1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/ipc/sem.c 4 * Copyright (C) 1992 Krishna Balasubramanian 5 * Copyright (C) 1995 Eric Schenk, Bruno Haible 6 * 7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> 8 * 9 * SMP-threaded, sysctl's added 10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com> 11 * Enforced range limit on SEM_UNDO 12 * (c) 2001 Red Hat Inc 13 * Lockless wakeup 14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com> 15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net> 16 * Further wakeup optimizations, documentation 17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com> 18 * 19 * support for audit of ipc object properties and permission changes 20 * Dustin Kirkland <dustin.kirkland@us.ibm.com> 21 * 22 * namespaces support 23 * OpenVZ, SWsoft Inc. 24 * Pavel Emelianov <xemul@openvz.org> 25 * 26 * Implementation notes: (May 2010) 27 * This file implements System V semaphores. 28 * 29 * User space visible behavior: 30 * - FIFO ordering for semop() operations (just FIFO, not starvation 31 * protection) 32 * - multiple semaphore operations that alter the same semaphore in 33 * one semop() are handled. 34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and 35 * SETALL calls. 36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. 37 * - undo adjustments at process exit are limited to 0..SEMVMX. 38 * - namespace are supported. 39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing 40 * to /proc/sys/kernel/sem. 41 * - statistics about the usage are reported in /proc/sysvipc/sem. 42 * 43 * Internals: 44 * - scalability: 45 * - all global variables are read-mostly. 46 * - semop() calls and semctl(RMID) are synchronized by RCU. 47 * - most operations do write operations (actually: spin_lock calls) to 48 * the per-semaphore array structure. 49 * Thus: Perfect SMP scaling between independent semaphore arrays. 50 * If multiple semaphores in one array are used, then cache line 51 * trashing on the semaphore array spinlock will limit the scaling. 52 * - semncnt and semzcnt are calculated on demand in count_semcnt() 53 * - the task that performs a successful semop() scans the list of all 54 * sleeping tasks and completes any pending operations that can be fulfilled. 55 * Semaphores are actively given to waiting tasks (necessary for FIFO). 56 * (see update_queue()) 57 * - To improve the scalability, the actual wake-up calls are performed after 58 * dropping all locks. (see wake_up_sem_queue_prepare()) 59 * - All work is done by the waker, the woken up task does not have to do 60 * anything - not even acquiring a lock or dropping a refcount. 61 * - A woken up task may not even touch the semaphore array anymore, it may 62 * have been destroyed already by a semctl(RMID). 63 * - UNDO values are stored in an array (one per process and per 64 * semaphore array, lazily allocated). For backwards compatibility, multiple 65 * modes for the UNDO variables are supported (per process, per thread) 66 * (see copy_semundo, CLONE_SYSVSEM) 67 * - There are two lists of the pending operations: a per-array list 68 * and per-semaphore list (stored in the array). This allows to achieve FIFO 69 * ordering without always scanning all pending operations. 70 * The worst-case behavior is nevertheless O(N^2) for N wakeups. 71 */ 72 73 #include <linux/slab.h> 74 #include <linux/spinlock.h> 75 #include <linux/init.h> 76 #include <linux/proc_fs.h> 77 #include <linux/time.h> 78 #include <linux/security.h> 79 #include <linux/syscalls.h> 80 #include <linux/audit.h> 81 #include <linux/capability.h> 82 #include <linux/seq_file.h> 83 #include <linux/rwsem.h> 84 #include <linux/nsproxy.h> 85 #include <linux/ipc_namespace.h> 86 #include <linux/sched/wake_q.h> 87 88 #include <linux/uaccess.h> 89 #include "util.h" 90 91 92 /* One queue for each sleeping process in the system. */ 93 struct sem_queue { 94 struct list_head list; /* queue of pending operations */ 95 struct task_struct *sleeper; /* this process */ 96 struct sem_undo *undo; /* undo structure */ 97 int pid; /* process id of requesting process */ 98 int status; /* completion status of operation */ 99 struct sembuf *sops; /* array of pending operations */ 100 struct sembuf *blocking; /* the operation that blocked */ 101 int nsops; /* number of operations */ 102 bool alter; /* does *sops alter the array? */ 103 bool dupsop; /* sops on more than one sem_num */ 104 }; 105 106 /* Each task has a list of undo requests. They are executed automatically 107 * when the process exits. 108 */ 109 struct sem_undo { 110 struct list_head list_proc; /* per-process list: * 111 * all undos from one process 112 * rcu protected */ 113 struct rcu_head rcu; /* rcu struct for sem_undo */ 114 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */ 115 struct list_head list_id; /* per semaphore array list: 116 * all undos for one array */ 117 int semid; /* semaphore set identifier */ 118 short *semadj; /* array of adjustments */ 119 /* one per semaphore */ 120 }; 121 122 /* sem_undo_list controls shared access to the list of sem_undo structures 123 * that may be shared among all a CLONE_SYSVSEM task group. 124 */ 125 struct sem_undo_list { 126 refcount_t refcnt; 127 spinlock_t lock; 128 struct list_head list_proc; 129 }; 130 131 132 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) 133 134 static int newary(struct ipc_namespace *, struct ipc_params *); 135 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); 136 #ifdef CONFIG_PROC_FS 137 static int sysvipc_sem_proc_show(struct seq_file *s, void *it); 138 #endif 139 140 #define SEMMSL_FAST 256 /* 512 bytes on stack */ 141 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ 142 143 /* 144 * Switching from the mode suitable for simple ops 145 * to the mode for complex ops is costly. Therefore: 146 * use some hysteresis 147 */ 148 #define USE_GLOBAL_LOCK_HYSTERESIS 10 149 150 /* 151 * Locking: 152 * a) global sem_lock() for read/write 153 * sem_undo.id_next, 154 * sem_array.complex_count, 155 * sem_array.pending{_alter,_const}, 156 * sem_array.sem_undo 157 * 158 * b) global or semaphore sem_lock() for read/write: 159 * sem_array.sems[i].pending_{const,alter}: 160 * 161 * c) special: 162 * sem_undo_list.list_proc: 163 * * undo_list->lock for write 164 * * rcu for read 165 * use_global_lock: 166 * * global sem_lock() for write 167 * * either local or global sem_lock() for read. 168 * 169 * Memory ordering: 170 * Most ordering is enforced by using spin_lock() and spin_unlock(). 171 * The special case is use_global_lock: 172 * Setting it from non-zero to 0 is a RELEASE, this is ensured by 173 * using smp_store_release(). 174 * Testing if it is non-zero is an ACQUIRE, this is ensured by using 175 * smp_load_acquire(). 176 * Setting it from 0 to non-zero must be ordered with regards to 177 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire() 178 * is inside a spin_lock() and after a write from 0 to non-zero a 179 * spin_lock()+spin_unlock() is done. 180 */ 181 182 #define sc_semmsl sem_ctls[0] 183 #define sc_semmns sem_ctls[1] 184 #define sc_semopm sem_ctls[2] 185 #define sc_semmni sem_ctls[3] 186 187 int sem_init_ns(struct ipc_namespace *ns) 188 { 189 ns->sc_semmsl = SEMMSL; 190 ns->sc_semmns = SEMMNS; 191 ns->sc_semopm = SEMOPM; 192 ns->sc_semmni = SEMMNI; 193 ns->used_sems = 0; 194 return ipc_init_ids(&ns->ids[IPC_SEM_IDS]); 195 } 196 197 #ifdef CONFIG_IPC_NS 198 void sem_exit_ns(struct ipc_namespace *ns) 199 { 200 free_ipcs(ns, &sem_ids(ns), freeary); 201 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); 202 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht); 203 } 204 #endif 205 206 int __init sem_init(void) 207 { 208 const int err = sem_init_ns(&init_ipc_ns); 209 210 ipc_init_proc_interface("sysvipc/sem", 211 " key semid perms nsems uid gid cuid cgid otime ctime\n", 212 IPC_SEM_IDS, sysvipc_sem_proc_show); 213 return err; 214 } 215 216 /** 217 * unmerge_queues - unmerge queues, if possible. 218 * @sma: semaphore array 219 * 220 * The function unmerges the wait queues if complex_count is 0. 