1 /* 2 * linux/ipc/sem.c 3 * Copyright (C) 1992 Krishna Balasubramanian 4 * Copyright (C) 1995 Eric Schenk, Bruno Haible 5 * 6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> 7 * 8 * SMP-threaded, sysctl's added 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com> 10 * Enforced range limit on SEM_UNDO 11 * (c) 2001 Red Hat Inc 12 * Lockless wakeup 13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com> 14 * Further wakeup optimizations, documentation 15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com> 16 * 17 * support for audit of ipc object properties and permission changes 18 * Dustin Kirkland <dustin.kirkland@us.ibm.com> 19 * 20 * namespaces support 21 * OpenVZ, SWsoft Inc. 22 * Pavel Emelianov <xemul@openvz.org> 23 * 24 * Implementation notes: (May 2010) 25 * This file implements System V semaphores. 26 * 27 * User space visible behavior: 28 * - FIFO ordering for semop() operations (just FIFO, not starvation 29 * protection) 30 * - multiple semaphore operations that alter the same semaphore in 31 * one semop() are handled. 32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and 33 * SETALL calls. 34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. 35 * - undo adjustments at process exit are limited to 0..SEMVMX. 36 * - namespace are supported. 37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing 38 * to /proc/sys/kernel/sem. 39 * - statistics about the usage are reported in /proc/sysvipc/sem. 40 * 41 * Internals: 42 * - scalability: 43 * - all global variables are read-mostly. 44 * - semop() calls and semctl(RMID) are synchronized by RCU. 45 * - most operations do write operations (actually: spin_lock calls) to 46 * the per-semaphore array structure. 47 * Thus: Perfect SMP scaling between independent semaphore arrays. 48 * If multiple semaphores in one array are used, then cache line 49 * trashing on the semaphore array spinlock will limit the scaling. 50 * - semncnt and semzcnt are calculated on demand in count_semcnt() 51 * - the task that performs a successful semop() scans the list of all 52 * sleeping tasks and completes any pending operations that can be fulfilled. 53 * Semaphores are actively given to waiting tasks (necessary for FIFO). 54 * (see update_queue()) 55 * - To improve the scalability, the actual wake-up calls are performed after 56 * dropping all locks. (see wake_up_sem_queue_prepare(), 57 * wake_up_sem_queue_do()) 58 * - All work is done by the waker, the woken up task does not have to do 59 * anything - not even acquiring a lock or dropping a refcount. 60 * - A woken up task may not even touch the semaphore array anymore, it may 61 * have been destroyed already by a semctl(RMID). 62 * - The synchronizations between wake-ups due to a timeout/signal and a 63 * wake-up due to a completed semaphore operation is achieved by using an 64 * intermediate state (IN_WAKEUP). 65 * - UNDO values are stored in an array (one per process and per 66 * semaphore array, lazily allocated). For backwards compatibility, multiple 67 * modes for the UNDO variables are supported (per process, per thread) 68 * (see copy_semundo, CLONE_SYSVSEM) 69 * - There are two lists of the pending operations: a per-array list 70 * and per-semaphore list (stored in the array). This allows to achieve FIFO 71 * ordering without always scanning all pending operations. 72 * The worst-case behavior is nevertheless O(N^2) for N wakeups. 73 */ 74 75 #include <linux/slab.h> 76 #include <linux/spinlock.h> 77 #include <linux/init.h> 78 #include <linux/proc_fs.h> 79 #include <linux/time.h> 80 #include <linux/security.h> 81 #include <linux/syscalls.h> 82 #include <linux/audit.h> 83 #include <linux/capability.h> 84 #include <linux/seq_file.h> 85 #include <linux/rwsem.h> 86 #include <linux/nsproxy.h> 87 #include <linux/ipc_namespace.h> 88 89 #include <linux/uaccess.h> 90 #include "util.h" 91 92 /* One semaphore structure for each semaphore in the system. */ 93 struct sem { 94 int semval; /* current value */ 95 int sempid; /* pid of last operation */ 96 spinlock_t lock; /* spinlock for fine-grained semtimedop */ 97 struct list_head pending_alter; /* pending single-sop operations */ 98 /* that alter the semaphore */ 99 struct list_head pending_const; /* pending single-sop operations */ 100 /* that do not alter the semaphore*/ 101 time_t sem_otime; /* candidate for sem_otime */ 102 } ____cacheline_aligned_in_smp; 103 104 /* One queue for each sleeping process in the system. */ 105 struct sem_queue { 106 struct list_head list; /* queue of pending operations */ 107 struct task_struct *sleeper; /* this process */ 108 struct sem_undo *undo; /* undo structure */ 109 int pid; /* process id of requesting process */ 110 int status; /* completion status of operation */ 111 struct sembuf *sops; /* array of pending operations */ 112 struct sembuf *blocking; /* the operation that blocked */ 113 int nsops; /* number of operations */ 114 int alter; /* does *sops alter the array? */ 115 }; 116 117 /* Each task has a list of undo requests. They are executed automatically 118 * when the process exits. 119 */ 120 struct sem_undo { 121 struct list_head list_proc; /* per-process list: * 122 * all undos from one process 123 * rcu protected */ 124 struct rcu_head rcu; /* rcu struct for sem_undo */ 125 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */ 126 struct list_head list_id; /* per semaphore array list: 127 * all undos for one array */ 128 int semid; /* semaphore set identifier */ 129 short *semadj; /* array of adjustments */ 130 /* one per semaphore */ 131 }; 132 133 /* sem_undo_list controls shared access to the list of sem_undo structures 134 * that may be shared among all a CLONE_SYSVSEM task group. 135 */ 136 struct sem_undo_list { 137 atomic_t refcnt; 138 spinlock_t lock; 139 struct list_head list_proc; 140 }; 141 142 143 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) 144 145 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid) 146 147 static int newary(struct ipc_namespace *, struct ipc_params *); 148 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); 149 #ifdef CONFIG_PROC_FS 150 static int sysvipc_sem_proc_show(struct seq_file *s, void *it); 151 #endif 152 153 #define SEMMSL_FAST 256 /* 512 bytes on stack */ 154 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ 155 156 /* 157 * Locking: 158 * sem_undo.id_next, 159 * sem_array.complex_count, 160 * sem_array.pending{_alter,_cont}, 161 * sem_array.sem_undo: global sem_lock() for read/write 162 * sem_undo.proc_next: only "current" is allowed to read/write that field. 163 * 164 * sem_array.sem_base[i].pending_{const,alter}: 165 * global or semaphore sem_lock() for read/write 166 */ 167 168 #define sc_semmsl sem_ctls[0] 169 #define sc_semmns sem_ctls[1] 170 #define sc_semopm sem_ctls[2] 171 #define sc_semmni sem_ctls[3] 172 173 void sem_init_ns(struct ipc_namespace *ns) 174 { 175 ns->sc_semmsl = SEMMSL; 176 ns->sc_semmns = SEMMNS; 177 ns->sc_semopm = SEMOPM; 178 ns->sc_semmni = SEMMNI; 179 ns->used_sems = 0; 180 ipc_init_ids(&ns->ids[IPC_SEM_IDS]); 181 } 182 183 #ifdef CONFIG_IPC_NS 184 void sem_exit_ns(struct ipc_namespace *ns) 185 { 186 free_ipcs(ns, &sem_ids(ns), freeary); 187 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); 188 } 189 #endif 190 191 void __init sem_init(void) 192 { 193 sem_init_ns(&init_ipc_ns); 194 ipc_init_proc_interface("sysvipc/sem", 195 " key semid perms nsems uid gid cuid cgid otime ctime\n", 196 IPC_SEM_IDS, sysvipc_sem_proc_show); 197 } 198 199 /** 200 * unmerge_queues - unmerge queues, if possible. 201 * @sma: semaphore array 202 * 203 * The function unmerges the wait queues if complex_count is 0. 