, 1, &wake_q);
1998 		else
1999 			set_semotime(sma, sops);
2000 
2001 		sem_unlock(sma, locknum);
2002 		rcu_read_unlock();
2003 		wake_up_q(&wake_q);
2004 
2005 		goto out_free;
2006 	}
2007 	if (error < 0) /* non-blocking error path */
2008 		goto out_unlock_free;
2009 
2010 	/*
2011 	 * We need to sleep on this operation, so we put the current
2012 	 * task into the pending queue and go to sleep.
2013 	 */
2014 	if (nsops == 1) {
2015 		struct sem *curr;
2016 		curr = &sma->sems[sops->sem_num];
2017 
2018 		if (alter) {
2019 			if (sma->complex_count) {
2020 				list_add_tail(&queue.list,
2021 						&sma->pending_alter);
2022 			} else {
2023 
2024 				list_add_tail(&queue.list,
2025 						&curr->pending_alter);
2026 			}
2027 		} else {
2028 			list_add_tail(&queue.list, &curr->pending_const);
2029 		}
2030 	} else {
2031 		if (!sma->complex_count)
2032 			merge_queues(sma);
2033 
2034 		if (alter)
2035 			list_add_tail(&queue.list, &sma->pending_alter);
2036 		else
2037 			list_add_tail(&queue.list, &sma->pending_const);
2038 
2039 		sma->complex_count++;
2040 	}
2041 
2042 	do {
2043 		queue.status = -EINTR;
2044 		queue.sleeper = current;
2045 
2046 		__set_current_state(TASK_INTERRUPTIBLE);
2047 		sem_unlock(sma, locknum);
2048 		rcu_read_unlock();
2049 
2050 		if (timeout)
2051 			jiffies_left = schedule_timeout(jiffies_left);
2052 		else
2053 			schedule();
2054 
2055 		/*
2056 		 * fastpath: the semop has completed, either successfully or
2057 		 * not, from the syscall pov, is quite irrelevant to us at this
2058 		 * point; we're done.
2059 		 *
2060 		 * We _do_ care, nonetheless, about being awoken by a signal or
2061 		 * spuriously.  The queue.status is checked again in the
2062 		 * slowpath (aka after taking sem_lock), such that we can detect
2063 		 * scenarios where we were awakened externally, during the
2064 		 * window between wake_q_add() and wake_up_q().
2065 		 */
2066 		error = READ_ONCE(queue.status);
2067 		if (error != -EINTR) {
2068 			/*
2069 			 * User space could assume that semop() is a memory
2070 			 * barrier: Without the mb(), the cpu could
2071 			 * speculatively read in userspace stale data that was
2072 			 * overwritten by the previous owner of the semaphore.
2073 			 */
2074 			smp_mb();
2075 			goto out_free;
2076 		}
2077 
2078 		rcu_read_lock();
2079 		locknum = sem_lock(sma, sops, nsops);
2080 
2081 		if (!ipc_valid_object(&sma->sem_perm))
2082 			goto out_unlock_free;
2083 
2084 		error = READ_ONCE(queue.status);
2085 
2086 		/*
2087 		 * If queue.status != -EINTR we are woken up by another process.
2088 		 * Leave without unlink_queue(), but with sem_unlock().
2089 		 */
2090 		if (error != -EINTR)
2091 			goto out_unlock_free;
2092 
2093 		/*
2094 		 * If an interrupt occurred we have to clean up the queue.