221 * It must be called prior to dropping the global semaphore array lock. 222 */ 223 static void unmerge_queues(struct sem_array *sma) 224 { 225 struct sem_queue *q, *tq; 226 227 /* complex operations still around? */ 228 if (sma->complex_count) 229 return; 230 /* 231 * We will switch back to simple mode. 232 * Move all pending operation back into the per-semaphore 233 * queues. 234 */ 235 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 236 struct sem *curr; 237 curr = &sma->sems[q->sops[0].sem_num]; 238 239 list_add_tail(&q->list, &curr->pending_alter); 240 } 241 INIT_LIST_HEAD(&sma->pending_alter); 242 } 243 244 /** 245 * merge_queues - merge single semop queues into global queue 246 * @sma: semaphore array 247 * 248 * This function merges all per-semaphore queues into the global queue. 249 * It is necessary to achieve FIFO ordering for the pending single-sop 250 * operations when a multi-semop operation must sleep. 251 * Only the alter operations must be moved, the const operations can stay. 252 */ 253 static void merge_queues(struct sem_array *sma) 254 { 255 int i; 256 for (i = 0; i < sma->sem_nsems; i++) { 257 struct sem *sem = &sma->sems[i]; 258 259 list_splice_init(&sem->pending_alter, &sma->pending_alter); 260 } 261 } 262 263 static void sem_rcu_free(struct rcu_head *head) 264 { 265 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu); 266 struct sem_array *sma = container_of(p, struct sem_array, sem_perm); 267 268 security_sem_free(sma); 269 kvfree(sma); 270 } 271 272 /* 273 * Enter the mode suitable for non-simple operations: 274 * Caller must own sem_perm.lock. 275 */ 276 static void complexmode_enter(struct sem_array *sma) 277 { 278 int i; 279 struct sem *sem; 280 281 if (sma->use_global_lock > 0) { 282 /* 283 * We are already in global lock mode. 284 * Nothing to do, just reset the 285 * counter until we return to simple mode. 286 */ 287 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; 288 return; 289 } 290 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; 291 292 for (i = 0; i < sma->sem_nsems; i++) { 293 sem = &sma->sems[i]; 294 spin_lock(&sem->lock); 295 spin_unlock(&sem->lock); 296 } 297 } 298 299 /* 300 * Try to leave the mode that disallows simple operations: 301 * Caller must own sem_perm.lock. 302 */ 303 static void complexmode_tryleave(struct sem_array *sma) 304 { 305 if (sma->complex_count) { 306 /* Complex ops are sleeping. 307 * We must stay in complex mode 308 */ 309 return; 310 } 311 if (sma->use_global_lock == 1) { 312 /* 313 * Immediately after setting use_global_lock to 0, 314 * a simple op can start. Thus: all memory writes 315 * performed by the current operation must be visible 316 * before we set use_global_lock to 0. 317 */ 318 smp_store_release(&sma->use_global_lock, 0); 319 } else { 320 sma->use_global_lock--; 321 } 322 } 323 324 #define SEM_GLOBAL_LOCK (-1) 325 /* 326 * If the request contains only one semaphore operation, and there are 327 * no complex transactions pending, lock only the semaphore involved. 328 * Otherwise, lock the entire semaphore array, since we either have 329 * multiple semaphores in our own semops, or we need to look at 330 * semaphores from other pending complex operations. 331 */ 332 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, 333 int nsops) 334 { 335 struct sem *sem; 336 337 if (nsops != 1) { 338 /* Complex operation - acquire a full lock */ 339 ipc_lock_object(&sma->sem_perm); 340 341 /* Prevent parallel simple ops */ 342 complexmode_enter(sma); 343 return SEM_GLOBAL_LOCK; 344 } 345 346 /* 347 * Only one semaphore affected - try to optimize locking. 348 * Optimized locking is possible if no complex operation 349 * is either enqueued or processed right now. 350 * 351 * Both facts are tracked by use_global_mode. 352 */ 353 sem = &sma->sems[sops->sem_num]; 354 355 /* 356 * Initial check for use_global_lock. Just an optimization, 357 * no locking, no memory barrier. 358 */ 359 if (!sma->use_global_lock) { 360 /* 361 * It appears that no complex operation is around. 362 * Acquire the per-semaphore lock. 363 */ 364 spin_lock(&sem->lock); 365 366 /* pairs with smp_store_release() */ 367 if (!smp_load_acquire(&sma->use_global_lock)) { 368 /* fast path successful! */ 369 return sops->sem_num; 370 } 371 spin_unlock(&sem->lock); 372 } 373 374 /* slow path: acquire the full lock */ 375 ipc_lock_object(&sma->sem_perm); 376 377 if (sma->use_global_lock == 0) { 378 /* 379 * The use_global_lock mode ended while we waited for 380 * sma->sem_perm.lock. Thus we must switch to locking 381 * with sem->lock. 382 * Unlike in the fast path, there is no need to recheck 383 * sma->use_global_lock after we have acquired sem->lock: 384 * We own sma->sem_perm.lock, thus use_global_lock cannot 385 * change. 386 */ 387 spin_lock(&sem->lock); 388 389 ipc_unlock_object(&sma->sem_perm); 390 return sops->sem_num; 391 } else { 392 /* 393 * Not a false alarm, thus continue to use the global lock 394 * mode. No need for complexmode_enter(), this was done by 395 * the caller that has set use_global_mode to non-zero. 396 */ 397 return SEM_GLOBAL_LOCK; 398 } 399 } 400 401 static inline void sem_unlock(struct sem_array *sma, int locknum) 402 { 403 if (locknum == SEM_GLOBAL_LOCK) { 404 unmerge_queues(sma); 405 complexmode_tryleave(sma); 406 ipc_unlock_object(&sma->sem_perm); 407 } else { 408 struct sem *sem = &sma->sems[locknum]; 409 spin_unlock(&sem->lock); 410 } 411 } 412 413 /* 414 * sem_lock_(check_) routines are called in the paths where the rwsem 415 * is not held. 416 * 417 * The caller holds the RCU read lock. 418 */ 419 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id) 420 { 421 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); 422 423 if (IS_ERR(ipcp)) 424 return ERR_CAST(ipcp); 425 426 return container_of(ipcp, struct sem_array, sem_perm); 427 } 428 429 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, 430 int id) 431 { 432 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id); 433 434 if (IS_ERR(ipcp)) 435 return ERR_CAST(ipcp); 436 437 return container_of(ipcp, struct sem_array, sem_perm); 438 } 439 440 static inline void sem_lock_and_putref(struct sem_array *sma) 441 { 442 sem_lock(sma, NULL, -1); 443 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 444 } 445 446 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) 447 { 448 ipc_rmid(&sem_ids(ns), &s->sem_perm); 449 } 450 451 static struct sem_array *sem_alloc(size_t nsems) 452 { 453 struct sem_array *sma; 454 size_t size; 455 456 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0])) 457 return NULL; 458 459 size = sizeof(*sma) + nsems * sizeof(sma->sems[0]); 460 sma = kvmalloc(size, GFP_KERNEL); 461 if (unlikely(!sma)) 462 return NULL; 463 464 memset(sma, 0, size); 465 466 return sma; 467 } 468 469 /** 470 * newary - Create a new semaphore set 471 * @ns: namespace 472 * @params: ptr to the structure that contains key, semflg and nsems 473 * 474 * Called with sem_ids.rwsem held (as a writer) 475 */ 476 static int newary(struct ipc_namespace *ns, struct ipc_params *params) 477 { 478 int retval; 479 struct sem_array *sma; 480 key_t key = params->key; 481 int nsems = params->u.nsems; 482 int semflg = params->flg; 483 int i; 484 485 if (!nsems) 486 return -EINVAL; 487 if (ns->used_sems + nsems > ns->sc_semmns) 488 return -ENOSPC; 489 490 sma = sem_alloc(nsems); 491 if (!sma) 492 return -ENOMEM; 493 494 sma->sem_perm.mode = (semflg & S_IRWXUGO); 495 sma->sem_perm.key = key; 496 497 sma->sem_perm.security = NULL; 498 retval = security_sem_alloc(sma); 499 if (retval) { 500 kvfree(sma); 501 return retval; 502 } 503 504 for (i = 0; i < nsems; i++) { 505 INIT_LIST_HEAD(&sma->sems[i].pending_alter); 506 INIT_LIST_HEAD(&sma->sems[i].pending_const); 507 spin_lock_init(&sma->sems[i].lock); 508 } 509 510 sma->complex_count = 0; 511 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; 512 INIT_LIST_HEAD(&sma->pending_alter); 513 INIT_LIST_HEAD(&sma->pending_const); 514 INIT_LIST_HEAD(&sma->list_id); 515 sma->sem_nsems = nsems; 516 sma->sem_ctime = ktime_get_real_seconds(); 517 518 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); 519 if (retval < 0) { 520 call_rcu(&sma->sem_perm.rcu, sem_rcu_free); 521 return retval; 522 } 523 ns->used_sems += nsems; 524 525 sem_unlock(sma, -1); 526 rcu_read_unlock(); 527 528 return sma->sem_perm.id; 529 } 530 531 532 /* 533 * Called with sem_ids.rwsem and ipcp locked. 