xref: /openbmc/linux/ipc/sem.c (revision d3964221)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/ipc/sem.c
4  * Copyright (C) 1992 Krishna Balasubramanian
5  * Copyright (C) 1995 Eric Schenk, Bruno Haible
6  *
7  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8  *
9  * SMP-threaded, sysctl's added
10  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11  * Enforced range limit on SEM_UNDO
12  * (c) 2001 Red Hat Inc
13  * Lockless wakeup
14  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15  * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16  * Further wakeup optimizations, documentation
17  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
18  *
19  * support for audit of ipc object properties and permission changes
20  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
21  *
22  * namespaces support
23  * OpenVZ, SWsoft Inc.
24  * Pavel Emelianov <xemul@openvz.org>
25  *
26  * Implementation notes: (May 2010)
27  * This file implements System V semaphores.
28  *
29  * User space visible behavior:
30  * - FIFO ordering for semop() operations (just FIFO, not starvation
31  *   protection)
32  * - multiple semaphore operations that alter the same semaphore in
33  *   one semop() are handled.
34  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35  *   SETALL calls.
36  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37  * - undo adjustments at process exit are limited to 0..SEMVMX.
38  * - namespace are supported.
39  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40  *   to /proc/sys/kernel/sem.
41  * - statistics about the usage are reported in /proc/sysvipc/sem.
42  *
43  * Internals:
44  * - scalability:
45  *   - all global variables are read-mostly.
46  *   - semop() calls and semctl(RMID) are synchronized by RCU.
47  *   - most operations do write operations (actually: spin_lock calls) to
48  *     the per-semaphore array structure.
49  *   Thus: Perfect SMP scaling between independent semaphore arrays.
50  *         If multiple semaphores in one array are used, then cache line
51  *         trashing on the semaphore array spinlock will limit the scaling.
52  * - semncnt and semzcnt are calculated on demand in count_semcnt()
53  * - the task that performs a successful semop() scans the list of all
54  *   sleeping tasks and completes any pending operations that can be fulfilled.
55  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
56  *   (see update_queue())
57  * - To improve the scalability, the actual wake-up calls are performed after
58  *   dropping all locks. (see wake_up_sem_queue_prepare())
59  * - All work is done by the waker, the woken up task does not have to do
60  *   anything - not even acquiring a lock or dropping a refcount.
61  * - A woken up task may not even touch the semaphore array anymore, it may
62  *   have been destroyed already by a semctl(RMID).
63  * - UNDO values are stored in an array (one per process and per
64  *   semaphore array, lazily allocated). For backwards compatibility, multiple
65  *   modes for the UNDO variables are supported (per process, per thread)
66  *   (see copy_semundo, CLONE_SYSVSEM)
67  * - There are two lists of the pending operations: a per-array list
68  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
69  *   ordering without always scanning all pending operations.
70  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
71  */
72 
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/init.h>
76 #include <linux/proc_fs.h>
77 #include <linux/time.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/audit.h>
81 #include <linux/capability.h>
82 #include <linux/seq_file.h>
83 #include <linux/rwsem.h>
84 #include <linux/nsproxy.h>
85 #include <linux/ipc_namespace.h>
86 #include <linux/sched/wake_q.h>
87 
88 #include <linux/uaccess.h>
89 #include "util.h"
90 
91 
92 /* One queue for each sleeping process in the system. */
93 struct sem_queue {
94 	struct list_head	list;	 /* queue of pending operations */
95 	struct task_struct	*sleeper; /* this process */
96 	struct sem_undo		*undo;	 /* undo structure */
97 	int			pid;	 /* process id of requesting process */
98 	int			status;	 /* completion status of operation */
99 	struct sembuf		*sops;	 /* array of pending operations */
100 	struct sembuf		*blocking; /* the operation that blocked */
101 	int			nsops;	 /* number of operations */
102 	bool			alter;	 /* does *sops alter the array? */
103 	bool                    dupsop;	 /* sops on more than one sem_num */
104 };
105 
106 /* Each task has a list of undo requests. They are executed automatically
107  * when the process exits.
108  */
109 struct sem_undo {
110 	struct list_head	list_proc;	/* per-process list: *
111 						 * all undos from one process
112 						 * rcu protected */
113 	struct rcu_head		rcu;		/* rcu struct for sem_undo */
114 	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
115 	struct list_head	list_id;	/* per semaphore array list:
116 						 * all undos for one array */
117 	int			semid;		/* semaphore set identifier */
118 	short			*semadj;	/* array of adjustments */
119 						/* one per semaphore */
120 };
121 
122 /* sem_undo_list controls shared access to the list of sem_undo structures
123  * that may be shared among all a CLONE_SYSVSEM task group.
124  */
125 struct sem_undo_list {
126 	refcount_t		refcnt;
127 	spinlock_t		lock;
128 	struct list_head	list_proc;
129 };
130 
131 
132 #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
133 
134 static int newary(struct ipc_namespace *, struct ipc_params *);
135 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
136 #ifdef CONFIG_PROC_FS
137 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
138 #endif
139 
140 #define SEMMSL_FAST	256 /* 512 bytes on stack */
141 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
142 
143 /*
144  * Switching from the mode suitable for simple ops
145  * to the mode for complex ops is costly. Therefore:
146  * use some hysteresis
147  */
148 #define USE_GLOBAL_LOCK_HYSTERESIS	10
149 
150 /*
151  * Locking:
152  * a) global sem_lock() for read/write
153  *	sem_undo.id_next,
154  *	sem_array.complex_count,
155  *	sem_array.pending{_alter,_const},
156  *	sem_array.sem_undo
157  *
158  * b) global or semaphore sem_lock() for read/write:
159  *	sem_array.sems[i].pending_{const,alter}:
160  *
161  * c) special:
162  *	sem_undo_list.list_proc:
163  *	* undo_list->lock for write
164  *	* rcu for read
165  *	use_global_lock:
166  *	* global sem_lock() for write
167  *	* either local or global sem_lock() for read.
168  *
169  * Memory ordering:
170  * Most ordering is enforced by using spin_lock() and spin_unlock().
171  * The special case is use_global_lock:
172  * Setting it from non-zero to 0 is a RELEASE, this is ensured by
173  * using smp_store_release().
174  * Testing if it is non-zero is an ACQUIRE, this is ensured by using
175  * smp_load_acquire().
176  * Setting it from 0 to non-zero must be ordered with regards to
177  * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
178  * is inside a spin_lock() and after a write from 0 to non-zero a
179  * spin_lock()+spin_unlock() is done.
180  */
181 
182 #define sc_semmsl	sem_ctls[0]
183 #define sc_semmns	sem_ctls[1]
184 #define sc_semopm	sem_ctls[2]
185 #define sc_semmni	sem_ctls[3]
186 
187 int sem_init_ns(struct ipc_namespace *ns)
188 {
189 	ns->sc_semmsl = SEMMSL;
190 	ns->sc_semmns = SEMMNS;
191 	ns->sc_semopm = SEMOPM;
192 	ns->sc_semmni = SEMMNI;
193 	ns->used_sems = 0;
194 	return ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
195 }
196 
197 #ifdef CONFIG_IPC_NS
198 void sem_exit_ns(struct ipc_namespace *ns)
199 {
200 	free_ipcs(ns, &sem_ids(ns), freeary);
201 	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
202 	rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
203 }
204 #endif
205 
206 int __init sem_init(void)
207 {
208 	const int err = sem_init_ns(&init_ipc_ns);
209 
210 	ipc_init_proc_interface("sysvipc/sem",
211 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
212 				IPC_SEM_IDS, sysvipc_sem_proc_show);
213 	return err;
214 }
215 
216 /**
217  * unmerge_queues - unmerge queues, if possible.
218  * @sma: semaphore array
219  *
220  * The function unmerges the wait queues if complex_count is 0.
221  * It must be called prior to dropping the global semaphore array lock.
222  */
223 static void unmerge_queues(struct sem_array *sma)
224 {
225 	struct sem_queue *q, *tq;
226 
227 	/* complex operations still around? */
228 	if (sma->complex_count)
229 		return;
230 	/*
231 	 * We will switch back to simple mode.
232 	 * Move all pending operation back into the per-semaphore
233 	 * queues.
234 	 */
235 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
236 		struct sem *curr;
237 		curr = &sma->sems[q->sops[0].sem_num];
238 
239 		list_add_tail(&q->list, &curr->pending_alter);
240 	}
241 	INIT_LIST_HEAD(&sma->pending_alter);
242 }
243 
244 /**
245  * merge_queues - merge single semop queues into global queue
246  * @sma: semaphore array
247  *
248  * This function merges all per-semaphore queues into the global queue.
249  * It is necessary to achieve FIFO ordering for the pending single-sop
250  * operations when a multi-semop operation must sleep.
251  * Only the alter operations must be moved, the const operations can stay.
252  */
253 static void merge_queues(struct sem_array *sma)
254 {
255 	int i;
256 	for (i = 0; i < sma->sem_nsems; i++) {
257 		struct sem *sem = &sma->sems[i];
258 
259 		list_splice_init(&sem->pending_alter, &sma->pending_alter);
260 	}
261 }
262 
263 static void sem_rcu_free(struct rcu_head *head)
264 {
265 	struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
266 	struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
267 
268 	security_sem_free(sma);
269 	kvfree(sma);
270 }
271 
272 /*
273  * Enter the mode suitable for non-simple operations:
274  * Caller must own sem_perm.lock.
275  */
276 static void complexmode_enter(struct sem_array *sma)
277 {
278 	int i;
279 	struct sem *sem;
280 
281 	if (sma->use_global_lock > 0)  {
282 		/*
283 		 * We are already in global lock mode.
