xref: /openbmc/linux/ipc/sem.c (revision c21b37f6)
1 /*
2  * linux/ipc/sem.c
3  * Copyright (C) 1992 Krishna Balasubramanian
4  * Copyright (C) 1995 Eric Schenk, Bruno Haible
5  *
6  * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995):
7  * This code underwent a massive rewrite in order to solve some problems
8  * with the original code. In particular the original code failed to
9  * wake up processes that were waiting for semval to go to 0 if the
10  * value went to 0 and was then incremented rapidly enough. In solving
11  * this problem I have also modified the implementation so that it
12  * processes pending operations in a FIFO manner, thus give a guarantee
13  * that processes waiting for a lock on the semaphore won't starve
14  * unless another locking process fails to unlock.
15  * In addition the following two changes in behavior have been introduced:
16  * - The original implementation of semop returned the value
17  *   last semaphore element examined on success. This does not
18  *   match the manual page specifications, and effectively
19  *   allows the user to read the semaphore even if they do not
20  *   have read permissions. The implementation now returns 0
21  *   on success as stated in the manual page.
22  * - There is some confusion over whether the set of undo adjustments
23  *   to be performed at exit should be done in an atomic manner.
24  *   That is, if we are attempting to decrement the semval should we queue
25  *   up and wait until we can do so legally?
26  *   The original implementation attempted to do this.
27  *   The current implementation does not do so. This is because I don't
28  *   think it is the right thing (TM) to do, and because I couldn't
29  *   see a clean way to get the old behavior with the new design.
30  *   The POSIX standard and SVID should be consulted to determine
31  *   what behavior is mandated.
32  *
33  * Further notes on refinement (Christoph Rohland, December 1998):
34  * - The POSIX standard says, that the undo adjustments simply should
35  *   redo. So the current implementation is o.K.
36  * - The previous code had two flaws:
37  *   1) It actively gave the semaphore to the next waiting process
38  *      sleeping on the semaphore. Since this process did not have the
39  *      cpu this led to many unnecessary context switches and bad
40  *      performance. Now we only check which process should be able to
41  *      get the semaphore and if this process wants to reduce some
42  *      semaphore value we simply wake it up without doing the
43  *      operation. So it has to try to get it later. Thus e.g. the
44  *      running process may reacquire the semaphore during the current
45  *      time slice. If it only waits for zero or increases the semaphore,
46  *      we do the operation in advance and wake it up.
47  *   2) It did not wake up all zero waiting processes. We try to do
48  *      better but only get the semops right which only wait for zero or
49  *      increase. If there are decrement operations in the operations
50  *      array we do the same as before.
51  *
52  * With the incarnation of O(1) scheduler, it becomes unnecessary to perform
53  * check/retry algorithm for waking up blocked processes as the new scheduler
54  * is better at handling thread switch than the old one.
55  *
56  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
57  *
58  * SMP-threaded, sysctl's added
59  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
60  * Enforced range limit on SEM_UNDO
61  * (c) 2001 Red Hat Inc <alan@redhat.com>
62  * Lockless wakeup
63  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
64  *
65  * support for audit of ipc object properties and permission changes
66  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
67  *
68  * namespaces support
69  * OpenVZ, SWsoft Inc.
70  * Pavel Emelianov <xemul@openvz.org>
71  */
72 
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/init.h>
76 #include <linux/proc_fs.h>
77 #include <linux/time.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/audit.h>
81 #include <linux/capability.h>
82 #include <linux/seq_file.h>
83 #include <linux/mutex.h>
84 #include <linux/nsproxy.h>
85 
86 #include <asm/uaccess.h>
87 #include "util.h"
88 
89 #define sem_ids(ns)	(*((ns)->ids[IPC_SEM_IDS]))
90 
91 #define sem_lock(ns, id)	((struct sem_array*)ipc_lock(&sem_ids(ns), id))
92 #define sem_unlock(sma)		ipc_unlock(&(sma)->sem_perm)
93 #define sem_rmid(ns, id)	((struct sem_array*)ipc_rmid(&sem_ids(ns), id))
94 #define sem_checkid(ns, sma, semid)	\
95 	ipc_checkid(&sem_ids(ns),&sma->sem_perm,semid)
96 #define sem_buildid(ns, id, seq) \
97 	ipc_buildid(&sem_ids(ns), id, seq)
98 
99 static struct ipc_ids init_sem_ids;
100 
101 static int newary(struct ipc_namespace *, key_t, int, int);
102 static void freeary(struct ipc_namespace *ns, struct sem_array *sma, int id);
103 #ifdef CONFIG_PROC_FS
104 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
105 #endif
106 
107 #define SEMMSL_FAST	256 /* 512 bytes on stack */
108 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
109 
110 /*
111  * linked list protection:
112  *	sem_undo.id_next,
113  *	sem_array.sem_pending{,last},
114  *	sem_array.sem_undo: sem_lock() for read/write
115  *	sem_undo.proc_next: only "current" is allowed to read/write that field.
116  *
117  */
118 
119 #define sc_semmsl	sem_ctls[0]
120 #define sc_semmns	sem_ctls[1]
121 #define sc_semopm	sem_ctls[2]
122 #define sc_semmni	sem_ctls[3]
123 
124 static void __sem_init_ns(struct ipc_namespace *ns, struct ipc_ids *ids)
125 {
126 	ns->ids[IPC_SEM_IDS] = ids;
127 	ns->sc_semmsl = SEMMSL;
128 	ns->sc_semmns = SEMMNS;
129 	ns->sc_semopm = SEMOPM;
130 	ns->sc_semmni = SEMMNI;
131 	ns->used_sems = 0;
132 	ipc_init_ids(ids, ns->sc_semmni);
133 }
134 
135 int sem_init_ns(struct ipc_namespace *ns)
136 {
137 	struct ipc_ids *ids;
138 
139 	ids = kmalloc(sizeof(struct ipc_ids), GFP_KERNEL);
140 	if (ids == NULL)
141 		return -ENOMEM;
142 
143 	__sem_init_ns(ns, ids);
144 	return 0;
145 }
146 
147 void sem_exit_ns(struct ipc_namespace *ns)
148 {
149 	int i;
150 	struct sem_array *sma;
151 
152 	mutex_lock(&sem_ids(ns).mutex);
153 	for (i = 0; i <= sem_ids(ns).max_id; i++) {
154 		sma = sem_lock(ns, i);
155 		if (sma == NULL)
156 			continue;
157 
158 		freeary(ns, sma, i);
159 	}
160 	mutex_unlock(&sem_ids(ns).mutex);
161 
162 	ipc_fini_ids(ns->ids[IPC_SEM_IDS]);
163 	kfree(ns->ids[IPC_SEM_IDS]);
164 	ns->ids[IPC_SEM_IDS] = NULL;
165 }
166 
167 void __init sem_init (void)
168 {
169 	__sem_init_ns(&init_ipc_ns, &init_sem_ids);
170 	ipc_init_proc_interface("sysvipc/sem",
171 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
172 				IPC_SEM_IDS, sysvipc_sem_proc_show);
173 }
174 
175 /*
176  * Lockless wakeup algorithm:
177  * Without the check/retry algorithm a lockless wakeup is possible:
178  * - queue.status is initialized to -EINTR before blocking.
