1 /* 2 * linux/ipc/sem.c 3 * Copyright (C) 1992 Krishna Balasubramanian 4 * Copyright (C) 1995 Eric Schenk, Bruno Haible 5 * 6 * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995): 7 * This code underwent a massive rewrite in order to solve some problems 8 * with the original code. In particular the original code failed to 9 * wake up processes that were waiting for semval to go to 0 if the 10 * value went to 0 and was then incremented rapidly enough. In solving 11 * this problem I have also modified the implementation so that it 12 * processes pending operations in a FIFO manner, thus give a guarantee 13 * that processes waiting for a lock on the semaphore won't starve 14 * unless another locking process fails to unlock. 15 * In addition the following two changes in behavior have been introduced: 16 * - The original implementation of semop returned the value 17 * last semaphore element examined on success. This does not 18 * match the manual page specifications, and effectively 19 * allows the user to read the semaphore even if they do not 20 * have read permissions. The implementation now returns 0 21 * on success as stated in the manual page. 22 * - There is some confusion over whether the set of undo adjustments 23 * to be performed at exit should be done in an atomic manner. 24 * That is, if we are attempting to decrement the semval should we queue 25 * up and wait until we can do so legally? 26 * The original implementation attempted to do this. 27 * The current implementation does not do so. This is because I don't 28 * think it is the right thing (TM) to do, and because I couldn't 29 * see a clean way to get the old behavior with the new design. 30 * The POSIX standard and SVID should be consulted to determine 31 * what behavior is mandated. 32 * 33 * Further notes on refinement (Christoph Rohland, December 1998): 34 * - The POSIX standard says, that the undo adjustments simply should 35 * redo. So the current implementation is o.K. 36 * - The previous code had two flaws: 37 * 1) It actively gave the semaphore to the next waiting process 38 * sleeping on the semaphore. Since this process did not have the 39 * cpu this led to many unnecessary context switches and bad 40 * performance. Now we only check which process should be able to 41 * get the semaphore and if this process wants to reduce some 42 * semaphore value we simply wake it up without doing the 43 * operation. So it has to try to get it later. Thus e.g. the 44 * running process may reacquire the semaphore during the current 45 * time slice. If it only waits for zero or increases the semaphore, 46 * we do the operation in advance and wake it up. 47 * 2) It did not wake up all zero waiting processes. We try to do 48 * better but only get the semops right which only wait for zero or 49 * increase. If there are decrement operations in the operations 50 * array we do the same as before. 51 * 52 * With the incarnation of O(1) scheduler, it becomes unnecessary to perform 53 * check/retry algorithm for waking up blocked processes as the new scheduler 54 * is better at handling thread switch than the old one. 55 * 56 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> 57 * 58 * SMP-threaded, sysctl's added 59 * (c) 1999 Manfred Spraul <manfred@colorfullife.com> 60 * Enforced range limit on SEM_UNDO 61 * (c) 2001 Red Hat Inc <alan@redhat.com> 62 * Lockless wakeup 63 * (c) 2003 Manfred Spraul <manfred@colorfullife.com> 64 * 65 * support for audit of ipc object properties and permission changes 66 * Dustin Kirkland <dustin.kirkland@us.ibm.com> 67 * 68 * namespaces support 69 * OpenVZ, SWsoft Inc. 70 * Pavel Emelianov <xemul@openvz.org> 71 */ 72 73 #include <linux/slab.h> 74 #include <linux/spinlock.h> 75 #include <linux/init.h> 76 #include <linux/proc_fs.h> 77 #include <linux/time.h> 78 #include <linux/security.h> 79 #include <linux/syscalls.h> 80 #include <linux/audit.h> 81 #include <linux/capability.h> 82 #include <linux/seq_file.h> 83 #include <linux/mutex.h> 84 #include <linux/nsproxy.h> 85 86 #include <asm/uaccess.h> 87 #include "util.h" 88 89 #define sem_ids(ns) (*((ns)->ids[IPC_SEM_IDS])) 90 91 #define sem_lock(ns, id) ((struct sem_array*)ipc_lock(&sem_ids(ns), id)) 92 #define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm) 93 #define sem_rmid(ns, id) ((struct sem_array*)ipc_rmid(&sem_ids(ns), id)) 94 #define sem_checkid(ns, sma, semid) \ 95 ipc_checkid(&sem_ids(ns),&sma->sem_perm,semid) 96 #define sem_buildid(ns, id, seq) \ 97 ipc_buildid(&sem_ids(ns), id, seq) 98 99 static struct ipc_ids init_sem_ids; 100 101 static int newary(struct ipc_namespace *, key_t, int, int); 102 static void freeary(struct ipc_namespace *ns, struct sem_array *sma, int id); 103 #ifdef CONFIG_PROC_FS 104 static int sysvipc_sem_proc_show(struct seq_file *s, void *it); 105 #endif 106 107 #define SEMMSL_FAST 256 /* 512 bytes on stack */ 108 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ 109 110 /* 111 * linked list protection: 112 * sem_undo.id_next, 113 * sem_array.sem_pending{,last}, 114 * sem_array.sem_undo: sem_lock() for read/write 115 * sem_undo.proc_next: only "current" is allowed to read/write that field. 