204 * It must be called prior to dropping the global semaphore array lock. 205 */ 206 static void unmerge_queues(struct sem_array *sma) 207 { 208 struct sem_queue *q, *tq; 209 210 /* complex operations still around? */ 211 if (sma->complex_count) 212 return; 213 /* 214 * We will switch back to simple mode. 215 * Move all pending operation back into the per-semaphore 216 * queues. 217 */ 218 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 219 struct sem *curr; 220 curr = &sma->sem_base[q->sops[0].sem_num]; 221 222 list_add_tail(&q->list, &curr->pending_alter); 223 } 224 INIT_LIST_HEAD(&sma->pending_alter); 225 } 226 227 /** 228 * merge_queues - merge single semop queues into global queue 229 * @sma: semaphore array 230 * 231 * This function merges all per-semaphore queues into the global queue. 232 * It is necessary to achieve FIFO ordering for the pending single-sop 233 * operations when a multi-semop operation must sleep. 234 * Only the alter operations must be moved, the const operations can stay. 235 */ 236 static void merge_queues(struct sem_array *sma) 237 { 238 int i; 239 for (i = 0; i < sma->sem_nsems; i++) { 240 struct sem *sem = sma->sem_base + i; 241 242 list_splice_init(&sem->pending_alter, &sma->pending_alter); 243 } 244 } 245 246 static void sem_rcu_free(struct rcu_head *head) 247 { 248 struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu); 249 struct sem_array *sma = ipc_rcu_to_struct(p); 250 251 security_sem_free(sma); 252 ipc_rcu_free(head); 253 } 254 255 /* 256 * Wait until all currently ongoing simple ops have completed. 257 * Caller must own sem_perm.lock. 258 * New simple ops cannot start, because simple ops first check 259 * that sem_perm.lock is free. 260 * that a) sem_perm.lock is free and b) complex_count is 0. 261 */ 262 static void sem_wait_array(struct sem_array *sma) 263 { 264 int i; 265 struct sem *sem; 266 267 if (sma->complex_count) { 268 /* The thread that increased sma->complex_count waited on 269 * all sem->lock locks. Thus we don't need to wait again. 270 */ 271 return; 272 } 273 274 for (i = 0; i < sma->sem_nsems; i++) { 275 sem = sma->sem_base + i; 276 spin_unlock_wait(&sem->lock); 277 } 278 } 279 280 /* 281 * If the request contains only one semaphore operation, and there are 282 * no complex transactions pending, lock only the semaphore involved. 283 * Otherwise, lock the entire semaphore array, since we either have 284 * multiple semaphores in our own semops, or we need to look at 285 * semaphores from other pending complex operations. 286 */ 287 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, 288 int nsops) 289 { 290 struct sem *sem; 291 292 if (nsops != 1) { 293 /* Complex operation - acquire a full lock */ 294 ipc_lock_object(&sma->sem_perm); 295 296 /* And wait until all simple ops that are processed 297 * right now have dropped their locks. 298 */ 299 sem_wait_array(sma); 300 return -1; 301 } 302 303 /* 304 * Only one semaphore affected - try to optimize locking. 305 * The rules are: 306 * - optimized locking is possible if no complex operation 307 * is either enqueued or processed right now. 308 * - The test for enqueued complex ops is simple: 309 * sma->complex_count != 0 310 * - Testing for complex ops that are processed right now is 311 * a bit more difficult. Complex ops acquire the full lock 312 * and first wait that the running simple ops have completed. 313 * (see above) 314 * Thus: If we own a simple lock and the global lock is free 315 * and complex_count is now 0, then it will stay 0 and 316 * thus just locking sem->lock is sufficient. 317 */ 318 sem = sma->sem_base + sops->sem_num; 319 320 if (sma->complex_count == 0) { 321 /* 322 * It appears that no complex operation is around. 323 * Acquire the per-semaphore lock. 324 */ 325 spin_lock(&sem->lock); 326 327 /* Then check that the global lock is free */ 328 if (!spin_is_locked(&sma->sem_perm.lock)) { 329 /* spin_is_locked() is not a memory barrier */ 330 smp_mb(); 331 332 /* Now repeat the test of complex_count: 333 * It can't change anymore until we drop sem->lock. 334 * Thus: if is now 0, then it will stay 0. 335 */ 336 if (sma->complex_count == 0) { 337 /* fast path successful! */ 338 return sops->sem_num; 339 } 340 } 341 spin_unlock(&sem->lock); 342 } 343 344 /* slow path: acquire the full lock */ 345 ipc_lock_object(&sma->sem_perm); 346 347 if (sma->complex_count == 0) { 348 /* False alarm: 349 * There is no complex operation, thus we can switch 350 * back to the fast path. 351 */ 352 spin_lock(&sem->lock); 353 ipc_unlock_object(&sma->sem_perm); 354 return sops->sem_num; 355 } else { 356 /* Not a false alarm, thus complete the sequence for a 357 * full lock. 358 */ 359 sem_wait_array(sma); 360 return -1; 361 } 362 } 363 364 static inline void sem_unlock(struct sem_array *sma, int locknum) 365 { 366 if (locknum == -1) { 367 unmerge_queues(sma); 368 ipc_unlock_object(&sma->sem_perm); 369 } else { 370 struct sem *sem = sma->sem_base + locknum; 371 spin_unlock(&sem->lock); 372 } 373 } 374 375 /* 376 * sem_lock_(check_) routines are called in the paths where the rwsem 377 * is not held. 378 * 379 * The caller holds the RCU read lock. 380 */ 381 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns, 382 int id, struct sembuf *sops, int nsops, int *locknum) 383 { 384 struct kern_ipc_perm *ipcp; 385 struct sem_array *sma; 386 387 ipcp = ipc_obtain_object(&sem_ids(ns), id); 388 if (IS_ERR(ipcp)) 389 return ERR_CAST(ipcp); 390 391 sma = container_of(ipcp, struct sem_array, sem_perm); 392 *locknum = sem_lock(sma, sops, nsops); 393 394 /* ipc_rmid() may have already freed the ID while sem_lock 395 * was spinning: verify that the structure is still valid 396 */ 397 if (ipc_valid_object(ipcp)) 398 return container_of(ipcp, struct sem_array, sem_perm); 399 400 sem_unlock(sma, *locknum); 401 return ERR_PTR(-EINVAL); 402 } 403 404 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id) 405 { 406 struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id); 407 408 if (IS_ERR(ipcp)) 409 return ERR_CAST(ipcp); 410 411 return container_of(ipcp, struct sem_array, sem_perm); 412 } 413 414 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, 415 int id) 416 { 417 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id); 418 419 if (IS_ERR(ipcp)) 420 return ERR_CAST(ipcp); 421 422 return container_of(ipcp, struct sem_array, sem_perm); 423 } 424 425 static inline void sem_lock_and_putref(struct sem_array *sma) 426 { 427 sem_lock(sma, NULL, -1); 428 ipc_rcu_putref(sma, ipc_rcu_free); 429 } 430 431 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) 432 { 433 ipc_rmid(&sem_ids(ns), &s->sem_perm); 434 } 435 436 /* 437 * Lockless wakeup algorithm: 438 * Without the check/retry algorithm a lockless wakeup is possible: 439 * - queue.status is initialized to -EINTR before blocking. 440 * - wakeup is performed by 441 * * unlinking the queue entry from the pending list 442 * * setting queue.status to IN_WAKEUP 443 * This is the notification for the blocked thread that a 444 * result value is imminent. 445 * * call wake_up_process 446 * * set queue.status to the final value. 447 * - the previously blocked thread checks queue.status: 448 * * if it's IN_WAKEUP, then it must wait until the value changes 449 * * if it's not -EINTR, then the operation was completed by 450 * update_queue. semtimedop can return queue.status without 451 * performing any operation on the sem array. 452 * * otherwise it must acquire the spinlock and check what's up. 453 * 454 * The two-stage algorithm is necessary to protect against the following 455 * races: 456 * - if queue.status is set after wake_up_process, then the woken up idle 457 * thread could race forward and try (and fail) to acquire sma->lock 458 * before update_queue had a chance to set queue.status 459 * - if queue.status is written before wake_up_process and if the 460 * blocked process is woken up by a signal between writing 461 * queue.status and the wake_up_process, then the woken up 462 * process could return from semtimedop and die by calling 463 * sys_exit before wake_up_process is called. Then wake_up_process 464 * will oops, because the task structure is already invalid. 