2095 		 */
2096 		if (timeout && jiffies_left == 0)
2097 			error = -EAGAIN;
2098 	} while (error == -EINTR && !signal_pending(current)); /* spurious */
2099 
2100 	unlink_queue(sma, &queue);
2101 
2102 out_unlock_free:
2103 	sem_unlock(sma, locknum);
2104 	rcu_read_unlock();
2105 out_free:
2106 	if (sops != fast_sops)
2107 		kvfree(sops);
2108 	return error;
2109 }
2110 
2111 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2112 		unsigned, nsops, const struct timespec __user *, timeout)
2113 {
2114 	if (timeout) {
2115 		struct timespec64 ts;
2116 		if (get_timespec64(&ts, timeout))
2117 			return -EFAULT;
2118 		return do_semtimedop(semid, tsops, nsops, &ts);
2119 	}
2120 	return do_semtimedop(semid, tsops, nsops, NULL);
2121 }
2122 
2123 #ifdef CONFIG_COMPAT
2124 COMPAT_SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsems,
2125 		       unsigned, nsops,
2126 		       const struct compat_timespec __user *, timeout)
2127 {
2128 	if (timeout) {
2129 		struct timespec64 ts;
2130 		if (compat_get_timespec64(&ts, timeout))
2131 			return -EFAULT;
2132 		return do_semtimedop(semid, tsems, nsops, &ts);
2133 	}
2134 	return do_semtimedop(semid, tsems, nsops, NULL);
2135 }
2136 #endif
2137 
2138 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2139 		unsigned, nsops)
2140 {
2141 	return do_semtimedop(semid, tsops, nsops, NULL);
2142 }
2143 
2144 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2145  * parent and child tasks.
2146  */
2147 
2148 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2149 {
2150 	struct sem_undo_list *undo_list;
2151 	int error;
2152 
2153 	if (clone_flags & CLONE_SYSVSEM) {
2154 		error = get_undo_list(&undo_list);
2155 		if (error)
2156 			return error;
2157 		refcount_inc(&undo_list->refcnt);
2158 		tsk->sysvsem.undo_list = undo_list;
2159 	} else
2160 		tsk->sysvsem.undo_list = NULL;
2161 
2162 	return 0;
2163 }
2164 
2165 /*
2166  * add semadj values to semaphores, free undo structures.
2167  * undo structures are not freed when semaphore arrays are destroyed
2168  * so some of them may be out of date.
2169  * IMPLEMENTATION NOTE: There is some confusion over whether the
2170  * set of adjustments that needs to be done should be done in an atomic
2171  * manner or not. That is, if we are attempting to decrement the semval
2172  * should we queue up and wait until we can do so legally?
2173  * The original implementation attempted to do this (queue and wait).
2174  * The current implementation does not do so. The POSIX standard
2175  * and SVID should be consulted to determine what behavior is mandated.
2176  */
2177 void exit_sem(struct task_struct *tsk)
2178 {
2179 	struct sem_undo_list *ulp;
2180 
2181 	ulp = tsk->sysvsem.undo_list;
2182 	if (!ulp)
2183 		return;
2184 	tsk->sysvsem.undo_list = NULL;
2185 
2186 	if (!refcount_dec_and_test(&ulp->refcnt))
2187 		return;
2188 
2189 	for (;;) {
2190 		struct sem_array *sma;
2191 		struct sem_undo *un;
2192 		int semid, i;
2193 		DEFINE_WAKE_Q(wake_q);
2194 
2195 		cond_resched();
2196 
2197 		rcu_read_lock();
2198 		un = list_entry_rcu(ulp->list_proc.next,
2199 				    struct sem_undo, list_proc);
2200 		if (&un->list_proc == &ulp->list_proc) {
2201 			/*
2202 			 * We must wait for freeary() before freeing this ulp,
2203 			 * in case we raced with last sem_undo. There is a small
2204 			 * possibility where we exit while freeary() didn't
2205 			 * finish unlocking sem_undo_list.
2206 			 */
2207 			spin_lock(&ulp->lock);
2208 			spin_unlock(&ulp->lock);
2209 			rcu_read_unlock();
2210 			break;
2211 		}
2212 		spin_lock(&ulp->lock);
2213 		semid = un->semid;
2214 		spin_unlock(&ulp->lock);
2215 
2216 		/* exit_sem raced with IPC_RMID, nothing to do */
2217 		if (semid == -1) {
2218 			rcu_read_unlock();
2219 			continue;
2220 		}
2221 
2222 		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2223 		/* exit_sem raced with IPC_RMID, nothing to do */
2224 		if (IS_ERR(sma)) {
2225 			rcu_read_unlock();
2226 			continue;
2227 		}
2228 
2229 		sem_lock(sma, NULL, -1);
2230 		/* exit_sem raced with IPC_RMID, nothing to do */
2231 		if (!ipc_valid_object(&sma->sem_perm)) {
2232 			sem_unlock(sma, -1);
2233 			rcu_read_unlock();
2234 			continue;
2235 		}
2236 		un = __lookup_undo(ulp, semid);
2237 		if (un == NULL) {
2238 			/* exit_sem raced with IPC_RMID+semget() that created
2239 			 * exactly the same semid. Nothing to do.