534 */ 535 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg) 536 { 537 struct sem_array *sma; 538 539 sma = container_of(ipcp, struct sem_array, sem_perm); 540 return security_sem_associate(sma, semflg); 541 } 542 543 /* 544 * Called with sem_ids.rwsem and ipcp locked. 545 */ 546 static inline int sem_more_checks(struct kern_ipc_perm *ipcp, 547 struct ipc_params *params) 548 { 549 struct sem_array *sma; 550 551 sma = container_of(ipcp, struct sem_array, sem_perm); 552 if (params->u.nsems > sma->sem_nsems) 553 return -EINVAL; 554 555 return 0; 556 } 557 558 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) 559 { 560 struct ipc_namespace *ns; 561 static const struct ipc_ops sem_ops = { 562 .getnew = newary, 563 .associate = sem_security, 564 .more_checks = sem_more_checks, 565 }; 566 struct ipc_params sem_params; 567 568 ns = current->nsproxy->ipc_ns; 569 570 if (nsems < 0 || nsems > ns->sc_semmsl) 571 return -EINVAL; 572 573 sem_params.key = key; 574 sem_params.flg = semflg; 575 sem_params.u.nsems = nsems; 576 577 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); 578 } 579 580 /** 581 * perform_atomic_semop[_slow] - Attempt to perform semaphore 582 * operations on a given array. 583 * @sma: semaphore array 584 * @q: struct sem_queue that describes the operation 585 * 586 * Caller blocking are as follows, based the value 587 * indicated by the semaphore operation (sem_op): 588 * 589 * (1) >0 never blocks. 590 * (2) 0 (wait-for-zero operation): semval is non-zero. 591 * (3) <0 attempting to decrement semval to a value smaller than zero. 592 * 593 * Returns 0 if the operation was possible. 594 * Returns 1 if the operation is impossible, the caller must sleep. 595 * Returns <0 for error codes. 596 */ 597 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q) 598 { 599 int result, sem_op, nsops, pid; 600 struct sembuf *sop; 601 struct sem *curr; 602 struct sembuf *sops; 603 struct sem_undo *un; 604 605 sops = q->sops; 606 nsops = q->nsops; 607 un = q->undo; 608 609 for (sop = sops; sop < sops + nsops; sop++) { 610 curr = &sma->sems[sop->sem_num]; 611 sem_op = sop->sem_op; 612 result = curr->semval; 613 614 if (!sem_op && result) 615 goto would_block; 616 617 result += sem_op; 618 if (result < 0) 619 goto would_block; 620 if (result > SEMVMX) 621 goto out_of_range; 622 623 if (sop->sem_flg & SEM_UNDO) { 624 int undo = un->semadj[sop->sem_num] - sem_op; 625 /* Exceeding the undo range is an error. */ 626 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 627 goto out_of_range; 628 un->semadj[sop->sem_num] = undo; 629 } 630 631 curr->semval = result; 632 } 633 634 sop--; 635 pid = q->pid; 636 while (sop >= sops) { 637 sma->sems[sop->sem_num].sempid = pid; 638 sop--; 639 } 640 641 return 0; 642 643 out_of_range: 644 result = -ERANGE; 645 goto undo; 646 647 would_block: 648 q->blocking = sop; 649 650 if (sop->sem_flg & IPC_NOWAIT) 651 result = -EAGAIN; 652 else 653 result = 1; 654 655 undo: 656 sop--; 657 while (sop >= sops) { 658 sem_op = sop->sem_op; 659 sma->sems[sop->sem_num].semval -= sem_op; 660 if (sop->sem_flg & SEM_UNDO) 661 un->semadj[sop->sem_num] += sem_op; 662 sop--; 663 } 664 665 return result; 666 } 667 668 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q) 669 { 670 int result, sem_op, nsops; 671 struct sembuf *sop; 672 struct sem *curr; 673 struct sembuf *sops; 674 struct sem_undo *un; 675 676 sops = q->sops; 677 nsops = q->nsops; 678 un = q->undo; 679 680 if (unlikely(q->dupsop)) 681 return perform_atomic_semop_slow(sma, q); 682 683 /* 684 * We scan the semaphore set twice, first to ensure that the entire 685 * operation can succeed, therefore avoiding any pointless writes 686 * to shared memory and having to undo such changes in order to block 687 * until the operations can go through. 688 */ 689 for (sop = sops; sop < sops + nsops; sop++) { 690 curr = &sma->sems[sop->sem_num]; 691 sem_op = sop->sem_op; 692 result = curr->semval; 693 694 if (!sem_op && result) 695 goto would_block; /* wait-for-zero */ 696 697 result += sem_op; 698 if (result < 0) 699 goto would_block; 700 701 if (result > SEMVMX) 702 return -ERANGE; 703 704 if (sop->sem_flg & SEM_UNDO) { 705 int undo = un->semadj[sop->sem_num] - sem_op; 706 707 /* Exceeding the undo range is an error. */ 708 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 709 return -ERANGE; 710 } 711 } 712 713 for (sop = sops; sop < sops + nsops; sop++) { 714 curr = &sma->sems[sop->sem_num]; 715 sem_op = sop->sem_op; 716 result = curr->semval; 717 718 if (sop->sem_flg & SEM_UNDO) { 719 int undo = un->semadj[sop->sem_num] - sem_op; 720 721 un->semadj[sop->sem_num] = undo; 722 } 723 curr->semval += sem_op; 724 curr->sempid = q->pid; 725 } 726 727 return 0; 728 729 would_block: 730 q->blocking = sop; 731 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1; 732 } 733 734 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error, 735 struct wake_q_head *wake_q) 736 { 737 wake_q_add(wake_q, q->sleeper); 738 /* 739 * Rely on the above implicit barrier, such that we can 740 * ensure that we hold reference to the task before setting 741 * q->status. Otherwise we could race with do_exit if the 742 * task is awoken by an external event before calling 743 * wake_up_process(). 744 */ 745 WRITE_ONCE(q->status, error); 746 } 747 748 static void unlink_queue(struct sem_array *sma, struct sem_queue *q) 749 { 750 list_del(&q->list); 751 if (q->nsops > 1) 752 sma->complex_count--; 753 } 754 755 /** check_restart(sma, q) 756 * @sma: semaphore array 757 * @q: the operation that just completed 758 * 759 * update_queue is O(N^2) when it restarts scanning the whole queue of 760 * waiting operations. Therefore this function checks if the restart is 761 * really necessary. It is called after a previously waiting operation 762 * modified the array. 763 * Note that wait-for-zero operations are handled without restart. 764 */ 765 static inline int check_restart(struct sem_array *sma, struct sem_queue *q) 766 { 767 /* pending complex alter operations are too difficult to analyse */ 768 if (!list_empty(&sma->pending_alter)) 769 return 1; 770 771 /* we were a sleeping complex operation. Too difficult */ 772 if (q->nsops > 1) 773 return 1; 774 775 /* It is impossible that someone waits for the new value: 776 * - complex operations always restart. 777 * - wait-for-zero are handled seperately. 778 * - q is a previously sleeping simple operation that 779 * altered the array. It must be a decrement, because 780 * simple increments never sleep. 781 * - If there are older (higher priority) decrements 782 * in the queue, then they have observed the original 783 * semval value and couldn't proceed. The operation 784 * decremented to value - thus they won't proceed either. 785 */ 786 return 0; 787 } 788 789 /** 790 * wake_const_ops - wake up non-alter tasks 791 * @sma: semaphore array. 792 * @semnum: semaphore that was modified. 793 * @wake_q: lockless wake-queue head. 794 * 795 * wake_const_ops must be called after a semaphore in a semaphore array 796 * was set to 0. If complex const operations are pending, wake_const_ops must 797 * be called with semnum = -1, as well as with the number of each modified 798 * semaphore. 799 * The tasks that must be woken up are added to @wake_q. The return code 800 * is stored in q->pid. 801 * The function returns 1 if at least one operation was completed successfully. 802 */ 803 static int wake_const_ops(struct sem_array *sma, int semnum, 804 struct wake_q_head *wake_q) 805 { 806 struct sem_queue *q, *tmp; 807 struct list_head *pending_list; 808 int semop_completed = 0; 809 810 if (semnum == -1) 811 pending_list = &sma->pending_const; 812 else 813 pending_list = &sma->sems[semnum].pending_const; 814 815 list_for_each_entry_safe(q, tmp, pending_list, list) { 816 int error = perform_atomic_semop(sma, q); 817 818 if (error > 0) 819 continue; 820 /* operation completed, remove from queue & wakeup */ 821 unlink_queue(sma, q); 822 823 wake_up_sem_queue_prepare(q, error, wake_q); 824 if (error == 0) 825 semop_completed = 1; 826 } 827 828 return semop_completed; 829 } 830 831 /** 832 * do_smart_wakeup_zero - wakeup all wait for zero tasks 833 * @sma: semaphore array 834 * @sops: operations that were performed 835 * @nsops: number of operations 836 * @wake_q: lockless wake-queue head 837 * 838 * Checks all required queue for wait-for-zero operations, based 839 * on the actual changes that were performed on the semaphore array. 