465 * (yes, this happened on s390 with sysv msg). 466 * 467 */ 468 #define IN_WAKEUP 1 469 470 /** 471 * newary - Create a new semaphore set 472 * @ns: namespace 473 * @params: ptr to the structure that contains key, semflg and nsems 474 * 475 * Called with sem_ids.rwsem held (as a writer) 476 */ 477 static int newary(struct ipc_namespace *ns, struct ipc_params *params) 478 { 479 int id; 480 int retval; 481 struct sem_array *sma; 482 int size; 483 key_t key = params->key; 484 int nsems = params->u.nsems; 485 int semflg = params->flg; 486 int i; 487 488 if (!nsems) 489 return -EINVAL; 490 if (ns->used_sems + nsems > ns->sc_semmns) 491 return -ENOSPC; 492 493 size = sizeof(*sma) + nsems * sizeof(struct sem); 494 sma = ipc_rcu_alloc(size); 495 if (!sma) 496 return -ENOMEM; 497 498 memset(sma, 0, size); 499 500 sma->sem_perm.mode = (semflg & S_IRWXUGO); 501 sma->sem_perm.key = key; 502 503 sma->sem_perm.security = NULL; 504 retval = security_sem_alloc(sma); 505 if (retval) { 506 ipc_rcu_putref(sma, ipc_rcu_free); 507 return retval; 508 } 509 510 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); 511 if (id < 0) { 512 ipc_rcu_putref(sma, sem_rcu_free); 513 return id; 514 } 515 ns->used_sems += nsems; 516 517 sma->sem_base = (struct sem *) &sma[1]; 518 519 for (i = 0; i < nsems; i++) { 520 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter); 521 INIT_LIST_HEAD(&sma->sem_base[i].pending_const); 522 spin_lock_init(&sma->sem_base[i].lock); 523 } 524 525 sma->complex_count = 0; 526 INIT_LIST_HEAD(&sma->pending_alter); 527 INIT_LIST_HEAD(&sma->pending_const); 528 INIT_LIST_HEAD(&sma->list_id); 529 sma->sem_nsems = nsems; 530 sma->sem_ctime = get_seconds(); 531 sem_unlock(sma, -1); 532 rcu_read_unlock(); 533 534 return sma->sem_perm.id; 535 } 536 537 538 /* 539 * Called with sem_ids.rwsem and ipcp locked. 540 */ 541 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg) 542 { 543 struct sem_array *sma; 544 545 sma = container_of(ipcp, struct sem_array, sem_perm); 546 return security_sem_associate(sma, semflg); 547 } 548 549 /* 550 * Called with sem_ids.rwsem and ipcp locked. 551 */ 552 static inline int sem_more_checks(struct kern_ipc_perm *ipcp, 553 struct ipc_params *params) 554 { 555 struct sem_array *sma; 556 557 sma = container_of(ipcp, struct sem_array, sem_perm); 558 if (params->u.nsems > sma->sem_nsems) 559 return -EINVAL; 560 561 return 0; 562 } 563 564 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) 565 { 566 struct ipc_namespace *ns; 567 static const struct ipc_ops sem_ops = { 568 .getnew = newary, 569 .associate = sem_security, 570 .more_checks = sem_more_checks, 571 }; 572 struct ipc_params sem_params; 573 574 ns = current->nsproxy->ipc_ns; 575 576 if (nsems < 0 || nsems > ns->sc_semmsl) 577 return -EINVAL; 578 579 sem_params.key = key; 580 sem_params.flg = semflg; 581 sem_params.u.nsems = nsems; 582 583 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); 584 } 585 586 /** 587 * perform_atomic_semop - Perform (if possible) a semaphore operation 588 * @sma: semaphore array 589 * @q: struct sem_queue that describes the operation 590 * 591 * Returns 0 if the operation was possible. 592 * Returns 1 if the operation is impossible, the caller must sleep. 593 * Negative values are error codes. 594 */ 595 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q) 596 { 597 int result, sem_op, nsops, pid; 598 struct sembuf *sop; 599 struct sem *curr; 600 struct sembuf *sops; 601 struct sem_undo *un; 602 603 sops = q->sops; 604 nsops = q->nsops; 605 un = q->undo; 606 607 for (sop = sops; sop < sops + nsops; sop++) { 608 curr = sma->sem_base + sop->sem_num; 609 sem_op = sop->sem_op; 610 result = curr->semval; 611 612 if (!sem_op && result) 613 goto would_block; 614 615 result += sem_op; 616 if (result < 0) 617 goto would_block; 618 if (result > SEMVMX) 619 goto out_of_range; 620 621 if (sop->sem_flg & SEM_UNDO) { 622 int undo = un->semadj[sop->sem_num] - sem_op; 623 /* Exceeding the undo range is an error. */ 624 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 625 goto out_of_range; 626 un->semadj[sop->sem_num] = undo; 627 } 628 629 curr->semval = result; 630 } 631 632 sop--; 633 pid = q->pid; 634 while (sop >= sops) { 635 sma->sem_base[sop->sem_num].sempid = pid; 636 sop--; 637 } 638 639 return 0; 640 641 out_of_range: 642 result = -ERANGE; 643 goto undo; 644 645 would_block: 646 q->blocking = sop; 647 648 if (sop->sem_flg & IPC_NOWAIT) 649 result = -EAGAIN; 650 else 651 result = 1; 652 653 undo: 654 sop--; 655 while (sop >= sops) { 656 sem_op = sop->sem_op; 657 sma->sem_base[sop->sem_num].semval -= sem_op; 658 if (sop->sem_flg & SEM_UNDO) 659 un->semadj[sop->sem_num] += sem_op; 660 sop--; 661 } 662 663 return result; 664 } 665 666 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up 667 * @q: queue entry that must be signaled 668 * @error: Error value for the signal 669 * 670 * Prepare the wake-up of the queue entry q. 671 */ 672 static void wake_up_sem_queue_prepare(struct list_head *pt, 673 struct sem_queue *q, int error) 674 { 675 if (list_empty(pt)) { 676 /* 677 * Hold preempt off so that we don't get preempted and have the 678 * wakee busy-wait until we're scheduled back on. 679 */ 680 preempt_disable(); 681 } 682 q->status = IN_WAKEUP; 683 q->pid = error; 684 685 list_add_tail(&q->list, pt); 686 } 687 688 /** 689 * wake_up_sem_queue_do - do the actual wake-up 690 * @pt: list of tasks to be woken up 691 * 692 * Do the actual wake-up. 693 * The function is called without any locks held, thus the semaphore array 694 * could be destroyed already and the tasks can disappear as soon as the 695 * status is set to the actual return code. 696 */ 697 static void wake_up_sem_queue_do(struct list_head *pt) 698 { 699 struct sem_queue *q, *t; 700 int did_something; 701 702 did_something = !list_empty(pt); 703 list_for_each_entry_safe(q, t, pt, list) { 704 wake_up_process(q->sleeper); 705 /* q can disappear immediately after writing q->status. */ 706 smp_wmb(); 707 q->status = q->pid; 708 } 709 if (did_something) 710 preempt_enable(); 711 } 712 713 static void unlink_queue(struct sem_array *sma, struct sem_queue *q) 714 { 715 list_del(&q->list); 716 if (q->nsops > 1) 717 sma->complex_count--; 718 } 719 720 /** check_restart(sma, q) 721 * @sma: semaphore array 722 * @q: the operation that just completed 723 * 724 * update_queue is O(N^2) when it restarts scanning the whole queue of 725 * waiting operations. Therefore this function checks if the restart is 726 * really necessary. It is called after a previously waiting operation 727 * modified the array. 728 * Note that wait-for-zero operations are handled without restart. 729 */ 730 static int check_restart(struct sem_array *sma, struct sem_queue *q) 731 { 732 /* pending complex alter operations are too difficult to analyse */ 733 if (!list_empty(&sma->pending_alter)) 734 return 1; 735 736 /* we were a sleeping complex operation. Too difficult */ 737 if (q->nsops > 1) 738 return 1; 739 740 /* It is impossible that someone waits for the new value: 741 * - complex operations always restart. 742 * - wait-for-zero are handled seperately. 743 * - q is a previously sleeping simple operation that 744 * altered the array. It must be a decrement, because 745 * simple increments never sleep. 746 * - If there are older (higher priority) decrements 747 * in the queue, then they have observed the original 748 * semval value and couldn't proceed. The operation 749 * decremented to value - thus they won't proceed either. 