116 * 117 */ 118 119 #define sc_semmsl sem_ctls[0] 120 #define sc_semmns sem_ctls[1] 121 #define sc_semopm sem_ctls[2] 122 #define sc_semmni sem_ctls[3] 123 124 static void __sem_init_ns(struct ipc_namespace *ns, struct ipc_ids *ids) 125 { 126 ns->ids[IPC_SEM_IDS] = ids; 127 ns->sc_semmsl = SEMMSL; 128 ns->sc_semmns = SEMMNS; 129 ns->sc_semopm = SEMOPM; 130 ns->sc_semmni = SEMMNI; 131 ns->used_sems = 0; 132 ipc_init_ids(ids, ns->sc_semmni); 133 } 134 135 int sem_init_ns(struct ipc_namespace *ns) 136 { 137 struct ipc_ids *ids; 138 139 ids = kmalloc(sizeof(struct ipc_ids), GFP_KERNEL); 140 if (ids == NULL) 141 return -ENOMEM; 142 143 __sem_init_ns(ns, ids); 144 return 0; 145 } 146 147 void sem_exit_ns(struct ipc_namespace *ns) 148 { 149 int i; 150 struct sem_array *sma; 151 152 mutex_lock(&sem_ids(ns).mutex); 153 for (i = 0; i <= sem_ids(ns).max_id; i++) { 154 sma = sem_lock(ns, i); 155 if (sma == NULL) 156 continue; 157 158 freeary(ns, sma, i); 159 } 160 mutex_unlock(&sem_ids(ns).mutex); 161 162 ipc_fini_ids(ns->ids[IPC_SEM_IDS]); 163 kfree(ns->ids[IPC_SEM_IDS]); 164 ns->ids[IPC_SEM_IDS] = NULL; 165 } 166 167 void __init sem_init (void) 168 { 169 __sem_init_ns(&init_ipc_ns, &init_sem_ids); 170 ipc_init_proc_interface("sysvipc/sem", 171 " key semid perms nsems uid gid cuid cgid otime ctime\n", 172 IPC_SEM_IDS, sysvipc_sem_proc_show); 173 } 174 175 /* 176 * Lockless wakeup algorithm: 177 * Without the check/retry algorithm a lockless wakeup is possible: 178 * - queue.status is initialized to -EINTR before blocking. 179 * - wakeup is performed by 180 * * unlinking the queue entry from sma->sem_pending 181 * * setting queue.status to IN_WAKEUP 182 * This is the notification for the blocked thread that a 183 * result value is imminent. 184 * * call wake_up_process 185 * * set queue.status to the final value. 186 * - the previously blocked thread checks queue.status: 187 * * if it's IN_WAKEUP, then it must wait until the value changes 188 * * if it's not -EINTR, then the operation was completed by 189 * update_queue. semtimedop can return queue.status without 190 * performing any operation on the sem array. 191 * * otherwise it must acquire the spinlock and check what's up. 192 * 193 * The two-stage algorithm is necessary to protect against the following 194 * races: 195 * - if queue.status is set after wake_up_process, then the woken up idle 196 * thread could race forward and try (and fail) to acquire sma->lock 197 * before update_queue had a chance to set queue.status 198 * - if queue.status is written before wake_up_process and if the 199 * blocked process is woken up by a signal between writing 200 * queue.status and the wake_up_process, then the woken up 201 * process could return from semtimedop and die by calling 202 * sys_exit before wake_up_process is called. Then wake_up_process 203 * will oops, because the task structure is already invalid. 204 * (yes, this happened on s390 with sysv msg). 205 * 206 */ 207 #define IN_WAKEUP 1 208 209 static int newary (struct ipc_namespace *ns, key_t key, int nsems, int semflg) 210 { 211 int id; 212 int retval; 213 struct sem_array *sma; 214 int size; 215 216 if (!nsems) 217 return -EINVAL; 218 if (ns->used_sems + nsems > ns->sc_semmns) 219 return -ENOSPC; 220 221 size = sizeof (*sma) + nsems * sizeof (struct sem); 222 sma = ipc_rcu_alloc(size); 223 if (!sma) { 224 return -ENOMEM; 225 } 226 memset (sma, 0, size); 227 228 sma->sem_perm.mode = (semflg & S_IRWXUGO); 229 sma->sem_perm.key = key; 230 231 sma->sem_perm.security = NULL; 232 retval = security_sem_alloc(sma); 233 if (retval) { 234 ipc_rcu_putref(sma); 235 return retval; 236 } 237 238 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); 239 if(id == -1) { 240 security_sem_free(sma); 241 ipc_rcu_putref(sma); 242 return -ENOSPC; 243 } 244 ns->used_sems += nsems; 245 246 sma->sem_id = sem_buildid(ns, id, sma->sem_perm.seq); 247 sma->sem_base = (struct sem *) &sma[1]; 248 /* sma->sem_pending = NULL; */ 249 sma->sem_pending_last = &sma->sem_pending; 250 /* sma->undo = NULL; */ 251 sma->sem_nsems = nsems; 252 sma->sem_ctime = get_seconds(); 253 sem_unlock(sma); 254 255 return sma->sem_id; 256 } 257 258 asmlinkage long sys_semget (key_t key, int nsems, int semflg) 259 { 260 int id, err = -EINVAL; 261 struct sem_array *sma; 262 struct ipc_namespace *ns; 263 264 ns = current->nsproxy->ipc_ns; 265 266 if (nsems < 0 || nsems > ns->sc_semmsl) 267 return -EINVAL; 268 mutex_lock(&sem_ids(ns).mutex); 269 270 if (key == IPC_PRIVATE) { 271 err = newary(ns, key, nsems, semflg); 272 } else if ((id = ipc_findkey(&sem_ids(ns), key)) == -1) { /* key not used */ 273 if (!