179  * - wakeup is performed by
180  *	* unlinking the queue entry from sma->sem_pending
181  *	* setting queue.status to IN_WAKEUP
182  *	  This is the notification for the blocked thread that a
183  *	  result value is imminent.
184  *	* call wake_up_process
185  *	* set queue.status to the final value.
186  * - the previously blocked thread checks queue.status:
187  *   	* if it's IN_WAKEUP, then it must wait until the value changes
188  *   	* if it's not -EINTR, then the operation was completed by
189  *   	  update_queue. semtimedop can return queue.status without
190  *   	  performing any operation on the sem array.
191  *   	* otherwise it must acquire the spinlock and check what's up.
192  *
193  * The two-stage algorithm is necessary to protect against the following
194  * races:
195  * - if queue.status is set after wake_up_process, then the woken up idle
196  *   thread could race forward and try (and fail) to acquire sma->lock
197  *   before update_queue had a chance to set queue.status
198  * - if queue.status is written before wake_up_process and if the
199  *   blocked process is woken up by a signal between writing
200  *   queue.status and the wake_up_process, then the woken up
201  *   process could return from semtimedop and die by calling
202  *   sys_exit before wake_up_process is called. Then wake_up_process
203  *   will oops, because the task structure is already invalid.
204  *   (yes, this happened on s390 with sysv msg).
205  *
206  */
207 #define IN_WAKEUP	1
208 
209 static int newary (struct ipc_namespace *ns, key_t key, int nsems, int semflg)
210 {
211 	int id;
212 	int retval;
213 	struct sem_array *sma;
214 	int size;
215 
216 	if (!nsems)
217 		return -EINVAL;
218 	if (ns->used_sems + nsems > ns->sc_semmns)
219 		return -ENOSPC;
220 
221 	size = sizeof (*sma) + nsems * sizeof (struct sem);
222 	sma = ipc_rcu_alloc(size);
223 	if (!sma) {
224 		return -ENOMEM;
225 	}
226 	memset (sma, 0, size);
227 
228 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
229 	sma->sem_perm.key = key;
230 
231 	sma->sem_perm.security = NULL;
232 	retval = security_sem_alloc(sma);
233 	if (retval) {
234 		ipc_rcu_putref(sma);
235 		return retval;
236 	}
237 
238 	id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
239 	if(id == -1) {
240 		security_sem_free(sma);
241 		ipc_rcu_putref(sma);
242 		return -ENOSPC;
243 	}
244 	ns->used_sems += nsems;
245 
246 	sma->sem_id = sem_buildid(ns, id, sma->sem_perm.seq);
247 	sma->sem_base = (struct sem *) &sma[1];
248 	/* sma->sem_pending = NULL; */
249 	sma->sem_pending_last = &sma->sem_pending;
250 	/* sma->undo = NULL; */
251 	sma->sem_nsems = nsems;
252 	sma->sem_ctime = get_seconds();
253 	sem_unlock(sma);
254 
255 	return sma->sem_id;
256 }
257 
258 asmlinkage long sys_semget (key_t key, int nsems, int semflg)
259 {
260 	int id, err = -EINVAL;
261 	struct sem_array *sma;
262 	struct ipc_namespace *ns;
263 
264 	ns = current->nsproxy->ipc_ns;
265 
266 	if (nsems < 0 || nsems > ns->sc_semmsl)
267 		return -EINVAL;
268 	mutex_lock(&sem_ids(ns).mutex);
269 
270 	if (key == IPC_PRIVATE) {
271 		err = newary(ns, key, nsems, semflg);
272 	} else if ((id = ipc_findkey(&sem_ids(ns), key)) == -1) {  /* key not used */
273 		if (!(semflg & IPC_CREAT))
274 			err = -ENOENT;
275 		else
276 			err = newary(ns, key, nsems, semflg);
277 	} else if (semflg & IPC_CREAT && semflg & IPC_EXCL) {
278 		err = -EEXIST;
279 	} else {
280 		sma = sem_lock(ns, id);
281 		BUG_ON(sma==NULL);
282 		if (nsems > sma->sem_nsems)
283 			err = -EINVAL;
284 		else if (ipcperms(&sma->sem_perm, semflg))
285 			err = -EACCES;
286 		else {
287 			int semid = sem_buildid(ns, id, sma->sem_perm.seq);
288 			err = security_sem_associate(sma, semflg);
289 			if (!err)
290 				err = semid;
291 		}
292 		sem_unlock(sma);
293 	}
294 
295 	mutex_unlock(&sem_ids(ns).mutex);
296 	return err;
297 }
298 
299 /* Manage the doubly linked list sma->sem_pending as a FIFO:
300  * insert new queue elements at the tail sma->sem_pending_last.