840 * The function returns 1 if at least one operation was completed successfully. 841 */ 842 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops, 843 int nsops, struct wake_q_head *wake_q) 844 { 845 int i; 846 int semop_completed = 0; 847 int got_zero = 0; 848 849 /* first: the per-semaphore queues, if known */ 850 if (sops) { 851 for (i = 0; i < nsops; i++) { 852 int num = sops[i].sem_num; 853 854 if (sma->sems[num].semval == 0) { 855 got_zero = 1; 856 semop_completed |= wake_const_ops(sma, num, wake_q); 857 } 858 } 859 } else { 860 /* 861 * No sops means modified semaphores not known. 862 * Assume all were changed. 863 */ 864 for (i = 0; i < sma->sem_nsems; i++) { 865 if (sma->sems[i].semval == 0) { 866 got_zero = 1; 867 semop_completed |= wake_const_ops(sma, i, wake_q); 868 } 869 } 870 } 871 /* 872 * If one of the modified semaphores got 0, 873 * then check the global queue, too. 874 */ 875 if (got_zero) 876 semop_completed |= wake_const_ops(sma, -1, wake_q); 877 878 return semop_completed; 879 } 880 881 882 /** 883 * update_queue - look for tasks that can be completed. 884 * @sma: semaphore array. 885 * @semnum: semaphore that was modified. 886 * @wake_q: lockless wake-queue head. 887 * 888 * update_queue must be called after a semaphore in a semaphore array 889 * was modified. If multiple semaphores were modified, update_queue must 890 * be called with semnum = -1, as well as with the number of each modified 891 * semaphore. 892 * The tasks that must be woken up are added to @wake_q. The return code 893 * is stored in q->pid. 894 * The function internally checks if const operations can now succeed. 895 * 896 * The function return 1 if at least one semop was completed successfully. 897 */ 898 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q) 899 { 900 struct sem_queue *q, *tmp; 901 struct list_head *pending_list; 902 int semop_completed = 0; 903 904 if (semnum == -1) 905 pending_list = &sma->pending_alter; 906 else 907 pending_list = &sma->sems[semnum].pending_alter; 908 909 again: 910 list_for_each_entry_safe(q, tmp, pending_list, list) { 911 int error, restart; 912 913 /* If we are scanning the single sop, per-semaphore list of 914 * one semaphore and that semaphore is 0, then it is not 915 * necessary to scan further: simple increments 916 * that affect only one entry succeed immediately and cannot 917 * be in the per semaphore pending queue, and decrements 918 * cannot be successful if the value is already 0. 919 */ 920 if (semnum != -1 && sma->sems[semnum].semval == 0) 921 break; 922 923 error = perform_atomic_semop(sma, q); 924 925 /* Does q->sleeper still need to sleep? */ 926 if (error > 0) 927 continue; 928 929 unlink_queue(sma, q); 930 931 if (error) { 932 restart = 0; 933 } else { 934 semop_completed = 1; 935 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q); 936 restart = check_restart(sma, q); 937 } 938 939 wake_up_sem_queue_prepare(q, error, wake_q); 940 if (restart) 941 goto again; 942 } 943 return semop_completed; 944 } 945 946 /** 947 * set_semotime - set sem_otime 948 * @sma: semaphore array 949 * @sops: operations that modified the array, may be NULL 950 * 951 * sem_otime is replicated to avoid cache line trashing. 952 * This function sets one instance to the current time. 953 */ 954 static void set_semotime(struct sem_array *sma, struct sembuf *sops) 955 { 956 if (sops == NULL) { 957 sma->sems[0].sem_otime = get_seconds(); 958 } else { 959 sma->sems[sops[0].sem_num].sem_otime = 960 get_seconds(); 961 } 962 } 963 964 /** 965 * do_smart_update - optimized update_queue 966 * @sma: semaphore array 967 * @sops: operations that were performed 968 * @nsops: number of operations 969 * @otime: force setting otime 970 * @wake_q: lockless wake-queue head 971 * 972 * do_smart_update() does the required calls to update_queue and wakeup_zero, 973 * based on the actual changes that were performed on the semaphore array. 974 * Note that the function does not do the actual wake-up: the caller is 975 * responsible for calling wake_up_q(). 976 * It is safe to perform this call after dropping all locks. 977 */ 978 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, 979 int otime, struct wake_q_head *wake_q) 980 { 981 int i; 982 983 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q); 984 985 if (!list_empty(&sma->pending_alter)) { 986 /* semaphore array uses the global queue - just process it. */ 987 otime |= update_queue(sma, -1, wake_q); 988 } else { 989 if (!sops) { 990 /* 991 * No sops, thus the modified semaphores are not 992 * known. Check all. 993 */ 994 for (i = 0; i < sma->sem_nsems; i++) 995 otime |= update_queue(sma, i, wake_q); 996 } else { 997 /* 998 * Check the semaphores that were increased: 999 * - No complex ops, thus all sleeping ops are 1000 * decrease. 1001 * - if we decreased the value, then any sleeping 1002 * semaphore ops wont be able to run: If the 1003 * previous value was too small, then the new 1004 * value will be too small, too. 1005 */ 1006 for (i = 0; i < nsops; i++) { 1007 if (sops[i].sem_op > 0) { 1008 otime |= update_queue(sma, 1009 sops[i].sem_num, wake_q); 1010 } 1011 } 1012 } 1013 } 1014 if (otime) 1015 set_semotime(sma, sops); 1016 } 1017 1018 /* 1019 * check_qop: Test if a queued operation sleeps on the semaphore semnum 1020 */ 1021 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q, 1022 bool count_zero) 1023 { 1024 struct sembuf *sop = q->blocking; 1025 1026 /* 1027 * Linux always (since 0.99.10) reported a task as sleeping on all 1028 * semaphores. This violates SUS, therefore it was changed to the 1029 * standard compliant behavior. 1030 * Give the administrators a chance to notice that an application 1031 * might misbehave because it relies on the Linux behavior. 1032 */ 1033 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n" 1034 "The task %s (%d) triggered the difference, watch for misbehavior.\n", 1035 current->comm, task_pid_nr(current)); 1036 1037 if (sop->sem_num != semnum) 1038 return 0; 1039 1040 if (count_zero && sop->sem_op == 0) 1041 return 1; 1042 if (!count_zero && sop->sem_op < 0) 1043 return 1; 1044 1045 return 0; 1046 } 1047 1048 /* The following counts are associated to each semaphore: 1049 * semncnt number of tasks waiting on semval being nonzero 1050 * semzcnt number of tasks waiting on semval being zero 1051 * 1052 * Per definition, a task waits only on the semaphore of the first semop 1053 * that cannot proceed, even if additional operation would block, too. 1054 */ 1055 static int count_semcnt(struct sem_array *sma, ushort semnum, 1056 bool count_zero) 1057 { 1058 struct list_head *l; 1059 struct sem_queue *q; 1060 int semcnt; 1061 1062 semcnt = 0; 1063 /* First: check the simple operations. They are easy to evaluate */ 1064 if (count_zero) 1065 l = &sma->sems[semnum].pending_const; 1066 else 1067 l = &sma->sems[semnum].pending_alter; 1068 1069 list_for_each_entry(q, l, list) { 1070 /* all task on a per-semaphore list sleep on exactly 1071 * that semaphore 1072 */ 1073 semcnt++; 1074 } 1075 1076 /* Then: check the complex operations. */ 1077 list_for_each_entry(q, &sma->pending_alter, list) { 1078 semcnt += check_qop(sma, semnum, q, count_zero); 1079 } 1080 if (count_zero) { 1081 list_for_each_entry(q, &sma->pending_const, list) { 1082 semcnt += check_qop(sma, semnum, q, count_zero); 1083 } 1084 } 1085 return semcnt; 1086 } 1087 1088 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked 1089 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem 1090 * remains locked on exit. 1091 */ 1092 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) 1093 { 1094 struct sem_undo *un, *tu; 1095 struct sem_queue *q, *tq; 1096 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 1097 int i; 1098 DEFINE_WAKE_Q(wake_q); 1099 1100 /* Free the existing undo structures for this semaphore set. */ 1101 ipc_assert_locked_object(&sma->sem_perm); 1102 