284 		 * Nothing to do, just reset the
285 		 * counter until we return to simple mode.
286 		 */
287 		sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
288 		return;
289 	}
290 	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
291 
292 	for (i = 0; i < sma->sem_nsems; i++) {
293 		sem = &sma->sems[i];
294 		spin_lock(&sem->lock);
295 		spin_unlock(&sem->lock);
296 	}
297 }
298 
299 /*
300  * Try to leave the mode that disallows simple operations:
301  * Caller must own sem_perm.lock.
302  */
303 static void complexmode_tryleave(struct sem_array *sma)
304 {
305 	if (sma->complex_count)  {
306 		/* Complex ops are sleeping.
307 		 * We must stay in complex mode
308 		 */
309 		return;
310 	}
311 	if (sma->use_global_lock == 1) {
312 		/*
313 		 * Immediately after setting use_global_lock to 0,
314 		 * a simple op can start. Thus: all memory writes
315 		 * performed by the current operation must be visible
316 		 * before we set use_global_lock to 0.
317 		 */
318 		smp_store_release(&sma->use_global_lock, 0);
319 	} else {
320 		sma->use_global_lock--;
321 	}
322 }
323 
324 #define SEM_GLOBAL_LOCK	(-1)
325 /*
326  * If the request contains only one semaphore operation, and there are
327  * no complex transactions pending, lock only the semaphore involved.
328  * Otherwise, lock the entire semaphore array, since we either have
329  * multiple semaphores in our own semops, or we need to look at
330  * semaphores from other pending complex operations.
331  */
332 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
333 			      int nsops)
334 {
335 	struct sem *sem;
336 
337 	if (nsops != 1) {
338 		/* Complex operation - acquire a full lock */
339 		ipc_lock_object(&sma->sem_perm);
340 
341 		/* Prevent parallel simple ops */
342 		complexmode_enter(sma);
343 		return SEM_GLOBAL_LOCK;
344 	}
345 
346 	/*
347 	 * Only one semaphore affected - try to optimize locking.
348 	 * Optimized locking is possible if no complex operation
349 	 * is either enqueued or processed right now.
350 	 *
351 	 * Both facts are tracked by use_global_mode.
352 	 */
353 	sem = &sma->sems[sops->sem_num];
354 
355 	/*
356 	 * Initial check for use_global_lock. Just an optimization,
357 	 * no locking, no memory barrier.
358 	 */
359 	if (!sma->use_global_lock) {
360 		/*
361 		 * It appears that no complex operation is around.
362 		 * Acquire the per-semaphore lock.
363 		 */
364 		spin_lock(&sem->lock);
365 
366 		/* pairs with smp_store_release() */
367 		if (!smp_load_acquire(&sma->use_global_lock)) {
368 			/* fast path successful! */
369 			return sops->sem_num;
370 		}
371 		spin_unlock(&sem->lock);
372 	}
373 
374 	/* slow path: acquire the full lock */
375 	ipc_lock_object(&sma->sem_perm);
376 
377 	if (sma->use_global_lock == 0) {
378 		/*
379 		 * The use_global_lock mode ended while we waited for
380 		 * sma->sem_perm.lock. Thus we must switch to locking
381 		 * with sem->lock.
382 		 * Unlike in the fast path, there is no need to recheck
383 		 * sma->use_global_lock after we have acquired sem->lock:
384 		 * We own sma->sem_perm.lock, thus use_global_lock cannot
385 		 * change.
386 		 */
387 		spin_lock(&sem->lock);
388 
389 		ipc_unlock_object(&sma->sem_perm);
390 		return sops->sem_num;
391 	} else {
392 		/*
393 		 * Not a false alarm, thus continue to use the global lock
394 		 * mode. No need for complexmode_enter(), this was done by
395 		 * the caller that has set use_global_mode to non-zero.
396 		 */
397 		return SEM_GLOBAL_LOCK;
398 	}
399 }
400 
401 static inline void sem_unlock(struct sem_array *sma, int locknum)
402 {
403 	if (locknum == SEM_GLOBAL_LOCK) {
404 		unmerge_queues(sma);
405 		complexmode_tryleave(sma);
406 		ipc_unlock_object(&sma->sem_perm);
407 	} else {
408 		struct sem *sem = &sma->sems[locknum];
409 		spin_unlock(&sem->lock);
410 	}
411 }
412 
413 /*
414  * sem_lock_(check_) routines are called in the paths where the rwsem
415  * is not held.
416  *
417  * The caller holds the RCU read lock.
418  */
419 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
420 {
421 	struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
422 
423 	if (IS_ERR(ipcp))
424 		return ERR_CAST(ipcp);
425 
426 	return container_of(ipcp, struct sem_array, sem_perm);
427 }
428 
429 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
430 							int id)
431 {
432 	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
433 
434 	if (IS_ERR(ipcp))
435 		return ERR_CAST(ipcp);
436 
437 	return container_of(ipcp, struct sem_array, sem_perm);
438 }
439 
440 static inline void sem_lock_and_putref(struct sem_array *sma)
441 {
442 	sem_lock(sma, NULL, -1);
443 	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
444 }
445 
446 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
447 {
448 	ipc_rmid(&sem_ids(ns), &s->sem_perm);
449 }
450 
451 static struct sem_array *sem_alloc(size_t nsems)
452 {
453 	struct sem_array *sma;
454 	size_t size;
455 
456 	if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
457 		return NULL;
458 
459 	size = sizeof(*sma) + nsems * sizeof(sma->sems[0]);
460 	sma = kvmalloc(size, GFP_KERNEL);
461 	if (unlikely(!sma))
462 		return NULL;
463 
464 	memset(sma, 0, size);
465 
466 	return sma;
467 }
468 
469 /**
470  * newary - Create a new semaphore set
471  * @ns: namespace
472  * @params: ptr to the structure that contains key, semflg and nsems
473  *
474  * Called with sem_ids.rwsem held (as a writer)
475  */
476 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
477 {
478 	int retval;
479 	struct sem_array *sma;
480 	key_t key = params->key;
481 	int nsems = params->u.nsems;
482 	int semflg = params->flg;
483 	int i;
484 
485 	if (!nsems)
486 		return -EINVAL;
487 	if (ns->used_sems + nsems > ns->sc_semmns)
488 		return -ENOSPC;
489 
490 	sma = sem_alloc(nsems);
491 	if (!sma)
492 		return -ENOMEM;
493 
494 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
495 	sma->sem_perm.key = key;
496 
497 	sma->sem_perm.security = NULL;
498 	retval = security_sem_alloc(sma);
499 	if (retval) {
500 		kvfree(sma);
501 		return retval;
502 	}
503 
504 	for (i = 0; i < nsems; i++) {
505 		INIT_LIST_HEAD(&sma->sems[i].pending_alter);
506 		INIT_LIST_HEAD(&sma->sems[i].pending_const);
507 		spin_lock_init(&sma->sems[i].lock);
508 	}
509 
510 	sma->complex_count = 0;
511 	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
512 	INIT_LIST_HEAD(&sma->pending_alter);
513 	INIT_LIST_HEAD(&sma->pending_const);
514 	INIT_LIST_HEAD(&sma->list_id);
515 	sma->sem_nsems = nsems;
516 	sma->sem_ctime = ktime_get_real_seconds();
517 
518 	retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
519 	if (retval < 0) {
520 		call_rcu(&sma->sem_perm.rcu, sem_rcu_free);
521 		return retval;
522 	}
523 	ns->used_sems += nsems;
524 
525 	sem_unlock(sma, -1);
526 	rcu_read_unlock();
527 
528 	return sma->sem_perm.id;
529 }
530 
531 
532 /*
533  * Called with sem_ids.rwsem and ipcp locked.
534  */
535 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
536 {
537 	struct sem_array *sma;
538 
539 	sma = container_of(ipcp, struct sem_array, sem_perm);
540 	return security_sem_associate(sma, semflg);
541 }
542 
543 /*
544  * Called with sem_ids.rwsem and ipcp locked.
545  */
546 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
547 				struct ipc_params *params)
548 {
549 	struct sem_array *sma;
550 
551 	sma = container_of(ipcp, struct sem_array, sem_perm);
552 	if (params->u.nsems > sma->sem_nsems)
553 		return -EINVAL;
554 
555 	return 0;
556 }
557 
558 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
559 {
560 	struct ipc_namespace *ns;
561 	static const struct ipc_ops sem_ops = {
562 		.getnew = newary,
563 		.associate = sem_security,
564 		.more_checks = sem_more_checks,
565 	};
566 	struct ipc_params sem_params;
567 
568 	ns = current->nsproxy->ipc_ns;
569 
570 	if (nsems < 0 || nsems > ns->sc_semmsl)
571 		return -EINVAL;
572 
573 	sem_params.key = key;
574 	sem_params.flg = semflg;
575 	sem_params.u.nsems = nsems;
576 
577 	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
578 }
579 
580 /**
581  * perform_atomic_semop[_slow] - Attempt to perform semaphore
582  *                               operations on a given array.
583  * @sma: semaphore array
584  * @q: struct sem_queue that describes the operation
585  *
586  * Caller blocking are as follows, based the value
587  * indicated by the semaphore operation (sem_op):
588  *
589  *  (1) >0 never blocks.
590  *  (2)  0 (wait-for-zero operation): semval is non-zero.
591  *  (3) <0 attempting to decrement semval to a value smaller than zero.
592  *
593  * Returns 0 if the operation was possible.
594  * Returns 1 if the operation is impossible, the caller must sleep.
595  * Returns <0 for error codes.