301  */
302 static inline void append_to_queue (struct sem_array * sma,
303 				    struct sem_queue * q)
304 {
305 	*(q->prev = sma->sem_pending_last) = q;
306 	*(sma->sem_pending_last = &q->next) = NULL;
307 }
308 
309 static inline void prepend_to_queue (struct sem_array * sma,
310 				     struct sem_queue * q)
311 {
312 	q->next = sma->sem_pending;
313 	*(q->prev = &sma->sem_pending) = q;
314 	if (q->next)
315 		q->next->prev = &q->next;
316 	else /* sma->sem_pending_last == &sma->sem_pending */
317 		sma->sem_pending_last = &q->next;
318 }
319 
320 static inline void remove_from_queue (struct sem_array * sma,
321 				      struct sem_queue * q)
322 {
323 	*(q->prev) = q->next;
324 	if (q->next)
325 		q->next->prev = q->prev;
326 	else /* sma->sem_pending_last == &q->next */
327 		sma->sem_pending_last = q->prev;
328 	q->prev = NULL; /* mark as removed */
329 }
330 
331 /*
332  * Determine whether a sequence of semaphore operations would succeed
333  * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
334  */
335 
336 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
337 			     int nsops, struct sem_undo *un, int pid)
338 {
339 	int result, sem_op;
340 	struct sembuf *sop;
341 	struct sem * curr;
342 
343 	for (sop = sops; sop < sops + nsops; sop++) {
344 		curr = sma->sem_base + sop->sem_num;
345 		sem_op = sop->sem_op;
346 		result = curr->semval;
347 
348 		if (!sem_op && result)
349 			goto would_block;
350 
351 		result += sem_op;
352 		if (result < 0)
353 			goto would_block;
354 		if (result > SEMVMX)
355 			goto out_of_range;
356 		if (sop->sem_flg & SEM_UNDO) {
357 			int undo = un->semadj[sop->sem_num] - sem_op;
358 			/*
359 	 		 *	Exceeding the undo range is an error.
360 			 */
361 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
362 				goto out_of_range;
363 		}
364 		curr->semval = result;
365 	}
366 
367 	sop--;
368 	while (sop >= sops) {
369 		sma->sem_base[sop->sem_num].sempid = pid;
370 		if (sop->sem_flg & SEM_UNDO)
371 			un->semadj[sop->sem_num] -= sop->sem_op;
372 		sop--;
373 	}
374 
375 	sma->sem_otime = get_seconds();
376 	return 0;
377 
378 out_of_range:
379 	result = -ERANGE;
380 	goto undo;
381 
382 would_block:
383 	if (sop->sem_flg & IPC_NOWAIT)
384 		result = -EAGAIN;
385 	else
386 		result = 1;
387 
388 undo:
389 	sop--;
390 	while (sop >= sops) {
391 		sma->sem_base[sop->sem_num].semval -= sop->sem_op;
392 		sop--;
393 	}
394 
395 	return result;
396 }
397 
398 /* Go through the pending queue for the indicated semaphore
399  * looking for tasks that can be completed.
400  */
401 static void update_queue (struct sem_array * sma)
402 {
403 	int error;
404 	struct sem_queue * q;
405 
406 	q = sma->sem_pending;
407 	while(q) {
408 		error = try_atomic_semop(sma, q->sops, q->nsops,
409 					 q->undo, q->pid);
410 
411 		/* Does q->sleeper still need to sleep? */
412 		if (error <= 0) {
413 			struct sem_queue *n;
414 			remove_from_queue(sma,q);
415 			q->status = IN_WAKEUP;
416 			/*
417 			 * Continue scanning. The next operation
418 			 * that must be checked depends on the type of the
419 			 * completed operation:
420 			 * - if the operation modified the array, then
421 			 *   restart from the head of the queue and
422 			 *   check for threads that might be waiting
423 			 *   for semaphore values to become 0.
424 			 * - if the operation didn't modify the array,
425 			 *   then just continue.
426 			 */
427 			if (q->alter)
428 				n = sma->sem_pending;
429 			else
430 				n = q->next;
431 			wake_up_process(q->sleeper);
432 			/* hands-off: q will disappear immediately after
433 			 * writing q->status.
434 			 */
435 			smp_wmb();
436 			q->status = error;
437 			q = n;
438 		} else {
439 			q = q->next;
440 		}
441 	}
442 }
443 
444 /* The following counts are associated to each semaphore:
445  *   semncnt        number of tasks waiting on semval being nonzero
446  *   semzcnt        number of tasks waiting on semval being zero
447  * This model assumes that a task waits on exactly one semaphore.
448  * Since semaphore operations are to be performed atomically, tasks actually
449  * wait on a whole sequence of semaphores simultaneously.
450  * The counts we return here are a rough approximation, but still
451  * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
452  */
453 static int count_semncnt (struct sem_array * sma, ushort semnum)
454 {
455 	int semncnt;
456 	struct sem_queue * q;
457 
458 	semncnt = 0;
459 	for (q = sma->sem_pending; q; q = q->next) {
460 		struct sembuf * sops = q->sops;
461 		int nsops = q->nsops;
462 		int i;
463 		for (i = 0; i < nsops; i++)
464 			if (sops[i].sem_num == semnum
465 			    && (sops[i].sem_op < 0)
466 			    && !(sops[i].sem_flg & IPC_NOWAIT))
467 				semncnt++;
468 	}
469 	return semncnt;
470 }
471 static int count_semzcnt (struct sem_array * sma, ushort semnum)
472 {
473 	int semzcnt;
474 	struct sem_queue * q;
475 
476 	semzcnt = 0;
477 	for (q = sma->sem_pending; q; q = q->next) {
478 		struct sembuf * sops = q->sops;
479 		int nsops = q->nsops;
480 		int i;
481 		for (i = 0; i < nsops; i++)
482 			if (sops[i].sem_num == semnum
483 			    && (sops[i].sem_op == 0)
484 			    && !(sops[i].sem_flg & IPC_NOWAIT))
485 				semzcnt++;
486 	}
487 	return semzcnt;
488 }
489 
490 /* Free a semaphore set. freeary() is called with sem_ids.mutex locked and
491  * the spinlock for this semaphore set hold. sem_ids.mutex remains locked
492  * on exit.
493  */
494 static void freeary (struct ipc_namespace *ns, struct sem_array *sma, int id)
495 {
496 	struct sem_undo *un;
497 	struct sem_queue *q;
498 	int size;
499 
500 	/* Invalidate the existing undo structures for this semaphore set.
501 	 * (They will be freed without any further action in exit_sem()
502 	 * or during the next semop.)