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { 1103 list_del(&un->list_id); 1104 spin_lock(&un->ulp->lock); 1105 un->semid = -1; 1106 list_del_rcu(&un->list_proc); 1107 spin_unlock(&un->ulp->lock); 1108 kfree_rcu(un, rcu); 1109 } 1110 1111 /* Wake up all pending processes and let them fail with EIDRM. */ 1112 list_for_each_entry_safe(q, tq, &sma->pending_const, list) { 1113 unlink_queue(sma, q); 1114 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1115 } 1116 1117 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 1118 unlink_queue(sma, q); 1119 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1120 } 1121 for (i = 0; i < sma->sem_nsems; i++) { 1122 struct sem *sem = &sma->sems[i]; 1123 list_for_each_entry_safe(q, tq, &sem->pending_const, list) { 1124 unlink_queue(sma, q); 1125 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1126 } 1127 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) { 1128 unlink_queue(sma, q); 1129 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1130 } 1131 } 1132 1133 /* Remove the semaphore set from the IDR */ 1134 sem_rmid(ns, sma); 1135 sem_unlock(sma, -1); 1136 rcu_read_unlock(); 1137 1138 wake_up_q(&wake_q); 1139 ns->used_sems -= sma->sem_nsems; 1140 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1141 } 1142 1143 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) 1144 { 1145 switch (version) { 1146 case IPC_64: 1147 return copy_to_user(buf, in, sizeof(*in)); 1148 case IPC_OLD: 1149 { 1150 struct semid_ds out; 1151 1152 memset(&out, 0, sizeof(out)); 1153 1154 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); 1155 1156 out.sem_otime = in->sem_otime; 1157 out.sem_ctime = in->sem_ctime; 1158 out.sem_nsems = in->sem_nsems; 1159 1160 return copy_to_user(buf, &out, sizeof(out)); 1161 } 1162 default: 1163 return -EINVAL; 1164 } 1165 } 1166 1167 static time64_t get_semotime(struct sem_array *sma) 1168 { 1169 int i; 1170 time64_t res; 1171 1172 res = sma->sems[0].sem_otime; 1173 for (i = 1; i < sma->sem_nsems; i++) { 1174 time64_t to = sma->sems[i].sem_otime; 1175 1176 if (to > res) 1177 res = to; 1178 } 1179 return res; 1180 } 1181 1182 static int semctl_stat(struct ipc_namespace *ns, int semid, 1183 int cmd, struct semid64_ds *semid64) 1184 { 1185 struct sem_array *sma; 1186 int id = 0; 1187 int err; 1188 1189 memset(semid64, 0, sizeof(*semid64)); 1190 1191 rcu_read_lock(); 1192 if (cmd == SEM_STAT) { 1193 sma = sem_obtain_object(ns, semid); 1194 if (IS_ERR(sma)) { 1195 err = PTR_ERR(sma); 1196 goto out_unlock; 1197 } 1198 id = sma->sem_perm.id; 1199 } else { 1200 sma = sem_obtain_object_check(ns, semid); 1201 if (IS_ERR(sma)) { 1202 err = PTR_ERR(sma); 1203 goto out_unlock; 1204 } 1205 } 1206 1207 err = -EACCES; 1208 if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) 1209 goto out_unlock; 1210 1211 err = security_sem_semctl(sma, cmd); 1212 if (err) 1213 goto out_unlock; 1214 1215 kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm); 1216 semid64->sem_otime = get_semotime(sma); 1217 semid64->sem_ctime = sma->sem_ctime; 1218 semid64->sem_nsems = sma->sem_nsems; 1219 rcu_read_unlock(); 1220 return id; 1221 1222 out_unlock: 1223 rcu_read_unlock(); 1224 return err; 1225 } 1226 1227 static int semctl_info(struct ipc_namespace *ns, int semid, 1228 int cmd, void __user *p) 1229 { 1230 struct seminfo seminfo; 1231 int max_id; 1232 int err; 1233 1234 err = security_sem_semctl(NULL, cmd); 1235 if (err) 1236 return err; 1237 1238 memset(&seminfo, 0, sizeof(seminfo)); 1239 seminfo.semmni = ns->sc_semmni; 1240 seminfo.semmns = ns->sc_semmns; 1241 seminfo.semmsl = ns->sc_semmsl; 1242 seminfo.semopm = ns->sc_semopm; 1243 seminfo.semvmx = SEMVMX; 1244 seminfo.semmnu = SEMMNU; 1245 seminfo.semmap = SEMMAP; 1246 seminfo.semume = SEMUME; 1247 down_read(&sem_ids(ns).rwsem); 1248 if (cmd == SEM_INFO) { 1249 seminfo.semusz = sem_ids(ns).in_use; 1250 seminfo.semaem = ns->used_sems; 1251 } else { 1252 seminfo.semusz = SEMUSZ; 1253 seminfo.semaem = SEMAEM; 1254 } 1255 max_id = ipc_get_maxid(&sem_ids(ns)); 1256 up_read(&sem_ids(ns).rwsem); 1257 if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) 1258 return -EFAULT; 1259 return (max_id < 0) ? 0 : max_id; 1260 } 1261 1262 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, 1263 int val) 1264 { 1265 struct sem_undo *un; 1266 struct sem_array *sma; 1267 struct sem *curr; 1268 int err; 1269 DEFINE_WAKE_Q(wake_q); 1270 1271 if (val > SEMVMX || val < 0) 1272 return -ERANGE; 1273 1274 rcu_read_lock(); 1275 sma = sem_obtain_object_check(ns, semid); 1276 if (IS_ERR(sma)) { 1277 rcu_read_unlock(); 1278 return PTR_ERR(sma); 1279 } 1280 1281 if (semnum < 0 || semnum >= sma->sem_nsems) { 1282 rcu_read_unlock(); 1283 return -EINVAL; 1284 } 1285 1286 1287 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) { 1288 rcu_read_unlock(); 1289 return -EACCES; 1290 } 1291 1292 err = security_sem_semctl(sma, SETVAL); 1293 if (err) { 1294 rcu_read_unlock(); 1295 return -EACCES; 1296 } 1297 1298 sem_lock(sma, NULL, -1); 1299 1300 if (!ipc_valid_object(&sma->sem_perm)) { 1301 sem_unlock(sma, -1); 1302 rcu_read_unlock(); 1303 return -EIDRM; 1304 } 1305 1306 curr = &sma->sems[semnum]; 1307 1308 ipc_assert_locked_object(&sma->sem_perm); 1309 list_for_each_entry(un, &sma->list_id, list_id) 1310 un->semadj[semnum] = 0; 1311 1312 curr->semval = val; 1313 curr->sempid = task_tgid_vnr(current); 1314 sma->sem_ctime = ktime_get_real_seconds(); 1315 /* maybe some queued-up processes were waiting for this */ 1316 do_smart_update(sma, NULL, 0, 0, &wake_q); 1317 sem_unlock(sma, -1); 1318 rcu_read_unlock(); 1319 wake_up_q(&wake_q); 1320 return 0; 1321 } 1322 1323 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, 1324 int cmd, void __user *p) 1325 { 1326 struct sem_array *sma; 1327 struct sem *curr; 1328 int err, nsems; 1329 ushort fast_sem_io[SEMMSL_FAST]; 1330 ushort *sem_io = fast_sem_io; 1331 DEFINE_WAKE_Q(wake_q); 1332 1333 rcu_read_lock(); 1334 sma = sem_obtain_object_check(ns, semid); 1335 if (IS_ERR(sma)) { 1336 rcu_read_unlock(); 1337 return PTR_ERR(sma); 1338 } 1339 1340 nsems = sma->sem_nsems; 1341 1342 err = -EACCES; 1343 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO)) 1344 goto out_rcu_wakeup; 1345 1346 err = security_sem_semctl(sma, cmd); 1347 if (err) 1348 goto out_rcu_wakeup; 1349 1350 err = -EACCES; 1351 switch (cmd) { 1352 case GETALL: 1353 { 1354 ushort __user *array = p; 1355 int i; 1356 1357 sem_lock(sma, NULL, -1); 1358 if (!ipc_valid_object(&sma->sem_perm)) { 1359 err = -EIDRM; 1360 goto out_unlock; 1361 } 1362 if (nsems > SEMMSL_FAST) { 1363 if (!ipc_rcu_getref(&sma->sem_perm)) { 1364 err = -EIDRM; 1365 goto out_unlock; 1366 } 1367 sem_unlock(sma, -1); 1368 rcu_read_unlock(); 1369 sem_io = kvmalloc_array(nsems, sizeof(ushort), 1370 GFP_KERNEL); 1371 if (sem_io == NULL) { 1372 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1373 return -ENOMEM; 1374 } 1375 1376 rcu_read_lock(); 1377 sem_lock_and_putref(sma); 1378 if (!ipc_valid_object(&sma->sem_perm)) { 1379 err = -EIDRM; 1380 goto out_unlock; 1381 } 1382 } 1383 for (i = 0; i < sma->sem_nsems; i++) 1384 sem_io[i] = sma->sems[i].semval; 1385 sem_unlock(sma, -1); 1386 rcu_read_unlock(); 1387 err = 0; 1388 if (copy_to_user(array, sem_io, nsems*sizeof(ushort))) 1389 err = -EFAULT; 1390 goto out_free; 1391 } 1392 case SETALL: 1393 { 1394 int i; 1395 struct sem_undo *un; 1396 1397 if (!ipc_rcu_getref(&sma->sem_perm)) { 1398 err = -EIDRM; 1399 goto out_rcu_wakeup; 1400 } 1401 rcu_read_unlock(); 1402 1403 if (nsems > SEMMSL_FAST) { 1404 sem_io = kvmalloc_array(nsems, sizeof(ushort), 1405 GFP_KERNEL); 1406 if (sem_io == NULL) { 1407 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1408 return -ENOMEM; 1409 } 1410 } 1411 1412 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) { 1413 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1414 err = -EFAULT; 1415 goto out_free; 1416 } 1417 1418 for (i = 0; i < nsems; i++) { 1419 if (sem_io[i] > SEMVMX) { 1420 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1421 err = -ERANGE; 1422 goto out_free; 1423 } 1424 } 1425 rcu_read_lock(); 1426 sem_lock_and_putref(sma); 1427 if (!ipc_valid_object(&sma->sem_perm)) { 1428 err = -EIDRM; 1429 goto