596  */
597 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
598 {
599 	int result, sem_op, nsops, pid;
600 	struct sembuf *sop;
601 	struct sem *curr;
602 	struct sembuf *sops;
603 	struct sem_undo *un;
604 
605 	sops = q->sops;
606 	nsops = q->nsops;
607 	un = q->undo;
608 
609 	for (sop = sops; sop < sops + nsops; sop++) {
610 		curr = &sma->sems[sop->sem_num];
611 		sem_op = sop->sem_op;
612 		result = curr->semval;
613 
614 		if (!sem_op && result)
615 			goto would_block;
616 
617 		result += sem_op;
618 		if (result < 0)
619 			goto would_block;
620 		if (result > SEMVMX)
621 			goto out_of_range;
622 
623 		if (sop->sem_flg & SEM_UNDO) {
624 			int undo = un->semadj[sop->sem_num] - sem_op;
625 			/* Exceeding the undo range is an error. */
626 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
627 				goto out_of_range;
628 			un->semadj[sop->sem_num] = undo;
629 		}
630 
631 		curr->semval = result;
632 	}
633 
634 	sop--;
635 	pid = q->pid;
636 	while (sop >= sops) {
637 		sma->sems[sop->sem_num].sempid = pid;
638 		sop--;
639 	}
640 
641 	return 0;
642 
643 out_of_range:
644 	result = -ERANGE;
645 	goto undo;
646 
647 would_block:
648 	q->blocking = sop;
649 
650 	if (sop->sem_flg & IPC_NOWAIT)
651 		result = -EAGAIN;
652 	else
653 		result = 1;
654 
655 undo:
656 	sop--;
657 	while (sop >= sops) {
658 		sem_op = sop->sem_op;
659 		sma->sems[sop->sem_num].semval -= sem_op;
660 		if (sop->sem_flg & SEM_UNDO)
661 			un->semadj[sop->sem_num] += sem_op;
662 		sop--;
663 	}
664 
665 	return result;
666 }
667 
668 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
669 {
670 	int result, sem_op, nsops;
671 	struct sembuf *sop;
672 	struct sem *curr;
673 	struct sembuf *sops;
674 	struct sem_undo *un;
675 
676 	sops = q->sops;
677 	nsops = q->nsops;
678 	un = q->undo;
679 
680 	if (unlikely(q->dupsop))
681 		return perform_atomic_semop_slow(sma, q);
682 
683 	/*
684 	 * We scan the semaphore set twice, first to ensure that the entire
685 	 * operation can succeed, therefore avoiding any pointless writes
686 	 * to shared memory and having to undo such changes in order to block
687 	 * until the operations can go through.
688 	 */
689 	for (sop = sops; sop < sops + nsops; sop++) {
690 		curr = &sma->sems[sop->sem_num];
691 		sem_op = sop->sem_op;
692 		result = curr->semval;
693 
694 		if (!sem_op && result)
695 			goto would_block; /* wait-for-zero */
696 
697 		result += sem_op;
698 		if (result < 0)
699 			goto would_block;
700 
701 		if (result > SEMVMX)
702 			return -ERANGE;
703 
704 		if (sop->sem_flg & SEM_UNDO) {
705 			int undo = un->semadj[sop->sem_num] - sem_op;
706 
707 			/* Exceeding the undo range is an error. */
708 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
709 				return -ERANGE;
710 		}
711 	}
712 
713 	for (sop = sops; sop < sops + nsops; sop++) {
714 		curr = &sma->sems[sop->sem_num];
715 		sem_op = sop->sem_op;
716 		result = curr->semval;
717 
718 		if (sop->sem_flg & SEM_UNDO) {
719 			int undo = un->semadj[sop->sem_num] - sem_op;
720 
721 			un->semadj[sop->sem_num] = undo;
722 		}
723 		curr->semval += sem_op;
724 		curr->sempid = q->pid;
725 	}
726 
727 	return 0;
728 
729 would_block:
730 	q->blocking = sop;
731 	return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
732 }
733 
734 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
735 					     struct wake_q_head *wake_q)
736 {
737 	wake_q_add(wake_q, q->sleeper);
738 	/*
739 	 * Rely on the above implicit barrier, such that we can
740 	 * ensure that we hold reference to the task before setting
741 	 * q->status. Otherwise we could race with do_exit if the
742 	 * task is awoken by an external event before calling
743 	 * wake_up_process().
744 	 */
745 	WRITE_ONCE(q->status, error);
746 }
747 
748 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
749 {
750 	list_del(&q->list);
751 	if (q->nsops > 1)
752 		sma->complex_count--;
753 }
754 
755 /** check_restart(sma, q)
756  * @sma: semaphore array
757  * @q: the operation that just completed
758  *
759  * update_queue is O(N^2) when it restarts scanning the whole queue of
760  * waiting operations. Therefore this function checks if the restart is
761  * really necessary. It is called after a previously waiting operation
762  * modified the array.
763  * Note that wait-for-zero operations are handled without restart.
764  */
765 static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
766 {
767 	/* pending complex alter operations are too difficult to analyse */
768 	if (!list_empty(&sma->pending_alter))
769 		return 1;
770 
771 	/* we were a sleeping complex operation. Too difficult */
772 	if (q->nsops > 1)
773 		return 1;
774 
775 	/* It is impossible that someone waits for the new value:
776 	 * - complex operations always restart.
777 	 * - wait-for-zero are handled seperately.
778 	 * - q is a previously sleeping simple operation that
779 	 *   altered the array. It must be a decrement, because
780 	 *   simple increments never sleep.
781 	 * - If there are older (higher priority) decrements
782 	 *   in the queue, then they have observed the original
783 	 *   semval value and couldn't proceed. The operation
784 	 *   decremented to value - thus they won't proceed either.
785 	 */
786 	return 0;
787 }
788 
789 /**
790  * wake_const_ops - wake up non-alter tasks
791  * @sma: semaphore array.
792  * @semnum: semaphore that was modified.
793  * @wake_q: lockless wake-queue head.
794  *
795  * wake_const_ops must be called after a semaphore in a semaphore array
796  * was set to 0. If complex const operations are pending, wake_const_ops must
797  * be called with semnum = -1, as well as with the number of each modified
798  * semaphore.
799  * The tasks that must be woken up are added to @wake_q. The return code
800  * is stored in q->pid.
801  * The function returns 1 if at least one operation was completed successfully.
802  */
803 static int wake_const_ops(struct sem_array *sma, int semnum,
804 			  struct wake_q_head *wake_q)
805 {
806 	struct sem_queue *q, *tmp;
807 	struct list_head *pending_list;
808 	int semop_completed = 0;
809 
810 	if (semnum == -1)
811 		pending_list = &sma->pending_const;
812 	else
813 		pending_list = &sma->sems[semnum].pending_const;
814 
815 	list_for_each_entry_safe(q, tmp, pending_list, list) {
816 		int error = perform_atomic_semop(sma, q);
817 
818 		if (error > 0)
819 			continue;
820 		/* operation completed, remove from queue & wakeup */
821 		unlink_queue(sma, q);
822 
823 		wake_up_sem_queue_prepare(q, error, wake_q);
824 		if (error == 0)
825 			semop_completed = 1;
826 	}
827 
828 	return semop_completed;
829 }
830 
831 /**
832  * do_smart_wakeup_zero - wakeup all wait for zero tasks
833  * @sma: semaphore array
834  * @sops: operations that were performed
835  * @nsops: number of operations
836  * @wake_q: lockless wake-queue head
837  *
838  * Checks all required queue for wait-for-zero operations, based
839  * on the actual changes that were performed on the semaphore array.
840  * The function returns 1 if at least one operation was completed successfully.
841  */
842 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
843 				int nsops, struct wake_q_head *wake_q)
844 {
845 	int i;
846 	int semop_completed = 0;
847 	int got_zero = 0;
848 
849 	/* first: the per-semaphore queues, if known */
850 	if (sops) {
851 		for (i = 0; i < nsops; i++) {
852 			int num = sops[i].sem_num;
853 
854 			if (sma->sems[num].semval == 0) {
855 				got_zero = 1;
856 				semop_completed |= wake_const_ops(sma, num, wake_q);
857 			}
858 		}
859 	} else {
860 		/*
861 		 * No sops means modified semaphores not known.
862 		 * Assume all were changed.
863 		 */
864 		for (i = 0; i < sma->sem_nsems; i++) {
865 			if (sma->sems[i].semval == 0) {
866 				got_zero = 1;
867 				semop_completed |= wake_const_ops(sma, i, wake_q);
868 			}
869 		}
870 	}
871 	/*
872 	 * If one of the modified semaphores got 0,
873 	 * then check the global queue, too.
874 	 */
875 	if (got_zero)
876 		semop_completed |= wake_const_ops(sma, -1, wake_q);
877 
878 	return semop_completed;
879 }
880 
881 
882 /**
883  * update_queue - look for tasks that can be completed.
884  * @sma: semaphore array.
885  * @semnum: semaphore that was modified.
886  * @wake_q: lockless wake-queue head.
887  *
888  * update_queue must be called after a semaphore in a semaphore array
889  * was modified. If multiple semaphores were modified, update_queue must
890  * be called with semnum = -1, as well as with the number of each modified
891  * semaphore.
892  * The tasks that must be woken up are added to @wake_q. The return code
893  * is stored in q->pid.
894  * The function internally checks if const operations can now succeed.
895  *
896  * The function return 1 if at least one semop was completed successfully.