(semflg & IPC_CREAT)) 274 err = -ENOENT; 275 else 276 err = newary(ns, key, nsems, semflg); 277 } else if (semflg & IPC_CREAT && semflg & IPC_EXCL) { 278 err = -EEXIST; 279 } else { 280 sma = sem_lock(ns, id); 281 BUG_ON(sma==NULL); 282 if (nsems > sma->sem_nsems) 283 err = -EINVAL; 284 else if (ipcperms(&sma->sem_perm, semflg)) 285 err = -EACCES; 286 else { 287 int semid = sem_buildid(ns, id, sma->sem_perm.seq); 288 err = security_sem_associate(sma, semflg); 289 if (!err) 290 err = semid; 291 } 292 sem_unlock(sma); 293 } 294 295 mutex_unlock(&sem_ids(ns).mutex); 296 return err; 297 } 298 299 /* Manage the doubly linked list sma->sem_pending as a FIFO: 300 * insert new queue elements at the tail sma->sem_pending_last. 301 */ 302 static inline void append_to_queue (struct sem_array * sma, 303 struct sem_queue * q) 304 { 305 *(q->prev = sma->sem_pending_last) = q; 306 *(sma->sem_pending_last = &q->next) = NULL; 307 } 308 309 static inline void prepend_to_queue (struct sem_array * sma, 310 struct sem_queue * q) 311 { 312 q->next = sma->sem_pending; 313 *(q->prev = &sma->sem_pending) = q; 314 if (q->next) 315 q->next->prev = &q->next; 316 else /* sma->sem_pending_last == &sma->sem_pending */ 317 sma->sem_pending_last = &q->next; 318 } 319 320 static inline void remove_from_queue (struct sem_array * sma, 321 struct sem_queue * q) 322 { 323 *(q->prev) = q->next; 324 if (q->next) 325 q->next->prev = q->prev; 326 else /* sma->sem_pending_last == &q->next */ 327 sma->sem_pending_last = q->prev; 328 q->prev = NULL; /* mark as removed */ 329 } 330 331 /* 332 * Determine whether a sequence of semaphore operations would succeed 333 * all at once. Return 0 if yes, 1 if need to sleep, else return error code. 334 */ 335 336 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops, 337 int nsops, struct sem_undo *un, int pid) 338 { 339 int result, sem_op; 340 struct sembuf *sop; 341 struct sem * curr; 342 343 for (sop = sops; sop < sops + nsops; sop++) { 344 curr = sma->sem_base + sop->sem_num; 345 sem_op = sop->sem_op; 346 result = curr->semval; 347 348 if (!sem_op && result) 349 goto would_block; 350 351 result += sem_op; 352 if (result < 0) 353 goto would_block; 354 if (result > SEMVMX) 355 goto out_of_range; 356 if (sop->sem_flg & SEM_UNDO) { 357 int undo = un->semadj[sop->sem_num] - sem_op; 358 /* 359 * Exceeding the undo range is an error. 360 */ 361 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 362 goto out_of_range; 363 } 364 curr->semval = result; 365 } 366 367 sop--; 368 while (sop >= sops) { 369 sma->sem_base[sop->sem_num].sempid = pid; 370 if (sop->sem_flg & SEM_UNDO) 371 un->semadj[sop->sem_num] -= sop->sem_op; 372 sop--; 373 } 374 375 sma->sem_otime = get_seconds(); 376 return 0; 377 378 out_of_range: 379 result = -ERANGE; 380 goto undo; 381 382 would_block: 383 if (sop->sem_flg & IPC_NOWAIT) 384 result = -EAGAIN; 385 else 386 result = 1; 387 388 undo: 389 sop--; 390 while (sop >= sops) { 391 sma->sem_base[sop->sem_num].semval -= sop->sem_op; 392 sop--; 393 } 394 395 return result; 396 } 397 398 /* Go through the pending queue for the indicated semaphore 399 * looking for tasks that can be completed. 400 */ 401 static void update_queue (struct sem_array * sma) 402 { 403 int error; 404 struct sem_queue * q; 405 406 q = sma->sem_pending; 407 while(q) { 408 error = try_atomic_semop(sma, q->sops, q->nsops, 409 q->undo, q->pid); 410 411 /* Does q->sleeper still need to sleep? */ 412 if (error <= 0) { 413 struct sem_queue *n; 414 remove_from_queue(sma,q); 415 q->status = IN_WAKEUP; 416 /* 417 * Continue scanning. The next operation 418 * that must be checked depends on the type of the 419 * completed operation: 420 * - if the operation modified the array, then 421 * restart from the head of the queue and 422 * check for threads that might be waiting 423 * for semaphore values to become 0. 424 * - if the operation didn't modify the array, 425 * then just continue. 426 */ 427 if (q->alter) 428 n = sma->sem_pending; 429 else 430 n = q->next; 431 wake_up_process(q->sleeper); 432 /* hands-off: q will disappear immediately after 433 * writing q->status. 434 */ 435 smp_wmb(); 436 q->status = error; 437 q = n; 438 } else { 439 q = q->next; 440 } 441 } 442 } 443 444 /* The following counts are associated to each semaphore: 445 * semncnt number of tasks waiting on semval being nonzero 446 * semzcnt number of tasks waiting on semval being zero 447 * This model assumes that a task waits on exactly one semaphore. 448 * Since semaphore operations are to be performed atomically, tasks actually 449 * wait on a whole sequence of semaphores simultaneously. 450 * The counts we return here are a rough approximation, but still 451 * warrant that semncnt+semzcnt>0 if the task is on the pending queue. 