503 	 */
504 	for (un = sma->undo; un; un = un->id_next)
505 		un->semid = -1;
506 
507 	/* Wake up all pending processes and let them fail with EIDRM. */
508 	q = sma->sem_pending;
509 	while(q) {
510 		struct sem_queue *n;
511 		/* lazy remove_from_queue: we are killing the whole queue */
512 		q->prev = NULL;
513 		n = q->next;
514 		q->status = IN_WAKEUP;
515 		wake_up_process(q->sleeper); /* doesn't sleep */
516 		smp_wmb();
517 		q->status = -EIDRM;	/* hands-off q */
518 		q = n;
519 	}
520 
521 	/* Remove the semaphore set from the ID array*/
522 	sma = sem_rmid(ns, id);
523 	sem_unlock(sma);
524 
525 	ns->used_sems -= sma->sem_nsems;
526 	size = sizeof (*sma) + sma->sem_nsems * sizeof (struct sem);
527 	security_sem_free(sma);
528 	ipc_rcu_putref(sma);
529 }
530 
531 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
532 {
533 	switch(version) {
534 	case IPC_64:
535 		return copy_to_user(buf, in, sizeof(*in));
536 	case IPC_OLD:
537 	    {
538 		struct semid_ds out;
539 
540 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
541 
542 		out.sem_otime	= in->sem_otime;
543 		out.sem_ctime	= in->sem_ctime;
544 		out.sem_nsems	= in->sem_nsems;
545 
546 		return copy_to_user(buf, &out, sizeof(out));
547 	    }
548 	default:
549 		return -EINVAL;
550 	}
551 }
552 
553 static int semctl_nolock(struct ipc_namespace *ns, int semid, int semnum,
554 		int cmd, int version, union semun arg)
555 {
556 	int err = -EINVAL;
557 	struct sem_array *sma;
558 
559 	switch(cmd) {
560 	case IPC_INFO:
561 	case SEM_INFO:
562 	{
563 		struct seminfo seminfo;
564 		int max_id;
565 
566 		err = security_sem_semctl(NULL, cmd);
567 		if (err)
568 			return err;
569 
570 		memset(&seminfo,0,sizeof(seminfo));
571 		seminfo.semmni = ns->sc_semmni;
572 		seminfo.semmns = ns->sc_semmns;
573 		seminfo.semmsl = ns->sc_semmsl;
574 		seminfo.semopm = ns->sc_semopm;
575 		seminfo.semvmx = SEMVMX;
576 		seminfo.semmnu = SEMMNU;
577 		seminfo.semmap = SEMMAP;
578 		seminfo.semume = SEMUME;
579 		mutex_lock(&sem_ids(ns).mutex);
580 		if (cmd == SEM_INFO) {
581 			seminfo.semusz = sem_ids(ns).in_use;
582 			seminfo.semaem = ns->used_sems;
583 		} else {
584 			seminfo.semusz = SEMUSZ;
585 			seminfo.semaem = SEMAEM;
586 		}
587 		max_id = sem_ids(ns).max_id;
588 		mutex_unlock(&sem_ids(ns).mutex);
589 		if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo)))
590 			return -EFAULT;
591 		return (max_id < 0) ? 0: max_id;
592 	}
593 	case SEM_STAT:
594 	{
595 		struct semid64_ds tbuf;
596 		int id;
597 
598 		if(semid >= sem_ids(ns).entries->size)
599 			return -EINVAL;
600 
601 		memset(&tbuf,0,sizeof(tbuf));
602 
603 		sma = sem_lock(ns, semid);
604 		if(sma == NULL)
605 			return -EINVAL;
606 
607 		err = -EACCES;
608 		if (ipcperms (&sma->sem_perm, S_IRUGO))
609 			goto out_unlock;
610 
611 		err = security_sem_semctl(sma, cmd);
612 		if (err)
613 			goto out_unlock;
614 
615 		id = sem_buildid(ns, semid, sma->sem_perm.seq);
616 
617 		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
618 		tbuf.sem_otime  = sma->sem_otime;
619 		tbuf.sem_ctime  = sma->sem_ctime;
620 		tbuf.sem_nsems  = sma->sem_nsems;
621 		sem_unlock(sma);
622 		if (copy_semid_to_user (arg.buf, &tbuf, version))
623 			return -EFAULT;
624 		return id;
625 	}
626 	default:
627 		return -EINVAL;
628 	}
629 	return err;
630 out_unlock:
631 	sem_unlock(sma);
632 	return err;
633 }
634 
635 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
636 		int cmd, int version, union semun arg)
637 {
638 	struct sem_array *sma;
639 	struct sem* curr;
640 	int err;
641 	ushort fast_sem_io[SEMMSL_FAST];
642 	ushort* sem_io = fast_sem_io;
643 	int nsems;
644 
645 	sma = sem_lock(ns, semid);
646 	if(sma==NULL)
647 		return -EINVAL;
648 
649 	nsems = sma->sem_nsems;
650 
651 	err=-EIDRM;
652 	if (sem_checkid(ns,sma,semid))
653 		goto out_unlock;
654 
655 	err = -EACCES;
656 	if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO))
657 		goto out_unlock;
658 
659 	err = security_sem_semctl(sma, cmd);
660 	if (err)
661 		goto out_unlock;
662 
663 	err = -EACCES;
664 	switch (cmd) {
665 	case GETALL:
666 	{
667 		ushort __user *array = arg.array;
668 		int i;
669 
670 		if(nsems > SEMMSL_FAST) {
671 			ipc_rcu_getref(sma);
672 			sem_unlock(sma);
673 
674 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
675 			if(sem_io == NULL) {
676 				ipc_lock_by_ptr(&sma->sem_perm);
677 				ipc_rcu_putref(sma);
678 				sem_unlock(sma);
679 				return -ENOMEM;
680 			}
681 
682 			ipc_lock_by_ptr(&sma->sem_perm);
683 			ipc_rcu_putref(sma);
684 			if (sma->sem_perm.deleted) {
685 				sem_unlock(sma);
686 				err = -EIDRM;
687 				goto out_free;
688 			}
689 		}
690 
691 		for (i = 0; i < sma->sem_nsems; i++)
692 			sem_io[i] = sma->sem_base[i].semval;
693 		sem_unlock(sma);
694 		err = 0;
695 		if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
696 			err = -EFAULT;
697 		goto out_free;
698 	}
699 	case SETALL:
700 	{
701 		int i;
702 		struct sem_undo *un;
703 
704 		ipc_rcu_getref(sma);