750 */ 751 return 0; 752 } 753 754 /** 755 * wake_const_ops - wake up non-alter tasks 756 * @sma: semaphore array. 757 * @semnum: semaphore that was modified. 758 * @pt: list head for the tasks that must be woken up. 759 * 760 * wake_const_ops must be called after a semaphore in a semaphore array 761 * was set to 0. If complex const operations are pending, wake_const_ops must 762 * be called with semnum = -1, as well as with the number of each modified 763 * semaphore. 764 * The tasks that must be woken up are added to @pt. The return code 765 * is stored in q->pid. 766 * The function returns 1 if at least one operation was completed successfully. 767 */ 768 static int wake_const_ops(struct sem_array *sma, int semnum, 769 struct list_head *pt) 770 { 771 struct sem_queue *q; 772 struct list_head *walk; 773 struct list_head *pending_list; 774 int semop_completed = 0; 775 776 if (semnum == -1) 777 pending_list = &sma->pending_const; 778 else 779 pending_list = &sma->sem_base[semnum].pending_const; 780 781 walk = pending_list->next; 782 while (walk != pending_list) { 783 int error; 784 785 q = container_of(walk, struct sem_queue, list); 786 walk = walk->next; 787 788 error = perform_atomic_semop(sma, q); 789 790 if (error <= 0) { 791 /* operation completed, remove from queue & wakeup */ 792 793 unlink_queue(sma, q); 794 795 wake_up_sem_queue_prepare(pt, q, error); 796 if (error == 0) 797 semop_completed = 1; 798 } 799 } 800 return semop_completed; 801 } 802 803 /** 804 * do_smart_wakeup_zero - wakeup all wait for zero tasks 805 * @sma: semaphore array 806 * @sops: operations that were performed 807 * @nsops: number of operations 808 * @pt: list head of the tasks that must be woken up. 809 * 810 * Checks all required queue for wait-for-zero operations, based 811 * on the actual changes that were performed on the semaphore array. 812 * The function returns 1 if at least one operation was completed successfully. 813 */ 814 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops, 815 int nsops, struct list_head *pt) 816 { 817 int i; 818 int semop_completed = 0; 819 int got_zero = 0; 820 821 /* first: the per-semaphore queues, if known */ 822 if (sops) { 823 for (i = 0; i < nsops; i++) { 824 int num = sops[i].sem_num; 825 826 if (sma->sem_base[num].semval == 0) { 827 got_zero = 1; 828 semop_completed |= wake_const_ops(sma, num, pt); 829 } 830 } 831 } else { 832 /* 833 * No sops means modified semaphores not known. 834 * Assume all were changed. 835 */ 836 for (i = 0; i < sma->sem_nsems; i++) { 837 if (sma->sem_base[i].semval == 0) { 838 got_zero = 1; 839 semop_completed |= wake_const_ops(sma, i, pt); 840 } 841 } 842 } 843 /* 844 * If one of the modified semaphores got 0, 845 * then check the global queue, too. 846 */ 847 if (got_zero) 848 semop_completed |= wake_const_ops(sma, -1, pt); 849 850 return semop_completed; 851 } 852 853 854 /** 855 * update_queue - look for tasks that can be completed. 856 * @sma: semaphore array. 857 * @semnum: semaphore that was modified. 858 * @pt: list head for the tasks that must be woken up. 859 * 860 * update_queue must be called after a semaphore in a semaphore array 861 * was modified. If multiple semaphores were modified, update_queue must 862 * be called with semnum = -1, as well as with the number of each modified 863 * semaphore. 864 * The tasks that must be woken up are added to @pt. The return code 865 * is stored in q->pid. 866 * The function internally checks if const operations can now succeed. 867 * 868 * The function return 1 if at least one semop was completed successfully. 869 */ 870 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt) 871 { 872 struct sem_queue *q; 873 struct list_head *walk; 874 struct list_head *pending_list; 875 int semop_completed = 0; 876 877 if (semnum == -1) 878 pending_list = &sma->pending_alter; 879 else 880 pending_list = &sma->sem_base[semnum].pending_alter; 881 882 again: 883 walk = pending_list->next; 884 while (walk != pending_list) { 885 int error, restart; 886 887 q = container_of(walk, struct sem_queue, list); 888 walk = walk->next; 889 890 /* If we are scanning the single sop, per-semaphore list of 891 * one semaphore and that semaphore is 0, then it is not 892 * necessary to scan further: simple increments 893 * that affect only one entry succeed immediately and cannot 894 * be in the per semaphore pending queue, and decrements 895 * cannot be successful if the value is already 0. 896 */ 897 if (semnum != -1 && sma->sem_base[semnum].semval == 0) 898 break; 899 900 error = perform_atomic_semop(sma, q); 901 902 /* Does q->sleeper still need to sleep? */ 903 if (error > 0) 904 continue; 905 906 unlink_queue(sma, q); 907 908 if (error) { 909 restart = 0; 910 } else { 911 semop_completed = 1; 912 do_smart_wakeup_zero(sma, q->sops, q->nsops, pt); 913 restart = check_restart(sma, q); 914 } 915 916 wake_up_sem_queue_prepare(pt, q, error); 917 if (restart) 918 goto again; 919 } 920 return semop_completed; 921 } 922 923 /** 924 * set_semotime - set sem_otime 925 * @sma: semaphore array 926 * @sops: operations that modified the array, may be NULL 927 * 928 * sem_otime is replicated to avoid cache line trashing. 929 * This function sets one instance to the current time. 930 */ 931 static void set_semotime(struct sem_array *sma, struct sembuf *sops) 932 { 933 if (sops == NULL) { 934 sma->sem_base[0].sem_otime = get_seconds(); 935 } else { 936 sma->sem_base[sops[0].sem_num].sem_otime = 937 get_seconds(); 938 } 939 } 940 941 /** 942 * do_smart_update - optimized update_queue 943 * @sma: semaphore array 944 * @sops: operations that were performed 945 * @nsops: number of operations 946 * @otime: force setting otime 947 * @pt: list head of the tasks that must be woken up. 948 * 949 * do_smart_update() does the required calls to update_queue and wakeup_zero, 950 * based on the actual changes that were performed on the semaphore array. 951 * Note that the function does not do the actual wake-up: the caller is 952 * responsible for calling wake_up_sem_queue_do(@pt). 953 * It is safe to perform this call after dropping all locks. 954 */ 955 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, 956 int otime, struct list_head *pt) 957 { 958 int i; 959 960 otime |= do_smart_wakeup_zero(sma, sops, nsops, pt); 961 962 if (!list_empty(&sma->pending_alter)) { 963 /* semaphore array uses the global queue - just process it. */ 964 otime |= update_queue(sma, -1, pt); 965 } else { 966 if (!sops) { 967 /* 968 * No sops, thus the modified semaphores are not 969 * known. Check all. 970 */ 971 for (i = 0; i < sma->sem_nsems; i++) 972 otime |= update_queue(sma, i, pt); 973 } else { 974 /* 975 * Check the semaphores that were increased: 976 * - No complex ops, thus all sleeping ops are 977 * decrease. 978 * - if we decreased the value, then any sleeping 979 * semaphore ops wont be able to run: If the 980 * previous value was too small, then the new 981 * value will be too small, too. 982 */ 983 for (i = 0; i < nsops; i++) { 984 if (sops[i].sem_op > 0) { 985 otime |= update_queue(sma, 986 sops[i].sem_num, pt); 987 } 988 } 989 } 990 } 991 if (otime) 992 set_semotime(sma, sops); 993 } 994 995 /* 996 * check_qop: Test if a queued operation sleeps on the semaphore semnum 997 */ 998 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q, 999 bool count_zero) 1000 { 1001 struct sembuf *sop = q->blocking; 1002 1003 /* 1004 * Linux always (since 0.99.10) reported a task as sleeping on all 1005 * semaphores. This violates SUS, therefore it was changed to the 1006 * standard compliant behavior. 1007 * Give the administrators a chance to notice that an application 1008 * might misbehave because it relies on the Linux behavior. 