out_unlock; 1430 } 1431 1432 for (i = 0; i < nsems; i++) { 1433 sma->sems[i].semval = sem_io[i]; 1434 sma->sems[i].sempid = task_tgid_vnr(current); 1435 } 1436 1437 ipc_assert_locked_object(&sma->sem_perm); 1438 list_for_each_entry(un, &sma->list_id, list_id) { 1439 for (i = 0; i < nsems; i++) 1440 un->semadj[i] = 0; 1441 } 1442 sma->sem_ctime = ktime_get_real_seconds(); 1443 /* maybe some queued-up processes were waiting for this */ 1444 do_smart_update(sma, NULL, 0, 0, &wake_q); 1445 err = 0; 1446 goto out_unlock; 1447 } 1448 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */ 1449 } 1450 err = -EINVAL; 1451 if (semnum < 0 || semnum >= nsems) 1452 goto out_rcu_wakeup; 1453 1454 sem_lock(sma, NULL, -1); 1455 if (!ipc_valid_object(&sma->sem_perm)) { 1456 err = -EIDRM; 1457 goto out_unlock; 1458 } 1459 curr = &sma->sems[semnum]; 1460 1461 switch (cmd) { 1462 case GETVAL: 1463 err = curr->semval; 1464 goto out_unlock; 1465 case GETPID: 1466 err = curr->sempid; 1467 goto out_unlock; 1468 case GETNCNT: 1469 err = count_semcnt(sma, semnum, 0); 1470 goto out_unlock; 1471 case GETZCNT: 1472 err = count_semcnt(sma, semnum, 1); 1473 goto out_unlock; 1474 } 1475 1476 out_unlock: 1477 sem_unlock(sma, -1); 1478 out_rcu_wakeup: 1479 rcu_read_unlock(); 1480 wake_up_q(&wake_q); 1481 out_free: 1482 if (sem_io != fast_sem_io) 1483 kvfree(sem_io); 1484 return err; 1485 } 1486 1487 static inline unsigned long 1488 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) 1489 { 1490 switch (version) { 1491 case IPC_64: 1492 if (copy_from_user(out, buf, sizeof(*out))) 1493 return -EFAULT; 1494 return 0; 1495 case IPC_OLD: 1496 { 1497 struct semid_ds tbuf_old; 1498 1499 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) 1500 return -EFAULT; 1501 1502 out->sem_perm.uid = tbuf_old.sem_perm.uid; 1503 out->sem_perm.gid = tbuf_old.sem_perm.gid; 1504 out->sem_perm.mode = tbuf_old.sem_perm.mode; 1505 1506 return 0; 1507 } 1508 default: 1509 return -EINVAL; 1510 } 1511 } 1512 1513 /* 1514 * This function handles some semctl commands which require the rwsem 1515 * to be held in write mode. 1516 * NOTE: no locks must be held, the rwsem is taken inside this function. 1517 */ 1518 static int semctl_down(struct ipc_namespace *ns, int semid, 1519 int cmd, struct semid64_ds *semid64) 1520 { 1521 struct sem_array *sma; 1522 int err; 1523 struct kern_ipc_perm *ipcp; 1524 1525 down_write(&sem_ids(ns).rwsem); 1526 rcu_read_lock(); 1527 1528 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd, 1529 &semid64->sem_perm, 0); 1530 if (IS_ERR(ipcp)) { 1531 err = PTR_ERR(ipcp); 1532 goto out_unlock1; 1533 } 1534 1535 sma = container_of(ipcp, struct sem_array, sem_perm); 1536 1537 err = security_sem_semctl(sma, cmd); 1538 if (err) 1539 goto out_unlock1; 1540 1541 switch (cmd) { 1542 case IPC_RMID: 1543 sem_lock(sma, NULL, -1); 1544 /* freeary unlocks the ipc object and rcu */ 1545 freeary(ns, ipcp); 1546 goto out_up; 1547 case IPC_SET: 1548 sem_lock(sma, NULL, -1); 1549 err = ipc_update_perm(&semid64->sem_perm, ipcp); 1550 if (err) 1551 goto out_unlock0; 1552 sma->sem_ctime = ktime_get_real_seconds(); 1553 break; 1554 default: 1555 err = -EINVAL; 1556 goto out_unlock1; 1557 } 1558 1559 out_unlock0: 1560 sem_unlock(sma, -1); 1561 out_unlock1: 1562 rcu_read_unlock(); 1563 out_up: 1564 up_write(&sem_ids(ns).rwsem); 1565 return err; 1566 } 1567 1568 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) 1569 { 1570 int version; 1571 struct ipc_namespace *ns; 1572 void __user *p = (void __user *)arg; 1573 struct semid64_ds semid64; 1574 int err; 1575 1576 if (semid < 0) 1577 return -EINVAL; 1578 1579 version = ipc_parse_version(&cmd); 1580 ns = current->nsproxy->ipc_ns; 1581 1582 switch (cmd) { 1583 case IPC_INFO: 1584 case SEM_INFO: 1585 return semctl_info(ns, semid, cmd, p); 1586 case IPC_STAT: 1587 case SEM_STAT: 1588 err = semctl_stat(ns, semid, cmd, &semid64); 1589 if (err < 0) 1590 return err; 1591 if (copy_semid_to_user(p, &semid64, version)) 1592 err = -EFAULT; 1593 return err; 1594 case GETALL: 1595 case GETVAL: 1596 case GETPID: 1597 case GETNCNT: 1598 case GETZCNT: 1599 case SETALL: 1600 return semctl_main(ns, semid, semnum, cmd, p); 1601 case SETVAL: { 1602 int val; 1603 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) 1604 /* big-endian 64bit */ 1605 val = arg >> 32; 1606 #else 1607 /* 32bit or little-endian 64bit */ 1608 val = arg; 1609 #endif 1610 return semctl_setval(ns, semid, semnum, val); 1611 } 1612 case IPC_SET: 1613 if (copy_semid_from_user(&semid64, p, version)) 1614 return -EFAULT; 1615 case IPC_RMID: 1616 return semctl_down(ns, semid, cmd, &semid64); 1617 default: 1618 return -EINVAL; 1619 } 1620 } 1621 1622 #ifdef CONFIG_COMPAT 1623 1624 struct compat_semid_ds { 1625 struct compat_ipc_perm sem_perm; 1626 compat_time_t sem_otime; 1627 compat_time_t sem_ctime; 1628 compat_uptr_t sem_base; 1629 compat_uptr_t sem_pending; 1630 compat_uptr_t sem_pending_last; 1631 compat_uptr_t undo; 1632 unsigned short sem_nsems; 1633 }; 1634 1635 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf, 1636 int version) 1637 { 1638 memset(out, 0, sizeof(*out)); 1639 if (version == IPC_64) { 1640 struct compat_semid64_ds *p = buf; 1641 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm); 1642 } else { 1643 struct compat_semid_ds *p = buf; 1644 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm); 1645 } 1646 } 1647 1648 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in, 1649 int version) 1650 { 1651 if (version == IPC_64) { 1652 struct compat_semid64_ds v; 1653 memset(&v, 0, sizeof(v)); 1654 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm); 1655 v.sem_otime = in->sem_otime; 1656 v.sem_ctime = in->sem_ctime; 1657 v.sem_nsems = in->sem_nsems; 1658 return copy_to_user(buf, &v, sizeof(v)); 1659 } else { 1660 struct compat_semid_ds v; 1661 memset(&v, 0, sizeof(v)); 1662 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm); 1663 v.sem_otime = in->sem_otime; 1664 v.sem_ctime = in->sem_ctime; 1665 v.sem_nsems = in->sem_nsems; 1666 return copy_to_user(buf, &v, sizeof(v)); 1667 } 1668 } 1669 1670 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg) 1671 { 1672 void __user *p = compat_ptr(arg); 1673 struct ipc_namespace *ns; 1674 struct semid64_ds semid64; 1675 int version = compat_ipc_parse_version(&cmd); 1676 int err; 1677 1678 ns = current->nsproxy->ipc_ns; 1679 1680 if (semid < 0) 1681 return -EINVAL; 1682 1683 switch (cmd & (~IPC_64)) { 1684 case IPC_INFO: 1685 case SEM_INFO: 1686 return semctl_info(ns, semid, cmd, p); 1687 case IPC_STAT: 1688 case SEM_STAT: 1689 err = semctl_stat(ns, semid, cmd, &semid64); 1690 if (err < 0) 1691 return err; 1692 if (copy_compat_semid_to_user(p, &semid64, version)) 1693 err = -EFAULT; 1694 return err; 1695 case GETVAL: 1696 case GETPID: 1697 case GETNCNT: 1698 case GETZCNT: 1699 case GETALL: 1700 case SETALL: 1701 return semctl_main(ns, semid, semnum, cmd, p); 1702 case SETVAL: 1703 return semctl_setval(ns, semid, semnum, arg); 1704 case IPC_SET: 1705 if (copy_compat_semid_from_user(&semid64, p, version)) 1706 return -EFAULT; 1707 /* fallthru */ 1708 case IPC_RMID: 1709 return semctl_down(ns, semid, cmd, &semid64); 1710 default: 1711 return -EINVAL; 1712 } 1713 } 1714 #endif 1715 1716 /* If the task doesn't already have a undo_list, then allocate one 1717 * here. We guarantee there is only one thread using this undo list, 1718 * and current is THE ONE 1719 * 1720 * If this allocation and assignment succeeds, but later 1721 * portions of this code fail, there is no need to free the sem_undo_list. 1722 * Just let it stay associated with the task, and it'll be freed later 1723 * at exit time. 1724 * 1725 * This can block, so callers must hold no locks. 