452 */ 453 static int count_semncnt (struct sem_array * sma, ushort semnum) 454 { 455 int semncnt; 456 struct sem_queue * q; 457 458 semncnt = 0; 459 for (q = sma->sem_pending; q; q = q->next) { 460 struct sembuf * sops = q->sops; 461 int nsops = q->nsops; 462 int i; 463 for (i = 0; i < nsops; i++) 464 if (sops[i].sem_num == semnum 465 && (sops[i].sem_op < 0) 466 && !(sops[i].sem_flg & IPC_NOWAIT)) 467 semncnt++; 468 } 469 return semncnt; 470 } 471 static int count_semzcnt (struct sem_array * sma, ushort semnum) 472 { 473 int semzcnt; 474 struct sem_queue * q; 475 476 semzcnt = 0; 477 for (q = sma->sem_pending; q; q = q->next) { 478 struct sembuf * sops = q->sops; 479 int nsops = q->nsops; 480 int i; 481 for (i = 0; i < nsops; i++) 482 if (sops[i].sem_num == semnum 483 && (sops[i].sem_op == 0) 484 && !(sops[i].sem_flg & IPC_NOWAIT)) 485 semzcnt++; 486 } 487 return semzcnt; 488 } 489 490 /* Free a semaphore set. freeary() is called with sem_ids.mutex locked and 491 * the spinlock for this semaphore set hold. sem_ids.mutex remains locked 492 * on exit. 493 */ 494 static void freeary (struct ipc_namespace *ns, struct sem_array *sma, int id) 495 { 496 struct sem_undo *un; 497 struct sem_queue *q; 498 int size; 499 500 /* Invalidate the existing undo structures for this semaphore set. 501 * (They will be freed without any further action in exit_sem() 502 * or during the next semop.) 503 */ 504 for (un = sma->undo; un; un = un->id_next) 505 un->semid = -1; 506 507 /* Wake up all pending processes and let them fail with EIDRM. */ 508 q = sma->sem_pending; 509 while(q) { 510 struct sem_queue *n; 511 /* lazy remove_from_queue: we are killing the whole queue */ 512 q->prev = NULL; 513 n = q->next; 514 q->status = IN_WAKEUP; 515 wake_up_process(q->sleeper); /* doesn't sleep */ 516 smp_wmb(); 517 q->status = -EIDRM; /* hands-off q */ 518 q = n; 519 } 520 521 /* Remove the semaphore set from the ID array*/ 522 sma = sem_rmid(ns, id); 523 sem_unlock(sma); 524 525 ns->used_sems -= sma->sem_nsems; 526 size = sizeof (*sma) + sma->sem_nsems * sizeof (struct sem); 527 security_sem_free(sma); 528 ipc_rcu_putref(sma); 529 } 530 531 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) 532 { 533 switch(version) { 534 case IPC_64: 535 return copy_to_user(buf, in, sizeof(*in)); 536 case IPC_OLD: 537 { 538 struct semid_ds out; 539 540 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); 541 542 out.sem_otime = in->sem_otime; 543 out.sem_ctime = in->sem_ctime; 544 out.sem_nsems = in->sem_nsems; 545 546 return copy_to_user(buf, &out, sizeof(out)); 547 } 548 default: 549 return -EINVAL; 550 } 551 } 552 553 static int semctl_nolock(struct ipc_namespace *ns, int semid, int semnum, 554 int cmd, int version, union semun arg) 555 { 556 int err = -EINVAL; 557 struct sem_array *sma; 558 559 switch(cmd) { 560 case IPC_INFO: 561 case SEM_INFO: 562 { 563 struct seminfo seminfo; 564 int max_id; 565 566 err = security_sem_semctl(NULL, cmd); 567 if (err) 568 return err; 569 570 memset(&seminfo,0,sizeof(seminfo)); 571 seminfo.semmni = ns->sc_semmni; 572 seminfo.semmns = ns->sc_semmns; 573 seminfo.semmsl = ns->sc_semmsl; 574 seminfo.semopm = ns->sc_semopm; 575 seminfo.semvmx = SEMVMX; 576 seminfo.semmnu = SEMMNU; 577 seminfo.semmap = SEMMAP; 578 seminfo.semume = SEMUME; 579 mutex_lock(&sem_ids(ns).mutex); 580 if (cmd == SEM_INFO) { 581 seminfo.semusz = sem_ids(ns).in_use; 582 seminfo.semaem = ns->used_sems; 583 } else { 584 seminfo.semusz = SEMUSZ; 585 seminfo.semaem = SEMAEM; 586 } 587 max_id = sem_ids(ns).max_id; 588 mutex_unlock(&sem_ids(ns).mutex); 589 if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo))) 590 return -EFAULT; 591 return (max_id < 0) ? 0: max_id; 592 } 593 case SEM_STAT: 594 { 595 struct semid64_ds tbuf; 596 int id; 597 598 if(semid >= sem_ids(ns).entries->size) 599 return -EINVAL; 600 601 memset(&tbuf,0,sizeof(tbuf)); 602 603 sma = sem_lock(ns, semid); 604 if(sma == NULL) 605 return -EINVAL; 606 607 err = -EACCES; 608 if (ipcperms (&sma->sem_perm, S_IRUGO)) 609 goto out_unlock; 610 611 err = security_sem_semctl(sma, cmd); 612 if (err) 613 goto out_unlock; 614 615 id = sem_buildid(ns, semid, sma->sem_perm.seq); 616 617 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); 618 tbuf.sem_otime = sma->sem_otime; 619 tbuf.sem_ctime = sma->sem_ctime; 620 tbuf.sem_nsems = sma->sem_nsems; 621 sem_unlock(sma); 622 if (copy_semid_to_user (arg.buf, &tbuf, version)) 623 return -EFAULT; 624 return id; 625 } 626 default: 627 return -EINVAL; 628 } 629 return err; 630 out_unlock: 631 sem_unlock(sma); 632 return err; 633 } 634 635 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, 636 int cmd, int version, union semun arg) 637 { 638 struct sem_array *sma; 639 struct sem* curr; 640 int err; 641 ushort fast_sem_io[SEMMSL_FAST]; 642 ushort* sem_io = fast_sem_io; 643 int nsems; 