1009 */ 1010 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n" 1011 "The task %s (%d) triggered the difference, watch for misbehavior.\n", 1012 current->comm, task_pid_nr(current)); 1013 1014 if (sop->sem_num != semnum) 1015 return 0; 1016 1017 if (count_zero && sop->sem_op == 0) 1018 return 1; 1019 if (!count_zero && sop->sem_op < 0) 1020 return 1; 1021 1022 return 0; 1023 } 1024 1025 /* The following counts are associated to each semaphore: 1026 * semncnt number of tasks waiting on semval being nonzero 1027 * semzcnt number of tasks waiting on semval being zero 1028 * 1029 * Per definition, a task waits only on the semaphore of the first semop 1030 * that cannot proceed, even if additional operation would block, too. 1031 */ 1032 static int count_semcnt(struct sem_array *sma, ushort semnum, 1033 bool count_zero) 1034 { 1035 struct list_head *l; 1036 struct sem_queue *q; 1037 int semcnt; 1038 1039 semcnt = 0; 1040 /* First: check the simple operations. They are easy to evaluate */ 1041 if (count_zero) 1042 l = &sma->sem_base[semnum].pending_const; 1043 else 1044 l = &sma->sem_base[semnum].pending_alter; 1045 1046 list_for_each_entry(q, l, list) { 1047 /* all task on a per-semaphore list sleep on exactly 1048 * that semaphore 1049 */ 1050 semcnt++; 1051 } 1052 1053 /* Then: check the complex operations. */ 1054 list_for_each_entry(q, &sma->pending_alter, list) { 1055 semcnt += check_qop(sma, semnum, q, count_zero); 1056 } 1057 if (count_zero) { 1058 list_for_each_entry(q, &sma->pending_const, list) { 1059 semcnt += check_qop(sma, semnum, q, count_zero); 1060 } 1061 } 1062 return semcnt; 1063 } 1064 1065 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked 1066 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem 1067 * remains locked on exit. 1068 */ 1069 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) 1070 { 1071 struct sem_undo *un, *tu; 1072 struct sem_queue *q, *tq; 1073 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 1074 struct list_head tasks; 1075 int i; 1076 1077 /* Free the existing undo structures for this semaphore set. */ 1078 ipc_assert_locked_object(&sma->sem_perm); 1079 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { 1080 list_del(&un->list_id); 1081 spin_lock(&un->ulp->lock); 1082 un->semid = -1; 1083 list_del_rcu(&un->list_proc); 1084 spin_unlock(&un->ulp->lock); 1085 kfree_rcu(un, rcu); 1086 } 1087 1088 /* Wake up all pending processes and let them fail with EIDRM. */ 1089 INIT_LIST_HEAD(&tasks); 1090 list_for_each_entry_safe(q, tq, &sma->pending_const, list) { 1091 unlink_queue(sma, q); 1092 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1093 } 1094 1095 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 1096 unlink_queue(sma, q); 1097 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1098 } 1099 for (i = 0; i < sma->sem_nsems; i++) { 1100 struct sem *sem = sma->sem_base + i; 1101 list_for_each_entry_safe(q, tq, &sem->pending_const, list) { 1102 unlink_queue(sma, q); 1103 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1104 } 1105 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) { 1106 unlink_queue(sma, q); 1107 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1108 } 1109 } 1110 1111 /* Remove the semaphore set from the IDR */ 1112 sem_rmid(ns, sma); 1113 sem_unlock(sma, -1); 1114 rcu_read_unlock(); 1115 1116 wake_up_sem_queue_do(&tasks); 1117 ns->used_sems -= sma->sem_nsems; 1118 ipc_rcu_putref(sma, sem_rcu_free); 1119 } 1120 1121 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) 1122 { 1123 switch (version) { 1124 case IPC_64: 1125 return copy_to_user(buf, in, sizeof(*in)); 1126 case IPC_OLD: 1127 { 1128 struct semid_ds out; 1129 1130 memset(&out, 0, sizeof(out)); 1131 1132 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); 1133 1134 out.sem_otime = in->sem_otime; 1135 out.sem_ctime = in->sem_ctime; 1136 out.sem_nsems = in->sem_nsems; 1137 1138 return copy_to_user(buf, &out, sizeof(out)); 1139 } 1140 default: 1141 return -EINVAL; 1142 } 1143 } 1144 1145 static time_t get_semotime(struct sem_array *sma) 1146 { 1147 int i; 1148 time_t res; 1149 1150 res = sma->sem_base[0].sem_otime; 1151 for (i = 1; i < sma->sem_nsems; i++) { 1152 time_t to = sma->sem_base[i].sem_otime; 1153 1154 if (to > res) 1155 res = to; 1156 } 1157 return res; 1158 } 1159 1160 static int semctl_nolock(struct ipc_namespace *ns, int semid, 1161 int cmd, int version, void __user *p) 1162 { 1163 int err; 1164 struct sem_array *sma; 1165 1166 switch (cmd) { 1167 case IPC_INFO: 1168 case SEM_INFO: 1169 { 1170 struct seminfo seminfo; 1171 int max_id; 1172 1173 err = security_sem_semctl(NULL, cmd); 1174 if (err) 1175 return err; 1176 1177 memset(&seminfo, 0, sizeof(seminfo)); 1178 seminfo.semmni = ns->sc_semmni; 1179 seminfo.semmns = ns->sc_semmns; 1180 seminfo.semmsl = ns->sc_semmsl; 1181 seminfo.semopm = ns->sc_semopm; 1182 seminfo.semvmx = SEMVMX; 1183 seminfo.semmnu = SEMMNU; 1184 seminfo.semmap = SEMMAP; 1185 seminfo.semume = SEMUME; 1186 down_read(&sem_ids(ns).rwsem); 1187 if (cmd == SEM_INFO) { 1188 seminfo.semusz = sem_ids(ns).in_use; 1189 seminfo.semaem = ns->used_sems; 1190 } else { 1191 seminfo.semusz = SEMUSZ; 1192 seminfo.semaem = SEMAEM; 1193 } 1194 max_id = ipc_get_maxid(&sem_ids(ns)); 1195 up_read(&sem_ids(ns).rwsem); 1196 if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) 1197 return -EFAULT; 1198 return (max_id < 0) ? 0 : max_id; 1199 } 1200 case IPC_STAT: 1201 case SEM_STAT: 1202 { 1203 struct semid64_ds tbuf; 1204 int id = 0; 1205 1206 memset(&tbuf, 0, sizeof(tbuf)); 1207 1208 rcu_read_lock(); 1209 if (cmd == SEM_STAT) { 1210 sma = sem_obtain_object(ns, semid); 1211 if (IS_ERR(sma)) { 1212 err = PTR_ERR(sma); 1213 goto out_unlock; 1214 } 1215 id = sma->sem_perm.id; 1216 } else { 1217 sma = sem_obtain_object_check(ns, semid); 1218 if (IS_ERR(sma)) { 1219 err = PTR_ERR(sma); 1220 goto out_unlock; 1221 } 1222 } 1223 1224 err = -EACCES; 1225 if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) 1226 goto out_unlock; 1227 1228 err = security_sem_semctl(sma, cmd); 1229 if (err) 1230 goto out_unlock; 1231 1232 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); 1233 tbuf.sem_otime = get_semotime(sma); 1234 tbuf.sem_ctime = sma->sem_ctime; 1235 tbuf.sem_nsems = sma->sem_nsems; 1236 rcu_read_unlock(); 1237 if (copy_semid_to_user(p, &tbuf, version)) 1238 return -EFAULT; 1239 return id; 1240 } 1241 default: 1242 return -EINVAL; 1243 } 1244 out_unlock: 1245 rcu_read_unlock(); 1246 return err; 1247 } 1248 1249 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, 1250 unsigned long arg) 1251 { 1252 struct sem_undo *un; 1253 struct sem_array *sma; 1254 struct sem *curr; 1255 int err; 1256 struct list_head tasks; 1257 int val; 1258 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) 1259 /* big-endian 64bit */ 1260 val = arg >> 32; 1261 #else 1262 /* 32bit or little-endian 64bit */ 1263 val = arg; 1264 #endif 1265 1266 if (val > SEMVMX || val < 0) 1267 return -ERANGE; 1268 1269 INIT_LIST_HEAD(&tasks); 1270 1271 rcu_read_lock(); 1272 sma = sem_obtain_object_check(ns, semid); 1273 if (IS_ERR(sma)) { 1274 rcu_read_unlock(); 1275 return PTR_ERR(sma); 1276 } 1277 1278 if (semnum < 0 || semnum >= sma->sem_nsems) { 1279 rcu_read_unlock(); 1280 return -EINVAL; 1281 } 1282 1283 1284 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) { 1285 rcu_read_unlock(); 1286 return -EACCES; 1287 } 1288 1289 err = security_sem_semctl(sma, SETVAL); 1290 if (err) { 1291 rcu_read_unlock(); 1292 return -EACCES; 1293 } 1294 1295 sem_lock(sma, NULL, -1); 1296 1297 if (!ipc_valid_object(&sma->sem_perm)) { 1298 sem_unlock(sma, -1); 1299 rcu_read_unlock(); 1300 return -EIDRM; 1301 } 1302 1303 curr = &sma->sem_base[semnum]; 1304 1305 ipc_assert_locked_object(&sma->sem_perm); 