1726 */ 1727 static inline int get_undo_list(struct sem_undo_list **undo_listp) 1728 { 1729 struct sem_undo_list *undo_list; 1730 1731 undo_list = current->sysvsem.undo_list; 1732 if (!undo_list) { 1733 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); 1734 if (undo_list == NULL) 1735 return -ENOMEM; 1736 spin_lock_init(&undo_list->lock); 1737 refcount_set(&undo_list->refcnt, 1); 1738 INIT_LIST_HEAD(&undo_list->list_proc); 1739 1740 current->sysvsem.undo_list = undo_list; 1741 } 1742 *undo_listp = undo_list; 1743 return 0; 1744 } 1745 1746 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) 1747 { 1748 struct sem_undo *un; 1749 1750 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) { 1751 if (un->semid == semid) 1752 return un; 1753 } 1754 return NULL; 1755 } 1756 1757 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) 1758 { 1759 struct sem_undo *un; 1760 1761 assert_spin_locked(&ulp->lock); 1762 1763 un = __lookup_undo(ulp, semid); 1764 if (un) { 1765 list_del_rcu(&un->list_proc); 1766 list_add_rcu(&un->list_proc, &ulp->list_proc); 1767 } 1768 return un; 1769 } 1770 1771 /** 1772 * find_alloc_undo - lookup (and if not present create) undo array 1773 * @ns: namespace 1774 * @semid: semaphore array id 1775 * 1776 * The function looks up (and if not present creates) the undo structure. 1777 * The size of the undo structure depends on the size of the semaphore 1778 * array, thus the alloc path is not that straightforward. 1779 * Lifetime-rules: sem_undo is rcu-protected, on success, the function 1780 * performs a rcu_read_lock(). 1781 */ 1782 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) 1783 { 1784 struct sem_array *sma; 1785 struct sem_undo_list *ulp; 1786 struct sem_undo *un, *new; 1787 int nsems, error; 1788 1789 error = get_undo_list(&ulp); 1790 if (error) 1791 return ERR_PTR(error); 1792 1793 rcu_read_lock(); 1794 spin_lock(&ulp->lock); 1795 un = lookup_undo(ulp, semid); 1796 spin_unlock(&ulp->lock); 1797 if (likely(un != NULL)) 1798 goto out; 1799 1800 /* no undo structure around - allocate one. */ 1801 /* step 1: figure out the size of the semaphore array */ 1802 sma = sem_obtain_object_check(ns, semid); 1803 if (IS_ERR(sma)) { 1804 rcu_read_unlock(); 1805 return ERR_CAST(sma); 1806 } 1807 1808 nsems = sma->sem_nsems; 1809 if (!ipc_rcu_getref(&sma->sem_perm)) { 1810 rcu_read_unlock(); 1811 un = ERR_PTR(-EIDRM); 1812 goto out; 1813 } 1814 rcu_read_unlock(); 1815 1816 /* step 2: allocate new undo structure */ 1817 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); 1818 if (!new) { 1819 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1820 return ERR_PTR(-ENOMEM); 1821 } 1822 1823 /* step 3: Acquire the lock on semaphore array */ 1824 rcu_read_lock(); 1825 sem_lock_and_putref(sma); 1826 if (!ipc_valid_object(&sma->sem_perm)) { 1827 sem_unlock(sma, -1); 1828 rcu_read_unlock(); 1829 kfree(new); 1830 un = ERR_PTR(-EIDRM); 1831 goto out; 1832 } 1833 spin_lock(&ulp->lock); 1834 1835 /* 1836 * step 4: check for races: did someone else allocate the undo struct? 1837 */ 1838 un = lookup_undo(ulp, semid); 1839 if (un) { 1840 kfree(new); 1841 goto success; 1842 } 1843 /* step 5: initialize & link new undo structure */ 1844 new->semadj = (short *) &new[1]; 1845 new->ulp = ulp; 1846 new->semid = semid; 1847 assert_spin_locked(&ulp->lock); 1848 list_add_rcu(&new->list_proc, &ulp->list_proc); 1849 ipc_assert_locked_object(&sma->sem_perm); 1850 list_add(&new->list_id, &sma->list_id); 1851 un = new; 1852 1853 success: 1854 spin_unlock(&ulp->lock); 1855 sem_unlock(sma, -1); 1856 out: 1857 return un; 1858 } 1859 1860 static long do_semtimedop(int semid, struct sembuf __user *tsops, 1861 unsigned nsops, const struct timespec64 *timeout) 1862 { 1863 int error = -EINVAL; 1864 struct sem_array *sma; 1865 struct sembuf fast_sops[SEMOPM_FAST]; 1866 struct sembuf *sops = fast_sops, *sop; 1867 struct sem_undo *un; 1868 int max, locknum; 1869 bool undos = false, alter = false, dupsop = false; 1870 struct sem_queue queue; 1871 unsigned long dup = 0, jiffies_left = 0; 1872 struct ipc_namespace *ns; 1873 1874 ns = current->nsproxy->ipc_ns; 1875 1876 if (nsops < 1 || semid < 0) 1877 return -EINVAL; 1878 if (nsops > ns->sc_semopm) 1879 return -E2BIG; 1880 if (nsops > SEMOPM_FAST) { 1881 sops = kvmalloc(sizeof(*sops)*nsops, GFP_KERNEL); 1882 if (sops == NULL) 1883 return -ENOMEM; 1884 } 1885 1886 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) { 1887 error = -EFAULT; 1888 goto out_free; 1889 } 1890 1891 if (timeout) { 1892 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 || 1893 timeout->tv_nsec >= 1000000000L) { 1894 error = -EINVAL; 1895 goto out_free; 1896 } 1897 jiffies_left = timespec64_to_jiffies(timeout); 1898 } 1899 1900 max = 0; 1901 for (sop = sops; sop < sops + nsops; sop++) { 1902 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG); 1903 1904 if (sop->sem_num >= max) 1905 max = sop->sem_num; 1906 if (sop->sem_flg & SEM_UNDO) 1907 undos = true; 1908 if (dup & mask) { 1909 /* 1910 * There was a previous alter access that appears 1911 * to have accessed the same semaphore, thus use 1912 * the dupsop logic. "appears", because the detection 1913 * can only check % BITS_PER_LONG. 1914 */ 1915 dupsop = true; 1916 } 1917 if (sop->sem_op != 0) { 1918 alter = true; 1919 dup |= mask; 1920 } 1921 } 1922 1923 if (undos) { 1924 /* On success, find_alloc_undo takes the rcu_read_lock */ 1925 un = find_alloc_undo(ns, semid); 1926 if (IS_ERR(un)) { 1927 error = PTR_ERR(un); 1928 goto out_free; 1929 } 1930 } else { 1931 un = NULL; 1932 rcu_read_lock(); 1933 } 1934 1935 sma = sem_obtain_object_check(ns, semid); 1936 if (IS_ERR(sma)) { 1937 rcu_read_unlock(); 1938 error = PTR_ERR(sma); 1939 goto out_free; 1940 } 1941 1942 error = -EFBIG; 1943 if (max >= sma->sem_nsems) { 1944 rcu_read_unlock(); 1945 goto out_free; 1946 } 1947 1948 error = -EACCES; 1949 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) { 1950 rcu_read_unlock(); 1951 goto out_free; 1952 } 1953 1954 error = security_sem_semop(sma, sops, nsops, alter); 1955 if (error) { 1956 rcu_read_unlock(); 1957 goto out_free; 1958 } 1959 1960 error = -EIDRM; 1961 locknum = sem_lock(sma, sops, nsops); 1962 /* 1963 * We eventually might perform the following check in a lockless 1964 * fashion, considering ipc_valid_object() locking constraints. 1965 * If nsops == 1 and there is no contention for sem_perm.lock, then 1966 * only a per-semaphore lock is held and it's OK to proceed with the 1967 * check below. More details on the fine grained locking scheme 1968 * entangled here and why it's RMID race safe on comments at sem_lock() 1969 */ 1970 if (!ipc_valid_object(&sma->sem_perm)) 1971 goto out_unlock_free; 1972 /* 1973 * semid identifiers are not unique - find_alloc_undo may have 1974 * allocated an undo structure, it was invalidated by an RMID 1975 * and now a new array with received the same id. Check and fail. 1976 * This case can be detected checking un->semid. The existence of 1977 * "un" itself is guaranteed by rcu. 1978 */ 1979 if (un && un->semid == -1) 1980 goto out_unlock_free; 1981 1982 queue.sops = sops; 1983 queue.nsops = nsops; 1984 queue.undo = un; 1985 queue.pid = task_tgid_vnr(current); 1986 queue.alter = alter; 1987 queue.dupsop = dupsop; 1988 1989 error = perform_atomic_semop(sma, &queue); 1990 if (error == 0) { /* non-blocking succesfull path */ 1991 DEFINE_WAKE_Q(wake_q); 1992 1993 /* 1994 * If the operation was successful, then do 1995 * the required updates. 1996 */ 1997 if (alter) 1998 do_smart_update(sma, sops, nsops, 1, &wake_q); 1999 else 2000 set_semotime(sma, sops); 2001 2002 sem_unlock(sma, locknum); 2003 rcu_read_unlock(); 2004 wake_up_q(&wake_q); 2005 2006 goto out_free; 2007 } 2008 if (error < 0) /* non-blocking error path */ 2009 goto out_unlock_free; 2010 2011 /* 2012 * We need to sleep on this operation, so we put the current 2013 * task into the pending queue and go to sleep. 2014 */ 2015 if (nsops == 1) { 2016 struct sem *curr; 2017 curr = &sma->sems[sops->sem_num]; 2018 2019 if (alter) { 2020 if (sma->complex_count) { 2021 list_add_tail(&queue.list, 2022 &sma->pending_alter); 2023 } else { 2024 2025 list_add_tail(&queue.list, 2026 &curr->pending_alter); 2027 } 2028 } else { 2029 list_add_tail(&queue.list, &curr->pending_const); 2030 } 2031 } else { 2032 if (!sma->complex_count) 2033 merge_queues(sma); 2034 2035 if (alter) 2036 list_add_tail(&queue.list, &sma->pending_alter); 2037 else 2038 list_add_tail(&queue.list, &sma->pending_const); 2039 2040 sma->complex_count++; 2041 } 2042 2043 do { 2044 queue.status = -EINTR; 2045 queue.sleeper = current; 2046 2047 __set_current_state(TASK_INTERRUPTIBLE); 2048 sem_unlock(sma, locknum); 2049 rcu_read_unlock(); 2050 2051 if (timeout) 2052 jiffies_left = schedule_timeout(jiffies_left); 2053 else 2054 schedule(); 2055 2056 /* 2057 * fastpath: the semop has completed, either successfully or 2058 * not, from the syscall pov, is quite irrelevant to us at this 2059 * point; we're done. 2060 * 2061 * We _do_ care, nonetheless, about being awoken by a signal or 2062 * spuriously. The queue.status is checked again in the 2063 * slowpath (aka after taking sem_lock), such that we can detect 2064 * scenarios where we were awakened externally, during the 2065 * window between wake_q_add() and wake_up_q(). 