644 645 sma = sem_lock(ns, semid); 646 if(sma==NULL) 647 return -EINVAL; 648 649 nsems = sma->sem_nsems; 650 651 err=-EIDRM; 652 if (sem_checkid(ns,sma,semid)) 653 goto out_unlock; 654 655 err = -EACCES; 656 if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO)) 657 goto out_unlock; 658 659 err = security_sem_semctl(sma, cmd); 660 if (err) 661 goto out_unlock; 662 663 err = -EACCES; 664 switch (cmd) { 665 case GETALL: 666 { 667 ushort __user *array = arg.array; 668 int i; 669 670 if(nsems > SEMMSL_FAST) { 671 ipc_rcu_getref(sma); 672 sem_unlock(sma); 673 674 sem_io = ipc_alloc(sizeof(ushort)*nsems); 675 if(sem_io == NULL) { 676 ipc_lock_by_ptr(&sma->sem_perm); 677 ipc_rcu_putref(sma); 678 sem_unlock(sma); 679 return -ENOMEM; 680 } 681 682 ipc_lock_by_ptr(&sma->sem_perm); 683 ipc_rcu_putref(sma); 684 if (sma->sem_perm.deleted) { 685 sem_unlock(sma); 686 err = -EIDRM; 687 goto out_free; 688 } 689 } 690 691 for (i = 0; i < sma->sem_nsems; i++) 692 sem_io[i] = sma->sem_base[i].semval; 693 sem_unlock(sma); 694 err = 0; 695 if(copy_to_user(array, sem_io, nsems*sizeof(ushort))) 696 err = -EFAULT; 697 goto out_free; 698 } 699 case SETALL: 700 { 701 int i; 702 struct sem_undo *un; 703 704 ipc_rcu_getref(sma); 705 sem_unlock(sma); 706 707 if(nsems > SEMMSL_FAST) { 708 sem_io = ipc_alloc(sizeof(ushort)*nsems); 709 if(sem_io == NULL) { 710 ipc_lock_by_ptr(&sma->sem_perm); 711 ipc_rcu_putref(sma); 712 sem_unlock(sma); 713 return -ENOMEM; 714 } 715 } 716 717 if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) { 718 ipc_lock_by_ptr(&sma->sem_perm); 719 ipc_rcu_putref(sma); 720 sem_unlock(sma); 721 err = -EFAULT; 722 goto out_free; 723 } 724 725 for (i = 0; i < nsems; i++) { 726 if (sem_io[i] > SEMVMX) { 727 ipc_lock_by_ptr(&sma->sem_perm); 728 ipc_rcu_putref(sma); 729 sem_unlock(sma); 730 err = -ERANGE; 731 goto out_free; 732 } 733 } 734 ipc_lock_by_ptr(&sma->sem_perm); 735 ipc_rcu_putref(sma); 736 if (sma->sem_perm.deleted) { 737 sem_unlock(sma); 738 err = -EIDRM; 739 goto out_free; 740 } 741 742 for (i = 0; i < nsems; i++) 743 sma->sem_base[i].semval = sem_io[i]; 744 for (un = sma->undo; un; un = un->id_next) 745 for (i = 0; i < nsems; i++) 746 un->semadj[i] = 0; 747 sma->sem_ctime = get_seconds(); 748 /* maybe some queued-up processes were waiting for this */ 749 update_queue(sma); 750 err = 0; 751 goto out_unlock; 752 } 753 case IPC_STAT: 754 { 755 struct semid64_ds tbuf; 756 memset(&tbuf,0,sizeof(tbuf)); 757 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); 758 tbuf.sem_otime = sma->sem_otime; 759 tbuf.sem_ctime = sma->sem_ctime; 760 tbuf.sem_nsems = sma->sem_nsems; 761 sem_unlock(sma); 762 if (copy_semid_to_user (arg.buf, &tbuf, version)) 763 return -EFAULT; 764 return 0; 765 } 766 /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */ 767 } 768 err = -EINVAL; 769 if(semnum < 0 || semnum >= nsems) 770 goto out_unlock; 771 772 curr = &sma->sem_base[semnum]; 773 774 switch (cmd) { 775 case GETVAL: 776 err = curr->semval; 777 goto out_unlock; 778 case GETPID: 779 err = curr->sempid; 780 goto out_unlock; 781 case GETNCNT: 782 err = count_semncnt(sma,semnum); 783 goto out_unlock; 784 case GETZCNT: 785 err = count_semzcnt(sma,semnum); 786 goto out_unlock; 787 case SETVAL: 788 { 789 int val = arg.val; 790 struct sem_undo *un; 791 err = -ERANGE; 792 if (val > SEMVMX || val < 0) 793 goto out_unlock; 794 795 for (un = sma->undo; un; un = un->id_next) 796 un->semadj[semnum] = 0; 797 curr->semval = val; 798 curr->sempid = current->tgid; 799 sma->sem_ctime = get_seconds(); 800 /* maybe some queued-up processes were waiting for this */ 801 update_queue(sma); 802 err = 0; 803 goto out_unlock; 804 } 805 } 806 out_unlock: 807 sem_unlock(sma); 808 out_free: 809 if(sem_io != fast_sem_io) 810 ipc_free(sem_io, sizeof(ushort)*nsems); 811 return err; 812 } 813 814 struct sem_setbuf { 815 uid_t uid; 816 gid_t gid; 817 mode_t mode; 818 }; 819 820 static inline unsigned long copy_semid_from_user(struct sem_setbuf *out, void __user *buf, int version) 821 { 822 switch(version) { 823 case IPC_64: 824 { 825 struct semid64_ds tbuf; 826 827 if(copy_from_user(&tbuf, buf, sizeof(tbuf))) 828 return -EFAULT; 829 830 out->uid = tbuf.sem_perm.uid; 831 out->gid = tbuf.sem_perm.gid; 832 out->mode = tbuf.sem_perm.mode; 833 834 return 0; 835 } 836 case IPC_OLD: 837 { 838 struct semid_ds tbuf_old; 839 840 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) 841 return -EFAULT; 842 843 out->uid = tbuf_old.sem_perm.uid; 844 out->gid = tbuf_old.sem_perm.gid; 845 out->mode = tbuf_old.sem_perm.mode; 846 847 return 0; 848 } 849 default: 850 return -EINVAL; 851 } 852 } 853 854 static int semctl_down(struct ipc_namespace *ns, int semid, int semnum, 855 int cmd, int version, union semun arg) 856 { 857 struct sem_array *sma; 858 int err; 859 struct sem_setbuf uninitialized_var(setbuf); 860 struct