705 		sem_unlock(sma);
706 
707 		if(nsems > SEMMSL_FAST) {
708 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
709 			if(sem_io == NULL) {
710 				ipc_lock_by_ptr(&sma->sem_perm);
711 				ipc_rcu_putref(sma);
712 				sem_unlock(sma);
713 				return -ENOMEM;
714 			}
715 		}
716 
717 		if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
718 			ipc_lock_by_ptr(&sma->sem_perm);
719 			ipc_rcu_putref(sma);
720 			sem_unlock(sma);
721 			err = -EFAULT;
722 			goto out_free;
723 		}
724 
725 		for (i = 0; i < nsems; i++) {
726 			if (sem_io[i] > SEMVMX) {
727 				ipc_lock_by_ptr(&sma->sem_perm);
728 				ipc_rcu_putref(sma);
729 				sem_unlock(sma);
730 				err = -ERANGE;
731 				goto out_free;
732 			}
733 		}
734 		ipc_lock_by_ptr(&sma->sem_perm);
735 		ipc_rcu_putref(sma);
736 		if (sma->sem_perm.deleted) {
737 			sem_unlock(sma);
738 			err = -EIDRM;
739 			goto out_free;
740 		}
741 
742 		for (i = 0; i < nsems; i++)
743 			sma->sem_base[i].semval = sem_io[i];
744 		for (un = sma->undo; un; un = un->id_next)
745 			for (i = 0; i < nsems; i++)
746 				un->semadj[i] = 0;
747 		sma->sem_ctime = get_seconds();
748 		/* maybe some queued-up processes were waiting for this */
749 		update_queue(sma);
750 		err = 0;
751 		goto out_unlock;
752 	}
753 	case IPC_STAT:
754 	{
755 		struct semid64_ds tbuf;
756 		memset(&tbuf,0,sizeof(tbuf));
757 		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
758 		tbuf.sem_otime  = sma->sem_otime;
759 		tbuf.sem_ctime  = sma->sem_ctime;
760 		tbuf.sem_nsems  = sma->sem_nsems;
761 		sem_unlock(sma);
762 		if (copy_semid_to_user (arg.buf, &tbuf, version))
763 			return -EFAULT;
764 		return 0;
765 	}
766 	/* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
767 	}
768 	err = -EINVAL;
769 	if(semnum < 0 || semnum >= nsems)
770 		goto out_unlock;
771 
772 	curr = &sma->sem_base[semnum];
773 
774 	switch (cmd) {
775 	case GETVAL:
776 		err = curr->semval;
777 		goto out_unlock;
778 	case GETPID:
779 		err = curr->sempid;
780 		goto out_unlock;
781 	case GETNCNT:
782 		err = count_semncnt(sma,semnum);
783 		goto out_unlock;
784 	case GETZCNT:
785 		err = count_semzcnt(sma,semnum);
786 		goto out_unlock;
787 	case SETVAL:
788 	{
789 		int val = arg.val;
790 		struct sem_undo *un;
791 		err = -ERANGE;
792 		if (val > SEMVMX || val < 0)
793 			goto out_unlock;
794 
795 		for (un = sma->undo; un; un = un->id_next)
796 			un->semadj[semnum] = 0;
797 		curr->semval = val;
798 		curr->sempid = current->tgid;
799 		sma->sem_ctime = get_seconds();
800 		/* maybe some queued-up processes were waiting for this */
801 		update_queue(sma);
802 		err = 0;
803 		goto out_unlock;
804 	}
805 	}
806 out_unlock:
807 	sem_unlock(sma);
808 out_free:
809 	if(sem_io != fast_sem_io)
810 		ipc_free(sem_io, sizeof(ushort)*nsems);
811 	return err;
812 }
813 
814 struct sem_setbuf {
815 	uid_t	uid;
816 	gid_t	gid;
817 	mode_t	mode;
818 };
819 
820 static inline unsigned long copy_semid_from_user(struct sem_setbuf *out, void __user *buf, int version)
821 {
822 	switch(version) {
823 	case IPC_64:
824 	    {
825 		struct semid64_ds tbuf;
826 
827 		if(copy_from_user(&tbuf, buf, sizeof(tbuf)))
828 			return -EFAULT;
829 
830 		out->uid	= tbuf.sem_perm.uid;
831 		out->gid	= tbuf.sem_perm.gid;
832 		out->mode	= tbuf.sem_perm.mode;
833 
834 		return 0;
835 	    }
836 	case IPC_OLD:
837 	    {
838 		struct semid_ds tbuf_old;
839 
840 		if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
841 			return -EFAULT;
842 
843 		out->uid	= tbuf_old.sem_perm.uid;
844 		out->gid	= tbuf_old.sem_perm.gid;
845 		out->mode	= tbuf_old.sem_perm.mode;
846 
847 		return 0;
848 	    }
849 	default:
850 		return -EINVAL;
851 	}
852 }
853 
854 static int semctl_down(struct ipc_namespace *ns, int semid, int semnum,
855 		int cmd, int version, union semun arg)
856 {
857 	struct sem_array *sma;
858 	int err;
859 	struct sem_setbuf uninitialized_var(setbuf);
860 	struct kern_ipc_perm *ipcp;
861 
862 	if(cmd == IPC_SET) {
863 		if(copy_semid_from_user (&setbuf, arg.buf, version))
864 			return -EFAULT;
865 	}
866 	sma = sem_lock(ns, semid);
867 	if(sma==NULL)
868 		return -EINVAL;
869 
870 	if (sem_checkid(ns,sma,semid)) {
871 		err=-EIDRM;
872 		goto out_unlock;
873 	}
874 	ipcp = &sma->sem_perm;
875 
876 	err = audit_ipc_obj(ipcp);
877 	if (err)
878 		goto out_unlock;
879 
880 	if (cmd == IPC_SET) {
881 		err = audit_ipc_set_perm(0, setbuf.uid, setbuf.gid, setbuf.mode);
882 		if (err)
883 			goto out_unlock;
884 	}
885 	if (current->euid != ipcp->cuid &&
886 	    current->euid != ipcp->uid && !capable(CAP_SYS_ADMIN)) {
887 	    	err=-EPERM;
888 		goto out_unlock;
889 	}
890 
891 	err = security_sem_semctl(sma, cmd);
892 	if (err)
893 		goto out_unlock;
894 
895 	switch(cmd){
896 	case IPC_RMID:
897 		freeary(ns, sma, semid);
898 		err = 0;
899 		break;
900 	case IPC_SET:
901 		ipcp->uid = setbuf.uid;
902 		ipcp->gid = setbuf.gid;
903 		ipcp->mode = (ipcp->mode & ~S_IRWXUGO)
904 				| (setbuf.mode & S_IRWXUGO);