897  */
898 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
899 {
900 	struct sem_queue *q, *tmp;
901 	struct list_head *pending_list;
902 	int semop_completed = 0;
903 
904 	if (semnum == -1)
905 		pending_list = &sma->pending_alter;
906 	else
907 		pending_list = &sma->sems[semnum].pending_alter;
908 
909 again:
910 	list_for_each_entry_safe(q, tmp, pending_list, list) {
911 		int error, restart;
912 
913 		/* If we are scanning the single sop, per-semaphore list of
914 		 * one semaphore and that semaphore is 0, then it is not
915 		 * necessary to scan further: simple increments
916 		 * that affect only one entry succeed immediately and cannot
917 		 * be in the  per semaphore pending queue, and decrements
918 		 * cannot be successful if the value is already 0.
919 		 */
920 		if (semnum != -1 && sma->sems[semnum].semval == 0)
921 			break;
922 
923 		error = perform_atomic_semop(sma, q);
924 
925 		/* Does q->sleeper still need to sleep? */
926 		if (error > 0)
927 			continue;
928 
929 		unlink_queue(sma, q);
930 
931 		if (error) {
932 			restart = 0;
933 		} else {
934 			semop_completed = 1;
935 			do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
936 			restart = check_restart(sma, q);
937 		}
938 
939 		wake_up_sem_queue_prepare(q, error, wake_q);
940 		if (restart)
941 			goto again;
942 	}
943 	return semop_completed;
944 }
945 
946 /**
947  * set_semotime - set sem_otime
948  * @sma: semaphore array
949  * @sops: operations that modified the array, may be NULL
950  *
951  * sem_otime is replicated to avoid cache line trashing.
952  * This function sets one instance to the current time.
953  */
954 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
955 {
956 	if (sops == NULL) {
957 		sma->sems[0].sem_otime = get_seconds();
958 	} else {
959 		sma->sems[sops[0].sem_num].sem_otime =
960 							get_seconds();
961 	}
962 }
963 
964 /**
965  * do_smart_update - optimized update_queue
966  * @sma: semaphore array
967  * @sops: operations that were performed
968  * @nsops: number of operations
969  * @otime: force setting otime
970  * @wake_q: lockless wake-queue head
971  *
972  * do_smart_update() does the required calls to update_queue and wakeup_zero,
973  * based on the actual changes that were performed on the semaphore array.
974  * Note that the function does not do the actual wake-up: the caller is
975  * responsible for calling wake_up_q().
976  * It is safe to perform this call after dropping all locks.
977  */
978 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
979 			    int otime, struct wake_q_head *wake_q)
980 {
981 	int i;
982 
983 	otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
984 
985 	if (!list_empty(&sma->pending_alter)) {
986 		/* semaphore array uses the global queue - just process it. */
987 		otime |= update_queue(sma, -1, wake_q);
988 	} else {
989 		if (!sops) {
990 			/*
991 			 * No sops, thus the modified semaphores are not
992 			 * known. Check all.
993 			 */
994 			for (i = 0; i < sma->sem_nsems; i++)
995 				otime |= update_queue(sma, i, wake_q);
996 		} else {
997 			/*
998 			 * Check the semaphores that were increased:
999 			 * - No complex ops, thus all sleeping ops are
1000 			 *   decrease.
1001 			 * - if we decreased the value, then any sleeping
1002 			 *   semaphore ops wont be able to run: If the
1003 			 *   previous value was too small, then the new
1004 			 *   value will be too small, too.
1005 			 */
1006 			for (i = 0; i < nsops; i++) {
1007 				if (sops[i].sem_op > 0) {
1008 					otime |= update_queue(sma,
1009 							      sops[i].sem_num, wake_q);
1010 				}
1011 			}
1012 		}
1013 	}
1014 	if (otime)
1015 		set_semotime(sma, sops);
1016 }
1017 
1018 /*
1019  * check_qop: Test if a queued operation sleeps on the semaphore semnum
1020  */
1021 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1022 			bool count_zero)
1023 {
1024 	struct sembuf *sop = q->blocking;
1025 
1026 	/*
1027 	 * Linux always (since 0.99.10) reported a task as sleeping on all
1028 	 * semaphores. This violates SUS, therefore it was changed to the
1029 	 * standard compliant behavior.
1030 	 * Give the administrators a chance to notice that an application
1031 	 * might misbehave because it relies on the Linux behavior.
1032 	 */
1033 	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1034 			"The task %s (%d) triggered the difference, watch for misbehavior.\n",
1035 			current->comm, task_pid_nr(current));
1036 
1037 	if (sop->sem_num != semnum)
1038 		return 0;
1039 
1040 	if (count_zero && sop->sem_op == 0)
1041 		return 1;
1042 	if (!count_zero && sop->sem_op < 0)
1043 		return 1;
1044 
1045 	return 0;
1046 }
1047 
1048 /* The following counts are associated to each semaphore:
1049  *   semncnt        number of tasks waiting on semval being nonzero
1050  *   semzcnt        number of tasks waiting on semval being zero
1051  *
1052  * Per definition, a task waits only on the semaphore of the first semop
1053  * that cannot proceed, even if additional operation would block, too.
1054  */
1055 static int count_semcnt(struct sem_array *sma, ushort semnum,
1056 			bool count_zero)
1057 {
1058 	struct list_head *l;
1059 	struct sem_queue *q;
1060 	int semcnt;
1061 
1062 	semcnt = 0;
1063 	/* First: check the simple operations. They are easy to evaluate */
1064 	if (count_zero)
1065 		l = &sma->sems[semnum].pending_const;
1066 	else
1067 		l = &sma->sems[semnum].pending_alter;
1068 
1069 	list_for_each_entry(q, l, list) {
1070 		/* all task on a per-semaphore list sleep on exactly
1071 		 * that semaphore
1072 		 */
1073 		semcnt++;
1074 	}
1075 
1076 	/* Then: check the complex operations. */
1077 	list_for_each_entry(q, &sma->pending_alter, list) {
1078 		semcnt += check_qop(sma, semnum, q, count_zero);
1079 	}
1080 	if (count_zero) {
1081 		list_for_each_entry(q, &sma->pending_const, list) {
1082 			semcnt += check_qop(sma, semnum, q, count_zero);
1083 		}
1084 	}
1085 	return semcnt;
1086 }
1087 
1088 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1089  * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1090  * remains locked on exit.
1091  */
1092 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1093 {
1094 	struct sem_undo *un, *tu;
1095 	struct sem_queue *q, *tq;
1096 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1097 	int i;
1098 	DEFINE_WAKE_Q(wake_q);
1099 
1100 	/* Free the existing undo structures for this semaphore set.  */
1101 	ipc_assert_locked_object(&sma->sem_perm);
1102 	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1103 		list_del(&un->list_id);
1104 		spin_lock(&un->ulp->lock);
1105 		un->semid = -1;
1106 		list_del_rcu(&un->list_proc);
1107 		spin_unlock(&un->ulp->lock);
1108 		kfree_rcu(un, rcu);
1109 	}
1110 
1111 	/* Wake up all pending processes and let them fail with EIDRM. */
1112 	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1113 		unlink_queue(sma, q);
1114 		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1115 	}
1116 
1117 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1118 		unlink_queue(sma, q);
1119 		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1120 	}
1121 	for (i = 0; i < sma->sem_nsems; i++) {
1122 		struct sem *sem = &sma->sems[i];
1123 		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1124 			unlink_queue(sma, q);
1125 			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1126 		}
1127 		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1128 			unlink_queue(sma, q);
1129 			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1130 		}
1131 	}
1132 
1133 	/* Remove the semaphore set from the IDR */
1134 	sem_rmid(ns, sma);
1135 	sem_unlock(sma, -1);
1136 	rcu_read_unlock();
1137 
1138 	wake_up_q(&wake_q);
1139 	ns->used_sems -= sma->sem_nsems;
1140 	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1141 }
1142 
1143 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1144 {
1145 	switch (version) {
1146 	case IPC_64:
1147 		return copy_to_user(buf, in, sizeof(*in));
1148 	case IPC_OLD:
1149 	    {
1150 		struct semid_ds out;
1151 
1152 		memset(&out, 0, sizeof(out));
1153 
1154 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1155 
1156 		out.sem_otime	= in->sem_otime;
1157 		out.sem_ctime	= in->sem_ctime;
1158 		out.sem_nsems	= in->sem_nsems;
1159 
1160 		return copy_to_user(buf, &out, sizeof(out));
1161 	    }
1162 	default:
1163 		return -EINVAL;
1164 	}
1165 }
1166 
1167 static time64_t get_semotime(struct sem_array *sma)
1168 {
1169 	int i;
1170 	time64_t res;
1171 
1172 	res = sma->sems[0].sem_otime;
1173 	for (i = 1; i < sma->sem_nsems; i++) {
1174 		time64_t to = sma->sems[i].sem_otime;
1175 
1176 		if (to > res)
1177 			res = to;
1178 	}
1179 	return res;
