xref: /openbmc/linux/ipc/sem.c (revision b34081f1)
1 /*
2  * linux/ipc/sem.c
3  * Copyright (C) 1992 Krishna Balasubramanian
4  * Copyright (C) 1995 Eric Schenk, Bruno Haible
5  *
6  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7  *
8  * SMP-threaded, sysctl's added
9  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10  * Enforced range limit on SEM_UNDO
11  * (c) 2001 Red Hat Inc
12  * Lockless wakeup
13  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14  * Further wakeup optimizations, documentation
15  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
16  *
17  * support for audit of ipc object properties and permission changes
18  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
19  *
20  * namespaces support
21  * OpenVZ, SWsoft Inc.
22  * Pavel Emelianov <xemul@openvz.org>
23  *
24  * Implementation notes: (May 2010)
25  * This file implements System V semaphores.
26  *
27  * User space visible behavior:
28  * - FIFO ordering for semop() operations (just FIFO, not starvation
29  *   protection)
30  * - multiple semaphore operations that alter the same semaphore in
31  *   one semop() are handled.
32  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33  *   SETALL calls.
34  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35  * - undo adjustments at process exit are limited to 0..SEMVMX.
36  * - namespace are supported.
37  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38  *   to /proc/sys/kernel/sem.
39  * - statistics about the usage are reported in /proc/sysvipc/sem.
40  *
41  * Internals:
42  * - scalability:
43  *   - all global variables are read-mostly.
44  *   - semop() calls and semctl(RMID) are synchronized by RCU.
45  *   - most operations do write operations (actually: spin_lock calls) to
46  *     the per-semaphore array structure.
47  *   Thus: Perfect SMP scaling between independent semaphore arrays.
48  *         If multiple semaphores in one array are used, then cache line
49  *         trashing on the semaphore array spinlock will limit the scaling.
50  * - semncnt and semzcnt are calculated on demand in count_semncnt() and
51  *   count_semzcnt()
52  * - the task that performs a successful semop() scans the list of all
53  *   sleeping tasks and completes any pending operations that can be fulfilled.
54  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
55  *   (see update_queue())
56  * - To improve the scalability, the actual wake-up calls are performed after
57  *   dropping all locks. (see wake_up_sem_queue_prepare(),
58  *   wake_up_sem_queue_do())
59  * - All work is done by the waker, the woken up task does not have to do
60  *   anything - not even acquiring a lock or dropping a refcount.
61  * - A woken up task may not even touch the semaphore array anymore, it may
62  *   have been destroyed already by a semctl(RMID).
63  * - The synchronizations between wake-ups due to a timeout/signal and a
64  *   wake-up due to a completed semaphore operation is achieved by using an
65  *   intermediate state (IN_WAKEUP).
66  * - UNDO values are stored in an array (one per process and per
67  *   semaphore array, lazily allocated). For backwards compatibility, multiple
68  *   modes for the UNDO variables are supported (per process, per thread)
69  *   (see copy_semundo, CLONE_SYSVSEM)
70  * - There are two lists of the pending operations: a per-array list
71  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
72  *   ordering without always scanning all pending operations.
73  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
74  */
75 
76 #include <linux/slab.h>
77 #include <linux/spinlock.h>
78 #include <linux/init.h>
79 #include <linux/proc_fs.h>
80 #include <linux/time.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/audit.h>
84 #include <linux/capability.h>
85 #include <linux/seq_file.h>
86 #include <linux/rwsem.h>
87 #include <linux/nsproxy.h>
88 #include <linux/ipc_namespace.h>
89 
90 #include <asm/uaccess.h>
91 #include "util.h"
92 
93 /* One semaphore structure for each semaphore in the system. */
94 struct sem {
95 	int	semval;		/* current value */
96 	int	sempid;		/* pid of last operation */
97 	spinlock_t	lock;	/* spinlock for fine-grained semtimedop */
98 	struct list_head pending_alter; /* pending single-sop operations */
99 					/* that alter the semaphore */
100 	struct list_head pending_const; /* pending single-sop operations */
101 					/* that do not alter the semaphore*/
102 	time_t	sem_otime;	/* candidate for sem_otime */
103 } ____cacheline_aligned_in_smp;
104 
105 /* One queue for each sleeping process in the system. */
106 struct sem_queue {
107 	struct list_head	list;	 /* queue of pending operations */
108 	struct task_struct	*sleeper; /* this process */
109 	struct sem_undo		*undo;	 /* undo structure */
110 	int			pid;	 /* process id of requesting process */
111 	int			status;	 /* completion status of operation */
112 	struct sembuf		*sops;	 /* array of pending operations */
113 	int			nsops;	 /* number of operations */
114 	int			alter;	 /* does *sops alter the array? */
115 };
116 
117 /* Each task has a list of undo requests. They are executed automatically
118  * when the process exits.