905 		sma->sem_ctime = get_seconds();
906 		sem_unlock(sma);
907 		err = 0;
908 		break;
909 	default:
910 		sem_unlock(sma);
911 		err = -EINVAL;
912 		break;
913 	}
914 	return err;
915 
916 out_unlock:
917 	sem_unlock(sma);
918 	return err;
919 }
920 
921 asmlinkage long sys_semctl (int semid, int semnum, int cmd, union semun arg)
922 {
923 	int err = -EINVAL;
924 	int version;
925 	struct ipc_namespace *ns;
926 
927 	if (semid < 0)
928 		return -EINVAL;
929 
930 	version = ipc_parse_version(&cmd);
931 	ns = current->nsproxy->ipc_ns;
932 
933 	switch(cmd) {
934 	case IPC_INFO:
935 	case SEM_INFO:
936 	case SEM_STAT:
937 		err = semctl_nolock(ns,semid,semnum,cmd,version,arg);
938 		return err;
939 	case GETALL:
940 	case GETVAL:
941 	case GETPID:
942 	case GETNCNT:
943 	case GETZCNT:
944 	case IPC_STAT:
945 	case SETVAL:
946 	case SETALL:
947 		err = semctl_main(ns,semid,semnum,cmd,version,arg);
948 		return err;
949 	case IPC_RMID:
950 	case IPC_SET:
951 		mutex_lock(&sem_ids(ns).mutex);
952 		err = semctl_down(ns,semid,semnum,cmd,version,arg);
953 		mutex_unlock(&sem_ids(ns).mutex);
954 		return err;
955 	default:
956 		return -EINVAL;
957 	}
958 }
959 
960 static inline void lock_semundo(void)
961 {
962 	struct sem_undo_list *undo_list;
963 
964 	undo_list = current->sysvsem.undo_list;
965 	if (undo_list)
966 		spin_lock(&undo_list->lock);
967 }
968 
969 /* This code has an interaction with copy_semundo().
970  * Consider; two tasks are sharing the undo_list. task1
971  * acquires the undo_list lock in lock_semundo().  If task2 now
972  * exits before task1 releases the lock (by calling
973  * unlock_semundo()), then task1 will never call spin_unlock().
974  * This leave the sem_undo_list in a locked state.  If task1 now creats task3
975  * and once again shares the sem_undo_list, the sem_undo_list will still be
976  * locked, and future SEM_UNDO operations will deadlock.  This case is
977  * dealt with in copy_semundo() by having it reinitialize the spin lock when
978  * the refcnt goes from 1 to 2.
979  */
980 static inline void unlock_semundo(void)
981 {
982 	struct sem_undo_list *undo_list;
983 
984 	undo_list = current->sysvsem.undo_list;
985 	if (undo_list)
986 		spin_unlock(&undo_list->lock);
987 }
988 
989 
990 /* If the task doesn't already have a undo_list, then allocate one
991  * here.  We guarantee there is only one thread using this undo list,
992  * and current is THE ONE
993  *
994  * If this allocation and assignment succeeds, but later
995  * portions of this code fail, there is no need to free the sem_undo_list.
996  * Just let it stay associated with the task, and it'll be freed later
997  * at exit time.
998  *
999  * This can block, so callers must hold no locks.
1000  */
1001 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1002 {
1003 	struct sem_undo_list *undo_list;
1004 
1005 	undo_list = current->sysvsem.undo_list;
1006 	if (!undo_list) {
1007 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1008 		if (undo_list == NULL)
1009 			return -ENOMEM;
1010 		spin_lock_init(&undo_list->lock);
1011 		atomic_set(&undo_list->refcnt, 1);
1012 		current->sysvsem.undo_list = undo_list;
1013 	}
1014 	*undo_listp = undo_list;
1015 	return 0;
1016 }
1017 
1018 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1019 {
1020 	struct sem_undo **last, *un;
1021 
1022 	last = &ulp->proc_list;
1023 	un = *last;
1024 	while(un != NULL) {
1025 		if(un->semid==semid)
1026 			break;
1027 		if(un->semid==-1) {
1028 			*last=un->proc_next;
1029 			kfree(un);
1030 		} else {
1031 			last=&un->proc_next;
1032 		}
1033 		un=*last;
1034 	}
1035 	return un;
1036 }
1037 
1038 static struct sem_undo *find_undo(struct ipc_namespace *ns, int semid)
1039 {
1040 	struct sem_array *sma;
1041 	struct sem_undo_list *ulp;
1042 	struct sem_undo *un, *new;
1043 	int nsems;
1044 	int error;
1045 
1046 	error = get_undo_list(&ulp);
1047 	if (error)
1048 		return ERR_PTR(error);
1049 
1050 	lock_semundo();
1051 	un = lookup_undo(ulp, semid);
1052 	unlock_semundo();
1053 	if (likely(un!=NULL))
1054 		goto out;
1055 
1056 	/* no undo structure around - allocate one. */
1057 	sma = sem_lock(ns, semid);
1058 	un = ERR_PTR(-EINVAL);
1059 	if(sma==NULL)
1060 		goto out;
1061 	un = ERR_PTR(-EIDRM);
1062 	if (sem_checkid(ns,sma,semid)) {
1063 		sem_unlock(sma);
1064 		goto out;
1065 	}
1066 	nsems = sma->sem_nsems;
1067 	ipc_rcu_getref(sma);
1068 	sem_unlock(sma);
1069 
1070 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1071 	if (!new) {
1072 		ipc_lock_by_ptr(&sma->sem_perm);
1073 		ipc_rcu_putref(sma);
1074 		sem_unlock(sma);
1075 		return ERR_PTR(-ENOMEM);
1076 	}
1077 	new->semadj = (short *) &new[1];
1078 	new->semid = semid;
1079 
1080 	lock_semundo();
1081 	un = lookup_undo(ulp, semid);
1082 	if (un) {
1083 		unlock_semundo();
1084 		kfree(new);
1085 		ipc_lock_by_ptr(&sma->sem_perm);
1086 		ipc_rcu_putref(sma);
1087 		sem_unlock(sma);
1088 		goto out;
1089 	}
1090 	ipc_lock_by_ptr(&sma->sem_perm);
1091 	ipc_rcu_putref(sma);