1306 list_for_each_entry(un, &sma->list_id, list_id) 1307 un->semadj[semnum] = 0; 1308 1309 curr->semval = val; 1310 curr->sempid = task_tgid_vnr(current); 1311 sma->sem_ctime = get_seconds(); 1312 /* maybe some queued-up processes were waiting for this */ 1313 do_smart_update(sma, NULL, 0, 0, &tasks); 1314 sem_unlock(sma, -1); 1315 rcu_read_unlock(); 1316 wake_up_sem_queue_do(&tasks); 1317 return 0; 1318 } 1319 1320 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, 1321 int cmd, void __user *p) 1322 { 1323 struct sem_array *sma; 1324 struct sem *curr; 1325 int err, nsems; 1326 ushort fast_sem_io[SEMMSL_FAST]; 1327 ushort *sem_io = fast_sem_io; 1328 struct list_head tasks; 1329 1330 INIT_LIST_HEAD(&tasks); 1331 1332 rcu_read_lock(); 1333 sma = sem_obtain_object_check(ns, semid); 1334 if (IS_ERR(sma)) { 1335 rcu_read_unlock(); 1336 return PTR_ERR(sma); 1337 } 1338 1339 nsems = sma->sem_nsems; 1340 1341 err = -EACCES; 1342 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO)) 1343 goto out_rcu_wakeup; 1344 1345 err = security_sem_semctl(sma, cmd); 1346 if (err) 1347 goto out_rcu_wakeup; 1348 1349 err = -EACCES; 1350 switch (cmd) { 1351 case GETALL: 1352 { 1353 ushort __user *array = p; 1354 int i; 1355 1356 sem_lock(sma, NULL, -1); 1357 if (!ipc_valid_object(&sma->sem_perm)) { 1358 err = -EIDRM; 1359 goto out_unlock; 1360 } 1361 if (nsems > SEMMSL_FAST) { 1362 if (!ipc_rcu_getref(sma)) { 1363 err = -EIDRM; 1364 goto out_unlock; 1365 } 1366 sem_unlock(sma, -1); 1367 rcu_read_unlock(); 1368 sem_io = ipc_alloc(sizeof(ushort)*nsems); 1369 if (sem_io == NULL) { 1370 ipc_rcu_putref(sma, ipc_rcu_free); 1371 return -ENOMEM; 1372 } 1373 1374 rcu_read_lock(); 1375 sem_lock_and_putref(sma); 1376 if (!ipc_valid_object(&sma->sem_perm)) { 1377 err = -EIDRM; 1378 goto out_unlock; 1379 } 1380 } 1381 for (i = 0; i < sma->sem_nsems; i++) 1382 sem_io[i] = sma->sem_base[i].semval; 1383 sem_unlock(sma, -1); 1384 rcu_read_unlock(); 1385 err = 0; 1386 if (copy_to_user(array, sem_io, nsems*sizeof(ushort))) 1387 err = -EFAULT; 1388 goto out_free; 1389 } 1390 case SETALL: 1391 { 1392 int i; 1393 struct sem_undo *un; 1394 1395 if (!ipc_rcu_getref(sma)) { 1396 err = -EIDRM; 1397 goto out_rcu_wakeup; 1398 } 1399 rcu_read_unlock(); 1400 1401 if (nsems > SEMMSL_FAST) { 1402 sem_io = ipc_alloc(sizeof(ushort)*nsems); 1403 if (sem_io == NULL) { 1404 ipc_rcu_putref(sma, ipc_rcu_free); 1405 return -ENOMEM; 1406 } 1407 } 1408 1409 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) { 1410 ipc_rcu_putref(sma, ipc_rcu_free); 1411 err = -EFAULT; 1412 goto out_free; 1413 } 1414 1415 for (i = 0; i < nsems; i++) { 1416 if (sem_io[i] > SEMVMX) { 1417 ipc_rcu_putref(sma, ipc_rcu_free); 1418 err = -ERANGE; 1419 goto out_free; 1420 } 1421 } 1422 rcu_read_lock(); 1423 sem_lock_and_putref(sma); 1424 if (!ipc_valid_object(&sma->sem_perm)) { 1425 err = -EIDRM; 1426 goto out_unlock; 1427 } 1428 1429 for (i = 0; i < nsems; i++) 1430 sma->sem_base[i].semval = sem_io[i]; 1431 1432 ipc_assert_locked_object(&sma->sem_perm); 1433 list_for_each_entry(un, &sma->list_id, list_id) { 1434 for (i = 0; i < nsems; i++) 1435 un->semadj[i] = 0; 1436 } 1437 sma->sem_ctime = get_seconds(); 1438 /* maybe some queued-up processes were waiting for this */ 1439 do_smart_update(sma, NULL, 0, 0, &tasks); 1440 err = 0; 1441 goto out_unlock; 1442 } 1443 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */ 1444 } 1445 err = -EINVAL; 1446 if (semnum < 0 || semnum >= nsems) 1447 goto out_rcu_wakeup; 1448 1449 sem_lock(sma, NULL, -1); 1450 if (!ipc_valid_object(&sma->sem_perm)) { 1451 err = -EIDRM; 1452 goto out_unlock; 1453 } 1454 curr = &sma->sem_base[semnum]; 1455 1456 switch (cmd) { 1457 case GETVAL: 1458 err = curr->semval; 1459 goto out_unlock; 1460 case GETPID: 1461 err = curr->sempid; 1462 goto out_unlock; 1463 case GETNCNT: 1464 err = count_semcnt(sma, semnum, 0); 1465 goto out_unlock; 1466 case GETZCNT: 1467 err = count_semcnt(sma, semnum, 1); 1468 goto out_unlock; 1469 } 1470 1471 out_unlock: 1472 sem_unlock(sma, -1); 1473 out_rcu_wakeup: 1474 rcu_read_unlock(); 1475 wake_up_sem_queue_do(&tasks); 1476 out_free: 1477 if (sem_io != fast_sem_io) 1478 ipc_free(sem_io, sizeof(ushort)*nsems); 1479 return err; 1480 } 1481 1482 static inline unsigned long 1483 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) 1484 { 1485 switch (version) { 1486 case IPC_64: 1487 if (copy_from_user(out, buf, sizeof(*out))) 1488 return -EFAULT; 1489 return 0; 1490 case IPC_OLD: 1491 { 1492 struct semid_ds tbuf_old; 1493 1494 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) 1495 return -EFAULT; 1496 1497 out->sem_perm.uid = tbuf_old.sem_perm.uid; 1498 out->sem_perm.gid = tbuf_old.sem_perm.gid; 1499 out->sem_perm.mode = tbuf_old.sem_perm.mode; 1500 1501 return 0; 1502 } 1503 default: 1504 return -EINVAL; 1505 } 1506 } 1507 1508 /* 1509 * This function handles some semctl commands which require the rwsem 1510 * to be held in write mode. 1511 * NOTE: no locks must be held, the rwsem is taken inside this function. 1512 */ 1513 static int semctl_down(struct ipc_namespace *ns, int semid, 1514 int cmd, int version, void __user *p) 1515 { 1516 struct sem_array *sma; 1517 int err; 1518 struct semid64_ds semid64; 1519 struct kern_ipc_perm *ipcp; 1520 1521 if (cmd == IPC_SET) { 1522 if (copy_semid_from_user(&semid64, p, version)) 1523 return -EFAULT; 1524 } 1525 1526 down_write(&sem_ids(ns).rwsem); 1527 rcu_read_lock(); 1528 1529 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd, 1530 &semid64.sem_perm, 0); 1531 if (IS_ERR(ipcp)) { 1532 err = PTR_ERR(ipcp); 1533 goto out_unlock1; 1534 } 1535 1536 sma = container_of(ipcp, struct sem_array, sem_perm); 1537 1538 err = security_sem_semctl(sma, cmd); 1539 if (err) 1540 goto out_unlock1; 1541 1542 switch (cmd) { 1543 case IPC_RMID: 1544 sem_lock(sma, NULL, -1); 1545 /* freeary unlocks the ipc object and rcu */ 1546 freeary(ns, ipcp); 1547 goto out_up; 1548 case IPC_SET: 1549 sem_lock(sma, NULL, -1); 1550 err = ipc_update_perm(&semid64.sem_perm, ipcp); 1551 if (err) 1552 goto out_unlock0; 1553 sma->sem_ctime = get_seconds(); 1554 break; 1555 default: 1556 err = -EINVAL; 1557 goto out_unlock1; 1558 } 1559 1560 out_unlock0: 1561 sem_unlock(sma, -1); 1562 out_unlock1: 1563 rcu_read_unlock(); 1564 out_up: 1565 up_write(&sem_ids(ns).rwsem); 1566 return err; 1567 } 1568 1569 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) 1570 { 1571 int version; 1572 struct ipc_namespace *ns; 1573 void __user *p = (void __user *)arg; 1574 1575 if (semid < 0) 1576 return -EINVAL; 1577 1578 version = ipc_parse_version(&cmd); 1579 ns = current->nsproxy->ipc_ns; 1580 1581 switch (cmd) { 1582 case IPC_INFO: 1583 case SEM_INFO: 1584 case IPC_STAT: 1585 case SEM_STAT: 1586 return semctl_nolock(ns, semid, cmd, version, p); 1587 case GETALL: 1588 case GETVAL: 1589 case GETPID: 1590 case GETNCNT: 1591 case GETZCNT: 1592 case SETALL: 1593 return semctl_main(ns, semid, semnum, cmd, p); 1594 case SETVAL: 1595 return semctl_setval(ns, semid, semnum, arg); 1596 case IPC_RMID: 1597 case IPC_SET: 1598 return semctl_down(ns, semid, cmd, version, p); 1599 default: 1600 return -EINVAL; 1601 } 1602 } 1603 1604 /* If the task doesn't already have a undo_list, then allocate one 1605 * here. We guarantee there is only one thread using this undo list, 1606 * and current is THE ONE 1607 * 1608 * If this allocation and assignment succeeds, but later 1609 * portions of this code fail, there is no need to free the sem_undo_list. 1610 * Just let it stay associated with the task, and it'll be freed later 1611 * at exit time. 1612 * 1613 * This can block, so callers must hold no locks. 