119  */
120 struct sem_undo {
121 	struct list_head	list_proc;	/* per-process list: *
122 						 * all undos from one process
123 						 * rcu protected */
124 	struct rcu_head		rcu;		/* rcu struct for sem_undo */
125 	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
126 	struct list_head	list_id;	/* per semaphore array list:
127 						 * all undos for one array */
128 	int			semid;		/* semaphore set identifier */
129 	short			*semadj;	/* array of adjustments */
130 						/* one per semaphore */
131 };
132 
133 /* sem_undo_list controls shared access to the list of sem_undo structures
134  * that may be shared among all a CLONE_SYSVSEM task group.
135  */
136 struct sem_undo_list {
137 	atomic_t		refcnt;
138 	spinlock_t		lock;
139 	struct list_head	list_proc;
140 };
141 
142 
143 #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
144 
145 #define sem_checkid(sma, semid)	ipc_checkid(&sma->sem_perm, semid)
146 
147 static int newary(struct ipc_namespace *, struct ipc_params *);
148 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
149 #ifdef CONFIG_PROC_FS
150 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
151 #endif
152 
153 #define SEMMSL_FAST	256 /* 512 bytes on stack */
154 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
155 
156 /*
157  * Locking:
158  *	sem_undo.id_next,
159  *	sem_array.complex_count,
160  *	sem_array.pending{_alter,_cont},
161  *	sem_array.sem_undo: global sem_lock() for read/write
162  *	sem_undo.proc_next: only "current" is allowed to read/write that field.
163  *
164  *	sem_array.sem_base[i].pending_{const,alter}:
165  *		global or semaphore sem_lock() for read/write
166  */
167 
168 #define sc_semmsl	sem_ctls[0]
169 #define sc_semmns	sem_ctls[1]
170 #define sc_semopm	sem_ctls[2]
171 #define sc_semmni	sem_ctls[3]
172 
173 void sem_init_ns(struct ipc_namespace *ns)
174 {
175 	ns->sc_semmsl = SEMMSL;
176 	ns->sc_semmns = SEMMNS;
177 	ns->sc_semopm = SEMOPM;
178 	ns->sc_semmni = SEMMNI;
179 	ns->used_sems = 0;
180 	ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
181 }
182 
183 #ifdef CONFIG_IPC_NS
184 void sem_exit_ns(struct ipc_namespace *ns)
185 {
186 	free_ipcs(ns, &sem_ids(ns), freeary);
187 	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
188 }
189 #endif
190 
191 void __init sem_init (void)
192 {
193 	sem_init_ns(&init_ipc_ns);
194 	ipc_init_proc_interface("sysvipc/sem",
195 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
196 				IPC_SEM_IDS, sysvipc_sem_proc_show);
197 }
198 
199 /**
200  * unmerge_queues - unmerge queues, if possible.
201  * @sma: semaphore array
202  *
203  * The function unmerges the wait queues if complex_count is 0.
204  * It must be called prior to dropping the global semaphore array lock.
205  */
206 static void unmerge_queues(struct sem_array *sma)
207 {
208 	struct sem_queue *q, *tq;
209 
210 	/* complex operations still around? */
211 	if (sma->complex_count)
212 		return;
213 	/*
214 	 * We will switch back to simple mode.
215 	 * Move all pending operation back into the per-semaphore
216 	 * queues.
217 	 */
218 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
219 		struct sem *curr;
220 		curr = &sma->sem_base[q->sops[0].sem_num];
221 
222 		list_add_tail(&q->list, &curr->pending_alter);
223 	}
224 	INIT_LIST_HEAD(&sma->pending_alter);
225 }
226 
227 /**
228  * merge_queues - Merge single semop queues into global queue
229  * @sma: semaphore array
230  *
231  * This function merges all per-semaphore queues into the global queue.
232  * It is necessary to achieve FIFO ordering for the pending single-sop
233  * operations when a multi-semop operation must sleep.
234  * Only the alter operations must be moved, the const operations can stay.
235  */
236 static void merge_queues(struct sem_array *sma)
237 {
238 	int i;
239 	for (i = 0; i < sma->sem_nsems; i++) {
240 		struct sem *sem = sma->sem_base + i;
241 
242 		list_splice_init(&sem->pending_alter, &sma->pending_alter);
243 	}
244 }
245 
246 /*
247  * If the request contains only one semaphore operation, and there are
248  * no complex transactions pending, lock only the semaphore involved.
249  * Otherwise, lock the entire semaphore array, since we either have
250  * multiple semaphores in our own semops, or we need to look at
251  * semaphores from other pending complex operations.
252  *
253  * Carefully guard against sma->complex_count changing between zero
254  * and non-zero while we are spinning for the lock. The value of
255  * sma->complex_count cannot change while we are holding the lock,
256  * so sem_unlock should be fine.
257  *
258  * The global lock path checks that all the local locks have been released,
259  * checking each local lock once. This means that the local lock paths
260  * cannot start their critical sections while the global lock is held.
261  */
262 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
263 			      int nsops)
264 {
265 	int locknum;
266  again:
267 	if (nsops == 1 && !sma->complex_count) {
268 		struct sem *sem = sma->sem_base + sops->sem_num;
269 
270 		/* Lock just the semaphore we are interested in. */
271 		spin_lock(&sem->lock);
272 
273 		/*
274 		 * If sma->complex_count was set while we were spinning,
275 		 * we may need to look at things we did not lock here.