kern_ipc_perm *ipcp; 861 862 if(cmd == IPC_SET) { 863 if(copy_semid_from_user (&setbuf, arg.buf, version)) 864 return -EFAULT; 865 } 866 sma = sem_lock(ns, semid); 867 if(sma==NULL) 868 return -EINVAL; 869 870 if (sem_checkid(ns,sma,semid)) { 871 err=-EIDRM; 872 goto out_unlock; 873 } 874 ipcp = &sma->sem_perm; 875 876 err = audit_ipc_obj(ipcp); 877 if (err) 878 goto out_unlock; 879 880 if (cmd == IPC_SET) { 881 err = audit_ipc_set_perm(0, setbuf.uid, setbuf.gid, setbuf.mode); 882 if (err) 883 goto out_unlock; 884 } 885 if (current->euid != ipcp->cuid && 886 current->euid != ipcp->uid && !capable(CAP_SYS_ADMIN)) { 887 err=-EPERM; 888 goto out_unlock; 889 } 890 891 err = security_sem_semctl(sma, cmd); 892 if (err) 893 goto out_unlock; 894 895 switch(cmd){ 896 case IPC_RMID: 897 freeary(ns, sma, semid); 898 err = 0; 899 break; 900 case IPC_SET: 901 ipcp->uid = setbuf.uid; 902 ipcp->gid = setbuf.gid; 903 ipcp->mode = (ipcp->mode & ~S_IRWXUGO) 904 | (setbuf.mode & S_IRWXUGO); 905 sma->sem_ctime = get_seconds(); 906 sem_unlock(sma); 907 err = 0; 908 break; 909 default: 910 sem_unlock(sma); 911 err = -EINVAL; 912 break; 913 } 914 return err; 915 916 out_unlock: 917 sem_unlock(sma); 918 return err; 919 } 920 921 asmlinkage long sys_semctl (int semid, int semnum, int cmd, union semun arg) 922 { 923 int err = -EINVAL; 924 int version; 925 struct ipc_namespace *ns; 926 927 if (semid < 0) 928 return -EINVAL; 929 930 version = ipc_parse_version(&cmd); 931 ns = current->nsproxy->ipc_ns; 932 933 switch(cmd) { 934 case IPC_INFO: 935 case SEM_INFO: 936 case SEM_STAT: 937 err = semctl_nolock(ns,semid,semnum,cmd,version,arg); 938 return err; 939 case GETALL: 940 case GETVAL: 941 case GETPID: 942 case GETNCNT: 943 case GETZCNT: 944 case IPC_STAT: 945 case SETVAL: 946 case SETALL: 947 err = semctl_main(ns,semid,semnum,cmd,version,arg); 948 return err; 949 case IPC_RMID: 950 case IPC_SET: 951 mutex_lock(&sem_ids(ns).mutex); 952 err = semctl_down(ns,semid,semnum,cmd,version,arg); 953 mutex_unlock(&sem_ids(ns).mutex); 954 return err; 955 default: 956 return -EINVAL; 957 } 958 } 959 960 static inline void lock_semundo(void) 961 { 962 struct sem_undo_list *undo_list; 963 964 undo_list = current->sysvsem.undo_list; 965 if (undo_list) 966 spin_lock(&undo_list->lock); 967 } 968 969 /* This code has an interaction with copy_semundo(). 970 * Consider; two tasks are sharing the undo_list. task1 971 * acquires the undo_list lock in lock_semundo(). If task2 now 972 * exits before task1 releases the lock (by calling 973 * unlock_semundo()), then task1 will never call spin_unlock(). 974 * This leave the sem_undo_list in a locked state. If task1 now creats task3 975 * and once again shares the sem_undo_list, the sem_undo_list will still be 976 * locked, and future SEM_UNDO operations will deadlock. This case is 977 * dealt with in copy_semundo() by having it reinitialize the spin lock when 978 * the refcnt goes from 1 to 2. 979 */ 980 static inline void unlock_semundo(void) 981 { 982 struct sem_undo_list *undo_list; 983 984 undo_list = current->sysvsem.undo_list; 985 if (undo_list) 986 spin_unlock(&undo_list->lock); 987 } 988 989 990 /* If the task doesn't already have a undo_list, then allocate one 991 * here. We guarantee there is only one thread using this undo list, 992 * and current is THE ONE 993 * 994 * If this allocation and assignment succeeds, but later 995 * portions of this code fail, there is no need to free the sem_undo_list. 996 * Just let it stay associated with the task, and it'll be freed later 997 * at exit time. 998 * 999 * This can block, so callers must hold no locks. 1000 */ 1001 static inline int get_undo_list(struct sem_undo_list **undo_listp) 1002 { 1003 struct sem_undo_list *undo_list; 1004 1005 undo_list = current->sysvsem.undo_list; 1006 if (!undo_list) { 1007 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); 1008 if (undo_list == NULL) 1009 return -ENOMEM; 1010 spin_lock_init(&undo_list->lock); 1011 atomic_set(&undo_list->refcnt, 1); 1012 current->sysvsem.undo_list = undo_list; 1013 } 1014 *undo_listp = undo_list; 1015 return 0; 1016 } 1017 1018 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) 1019 { 1020 struct sem_undo **last, *un; 1021 1022 last = &ulp->proc_list; 1023 un = *last; 1024 while(un != NULL) { 1025 if(un->semid==semid) 1026 break; 1027 if(un->semid==-1) { 1028 *last=un->proc_next; 1029 kfree(un); 1030 } else { 1031 last=&un->proc_next; 1032 } 1033 un=*last; 1034 } 1035 return un; 1036 } 1037 1038 static struct sem_undo *find_undo(struct ipc_namespace *ns, int semid) 1039 { 1040 struct sem_array *sma; 1041 struct sem_undo_list *ulp; 1042 struct sem_undo *un, *new; 1043 int nsems; 1044 int error; 1045 1046 error = get_undo_list(&ulp); 1047 if (error) 1048 return ERR_PTR(error); 1049 1050 lock_semundo(); 1051 un = lookup_undo(ulp, semid); 1052 unlock_semundo(); 1053 if (likely(un!