2066 */ 2067 error = READ_ONCE(queue.status); 2068 if (error != -EINTR) { 2069 /* 2070 * User space could assume that semop() is a memory 2071 * barrier: Without the mb(), the cpu could 2072 * speculatively read in userspace stale data that was 2073 * overwritten by the previous owner of the semaphore. 2074 */ 2075 smp_mb(); 2076 goto out_free; 2077 } 2078 2079 rcu_read_lock(); 2080 locknum = sem_lock(sma, sops, nsops); 2081 2082 if (!ipc_valid_object(&sma->sem_perm)) 2083 goto out_unlock_free; 2084 2085 error = READ_ONCE(queue.status); 2086 2087 /* 2088 * If queue.status != -EINTR we are woken up by another process. 2089 * Leave without unlink_queue(), but with sem_unlock(). 2090 */ 2091 if (error != -EINTR) 2092 goto out_unlock_free; 2093 2094 /* 2095 * If an interrupt occurred we have to clean up the queue. 2096 */ 2097 if (timeout && jiffies_left == 0) 2098 error = -EAGAIN; 2099 } while (error == -EINTR && !signal_pending(current)); /* spurious */ 2100 2101 unlink_queue(sma, &queue); 2102 2103 out_unlock_free: 2104 sem_unlock(sma, locknum); 2105 rcu_read_unlock(); 2106 out_free: 2107 if (sops != fast_sops) 2108 kvfree(sops); 2109 return error; 2110 } 2111 2112 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, 2113 unsigned, nsops, const struct timespec __user *, timeout) 2114 { 2115 if (timeout) { 2116 struct timespec64 ts; 2117 if (get_timespec64(&ts, timeout)) 2118 return -EFAULT; 2119 return do_semtimedop(semid, tsops, nsops, &ts); 2120 } 2121 return do_semtimedop(semid, tsops, nsops, NULL); 2122 } 2123 2124 #ifdef CONFIG_COMPAT 2125 COMPAT_SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsems, 2126 unsigned, nsops, 2127 const struct compat_timespec __user *, timeout) 2128 { 2129 if (timeout) { 2130 struct timespec64 ts; 2131 if (compat_get_timespec64(&ts, timeout)) 2132 return -EFAULT; 2133 return do_semtimedop(semid, tsems, nsops, &ts); 2134 } 2135 return do_semtimedop(semid, tsems, nsops, NULL); 2136 } 2137 #endif 2138 2139 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, 2140 unsigned, nsops) 2141 { 2142 return do_semtimedop(semid, tsops, nsops, NULL); 2143 } 2144 2145 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between 2146 * parent and child tasks. 2147 */ 2148 2149 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) 2150 { 2151 struct sem_undo_list *undo_list; 2152 int error; 2153 2154 if (clone_flags & CLONE_SYSVSEM) { 2155 error = get_undo_list(&undo_list); 2156 if (error) 2157 return error; 2158 refcount_inc(&undo_list->refcnt); 2159 tsk->sysvsem.undo_list = undo_list; 2160 } else 2161 tsk->sysvsem.undo_list = NULL; 2162 2163 return 0; 2164 } 2165 2166 /* 2167 * add semadj values to semaphores, free undo structures. 2168 * undo structures are not freed when semaphore arrays are destroyed 2169 * so some of them may be out of date. 2170 * IMPLEMENTATION NOTE: There is some confusion over whether the 2171 * set of adjustments that needs to be done should be done in an atomic 2172 * manner or not. That is, if we are attempting to decrement the semval 2173 * should we queue up and wait until we can do so legally? 2174 * The original implementation attempted to do this (queue and wait). 2175 * The current implementation does not do so. The POSIX standard 2176 * and SVID should be consulted to determine what behavior is mandated. 2177 */ 2178 void exit_sem(struct task_struct *tsk) 2179 { 2180 struct sem_undo_list *ulp; 2181 2182 ulp = tsk->sysvsem.undo_list; 2183 if (!ulp) 2184 return; 2185 tsk->sysvsem.undo_list = NULL; 2186 2187 if (!refcount_dec_and_test(&ulp->refcnt)) 2188 return; 2189 2190 for (;;) { 2191 struct sem_array *sma; 2192 struct sem_undo *un; 2193 int semid, i; 2194 DEFINE_WAKE_Q(wake_q); 2195 2196 cond_resched(); 2197 2198 rcu_read_lock(); 2199 un = list_entry_rcu(ulp->list_proc.next, 2200 struct sem_undo, list_proc); 2201 if (&un->list_proc == &ulp->list_proc) { 2202 /* 2203 * We must wait for freeary() before freeing this ulp, 2204 * in case we raced with last sem_undo. There is a small 2205 * possibility where we exit while freeary() didn't 2206 * finish unlocking sem_undo_list. 2207 */ 2208 spin_lock(&ulp->lock); 2209 spin_unlock(&ulp->lock); 2210 rcu_read_unlock(); 2211 break; 2212 } 2213 spin_lock(&ulp->lock); 2214 semid = un->semid; 2215 spin_unlock(&ulp->lock); 2216 2217 /* exit_sem raced with IPC_RMID, nothing to do */ 2218 if (semid == -1) { 2219 rcu_read_unlock(); 2220 continue; 2221 } 2222 2223 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid); 2224 /* exit_sem raced with IPC_RMID, nothing to do */ 2225 if (IS_ERR(sma)) { 2226 rcu_read_unlock(); 2227 continue; 2228 } 2229 2230 sem_lock(sma, NULL, -1); 2231 /* exit_sem raced with IPC_RMID, nothing to do */ 2232 if (!ipc_valid_object(&sma->sem_perm)) { 2233 sem_unlock(sma, -1); 2234 rcu_read_unlock(); 2235 continue; 2236 } 2237 un = __lookup_undo(ulp, semid); 2238 if (un == NULL) { 2239 /* exit_sem raced with IPC_RMID+semget() that created 2240 * exactly the same semid. Nothing to do. 2241 */ 2242 sem_unlock(sma, -1); 2243 rcu_read_unlock(); 2244 continue; 2245 } 2246 2247 /* remove un from the linked lists */ 2248 ipc_assert_locked_object(&sma->sem_perm); 2249 list_del(&un->list_id); 2250 2251 /* we are the last process using this ulp, acquiring ulp->lock 2252 * isn't required. Besides that, we are also protected against 2253 * IPC_RMID as we hold sma->sem_perm lock now 2254 */ 2255 list_del_rcu(&un->list_proc); 2256 2257 /* perform adjustments registered in un */ 2258 for (i = 0; i < sma->sem_nsems; i++) { 2259 struct sem *semaphore = &sma->sems[i]; 2260 if (un->semadj[i]) { 2261 semaphore->semval += un->semadj[i]; 2262 /* 2263 * Range checks of the new semaphore value, 2264 * not defined by sus: 2265 * - Some unices ignore the undo entirely 2266 * (e.g. HP UX 11i 11.22, Tru64 V5.1) 2267 * - some cap the value (e.g. FreeBSD caps 2268 * at 0, but doesn't enforce SEMVMX) 2269 * 2270 * Linux caps the semaphore value, both at 0 2271 * and at SEMVMX. 2272 * 2273 * Manfred <manfred@colorfullife.com> 2274 */ 2275 if (semaphore->semval < 0) 2276 semaphore->semval = 0; 2277 if (semaphore->semval > SEMVMX) 2278 semaphore->semval = SEMVMX; 2279 semaphore->sempid = task_tgid_vnr(current); 2280 } 2281 } 2282 /* maybe some queued-up processes were waiting for this */ 2283 do_smart_update(sma, NULL, 0, 1, &wake_q); 2284 sem_unlock(sma, -1); 2285 rcu_read_unlock(); 2286 wake_up_q(&wake_q); 2287 2288 kfree_rcu(un, rcu); 2289 } 2290 kfree(ulp); 2291 } 2292 2293 #ifdef CONFIG_PROC_FS 2294 static int sysvipc_sem_proc_show(struct seq_file *s, void *it) 2295 { 2296 struct user_namespace *user_ns = seq_user_ns(s); 2297 struct kern_ipc_perm *ipcp = it; 2298 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 2299 time64_t sem_otime; 2300 2301 /* 2302 * The proc interface isn't aware of sem_lock(), it calls 2303 * ipc_lock_object() directly (in sysvipc_find_ipc). 2304 * In order to stay compatible with sem_lock(), we must 2305 * enter / leave complex_mode. 2306 */ 2307 complexmode_enter(sma); 2308 2309 sem_otime = get_semotime(sma); 2310 2311 seq_printf(s, 2312 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n", 2313 sma->sem_perm.key, 2314 sma->sem_perm.id, 2315 sma->sem_perm.mode, 2316 sma->sem_nsems, 2317 from_kuid_munged(user_ns, sma->sem_perm.uid), 2318 from_kgid_munged(user_ns, sma->sem_perm.gid), 2319 from_kuid_munged(user_ns, sma->sem_perm.cuid), 2320 from_kgid_munged(user_ns, sma->sem_perm.cgid), 2321 sem_otime, 2322 sma->sem_ctime); 2323 2324 complexmode_tryleave(sma); 2325 2326 return 0; 2327 } 2328 #endif 2329