2240 			 */
2241 			sem_unlock(sma, -1);
2242 			rcu_read_unlock();
2243 			continue;
2244 		}
2245 
2246 		/* remove un from the linked lists */
2247 		ipc_assert_locked_object(&sma->sem_perm);
2248 		list_del(&un->list_id);
2249 
2250 		/* we are the last process using this ulp, acquiring ulp->lock
2251 		 * isn't required. Besides that, we are also protected against
2252 		 * IPC_RMID as we hold sma->sem_perm lock now
2253 		 */
2254 		list_del_rcu(&un->list_proc);
2255 
2256 		/* perform adjustments registered in un */
2257 		for (i = 0; i < sma->sem_nsems; i++) {
2258 			struct sem *semaphore = &sma->sems[i];
2259 			if (un->semadj[i]) {
2260 				semaphore->semval += un->semadj[i];
2261 				/*
2262 				 * Range checks of the new semaphore value,
2263 				 * not defined by sus:
2264 				 * - Some unices ignore the undo entirely
2265 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2266 				 * - some cap the value (e.g. FreeBSD caps
2267 				 *   at 0, but doesn't enforce SEMVMX)
2268 				 *
2269 				 * Linux caps the semaphore value, both at 0
2270 				 * and at SEMVMX.
2271 				 *
2272 				 *	Manfred <manfred@colorfullife.com>
2273 				 */
2274 				if (semaphore->semval < 0)
2275 					semaphore->semval = 0;
2276 				if (semaphore->semval > SEMVMX)
2277 					semaphore->semval = SEMVMX;
2278 				semaphore->sempid = task_tgid_vnr(current);
2279 			}
2280 		}
2281 		/* maybe some queued-up processes were waiting for this */
2282 		do_smart_update(sma, NULL, 0, 1, &wake_q);
2283 		sem_unlock(sma, -1);
2284 		rcu_read_unlock();
2285 		wake_up_q(&wake_q);
2286 
2287 		kfree_rcu(un, rcu);
2288 	}
2289 	kfree(ulp);
2290 }
2291 
2292 #ifdef CONFIG_PROC_FS
2293 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2294 {
2295 	struct user_namespace *user_ns = seq_user_ns(s);
2296 	struct kern_ipc_perm *ipcp = it;
2297 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2298 	time64_t sem_otime;
2299 
2300 	/*
2301 	 * The proc interface isn't aware of sem_lock(), it calls
2302 	 * ipc_lock_object() directly (in sysvipc_find_ipc).
2303 	 * In order to stay compatible with sem_lock(), we must
2304 	 * enter / leave complex_mode.
2305 	 */
2306 	complexmode_enter(sma);
2307 
2308 	sem_otime = get_semotime(sma);
2309 
2310 	seq_printf(s,
2311 		   "%10d %10d  %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2312 		   sma->sem_perm.key,
2313 		   sma->sem_perm.id,
2314 		   sma->sem_perm.mode,
2315 		   sma->sem_nsems,
2316 		   from_kuid_munged(user_ns, sma->sem_perm.uid),
2317 		   from_kgid_munged(user_ns, sma->sem_perm.gid),
2318 		   from_kuid_munged(user_ns, sma->sem_perm.cuid),
2319 		   from_kgid_munged(user_ns, sma->sem_perm.cgid),
2320 		   sem_otime,
2321 		   sma->sem_ctime);
2322 
2323 	complexmode_tryleave(sma);
2324 
2325 	return 0;
2326 }
2327 #endif
2328