1614 */ 1615 static inline int get_undo_list(struct sem_undo_list **undo_listp) 1616 { 1617 struct sem_undo_list *undo_list; 1618 1619 undo_list = current->sysvsem.undo_list; 1620 if (!undo_list) { 1621 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); 1622 if (undo_list == NULL) 1623 return -ENOMEM; 1624 spin_lock_init(&undo_list->lock); 1625 atomic_set(&undo_list->refcnt, 1); 1626 INIT_LIST_HEAD(&undo_list->list_proc); 1627 1628 current->sysvsem.undo_list = undo_list; 1629 } 1630 *undo_listp = undo_list; 1631 return 0; 1632 } 1633 1634 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) 1635 { 1636 struct sem_undo *un; 1637 1638 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) { 1639 if (un->semid == semid) 1640 return un; 1641 } 1642 return NULL; 1643 } 1644 1645 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) 1646 { 1647 struct sem_undo *un; 1648 1649 assert_spin_locked(&ulp->lock); 1650 1651 un = __lookup_undo(ulp, semid); 1652 if (un) { 1653 list_del_rcu(&un->list_proc); 1654 list_add_rcu(&un->list_proc, &ulp->list_proc); 1655 } 1656 return un; 1657 } 1658 1659 /** 1660 * find_alloc_undo - lookup (and if not present create) undo array 1661 * @ns: namespace 1662 * @semid: semaphore array id 1663 * 1664 * The function looks up (and if not present creates) the undo structure. 1665 * The size of the undo structure depends on the size of the semaphore 1666 * array, thus the alloc path is not that straightforward. 1667 * Lifetime-rules: sem_undo is rcu-protected, on success, the function 1668 * performs a rcu_read_lock(). 1669 */ 1670 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) 1671 { 1672 struct sem_array *sma; 1673 struct sem_undo_list *ulp; 1674 struct sem_undo *un, *new; 1675 int nsems, error; 1676 1677 error = get_undo_list(&ulp); 1678 if (error) 1679 return ERR_PTR(error); 1680 1681 rcu_read_lock(); 1682 spin_lock(&ulp->lock); 1683 un = lookup_undo(ulp, semid); 1684 spin_unlock(&ulp->lock); 1685 if (likely(un != NULL)) 1686 goto out; 1687 1688 /* no undo structure around - allocate one. */ 1689 /* step 1: figure out the size of the semaphore array */ 1690 sma = sem_obtain_object_check(ns, semid); 1691 if (IS_ERR(sma)) { 1692 rcu_read_unlock(); 1693 return ERR_CAST(sma); 1694 } 1695 1696 nsems = sma->sem_nsems; 1697 if (!ipc_rcu_getref(sma)) { 1698 rcu_read_unlock(); 1699 un = ERR_PTR(-EIDRM); 1700 goto out; 1701 } 1702 rcu_read_unlock(); 1703 1704 /* step 2: allocate new undo structure */ 1705 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); 1706 if (!new) { 1707 ipc_rcu_putref(sma, ipc_rcu_free); 1708 return ERR_PTR(-ENOMEM); 1709 } 1710 1711 /* step 3: Acquire the lock on semaphore array */ 1712 rcu_read_lock(); 1713 sem_lock_and_putref(sma); 1714 if (!ipc_valid_object(&sma->sem_perm)) { 1715 sem_unlock(sma, -1); 1716 rcu_read_unlock(); 1717 kfree(new); 1718 un = ERR_PTR(-EIDRM); 1719 goto out; 1720 } 1721 spin_lock(&ulp->lock); 1722 1723 /* 1724 * step 4: check for races: did someone else allocate the undo struct? 1725 */ 1726 un = lookup_undo(ulp, semid); 1727 if (un) { 1728 kfree(new); 1729 goto success; 1730 } 1731 /* step 5: initialize & link new undo structure */ 1732 new->semadj = (short *) &new[1]; 1733 new->ulp = ulp; 1734 new->semid = semid; 1735 assert_spin_locked(&ulp->lock); 1736 list_add_rcu(&new->list_proc, &ulp->list_proc); 1737 ipc_assert_locked_object(&sma->sem_perm); 1738 list_add(&new->list_id, &sma->list_id); 1739 un = new; 1740 1741 success: 1742 spin_unlock(&ulp->lock); 1743 sem_unlock(sma, -1); 1744 out: 1745 return un; 1746 } 1747 1748 1749 /** 1750 * get_queue_result - retrieve the result code from sem_queue 1751 * @q: Pointer to queue structure 1752 * 1753 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in 1754 * q->status, then we must loop until the value is replaced with the final 1755 * value: This may happen if a task is woken up by an unrelated event (e.g. 1756 * signal) and in parallel the task is woken up by another task because it got 1757 * the requested semaphores. 1758 * 1759 * The function can be called with or without holding the semaphore spinlock. 1760 */ 1761 static int get_queue_result(struct sem_queue *q) 1762 { 1763 int error; 1764 1765 error = q->status; 1766 while (unlikely(error == IN_WAKEUP)) { 1767 cpu_relax(); 1768 error = q->status; 1769 } 1770 1771 return error; 1772 } 1773 1774 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, 1775 unsigned, nsops, const struct timespec __user *, timeout) 1776 { 1777 int error = -EINVAL; 1778 struct sem_array *sma; 1779 struct sembuf fast_sops[SEMOPM_FAST]; 1780 struct sembuf *sops = fast_sops, *sop; 1781 struct sem_undo *un; 1782 int undos = 0, alter = 0, max, locknum; 1783 struct sem_queue queue; 1784 unsigned long jiffies_left = 0; 1785 struct ipc_namespace *ns; 1786 struct list_head tasks; 1787 1788 ns = current->nsproxy->ipc_ns; 1789 1790 if (nsops < 1 || semid < 0) 1791 return -EINVAL; 1792 if (nsops > ns->sc_semopm) 1793 return -E2BIG; 1794 if (nsops > SEMOPM_FAST) { 1795 sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL); 1796 if (sops == NULL) 1797 return -ENOMEM; 1798 } 1799 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) { 1800 error = -EFAULT; 1801 goto out_free; 1802 } 1803 if (timeout) { 1804 struct timespec _timeout; 1805 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) { 1806 error = -EFAULT; 1807 goto out_free; 1808 } 1809 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 || 1810 _timeout.tv_nsec >= 1000000000L) { 1811 error = -EINVAL; 1812 goto out_free; 1813 } 1814 jiffies_left = timespec_to_jiffies(&_timeout); 1815 } 1816 max = 0; 1817 for (sop = sops; sop < sops + nsops; sop++) { 1818 if (sop->sem_num >= max) 1819 max = sop->sem_num; 1820 if (sop->sem_flg & SEM_UNDO) 1821 undos = 1; 1822 if (sop->sem_op != 0) 1823 alter = 1; 1824 } 1825 1826 INIT_LIST_HEAD(&tasks); 1827 1828 if (undos) { 1829 /* On success, find_alloc_undo takes the rcu_read_lock */ 1830 un = find_alloc_undo(ns, semid); 1831 if (IS_ERR(un)) { 1832 error = PTR_ERR(un); 1833 goto out_free; 1834 } 1835 } else { 1836 un = NULL; 1837 rcu_read_lock(); 1838 } 1839 1840 sma = sem_obtain_object_check(ns, semid); 1841 if (IS_ERR(sma)) { 1842 rcu_read_unlock(); 1843 error = PTR_ERR(sma); 1844 goto out_free; 1845 } 1846 1847 error = -EFBIG; 1848 if (max >= sma->sem_nsems) 1849 goto out_rcu_wakeup; 1850 1851 error = -EACCES; 1852 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) 1853 goto out_rcu_wakeup; 1854 1855 error = security_sem_semop(sma, sops, nsops, alter); 1856 if (error) 1857 goto out_rcu_wakeup; 1858 1859 error = -EIDRM; 1860 locknum = sem_lock(sma, sops, nsops); 1861 /* 1862 * We eventually might perform the following check in a lockless 1863 * fashion, considering ipc_valid_object() locking constraints. 1864 * If nsops == 1 and there is no contention for sem_perm.lock, then 1865 * only a per-semaphore lock is held and it's OK to proceed with the 1866 * check below. More details on the fine grained locking scheme 1867 * entangled here and why it's RMID race safe on comments at sem_lock() 1868 */ 1869 if (!ipc_valid_object(&sma->sem_perm)) 1870 goto out_unlock_free; 1871 /* 1872 * semid identifiers are not unique - find_alloc_undo may have 1873 * allocated an undo structure, it was invalidated by an RMID 1874 * and now a new array with received the same id. Check and fail. 1875 * This case can be detected checking un->semid. The existence of 1876 * "un" itself is guaranteed by rcu. 1877 */ 1878 if (un && un->semid == -1) 1879 goto out_unlock_free; 1880 1881 queue.sops = sops; 1882 queue.nsops = nsops; 1883 queue.undo = un; 1884 queue.pid = task_tgid_vnr(current); 1885 queue.alter = alter; 1886 1887 error = perform_atomic_semop(sma, &queue); 1888 if (error == 0) { 1889 /* If the operation was successful, then do 1890 * the required updates. 