1092 	if (sma->sem_perm.deleted) {
1093 		sem_unlock(sma);
1094 		unlock_semundo();
1095 		kfree(new);
1096 		un = ERR_PTR(-EIDRM);
1097 		goto out;
1098 	}
1099 	new->proc_next = ulp->proc_list;
1100 	ulp->proc_list = new;
1101 	new->id_next = sma->undo;
1102 	sma->undo = new;
1103 	sem_unlock(sma);
1104 	un = new;
1105 	unlock_semundo();
1106 out:
1107 	return un;
1108 }
1109 
1110 asmlinkage long sys_semtimedop(int semid, struct sembuf __user *tsops,
1111 			unsigned nsops, const struct timespec __user *timeout)
1112 {
1113 	int error = -EINVAL;
1114 	struct sem_array *sma;
1115 	struct sembuf fast_sops[SEMOPM_FAST];
1116 	struct sembuf* sops = fast_sops, *sop;
1117 	struct sem_undo *un;
1118 	int undos = 0, alter = 0, max;
1119 	struct sem_queue queue;
1120 	unsigned long jiffies_left = 0;
1121 	struct ipc_namespace *ns;
1122 
1123 	ns = current->nsproxy->ipc_ns;
1124 
1125 	if (nsops < 1 || semid < 0)
1126 		return -EINVAL;
1127 	if (nsops > ns->sc_semopm)
1128 		return -E2BIG;
1129 	if(nsops > SEMOPM_FAST) {
1130 		sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1131 		if(sops==NULL)
1132 			return -ENOMEM;
1133 	}
1134 	if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1135 		error=-EFAULT;
1136 		goto out_free;
1137 	}
1138 	if (timeout) {
1139 		struct timespec _timeout;
1140 		if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1141 			error = -EFAULT;
1142 			goto out_free;
1143 		}
1144 		if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1145 			_timeout.tv_nsec >= 1000000000L) {
1146 			error = -EINVAL;
1147 			goto out_free;
1148 		}
1149 		jiffies_left = timespec_to_jiffies(&_timeout);
1150 	}
1151 	max = 0;
1152 	for (sop = sops; sop < sops + nsops; sop++) {
1153 		if (sop->sem_num >= max)
1154 			max = sop->sem_num;
1155 		if (sop->sem_flg & SEM_UNDO)
1156 			undos = 1;
1157 		if (sop->sem_op != 0)
1158 			alter = 1;
1159 	}
1160 
1161 retry_undos:
1162 	if (undos) {
1163 		un = find_undo(ns, semid);
1164 		if (IS_ERR(un)) {
1165 			error = PTR_ERR(un);
1166 			goto out_free;
1167 		}
1168 	} else
1169 		un = NULL;
1170 
1171 	sma = sem_lock(ns, semid);
1172 	error=-EINVAL;
1173 	if(sma==NULL)
1174 		goto out_free;
1175 	error = -EIDRM;
1176 	if (sem_checkid(ns,sma,semid))
1177 		goto out_unlock_free;
1178 	/*
1179 	 * semid identifies are not unique - find_undo may have
1180 	 * allocated an undo structure, it was invalidated by an RMID
1181 	 * and now a new array with received the same id. Check and retry.
1182 	 */
1183 	if (un && un->semid == -1) {
1184 		sem_unlock(sma);
1185 		goto retry_undos;
1186 	}
1187 	error = -EFBIG;
1188 	if (max >= sma->sem_nsems)
1189 		goto out_unlock_free;
1190 
1191 	error = -EACCES;
1192 	if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1193 		goto out_unlock_free;
1194 
1195 	error = security_sem_semop(sma, sops, nsops, alter);
1196 	if (error)
1197 		goto out_unlock_free;
1198 
1199 	error = try_atomic_semop (sma, sops, nsops, un, current->tgid);
1200 	if (error <= 0) {
1201 		if (alter && error == 0)
1202 			update_queue (sma);
1203 		goto out_unlock_free;
1204 	}
1205 
1206 	/* We need to sleep on this operation, so we put the current
1207 	 * task into the pending queue and go to sleep.
1208 	 */
1209 
1210 	queue.sma = sma;
1211 	queue.sops = sops;
1212 	queue.nsops = nsops;
1213 	queue.undo = un;
1214 	queue.pid = current->tgid;
1215 	queue.id = semid;
1216 	queue.alter = alter;
1217 	if (alter)
1218 		append_to_queue(sma ,&queue);
1219 	else
1220 		prepend_to_queue(sma ,&queue);
1221 
1222 	queue.status = -EINTR;
1223 	queue.sleeper = current;
1224 	current->state = TASK_INTERRUPTIBLE;
1225 	sem_unlock(sma);
1226 
1227 	if (timeout)
1228 		jiffies_left = schedule_timeout(jiffies_left);
1229 	else
1230 		schedule();
1231 
1232 	error = queue.status;
1233 	while(unlikely(error == IN_WAKEUP)) {
1234 		cpu_relax();
1235 		error = queue.status;
1236 	}
1237 
1238 	if (error != -EINTR) {
1239 		/* fast path: update_queue already obtained all requested
1240 		 * resources */
1241 		goto out_free;
1242 	}
1243 
1244 	sma = sem_lock(ns, semid);
1245 	if(sma==NULL) {
1246 		BUG_ON(queue.prev != NULL);
1247 		error = -EIDRM;
1248 		goto out_free;
1249 	}
1250 
1251 	/*
1252 	 * If queue.status != -EINTR we are woken up by another process
1253 	 */
1254 	error = queue.status;
1255 	if (error != -EINTR) {
1256 		goto out_unlock_free;
1257 	}
1258 
1259 	/*
1260 	 * If an interrupt occurred we have to clean up the queue
1261 	 */
1262 	if (timeout && jiffies_left == 0)
1263 		error = -EAGAIN;
1264 	remove_from_queue(sma,&queue);
1265 	goto out_unlock_free;
1266 
1267 out_unlock_free:
1268 	sem_unlock(sma);
1269 out_free:
1270 	if(sops != fast_sops)
1271 		kfree(sops);
1272 	return error;
1273 }
1274 
1275 asmlinkage long sys_semop (int semid, struct sembuf __user *tsops, unsigned nsops)
1276 {
1277 	return sys_semtimedop(semid, tsops, nsops, NULL);
1278 }
1279 
1280 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1281  * parent and child tasks.