=NULL)) 1054 goto out; 1055 1056 /* no undo structure around - allocate one. */ 1057 sma = sem_lock(ns, semid); 1058 un = ERR_PTR(-EINVAL); 1059 if(sma==NULL) 1060 goto out; 1061 un = ERR_PTR(-EIDRM); 1062 if (sem_checkid(ns,sma,semid)) { 1063 sem_unlock(sma); 1064 goto out; 1065 } 1066 nsems = sma->sem_nsems; 1067 ipc_rcu_getref(sma); 1068 sem_unlock(sma); 1069 1070 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); 1071 if (!new) { 1072 ipc_lock_by_ptr(&sma->sem_perm); 1073 ipc_rcu_putref(sma); 1074 sem_unlock(sma); 1075 return ERR_PTR(-ENOMEM); 1076 } 1077 new->semadj = (short *) &new[1]; 1078 new->semid = semid; 1079 1080 lock_semundo(); 1081 un = lookup_undo(ulp, semid); 1082 if (un) { 1083 unlock_semundo(); 1084 kfree(new); 1085 ipc_lock_by_ptr(&sma->sem_perm); 1086 ipc_rcu_putref(sma); 1087 sem_unlock(sma); 1088 goto out; 1089 } 1090 ipc_lock_by_ptr(&sma->sem_perm); 1091 ipc_rcu_putref(sma); 1092 if (sma->sem_perm.deleted) { 1093 sem_unlock(sma); 1094 unlock_semundo(); 1095 kfree(new); 1096 un = ERR_PTR(-EIDRM); 1097 goto out; 1098 } 1099 new->proc_next = ulp->proc_list; 1100 ulp->proc_list = new; 1101 new->id_next = sma->undo; 1102 sma->undo = new; 1103 sem_unlock(sma); 1104 un = new; 1105 unlock_semundo(); 1106 out: 1107 return un; 1108 } 1109 1110 asmlinkage long sys_semtimedop(int semid, struct sembuf __user *tsops, 1111 unsigned nsops, const struct timespec __user *timeout) 1112 { 1113 int error = -EINVAL; 1114 struct sem_array *sma; 1115 struct sembuf fast_sops[SEMOPM_FAST]; 1116 struct sembuf* sops = fast_sops, *sop; 1117 struct sem_undo *un; 1118 int undos = 0, alter = 0, max; 1119 struct sem_queue queue; 1120 unsigned long jiffies_left = 0; 1121 struct ipc_namespace *ns; 1122 1123 ns = current->nsproxy->ipc_ns; 1124 1125 if (nsops < 1 || semid < 0) 1126 return -EINVAL; 1127 if (nsops > ns->sc_semopm) 1128 return -E2BIG; 1129 if(nsops > SEMOPM_FAST) { 1130 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL); 1131 if(sops==NULL) 1132 return -ENOMEM; 1133 } 1134 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) { 1135 error=-EFAULT; 1136 goto out_free; 1137 } 1138 if (timeout) { 1139 struct timespec _timeout; 1140 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) { 1141 error = -EFAULT; 1142 goto out_free; 1143 } 1144 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 || 1145 _timeout.tv_nsec >= 1000000000L) { 1146 error = -EINVAL; 1147 goto out_free; 1148 } 1149 jiffies_left = timespec_to_jiffies(&_timeout); 1150 } 1151 max = 0; 1152 for (sop = sops; sop < sops + nsops; sop++) { 1153 if (sop->sem_num >= max) 1154 max = sop->sem_num; 1155 if (sop->sem_flg & SEM_UNDO) 1156 undos = 1; 1157 if (sop->sem_op != 0) 1158 alter = 1; 1159 } 1160 1161 retry_undos: 1162 if (undos) { 1163 un = find_undo(ns, semid); 1164 if (IS_ERR(un)) { 1165 error = PTR_ERR(un); 1166 goto out_free; 1167 } 1168 } else 1169 un = NULL; 1170 1171 sma = sem_lock(ns, semid); 1172 error=-EINVAL; 1173 if(sma==NULL) 1174 goto out_free; 1175 error = -EIDRM; 1176 if (sem_checkid(ns,sma,semid)) 1177 goto out_unlock_free; 1178 /* 1179 * semid identifies are not unique - find_undo may have 1180 * allocated an undo structure, it was invalidated by an RMID 1181 * and now a new array with received the same id. Check and retry. 1182 */ 1183 if (un && un->semid == -1) { 1184 sem_unlock(sma); 1185 goto retry_undos; 1186 } 1187 error = -EFBIG; 1188 if (max >= sma->sem_nsems) 1189 goto out_unlock_free; 1190 1191 error = -EACCES; 1192 if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) 1193 goto out_unlock_free; 1194 1195 error = security_sem_semop(sma, sops, nsops, alter); 1196 if (error) 1197 goto out_unlock_free; 1198 1199 error = try_atomic_semop (sma, sops, nsops, un, current->tgid); 1200 if (error <= 0) { 1201 if (alter && error == 0) 1202 update_queue (sma); 1203 goto out_unlock_free; 1204 } 1205 1206 /* We need to sleep on this operation, so we put the current 1207 * task into the pending queue and go to sleep. 1208 */ 1209 1210 queue.sma = sma; 1211 queue.sops = sops; 1212 queue.nsops = nsops; 1213 queue.undo = un; 1214 queue.pid = current->tgid; 1215 queue.id = semid; 1216 queue.alter = alter; 1217 if (alter) 1218 append_to_queue(sma ,&queue); 1219 else 1220 prepend_to_queue(sma ,&queue); 1221 1222 queue.status = -EINTR; 1223 queue.sleeper = current; 1224 current->state = TASK_INTERRUPTIBLE; 1225 sem_unlock(sma); 1226 1227 if (timeout) 1228 jiffies_left = schedule_timeout(jiffies_left); 1229 else 1230 schedule(); 1231 1232 error = queue.status; 1233 while(unlikely(error == IN_WAKEUP)) { 1234 cpu_relax(); 1235 error = queue.status; 1236 } 1237 1238 if (error != -EINTR) { 1239 /* fast path: update_queue already obtained all requested 1240 * resources */ 1241 goto out_free; 1242 } 1243 1244 sma = sem_lock(ns, semid); 1245 if(sma==NULL) { 