1891 */ 1892 if (alter) 1893 do_smart_update(sma, sops, nsops, 1, &tasks); 1894 else 1895 set_semotime(sma, sops); 1896 } 1897 if (error <= 0) 1898 goto out_unlock_free; 1899 1900 /* We need to sleep on this operation, so we put the current 1901 * task into the pending queue and go to sleep. 1902 */ 1903 1904 if (nsops == 1) { 1905 struct sem *curr; 1906 curr = &sma->sem_base[sops->sem_num]; 1907 1908 if (alter) { 1909 if (sma->complex_count) { 1910 list_add_tail(&queue.list, 1911 &sma->pending_alter); 1912 } else { 1913 1914 list_add_tail(&queue.list, 1915 &curr->pending_alter); 1916 } 1917 } else { 1918 list_add_tail(&queue.list, &curr->pending_const); 1919 } 1920 } else { 1921 if (!sma->complex_count) 1922 merge_queues(sma); 1923 1924 if (alter) 1925 list_add_tail(&queue.list, &sma->pending_alter); 1926 else 1927 list_add_tail(&queue.list, &sma->pending_const); 1928 1929 sma->complex_count++; 1930 } 1931 1932 queue.status = -EINTR; 1933 queue.sleeper = current; 1934 1935 sleep_again: 1936 current->state = TASK_INTERRUPTIBLE; 1937 sem_unlock(sma, locknum); 1938 rcu_read_unlock(); 1939 1940 if (timeout) 1941 jiffies_left = schedule_timeout(jiffies_left); 1942 else 1943 schedule(); 1944 1945 error = get_queue_result(&queue); 1946 1947 if (error != -EINTR) { 1948 /* fast path: update_queue already obtained all requested 1949 * resources. 1950 * Perform a smp_mb(): User space could assume that semop() 1951 * is a memory barrier: Without the mb(), the cpu could 1952 * speculatively read in user space stale data that was 1953 * overwritten by the previous owner of the semaphore. 1954 */ 1955 smp_mb(); 1956 1957 goto out_free; 1958 } 1959 1960 rcu_read_lock(); 1961 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum); 1962 1963 /* 1964 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing. 1965 */ 1966 error = get_queue_result(&queue); 1967 1968 /* 1969 * Array removed? If yes, leave without sem_unlock(). 1970 */ 1971 if (IS_ERR(sma)) { 1972 rcu_read_unlock(); 1973 goto out_free; 1974 } 1975 1976 1977 /* 1978 * If queue.status != -EINTR we are woken up by another process. 1979 * Leave without unlink_queue(), but with sem_unlock(). 1980 */ 1981 if (error != -EINTR) 1982 goto out_unlock_free; 1983 1984 /* 1985 * If an interrupt occurred we have to clean up the queue 1986 */ 1987 if (timeout && jiffies_left == 0) 1988 error = -EAGAIN; 1989 1990 /* 1991 * If the wakeup was spurious, just retry 1992 */ 1993 if (error == -EINTR && !signal_pending(current)) 1994 goto sleep_again; 1995 1996 unlink_queue(sma, &queue); 1997 1998 out_unlock_free: 1999 sem_unlock(sma, locknum); 2000 out_rcu_wakeup: 2001 rcu_read_unlock(); 2002 wake_up_sem_queue_do(&tasks); 2003 out_free: 2004 if (sops != fast_sops) 2005 kfree(sops); 2006 return error; 2007 } 2008 2009 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, 2010 unsigned, nsops) 2011 { 2012 return sys_semtimedop(semid, tsops, nsops, NULL); 2013 } 2014 2015 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between 2016 * parent and child tasks. 2017 */ 2018 2019 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) 2020 { 2021 struct sem_undo_list *undo_list; 2022 int error; 2023 2024 if (clone_flags & CLONE_SYSVSEM) { 2025 error = get_undo_list(&undo_list); 2026 if (error) 2027 return error; 2028 atomic_inc(&undo_list->refcnt); 2029 tsk->sysvsem.undo_list = undo_list; 2030 } else 2031 tsk->sysvsem.undo_list = NULL; 2032 2033 return 0; 2034 } 2035 2036 /* 2037 * add semadj values to semaphores, free undo structures. 2038 * undo structures are not freed when semaphore arrays are destroyed 2039 * so some of them may be out of date. 2040 * IMPLEMENTATION NOTE: There is some confusion over whether the 2041 * set of adjustments that needs to be done should be done in an atomic 2042 * manner or not. That is, if we are attempting to decrement the semval 2043 * should we queue up and wait until we can do so legally? 2044 * The original implementation attempted to do this (queue and wait). 2045 * The current implementation does not do so. The POSIX standard 2046 * and SVID should be consulted to determine what behavior is mandated. 2047 */ 2048 void exit_sem(struct task_struct *tsk) 2049 { 2050 struct sem_undo_list *ulp; 2051 2052 ulp = tsk->sysvsem.undo_list; 2053 if (!ulp) 2054 return; 2055 tsk->sysvsem.undo_list = NULL; 2056 2057 if (!atomic_dec_and_test(&ulp->refcnt)) 2058 return; 2059 2060 for (;;) { 2061 struct sem_array *sma; 2062 struct sem_undo *un; 2063 struct list_head tasks; 2064 int semid, i; 2065 2066 rcu_read_lock(); 2067 un = list_entry_rcu(ulp->list_proc.next, 2068 struct sem_undo, list_proc); 2069 if (&un->list_proc == &ulp->list_proc) 2070 semid = -1; 2071 else 2072 semid = un->semid; 2073 2074 if (semid == -1) { 2075 rcu_read_unlock(); 2076 break; 2077 } 2078 2079 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid); 2080 /* exit_sem raced with IPC_RMID, nothing to do */ 2081 if (IS_ERR(sma)) { 2082 rcu_read_unlock(); 2083 continue; 2084 } 2085 2086 sem_lock(sma, NULL, -1); 2087 /* exit_sem raced with IPC_RMID, nothing to do */ 2088 if (!ipc_valid_object(&sma->sem_perm)) { 2089 sem_unlock(sma, -1); 2090 rcu_read_unlock(); 2091 continue; 2092 } 2093 un = __lookup_undo(ulp, semid); 2094 if (un == NULL) { 2095 /* exit_sem raced with IPC_RMID+semget() that created 2096 * exactly the same semid. Nothing to do. 2097 */ 2098 sem_unlock(sma, -1); 2099 rcu_read_unlock(); 2100 continue; 2101 } 2102 2103 /* remove un from the linked lists */ 2104 ipc_assert_locked_object(&sma->sem_perm); 2105 list_del(&un->list_id); 2106 2107 spin_lock(&ulp->lock); 2108 list_del_rcu(&un->list_proc); 2109 spin_unlock(&ulp->lock); 2110 2111 /* perform adjustments registered in un */ 2112 for (i = 0; i < sma->sem_nsems; i++) { 2113 struct sem *semaphore = &sma->sem_base[i]; 2114 if (un->semadj[i]) { 2115 semaphore->semval += un->semadj[i]; 2116 /* 2117 * Range checks of the new semaphore value, 2118 * not defined by sus: 2119 * - Some unices ignore the undo entirely 2120 * (e.g. HP UX 11i 11.22, Tru64 V5.1) 2121 * - some cap the value (e.g. FreeBSD caps 2122 * at 0, but doesn't enforce SEMVMX) 2123 * 2124 * Linux caps the semaphore value, both at 0 2125 * and at SEMVMX. 2126 * 2127 * Manfred <manfred@colorfullife.com> 2128 */ 2129 if (semaphore->semval < 0) 2130 semaphore->semval = 0; 2131 if (semaphore->semval > SEMVMX) 2132 semaphore->semval = SEMVMX; 2133 semaphore->sempid = task_tgid_vnr(current); 2134 } 2135 } 2136 /* maybe some queued-up processes were waiting for this */ 2137 INIT_LIST_HEAD(&tasks); 2138 do_smart_update(sma, NULL, 0, 1, &tasks); 2139 sem_unlock(sma, -1); 2140 rcu_read_unlock(); 2141 wake_up_sem_queue_do(&tasks); 2142 2143 kfree_rcu(un, rcu); 2144 } 2145 kfree(ulp); 2146 } 2147 2148 #ifdef CONFIG_PROC_FS 2149 static int sysvipc_sem_proc_show(struct seq_file *s, void *it) 2150 { 2151 struct user_namespace *user_ns = seq_user_ns(s); 2152 struct sem_array *sma = it; 2153 time_t sem_otime; 2154 2155 /* 2156 * The proc interface isn't aware of sem_lock(), it calls 2157 * ipc_lock_object() directly (in sysvipc_find_ipc). 2158 * In order to stay compatible with sem_lock(), we must wait until 2159 * all simple semop() calls have left their critical regions. 2160 */ 2161 sem_wait_array(sma); 2162 2163 sem_otime = get_semotime(sma); 2164 2165 return seq_printf(s, 2166 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n", 2167 sma->sem_perm.key, 2168 sma->sem_perm.id, 2169 sma->sem_perm.mode, 2170 sma->sem_nsems, 2171 from_kuid_munged(user_ns, sma->sem_perm.uid), 2172 from_kgid_munged(user_ns, sma->sem_perm.gid), 2173 from_kuid_munged(user_ns, sma->sem_perm.cuid), 2174 from_kgid_munged(user_ns, sma->sem_perm.cgid), 2175 sem_otime, 2176 sma->sem_ctime); 2177 } 2178 #endif 2179