1282  *
1283  * See the notes above unlock_semundo() regarding the spin_lock_init()
1284  * in this code.  Initialize the undo_list->lock here instead of get_undo_list()
1285  * because of the reasoning in the comment above unlock_semundo.
1286  */
1287 
1288 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1289 {
1290 	struct sem_undo_list *undo_list;
1291 	int error;
1292 
1293 	if (clone_flags & CLONE_SYSVSEM) {
1294 		error = get_undo_list(&undo_list);
1295 		if (error)
1296 			return error;
1297 		atomic_inc(&undo_list->refcnt);
1298 		tsk->sysvsem.undo_list = undo_list;
1299 	} else
1300 		tsk->sysvsem.undo_list = NULL;
1301 
1302 	return 0;
1303 }
1304 
1305 /*
1306  * add semadj values to semaphores, free undo structures.
1307  * undo structures are not freed when semaphore arrays are destroyed
1308  * so some of them may be out of date.
1309  * IMPLEMENTATION NOTE: There is some confusion over whether the
1310  * set of adjustments that needs to be done should be done in an atomic
1311  * manner or not. That is, if we are attempting to decrement the semval
1312  * should we queue up and wait until we can do so legally?
1313  * The original implementation attempted to do this (queue and wait).
1314  * The current implementation does not do so. The POSIX standard
1315  * and SVID should be consulted to determine what behavior is mandated.
1316  */
1317 void exit_sem(struct task_struct *tsk)
1318 {
1319 	struct sem_undo_list *undo_list;
1320 	struct sem_undo *u, **up;
1321 	struct ipc_namespace *ns;
1322 
1323 	undo_list = tsk->sysvsem.undo_list;
1324 	if (!undo_list)
1325 		return;
1326 
1327 	if (!atomic_dec_and_test(&undo_list->refcnt))
1328 		return;
1329 
1330 	ns = tsk->nsproxy->ipc_ns;
1331 	/* There's no need to hold the semundo list lock, as current
1332          * is the last task exiting for this undo list.
1333 	 */
1334 	for (up = &undo_list->proc_list; (u = *up); *up = u->proc_next, kfree(u)) {
1335 		struct sem_array *sma;
1336 		int nsems, i;
1337 		struct sem_undo *un, **unp;
1338 		int semid;
1339 
1340 		semid = u->semid;
1341 
1342 		if(semid == -1)
1343 			continue;
1344 		sma = sem_lock(ns, semid);
1345 		if (sma == NULL)
1346 			continue;
1347 
1348 		if (u->semid == -1)
1349 			goto next_entry;
1350 
1351 		BUG_ON(sem_checkid(ns,sma,u->semid));
1352 
1353 		/* remove u from the sma->undo list */
1354 		for (unp = &sma->undo; (un = *unp); unp = &un->id_next) {
1355 			if (u == un)
1356 				goto found;
1357 		}
1358 		printk ("exit_sem undo list error id=%d\n", u->semid);
1359 		goto next_entry;
1360 found:
1361 		*unp = un->id_next;
1362 		/* perform adjustments registered in u */
1363 		nsems = sma->sem_nsems;
1364 		for (i = 0; i < nsems; i++) {
1365 			struct sem * semaphore = &sma->sem_base[i];
1366 			if (u->semadj[i]) {
1367 				semaphore->semval += u->semadj[i];
1368 				/*
1369 				 * Range checks of the new semaphore value,
1370 				 * not defined by sus:
1371 				 * - Some unices ignore the undo entirely
1372 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
1373 				 * - some cap the value (e.g. FreeBSD caps
1374 				 *   at 0, but doesn't enforce SEMVMX)
1375 				 *
1376 				 * Linux caps the semaphore value, both at 0
1377 				 * and at SEMVMX.
1378 				 *
1379 				 * 	Manfred <manfred@colorfullife.com>
1380 				 */
1381 				if (semaphore->semval < 0)
1382 					semaphore->semval = 0;
1383 				if (semaphore->semval > SEMVMX)
1384 					semaphore->semval = SEMVMX;
1385 				semaphore->sempid = current->tgid;
1386 			}
1387 		}
1388 		sma->sem_otime = get_seconds();
1389 		/* maybe some queued-up processes were waiting for this */
1390 		update_queue(sma);
1391 next_entry:
1392 		sem_unlock(sma);
1393 	}
1394 	kfree(undo_list);
1395 }
1396 
1397 #ifdef CONFIG_PROC_FS
1398 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1399 {
1400 	struct sem_array *sma = it;
1401 
1402 	return seq_printf(s,
1403 			  "%10d %10d  %4o %10lu %5u %5u %5u %5u %10lu %10lu\n",
1404 			  sma->sem_perm.key,
1405 			  sma->sem_id,
1406 			  sma->sem_perm.mode,
1407 			  sma->sem_nsems,
1408 			  sma->sem_perm.uid,
1409 			  sma->sem_perm.gid,
1410 			  sma->sem_perm.cuid,
1411 			  sma->sem_perm.cgid,
1412 			  sma->sem_otime,
1413 			  sma->sem_ctime);
1414 }
1415 #endif
1416