1246 BUG_ON(queue.prev != NULL); 1247 error = -EIDRM; 1248 goto out_free; 1249 } 1250 1251 /* 1252 * If queue.status != -EINTR we are woken up by another process 1253 */ 1254 error = queue.status; 1255 if (error != -EINTR) { 1256 goto out_unlock_free; 1257 } 1258 1259 /* 1260 * If an interrupt occurred we have to clean up the queue 1261 */ 1262 if (timeout && jiffies_left == 0) 1263 error = -EAGAIN; 1264 remove_from_queue(sma,&queue); 1265 goto out_unlock_free; 1266 1267 out_unlock_free: 1268 sem_unlock(sma); 1269 out_free: 1270 if(sops != fast_sops) 1271 kfree(sops); 1272 return error; 1273 } 1274 1275 asmlinkage long sys_semop (int semid, struct sembuf __user *tsops, unsigned nsops) 1276 { 1277 return sys_semtimedop(semid, tsops, nsops, NULL); 1278 } 1279 1280 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between 1281 * parent and child tasks. 1282 * 1283 * See the notes above unlock_semundo() regarding the spin_lock_init() 1284 * in this code. Initialize the undo_list->lock here instead of get_undo_list() 1285 * because of the reasoning in the comment above unlock_semundo. 1286 */ 1287 1288 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) 1289 { 1290 struct sem_undo_list *undo_list; 1291 int error; 1292 1293 if (clone_flags & CLONE_SYSVSEM) { 1294 error = get_undo_list(&undo_list); 1295 if (error) 1296 return error; 1297 atomic_inc(&undo_list->refcnt); 1298 tsk->sysvsem.undo_list = undo_list; 1299 } else 1300 tsk->sysvsem.undo_list = NULL; 1301 1302 return 0; 1303 } 1304 1305 /* 1306 * add semadj values to semaphores, free undo structures. 1307 * undo structures are not freed when semaphore arrays are destroyed 1308 * so some of them may be out of date. 1309 * IMPLEMENTATION NOTE: There is some confusion over whether the 1310 * set of adjustments that needs to be done should be done in an atomic 1311 * manner or not. That is, if we are attempting to decrement the semval 1312 * should we queue up and wait until we can do so legally? 1313 * The original implementation attempted to do this (queue and wait). 1314 * The current implementation does not do so. The POSIX standard 1315 * and SVID should be consulted to determine what behavior is mandated. 1316 */ 1317 void exit_sem(struct task_struct *tsk) 1318 { 1319 struct sem_undo_list *undo_list; 1320 struct sem_undo *u, **up; 1321 struct ipc_namespace *ns; 1322 1323 undo_list = tsk->sysvsem.undo_list; 1324 if (!undo_list) 1325 return; 1326 1327 if (!atomic_dec_and_test(&undo_list->refcnt)) 1328 return; 1329 1330 ns = tsk->nsproxy->ipc_ns; 1331 /* There's no need to hold the semundo list lock, as current 1332 * is the last task exiting for this undo list. 1333 */ 1334 for (up = &undo_list->proc_list; (u = *up); *up = u->proc_next, kfree(u)) { 1335 struct sem_array *sma; 1336 int nsems, i; 1337 struct sem_undo *un, **unp; 1338 int semid; 1339 1340 semid = u->semid; 1341 1342 if(semid == -1) 1343 continue; 1344 sma = sem_lock(ns, semid); 1345 if (sma == NULL) 1346 continue; 1347 1348 if (u->semid == -1) 1349 goto next_entry; 1350 1351 BUG_ON(sem_checkid(ns,sma,u->semid)); 1352 1353 /* remove u from the sma->undo list */ 1354 for (unp = &sma->undo; (un = *unp); unp = &un->id_next) { 1355 if (u == un) 1356 goto found; 1357 } 1358 printk ("exit_sem undo list error id=%d\n", u->semid); 1359 goto next_entry; 1360 found: 1361 *unp = un->id_next; 1362 /* perform adjustments registered in u */ 1363 nsems = sma->sem_nsems; 1364 for (i = 0; i < nsems; i++) { 1365 struct sem * semaphore = &sma->sem_base[i]; 1366 if (u->semadj[i]) { 1367 semaphore->semval += u->semadj[i]; 1368 /* 1369 * Range checks of the new semaphore value, 1370 * not defined by sus: 1371 * - Some unices ignore the undo entirely 1372 * (e.g. HP UX 11i 11.22, Tru64 V5.1) 1373 * - some cap the value (e.g. FreeBSD caps 1374 * at 0, but doesn't enforce SEMVMX) 1375 * 1376 * Linux caps the semaphore value, both at 0 1377 * and at SEMVMX. 1378 * 1379 * Manfred <manfred@colorfullife.com> 1380 */ 1381 if (semaphore->semval < 0) 1382 semaphore->semval = 0; 1383 if (semaphore->semval > SEMVMX) 1384 semaphore->semval = SEMVMX; 1385 semaphore->sempid = current->tgid; 1386 } 1387 } 1388 sma->sem_otime = get_seconds(); 1389 /* maybe some queued-up processes were waiting for this */ 1390 update_queue(sma); 1391 next_entry: 1392 sem_unlock(sma); 1393 } 1394 kfree(undo_list); 1395 } 1396 1397 #ifdef CONFIG_PROC_FS 1398 static int sysvipc_sem_proc_show(struct seq_file *s, void *it) 1399 { 1400 struct sem_array *sma = it; 1401 1402 return seq_printf(s, 1403 "%10d %10d %4o %10lu %5u %5u %5u %5u %10lu %10lu\n", 1404 sma->sem_perm.key, 1405 sma->sem_id, 1406 sma->sem_perm.mode, 1407 sma->sem_nsems, 1408 sma->sem_perm.uid, 1409 sma->sem_perm.gid, 1410 sma->sem_perm.cuid, 1411 sma->sem_perm.cgid, 1412 sma->sem_otime, 1413 sma->sem_ctime); 1414 } 1415 #endif 1416