1180 }
1181 
1182 static int semctl_stat(struct ipc_namespace *ns, int semid,
1183 			 int cmd, struct semid64_ds *semid64)
1184 {
1185 	struct sem_array *sma;
1186 	int id = 0;
1187 	int err;
1188 
1189 	memset(semid64, 0, sizeof(*semid64));
1190 
1191 	rcu_read_lock();
1192 	if (cmd == SEM_STAT) {
1193 		sma = sem_obtain_object(ns, semid);
1194 		if (IS_ERR(sma)) {
1195 			err = PTR_ERR(sma);
1196 			goto out_unlock;
1197 		}
1198 		id = sma->sem_perm.id;
1199 	} else {
1200 		sma = sem_obtain_object_check(ns, semid);
1201 		if (IS_ERR(sma)) {
1202 			err = PTR_ERR(sma);
1203 			goto out_unlock;
1204 		}
1205 	}
1206 
1207 	err = -EACCES;
1208 	if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1209 		goto out_unlock;
1210 
1211 	err = security_sem_semctl(sma, cmd);
1212 	if (err)
1213 		goto out_unlock;
1214 
1215 	kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1216 	semid64->sem_otime = get_semotime(sma);
1217 	semid64->sem_ctime = sma->sem_ctime;
1218 	semid64->sem_nsems = sma->sem_nsems;
1219 	rcu_read_unlock();
1220 	return id;
1221 
1222 out_unlock:
1223 	rcu_read_unlock();
1224 	return err;
1225 }
1226 
1227 static int semctl_info(struct ipc_namespace *ns, int semid,
1228 			 int cmd, void __user *p)
1229 {
1230 	struct seminfo seminfo;
1231 	int max_id;
1232 	int err;
1233 
1234 	err = security_sem_semctl(NULL, cmd);
1235 	if (err)
1236 		return err;
1237 
1238 	memset(&seminfo, 0, sizeof(seminfo));
1239 	seminfo.semmni = ns->sc_semmni;
1240 	seminfo.semmns = ns->sc_semmns;
1241 	seminfo.semmsl = ns->sc_semmsl;
1242 	seminfo.semopm = ns->sc_semopm;
1243 	seminfo.semvmx = SEMVMX;
1244 	seminfo.semmnu = SEMMNU;
1245 	seminfo.semmap = SEMMAP;
1246 	seminfo.semume = SEMUME;
1247 	down_read(&sem_ids(ns).rwsem);
1248 	if (cmd == SEM_INFO) {
1249 		seminfo.semusz = sem_ids(ns).in_use;
1250 		seminfo.semaem = ns->used_sems;
1251 	} else {
1252 		seminfo.semusz = SEMUSZ;
1253 		seminfo.semaem = SEMAEM;
1254 	}
1255 	max_id = ipc_get_maxid(&sem_ids(ns));
1256 	up_read(&sem_ids(ns).rwsem);
1257 	if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1258 		return -EFAULT;
1259 	return (max_id < 0) ? 0 : max_id;
1260 }
1261 
1262 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1263 		int val)
1264 {
1265 	struct sem_undo *un;
1266 	struct sem_array *sma;
1267 	struct sem *curr;
1268 	int err;
1269 	DEFINE_WAKE_Q(wake_q);
1270 
1271 	if (val > SEMVMX || val < 0)
1272 		return -ERANGE;
1273 
1274 	rcu_read_lock();
1275 	sma = sem_obtain_object_check(ns, semid);
1276 	if (IS_ERR(sma)) {
1277 		rcu_read_unlock();
1278 		return PTR_ERR(sma);
1279 	}
1280 
1281 	if (semnum < 0 || semnum >= sma->sem_nsems) {
1282 		rcu_read_unlock();
1283 		return -EINVAL;
1284 	}
1285 
1286 
1287 	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1288 		rcu_read_unlock();
1289 		return -EACCES;
1290 	}
1291 
1292 	err = security_sem_semctl(sma, SETVAL);
1293 	if (err) {
1294 		rcu_read_unlock();
1295 		return -EACCES;
1296 	}
1297 
1298 	sem_lock(sma, NULL, -1);
1299 
1300 	if (!ipc_valid_object(&sma->sem_perm)) {
1301 		sem_unlock(sma, -1);
1302 		rcu_read_unlock();
1303 		return -EIDRM;
1304 	}
1305 
1306 	curr = &sma->sems[semnum];
1307 
1308 	ipc_assert_locked_object(&sma->sem_perm);
1309 	list_for_each_entry(un, &sma->list_id, list_id)
1310 		un->semadj[semnum] = 0;
1311 
1312 	curr->semval = val;
1313 	curr->sempid = task_tgid_vnr(current);
1314 	sma->sem_ctime = ktime_get_real_seconds();
1315 	/* maybe some queued-up processes were waiting for this */
1316 	do_smart_update(sma, NULL, 0, 0, &wake_q);
1317 	sem_unlock(sma, -1);
1318 	rcu_read_unlock();
1319 	wake_up_q(&wake_q);
1320 	return 0;
1321 }
1322 
1323 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1324 		int cmd, void __user *p)
1325 {
1326 	struct sem_array *sma;
1327 	struct sem *curr;
1328 	int err, nsems;
1329 	ushort fast_sem_io[SEMMSL_FAST];
1330 	ushort *sem_io = fast_sem_io;
1331 	DEFINE_WAKE_Q(wake_q);
1332 
1333 	rcu_read_lock();
1334 	sma = sem_obtain_object_check(ns, semid);
1335 	if (IS_ERR(sma)) {
1336 		rcu_read_unlock();
1337 		return PTR_ERR(sma);
1338 	}
1339 
1340 	nsems = sma->sem_nsems;
1341 
1342 	err = -EACCES;
1343 	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1344 		goto out_rcu_wakeup;
1345 
1346 	err = security_sem_semctl(sma, cmd);
1347 	if (err)
1348 		goto out_rcu_wakeup;
1349 
1350 	err = -EACCES;
1351 	switch (cmd) {
1352 	case GETALL:
1353 	{
1354 		ushort __user *array = p;
1355 		int i;
1356 
1357 		sem_lock(sma, NULL, -1);
1358 		if (!ipc_valid_object(&sma->sem_perm)) {
1359 			err = -EIDRM;
1360 			goto out_unlock;
1361 		}
1362 		if (nsems > SEMMSL_FAST) {
1363 			if (!ipc_rcu_getref(&sma->sem_perm)) {
1364 				err = -EIDRM;
1365 				goto out_unlock;
1366 			}
1367 			sem_unlock(sma, -1);
1368 			rcu_read_unlock();
1369 			sem_io = kvmalloc_array(nsems, sizeof(ushort),
1370 						GFP_KERNEL);
1371 			if (sem_io == NULL) {
1372 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1373 				return -ENOMEM;
1374 			}
1375 
1376 			rcu_read_lock();
1377 			sem_lock_and_putref(sma);
1378 			if (!ipc_valid_object(&sma->sem_perm)) {
1379 				err = -EIDRM;
1380 				goto out_unlock;
1381 			}
1382 		}
1383 		for (i = 0; i < sma->sem_nsems; i++)
1384 			sem_io[i] = sma->sems[i].semval;
1385 		sem_unlock(sma, -1);
1386 		rcu_read_unlock();
1387 		err = 0;
1388 		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1389 			err = -EFAULT;
1390 		goto out_free;
1391 	}
1392 	case SETALL:
1393 	{
1394 		int i;
1395 		struct sem_undo *un;
1396 
1397 		if (!ipc_rcu_getref(&sma->sem_perm)) {
1398 			err = -EIDRM;
1399 			goto out_rcu_wakeup;
1400 		}
1401 		rcu_read_unlock();
1402 
1403 		if (nsems > SEMMSL_FAST) {
1404 			sem_io = kvmalloc_array(nsems, sizeof(ushort),
1405 						GFP_KERNEL);
1406 			if (sem_io == NULL) {
1407 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1408 				return -ENOMEM;
1409 			}
1410 		}
1411 
1412 		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1413 			ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1414 			err = -EFAULT;
1415 			goto out_free;
1416 		}
1417 
1418 		for (i = 0; i < nsems; i++) {
1419 			if (sem_io[i] > SEMVMX) {
1420 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1421 				err = -ERANGE;
1422 				goto out_free;
1423 			}
1424 		}
1425 		rcu_read_lock();
1426 		sem_lock_and_putref(sma);
1427 		if (!ipc_valid_object(&sma->sem_perm)) {
1428 			err = -EIDRM;
1429 			goto out_unlock;
1430 		}
1431 
1432 		for (i = 0; i < nsems; i++) {
1433 			sma->sems[i].semval = sem_io[i];
1434 			sma->sems[i].sempid = task_tgid_vnr(current);
1435 		}
1436 
1437 		ipc_assert_locked_object(&sma->sem_perm);
1438 		list_for_each_entry(un, &sma->list_id, list_id) {
1439 			for (i = 0; i < nsems; i++)
1440 				un->semadj[i] = 0;
1441 		}
1442 		sma->sem_ctime = ktime_get_real_seconds();
1443 		/* maybe some queued-up processes were waiting for this */
1444 		do_smart_update(sma, NULL, 0, 0, &wake_q);
1445 		err = 0;
1446 		goto out_unlock;
1447 	}
1448 	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1449 	}
1450 	err = -EINVAL;
1451 	if (semnum < 0 || semnum >= nsems)
1452 		goto out_rcu_wakeup;
1453 
1454 	sem_lock(sma, NULL, -1);
1455 	if (!ipc_valid_object(&sma->sem_perm)) {
1456 		err = -EIDRM;
1457 		goto out_unlock;
1458 	}
1459 	curr = &sma->sems[semnum];
1460 
1461 	switch (cmd) {
1462 	case GETVAL:
1463 		err = curr->semval;
1464 		goto out_unlock;
1465 	case GETPID:
1466 		err = curr->sempid;
1467 		goto out_unlock;
1468 	case GETNCNT:
1469 		err = count_semcnt(sma, semnum, 0);
1470 		goto out_unlock;
1471 	case GETZCNT:
1472 		err = count_semcnt(sma, semnum, 1);
1473 		goto out_unlock;
1474 	}
1475 
1476 out_unlock:
1477 	sem_unlock(sma, -1);
1478 out_rcu_wakeup:
1479 	rcu_read_unlock();
1480 	wake_up_q(&wake_q);
1481 out_free:
1482 	if (sem_io != fast_sem_io)
1483 		kvfree(sem_io);
1484 	return err;
1485 }
1486 
1487 static inline unsigned long
1488 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1489 {
1490 	switch (version) {
1491 	case IPC_64:
1492 		if (copy_from_user(out, buf, sizeof(*out)))
1493 			return -EFAULT;
1494 		return 0;
1495 	case IPC_OLD:
1496 	    {
1497 		struct semid_ds tbuf_old;
1498 
1499 		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1500 			return -EFAULT;
1501 
1502 		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1503 		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1504 		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1505 
1506 		return 0;
1507 	    }
1508 	default:
1509 		return -EINVAL;
1510 	}
1511 }
1512 
1513 /*
1514  * This function handles some semctl commands which require the rwsem
1515  * to be held in write mode.
1516  * NOTE: no locks must be held, the rwsem is taken inside this function.
1517  */
1518 static int semctl_down(struct ipc_namespace *ns, int semid,
1519 		       int cmd, struct semid64_ds *semid64)
1520 {
1521 	struct sem_array *sma;
1522 	int err;
1523 	struct kern_ipc_perm *ipcp;
1524 
1525 	down_write(&sem_ids(ns).rwsem);
1526 	rcu_read_lock();
1527 
1528 	ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1529 				      &semid64->sem_perm, 0);
1530 	if (IS_ERR(ipcp)) {
1531 		err = PTR_ERR(ipcp);
1532 		goto out_unlock1;
1533 	}
1534 
1535 	sma = container_of(ipcp, struct sem_array, sem_perm);
1536 
1537 	err = security_sem_semctl(sma, cmd);
1538 	if (err)
1539 		goto out_unlock1;
1540 
1541 	switch (cmd) {
1542 	case IPC_RMID:
1543 		sem_lock(sma, NULL, -1);
1544 		/* freeary unlocks the ipc object and rcu */
1545 		freeary(ns, ipcp);
1546 		goto out_up;
1547 	case IPC_SET:
1548 		sem_lock(sma, NULL, -1);
1549 		err = ipc_update_perm(&semid64->sem_perm, ipcp);
1550 		if (err)
1551 			goto out_unlock0;
1552 		sma->sem_ctime = ktime_get_real_seconds();
1553 		break;
1554 	default:
1555 		err = -EINVAL;
1556 		goto out_unlock1;
1557 	}
1558 
1559 out_unlock0:
1560 	sem_unlock(sma, -1);
1561 out_unlock1:
1562 	rcu_read_unlock();
1563 out_up:
1564 	up_write(&sem_ids(ns).rwsem);
1565 	return err;
1566 }
1567 
1568 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1569 {
1570 	int version;
1571 	struct ipc_namespace *ns;
1572 	void __user *p = (void __user *)arg;
1573 	struct semid64_ds semid64;
1574 	int err;
1575 
1576 	if (semid < 0)
1577 		return -EINVAL;
1578 
1579 	version = ipc_parse_version(&cmd);
1580 	ns = current->nsproxy->ipc_ns;
1581 
1582 	switch (cmd) {
1583 	case IPC_INFO:
1584 	case SEM_INFO:
1585 		return semctl_info(ns, semid, cmd, p);
1586 	case IPC_STAT:
1587 	case SEM_STAT:
1588 		err = semctl_stat(ns, semid, cmd, &semid64);
1589 		if (err < 0)
1590 			return err;
1591 		if (copy_semid_to_user(p, &semid64, version))
1592 			err = -EFAULT;
1593 		return err;
1594 	case GETALL:
1595 	case GETVAL:
1596 	case GETPID:
1597 	case GETNCNT:
1598 	case GETZCNT:
1599 	case SETALL:
1600 		return semctl_main(ns, semid, semnum, cmd, p);
1601 	case SETVAL: {
1602 		int val;
1603 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1604 		/* big-endian 64bit */
1605 		val = arg >> 32;
1606 #else
1607 		/* 32bit or little-endian 64bit */
1608 		val = arg;
1609 #endif
1610 		return semctl_setval(ns, semid, semnum, val);
1611 	}
1612 	case IPC_SET:
1613 		if (copy_semid_from_user(&semid64, p, version))
1614 			return -EFAULT;
1615 	case IPC_RMID:
1616 		return semctl_down(ns, semid, cmd, &semid64);
1617 	default:
1618 		return -EINVAL;
1619 	}
1620 }
1621 
1622 #ifdef CONFIG_COMPAT
1623 
1624 struct compat_semid_ds {
1625 	struct compat_ipc_perm sem_perm;
1626 	compat_time_t sem_otime;
1627 	compat_time_t sem_ctime;
1628 	compat_uptr_t sem_base;
1629 	compat_uptr_t sem_pending;
1630 	compat_uptr_t sem_pending_last;
1631 	compat_uptr_t undo;
1632 	unsigned short sem_nsems;
1633 };
1634 
1635 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1636 					int version)
1637 {
1638 	memset(out, 0, sizeof(*out));
1639 	if (version == IPC_64) {
1640 		struct compat_semid64_ds *p = buf;
1641 		return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1642 	} else {
1643 		struct compat_semid_ds *p = buf;
1644 		return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1645 	}
1646 }
1647 
1648 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1649 					int version)
1650 {
1651 	if (version == IPC_64) {
1652 		struct compat_semid64_ds v;
1653 		memset(&v, 0, sizeof(v));
1654 		to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1655 		v.sem_otime = in->sem_otime;
1656 		v.sem_ctime = in->sem_ctime;
1657 		v.sem_nsems = in->sem_nsems;
1658 		return copy_to_user(buf, &v, sizeof(v));
1659 	} else {
1660 		struct compat_semid_ds v;
1661 		memset(&v, 0, sizeof(v));
1662 		to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1663 		v.sem_otime = in->sem_otime;
1664 		v.sem_ctime = in->sem_ctime;
1665 		v.sem_nsems = in->sem_nsems;
1666 		return copy_to_user(buf, &v, sizeof(v));
1667 	}
1668 }
1669 
1670 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1671 {
1672 	void __user *p = compat_ptr(arg);
1673 	struct ipc_namespace *ns;
1674 	struct semid64_ds semid64;
1675 	int version = compat_ipc_parse_version(&cmd);
1676 	int err;
1677 
1678 	ns = current->nsproxy->ipc_ns;
1679 
1680 	if (semid < 0)
1681 		return -EINVAL;
1682 
1683 	switch (cmd & (~IPC_64)) {
1684 	case IPC_INFO:
1685 	case SEM_INFO:
1686 		return semctl_info(ns, semid, cmd, p);
1687 	case IPC_STAT:
1688 	case SEM_STAT:
1689 		err = semctl_stat(ns, semid, cmd, &semid64);
1690 		if (err < 0)
1691 			return err;
1692 		if (copy_compat_semid_to_user(p, &semid64, version))
1693 			err = -EFAULT;
1694 		return err;
1695 	case GETVAL:
1696 	case GETPID:
1697 	case GETNCNT:
1698 	case GETZCNT:
1699 	case GETALL:
1700 	case SETALL:
1701 		return semctl_main(ns, semid, semnum, cmd, p);
1702 	case SETVAL:
1703 		return semctl_setval(ns, semid, semnum, arg);
1704 	case IPC_SET:
1705 		if (copy_compat_semid_from_user(&semid64, p, version))
1706 			return -EFAULT;
1707 		/* fallthru */
1708 	case IPC_RMID:
1709 		return semctl_down(ns, semid, cmd, &semid64);
1710 	default:
1711 		return -EINVAL;
1712 	}
1713 }
1714 #endif
1715 
1716 /* If the task doesn't already have a undo_list, then allocate one
1717  * here.  We guarantee there is only one thread using this undo list,
1718  * and current is THE ONE
1719  *
1720  * If this allocation and assignment succeeds, but later
1721  * portions of this code fail, there is no need to free the sem_undo_list.
1722  * Just let it stay associated with the task, and it'll be freed later
1723  * at exit time.
1724  *
1725  * This can block, so callers must hold no locks.
1726  */
1727 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1728 {
1729 	struct sem_undo_list *undo_list;
1730 
1731 	undo_list = current->sysvsem.undo_list;
1732 	if (!undo_list) {
1733 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1734 		if (undo_list == NULL)
1735 			return -ENOMEM;
1736 		spin_lock_init(&undo_list->lock);
1737 		refcount_set(&undo_list->refcnt, 1);
1738 		INIT_LIST_HEAD(&undo_list->list_proc);
1739 
1740 		current->sysvsem.undo_list = undo_list;
1741 	}
1742 	*undo_listp = undo_list;
1743 	return 0;
1744 }
1745 
1746 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1747 {
1748 	struct sem_undo *un;
1749 
1750 	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1751 		if (un->semid == semid)
1752 			return un;
1753 	}
1754 	return NULL;
1755 }
1756 
1757 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1758 {
1759 	struct sem_undo *un;
1760 
1761 	assert_spin_locked(&ulp->lock);
1762 
1763 	un = __lookup_undo(ulp, semid);
1764 	if (un) {
1765 		list_del_rcu(&un->list_proc);
1766 		list_add_rcu(&un->list_proc, &ulp->list_proc);
1767 	}
1768 	return un;
1769 }
1770 
1771 /**
1772  * find_alloc_undo - lookup (and if not present create) undo array
1773  * @ns: namespace
1774  * @semid: semaphore array id
1775  *
1776  * The function looks up (and if not present creates) the undo structure.
1777  * The size of the undo structure depends on the size of the semaphore
1778  * array, thus the alloc path is not that straightforward.
1779  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1780  * performs a rcu_read_lock().
1781  */
1782 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1783 {
1784 	struct sem_array *sma;
1785 	struct sem_undo_list *ulp;
1786 	struct sem_undo *un, *new;
1787 	int nsems, error;
1788 
1789 	error = get_undo_list(&ulp);
1790 	if (error)
1791 		return ERR_PTR(error);
1792 
1793 	rcu_read_lock();
1794 	spin_lock(&ulp->lock);
1795 	un = lookup_undo(ulp, semid);
1796 	spin_unlock(&ulp->lock);
1797 	if (likely(un != NULL))
1798 		goto out;
1799 
1800 	/* no undo structure around - allocate one. */
1801 	/* step 1: figure out the size of the semaphore array */
1802 	sma = sem_obtain_object_check(ns, semid);
1803 	if (IS_ERR(sma)) {
1804 		rcu_read_unlock();
1805 		return ERR_CAST(sma);
1806 	}
1807 
1808 	nsems = sma->sem_nsems;
1809 	if (!ipc_rcu_getref(&sma->sem_perm)) {
1810 		rcu_read_unlock();
1811 		un = ERR_PTR(-EIDRM);
1812 		goto out;
1813 	}
1814 	rcu_read_unlock();
1815 
1816 	/* step 2: allocate new undo structure */
1817 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1818 	if (!new) {
1819 		ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1820 		return ERR_PTR(-ENOMEM);
1821 	}
1822 
1823 	/* step 3: Acquire the lock on semaphore array */
1824 	rcu_read_lock();
1825 	sem_lock_and_putref(sma);
1826 	if (!ipc_valid_object(&sma->sem_perm)) {
1827 		sem_unlock(sma, -1);
1828 		rcu_read_unlock();
1829 		kfree(new);
1830 		un = ERR_PTR(-EIDRM);
1831 		goto out;
1832 	}
1833 	spin_lock(&ulp->lock);
1834 
1835 	/*
1836 	 * step 4: check for races: did someone else allocate the undo struct?
1837 	 */
1838 	un = lookup_undo(ulp, semid);
1839 	if (un) {
1840 		kfree(new);
1841 		goto success;
1842 	}
1843 	/* step 5: initialize & link new undo structure */
1844 	new->semadj = (short *) &new[1];
1845 	new->ulp = ulp;
1846 	new->semid = semid;
1847 	assert_spin_locked(&ulp->lock);
1848 	list_add_rcu(&new->list_proc, &ulp->list_proc);
1849 	ipc_assert_locked_object(&sma->sem_perm);
1850 	list_add(&new->list_id, &sma->list_id);
1851 	un = new;
1852 
1853 success:
1854 	spin_unlock(&ulp->lock);
1855 	sem_unlock(sma, -1);
1856 out:
1857 	return un;
1858 }
1859 
1860 static long do_semtimedop(int semid, struct sembuf __user *tsops,
1861 		unsigned nsops, const struct timespec64 *timeout)
1862 {
1863 	int error = -EINVAL;
1864 	struct sem_array *sma;
1865 	struct sembuf fast_sops[SEMOPM_FAST];
1866 	struct sembuf *sops = fast_sops, *sop;
1867 	struct sem_undo *un;
1868 	int max, locknum;
1869 	bool undos = false, alter = false, dupsop = false;
1870 	struct sem_queue queue;
1871 	unsigned long dup = 0, jiffies_left = 0;
1872 	struct ipc_namespace *ns;
1873 
1874 	ns = current->nsproxy->ipc_ns;
1875 
1876 	if (nsops < 1 || semid < 0)
1877 		return -EINVAL;
1878 	if (nsops > ns->sc_semopm)
1879 		return -E2BIG;
1880 	if (nsops > SEMOPM_FAST) {
1881 		sops = kvmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1882 		if (sops == NULL)
1883 			return -ENOMEM;
1884 	}
1885 
1886 	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1887 		error =  -EFAULT;
1888 		goto out_free;
1889 	}
1890 
1891 	if (timeout) {
1892 		if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
1893 			timeout->tv_nsec >= 1000000000L) {
1894 			error = -EINVAL;
1895 			goto out_free;
1896 		}
1897 		jiffies_left = timespec64_to_jiffies(timeout);
1898 	}
1899 
1900 	max = 0;
1901 	for (sop = sops; sop < sops + nsops; sop++) {
1902 		unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
1903 
1904 		if (sop->sem_num >= max)
1905 			max = sop->sem_num;
1906 		if (sop->sem_flg & SEM_UNDO)
1907 			undos = true;
1908 		if (dup & mask) {
1909 			/*
1910 			 * There was a previous alter access that appears
1911 			 * to have accessed the same semaphore, thus use
1912 			 * the dupsop logic. "appears", because the detection
1913 			 * can only check % BITS_PER_LONG.
1914 			 */
1915 			dupsop = true;
1916 		}
1917 		if (sop->sem_op != 0) {
1918 			alter = true;
1919 			dup |= mask;
1920 		}
1921 	}
1922 
1923 	if (undos) {
1924 		/* On success, find_alloc_undo takes the rcu_read_lock */
1925 		un = find_alloc_undo(ns, semid);
1926 		if (IS_ERR(un)) {
1927 			error = PTR_ERR(un);
1928 			goto out_free;
1929 		}
1930 	} else {
1931 		un = NULL;
1932 		rcu_read_lock();
1933 	}
1934 
1935 	sma = sem_obtain_object_check(ns, semid);
1936 	if (IS_ERR(sma)) {
1937 		rcu_read_unlock();
1938 		error = PTR_ERR(sma);
1939 		goto out_free;
1940 	}
1941 
1942 	error = -EFBIG;
1943 	if (max >= sma->sem_nsems) {
1944 		rcu_read_unlock();
1945 		goto out_free;
1946 	}
1947 
1948 	error = -EACCES;
1949 	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
1950 		rcu_read_unlock();
1951 		goto out_free;
1952 	}
1953 
1954 	error = security_sem_semop(sma, sops, nsops, alter);
1955 	if (error) {
1956 		rcu_read_unlock();
1957 		goto out_free;
1958 	}
1959 
1960 	error = -EIDRM;
1961 	locknum = sem_lock(sma, sops, nsops);
1962 	/*
1963 	 * We eventually might perform the following check in a lockless
1964 	 * fashion, considering ipc_valid_object() locking constraints.
1965 	 * If nsops == 1 and there is no contention for sem_perm.lock, then
1966 	 * only a per-semaphore lock is held and it's OK to proceed with the
1967 	 * check below. More details on the fine grained locking scheme
1968 	 * entangled here and why it's RMID race safe on comments at sem_lock()
1969 	 */
1970 	if (!ipc_valid_object(&sma->sem_perm))
1971 		goto out_unlock_free;
1972 	/*
1973 	 * semid identifiers are not unique - find_alloc_undo may have
1974 	 * allocated an undo structure, it was invalidated by an RMID
1975 	 * and now a new array with received the same id. Check and fail.
1976 	 * This case can be detected checking un->semid. The existence of
1977 	 * "un" itself is guaranteed by rcu.
1978 	 */
1979 	if (un && un->semid == -1)
1980 		goto out_unlock_free;
1981 
1982 	queue.sops = sops;
1983 	queue.nsops = nsops;
1984 	queue.undo = un;
1985 	queue.pid = task_tgid_vnr(current);
1986 	queue.alter = alter;
1987 	queue.dupsop = dupsop;
1988 
1989 	error = perform_atomic_semop(sma, &queue);
1990 	if (error == 0) { /* non-blocking succesfull path */
1991 		DEFINE_WAKE_Q(wake_q);
1992 
1993 		/*
1994 		 * If the operation was successful, then do
1995 		 * the required updates.
1996 		 */
1997 		if (alter)
1998 			do_smart_update(sma, sops, nsops, 1, &wake_q);
1999 		else
2000 			set_semotime(sma, sops);
2001 
2002 		sem_unlock(sma, locknum);
2003 		rcu_read_unlock();
2004 		wake_up_q(&wake_q);
2005 
2006 		goto out_free;
2007 	}
2008 	if (error < 0) /* non-blocking error path */
2009 		goto out_unlock_free;
2010 
2011 	/*
2012 	 * We need to sleep on this operation, so we put the current
2013 	 * task into the pending queue and go to sleep.
2014 	 */
2015 	if (nsops == 1) {
2016 		struct sem *curr;
2017 		curr = &sma->sems[sops->sem_num];
2018 
2019 		if (alter) {
2020 			if (sma->complex_count) {
2021 				list_add_tail(&queue.list,
2022 						&sma->pending_alter);
2023 			} else {
2024 
2025 				list_add_tail(&queue.list,
2026 						&curr->pending_alter);
2027 			}
2028 		} else {
2029 			list_add_tail(&queue.list, &curr->pending_const);
2030 		}
2031 	} else {
2032 		if (!sma->complex_count)
2033 			merge_queues(sma);
2034 
2035 		if (alter)
2036 			list_add_tail(&queue.list, &sma->pending_alter);
2037 		else
2038 			list_add_tail(&queue.list, &sma->pending_const);
2039 
2040 		sma->complex_count++;
2041 	}
2042 
2043 	do {
2044 		queue.status = -EINTR;
2045 		queue.sleeper = current;
2046 
2047 		__set_current_state(TASK_INTERRUPTIBLE);
2048 		sem_unlock(sma, locknum);
2049 		rcu_read_unlock();
2050 
2051 		if (timeout)
2052 			jiffies_left = schedule_timeout(jiffies_left);
2053 		else
2054 			schedule();
2055 
2056 		/*
2057 		 * fastpath: the semop has completed, either successfully or
2058 		 * not, from the syscall pov, is quite irrelevant to us at this
2059 		 * point; we're done.
2060 		 *
2061 		 * We _do_ care, nonetheless, about being awoken by a signal or
2062 		 * spuriously.  The queue.status is checked again in the
2063 		 * slowpath (aka after taking sem_lock), such that we can detect
2064 		 * scenarios where we were awakened externally, during the
2065 		 * window between wake_q_add() and wake_up_q().
2066 		 */
2067 		error = READ_ONCE(queue.status);
2068 		if (error != -EINTR) {
2069 			/*
2070 			 * User space could assume that semop() is a memory
2071 			 * barrier: Without the mb(), the cpu could
2072 			 * speculatively read in userspace stale data that was
2073 			 * overwritten by the previous owner of the semaphore.
2074 			 */
2075 			smp_mb();
2076 			goto out_free;
2077 		}
2078 
2079 		rcu_read_lock();
2080 		locknum = sem_lock(sma, sops, nsops);
2081 
2082 		if (!ipc_valid_object(&sma->sem_perm))
2083 			goto out_unlock_free;
2084 
2085 		error = READ_ONCE(queue.status);
2086 
2087 		/*
2088 		 * If queue.status != -EINTR we are woken up by another process.
2089 		 * Leave without unlink_queue(), but with sem_unlock().
2090 		 */
2091 		if (error != -EINTR)
2092 			goto out_unlock_free;
2093 
2094 		/*
2095 		 * If an interrupt occurred we have to clean up the queue.
2096 		 */
2097 		if (timeout && jiffies_left == 0)
2098 			error = -EAGAIN;
2099 	} while (error == -EINTR && !signal_pending(current)); /* spurious */
2100 
2101 	unlink_queue(sma, &queue);
2102 
2103 out_unlock_free:
2104 	sem_unlock(sma, locknum);
2105 	rcu_read_unlock();
2106 out_free:
2107 	if (sops != fast_sops)
2108 		kvfree(sops);
2109 	return error;
2110 }
2111 
2112 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2113 		unsigned, nsops, const struct timespec __user *, timeout)
2114 {
2115 	if (timeout) {
2116 		struct timespec64 ts;
2117 		if (get_timespec64(&ts, timeout))
2118 			return -EFAULT;
2119 		return do_semtimedop(semid, tsops, nsops, &ts);
2120 	}
2121 	return do_semtimedop(semid, tsops, nsops, NULL);
2122 }
2123 
2124 #ifdef CONFIG_COMPAT
2125 COMPAT_SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsems,
2126 		       unsigned, nsops,
2127 		       const struct compat_timespec __user *, timeout)
2128 {
2129 	if (timeout) {
2130 		struct timespec64 ts;
2131 		if (compat_get_timespec64(&ts, timeout))
2132 			return -EFAULT;
2133 		return do_semtimedop(semid, tsems, nsops, &ts);
2134 	}
2135 	return do_semtimedop(semid, tsems, nsops, NULL);
2136 }
2137 #endif
2138 
2139 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2140 		unsigned, nsops)
2141 {
2142 	return do_semtimedop(semid, tsops, nsops, NULL);
2143 }
2144 
2145 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2146  * parent and child tasks.
2147  */
2148 
2149 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2150 {
2151 	struct sem_undo_list *undo_list;
2152 	int error;
2153 
2154 	if (clone_flags & CLONE_SYSVSEM) {
2155 		error = get_undo_list(&undo_list);
2156 		if (error)
2157 			return error;
2158 		refcount_inc(&undo_list->refcnt);
2159 		tsk->sysvsem.undo_list = undo_list;
2160 	} else
2161 		tsk->sysvsem.undo_list = NULL;
2162 
2163 	return 0;
2164 }
2165 
2166 /*
2167  * add semadj values to semaphores, free undo structures.
2168  * undo structures are not freed when semaphore arrays are destroyed
2169  * so some of them may be out of date.
2170  * IMPLEMENTATION NOTE: There is some confusion over whether the
2171  * set of adjustments that needs to be done should be done in an atomic
2172  * manner or not. That is, if we are attempting to decrement the semval
2173  * should we queue up and wait until we can do so legally?
2174  * The original implementation attempted to do this (queue and wait).
2175  * The current implementation does not do so. The POSIX standard
2176  * and SVID should be consulted to determine what behavior is mandated.
2177  */
2178 void exit_sem(struct task_struct *tsk)
2179 {
2180 	struct sem_undo_list *ulp;
2181 
2182 	ulp = tsk->sysvsem.undo_list;
2183 	if (!ulp)
2184 		return;
2185 	tsk->sysvsem.undo_list = NULL;
2186 
2187 	if (!refcount_dec_and_test(&ulp->refcnt))
2188 		return;
2189 
2190 	for (;;) {
2191 		struct sem_array *sma;
2192 		struct sem_undo *un;
2193 		int semid, i;
2194 		DEFINE_WAKE_Q(wake_q);
2195 
2196 		cond_resched();
2197 
2198 		rcu_read_lock();
2199 		un = list_entry_rcu(ulp->list_proc.next,
2200 				    struct sem_undo, list_proc);
2201 		if (&un->list_proc == &ulp->list_proc) {
2202 			/*
2203 			 * We must wait for freeary() before freeing this ulp,
2204 			 * in case we raced with last sem_undo. There is a small
2205 			 * possibility where we exit while freeary() didn't
2206 			 * finish unlocking sem_undo_list.
2207 			 */
2208 			spin_lock(&ulp->lock);
2209 			spin_unlock(&ulp->lock);
2210 			rcu_read_unlock();
2211 			break;
2212 		}
2213 		spin_lock(&ulp->lock);
2214 		semid = un->semid;
2215 		spin_unlock(&ulp->lock);
2216 
2217 		/* exit_sem raced with IPC_RMID, nothing to do */
2218 		if (semid == -1) {
2219 			rcu_read_unlock();
2220 			continue;
2221 		}
2222 
2223 		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2224 		/* exit_sem raced with IPC_RMID, nothing to do */
2225 		if (IS_ERR(sma)) {
2226 			rcu_read_unlock();
2227 			continue;
2228 		}
2229 
2230 		sem_lock(sma, NULL, -1);
2231 		/* exit_sem raced with IPC_RMID, nothing to do */
2232 		if (!ipc_valid_object(&sma->sem_perm)) {
2233 			sem_unlock(sma, -1);
2234 			rcu_read_unlock();
2235 			continue;
2236 		}
2237 		un = __lookup_undo(ulp, semid);
2238 		if (un == NULL) {
2239 			/* exit_sem raced with IPC_RMID+semget() that created
2240 			 * exactly the same semid. Nothing to do.
2241 			 */
2242 			sem_unlock(sma, -1);
2243 			rcu_read_unlock();
2244 			continue;
2245 		}
2246 
2247 		/* remove un from the linked lists */
2248 		ipc_assert_locked_object(&sma->sem_perm);
2249 		list_del(&un->list_id);
2250 
2251 		/* we are the last process using this ulp, acquiring ulp->lock
2252 		 * isn't required. Besides that, we are also protected against
2253 		 * IPC_RMID as we hold sma->sem_perm lock now
2254 		 */
2255 		list_del_rcu(&un->list_proc);
2256 
2257 		/* perform adjustments registered in un */
2258 		for (i = 0; i < sma->sem_nsems; i++) {
2259 			struct sem *semaphore = &sma->sems[i];
2260 			if (un->semadj[i]) {
2261 				semaphore->semval += un->semadj[i];
2262 				/*
2263 				 * Range checks of the new semaphore value,
2264 				 * not defined by sus:
2265 				 * - Some unices ignore the undo entirely
2266 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2267 				 * - some cap the value (e.g. FreeBSD caps
2268 				 *   at 0, but doesn't enforce SEMVMX)
2269 				 *
2270 				 * Linux caps the semaphore value, both at 0
2271 				 * and at SEMVMX.
2272 				 *
2273 				 *	Manfred <manfred@colorfullife.com>
2274 				 */
2275 				if (semaphore->semval < 0)
2276 					semaphore->semval = 0;
2277 				if (semaphore->semval > SEMVMX)
2278 					semaphore->semval = SEMVMX;
2279 				semaphore->sempid = task_tgid_vnr(current);
2280 			}
2281 		}
2282 		/* maybe some queued-up processes were waiting for this */
2283 		do_smart_update(sma, NULL, 0, 1, &wake_q);
2284 		sem_unlock(sma, -1);
2285 		rcu_read_unlock();
2286 		wake_up_q(&wake_q);
2287 
2288 		kfree_rcu(un, rcu);
2289 	}
2290 	kfree(ulp);
2291 }
2292 
2293 #ifdef CONFIG_PROC_FS
2294 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2295 {
2296 	struct user_namespace *user_ns = seq_user_ns(s);
2297 	struct kern_ipc_perm *ipcp = it;
2298 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2299 	time64_t sem_otime;
2300 
2301 	/*
2302 	 * The proc interface isn't aware of sem_lock(), it calls
2303 	 * ipc_lock_object() directly (in sysvipc_find_ipc).
2304 	 * In order to stay compatible with sem_lock(), we must
2305 	 * enter / leave complex_mode.
2306 	 */
2307 	complexmode_enter(sma);
2308 
2309 	sem_otime = get_semotime(sma);
2310 
2311 	seq_printf(s,
2312 		   "%10d %10d  %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2313 		   sma->sem_perm.key,
2314 		   sma->sem_perm.id,
2315 		   sma->sem_perm.mode,
2316 		   sma->sem_nsems,
2317 		   from_kuid_munged(user_ns, sma->sem_perm.uid),
2318 		   from_kgid_munged(user_ns, sma->sem_perm.gid),
2319 		   from_kuid_munged(user_ns, sma->sem_perm.cuid),
2320 		   from_kgid_munged(user_ns, sma->sem_perm.cgid),
2321 		   sem_otime,
2322 		   sma->sem_ctime);
2323 
2324 	complexmode_tryleave(sma);
2325 
2326 	return 0;
2327 }
2328 #endif
2329