276 		 */
277 		if (unlikely(sma->complex_count)) {
278 			spin_unlock(&sem->lock);
279 			goto lock_array;
280 		}
281 
282 		/*
283 		 * Another process is holding the global lock on the
284 		 * sem_array; we cannot enter our critical section,
285 		 * but have to wait for the global lock to be released.
286 		 */
287 		if (unlikely(spin_is_locked(&sma->sem_perm.lock))) {
288 			spin_unlock(&sem->lock);
289 			spin_unlock_wait(&sma->sem_perm.lock);
290 			goto again;
291 		}
292 
293 		locknum = sops->sem_num;
294 	} else {
295 		int i;
296 		/*
297 		 * Lock the semaphore array, and wait for all of the
298 		 * individual semaphore locks to go away.  The code
299 		 * above ensures no new single-lock holders will enter
300 		 * their critical section while the array lock is held.
301 		 */
302  lock_array:
303 		ipc_lock_object(&sma->sem_perm);
304 		for (i = 0; i < sma->sem_nsems; i++) {
305 			struct sem *sem = sma->sem_base + i;
306 			spin_unlock_wait(&sem->lock);
307 		}
308 		locknum = -1;
309 	}
310 	return locknum;
311 }
312 
313 static inline void sem_unlock(struct sem_array *sma, int locknum)
314 {
315 	if (locknum == -1) {
316 		unmerge_queues(sma);
317 		ipc_unlock_object(&sma->sem_perm);
318 	} else {
319 		struct sem *sem = sma->sem_base + locknum;
320 		spin_unlock(&sem->lock);
321 	}
322 }
323 
324 /*
325  * sem_lock_(check_) routines are called in the paths where the rwsem
326  * is not held.
327  *
328  * The caller holds the RCU read lock.
329  */
330 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
331 			int id, struct sembuf *sops, int nsops, int *locknum)
332 {
333 	struct kern_ipc_perm *ipcp;
334 	struct sem_array *sma;
335 
336 	ipcp = ipc_obtain_object(&sem_ids(ns), id);
337 	if (IS_ERR(ipcp))
338 		return ERR_CAST(ipcp);
339 
340 	sma = container_of(ipcp, struct sem_array, sem_perm);
341 	*locknum = sem_lock(sma, sops, nsops);
342 
343 	/* ipc_rmid() may have already freed the ID while sem_lock
344 	 * was spinning: verify that the structure is still valid
345 	 */
346 	if (!ipcp->deleted)
347 		return container_of(ipcp, struct sem_array, sem_perm);
348 
349 	sem_unlock(sma, *locknum);
350 	return ERR_PTR(-EINVAL);
351 }
352 
353 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
354 {
355 	struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
356 
357 	if (IS_ERR(ipcp))
358 		return ERR_CAST(ipcp);
359 
360 	return container_of(ipcp, struct sem_array, sem_perm);
361 }
362 
363 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
364 							int id)
365 {
366 	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
367 
368 	if (IS_ERR(ipcp))
369 		return ERR_CAST(ipcp);
370 
371 	return container_of(ipcp, struct sem_array, sem_perm);
372 }
373 
374 static inline void sem_lock_and_putref(struct sem_array *sma)
375 {
376 	sem_lock(sma, NULL, -1);
377 	ipc_rcu_putref(sma);
378 }
379 
380 static inline void sem_putref(struct sem_array *sma)
381 {
382 	ipc_rcu_putref(sma);
383 }
384 
385 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
386 {
387 	ipc_rmid(&sem_ids(ns), &s->sem_perm);
388 }
389 
390 /*
391  * Lockless wakeup algorithm:
392  * Without the check/retry algorithm a lockless wakeup is possible:
393  * - queue.status is initialized to -EINTR before blocking.
394  * - wakeup is performed by
395  *	* unlinking the queue entry from the pending list
396  *	* setting queue.status to IN_WAKEUP
397  *	  This is the notification for the blocked thread that a
398  *	  result value is imminent.
399  *	* call wake_up_process
400  *	* set queue.status to the final value.
401  * - the previously blocked thread checks queue.status:
402  *   	* if it's IN_WAKEUP, then it must wait until the value changes
403  *   	* if it's not -EINTR, then the operation was completed by
404  *   	  update_queue. semtimedop can return queue.status without
405  *   	  performing any operation on the sem array.
406  *   	* otherwise it must acquire the spinlock and check what's up.
407  *
408  * The two-stage algorithm is necessary to protect against the following
409  * races:
410  * - if queue.status is set after wake_up_process, then the woken up idle
411  *   thread could race forward and try (and fail) to acquire sma->lock
412  *   before update_queue had a chance to set queue.status
413  * - if queue.status is written before wake_up_process and if the
414  *   blocked process is woken up by a signal between writing
415  *   queue.status and the wake_up_process, then the woken up
416  *   process could return from semtimedop and die by calling
417  *   sys_exit before wake_up_process is called. Then wake_up_process
418  *   will oops, because the task structure is already invalid.
419  *   (yes, this happened on s390 with sysv msg).
420  *
421  */
422 #define IN_WAKEUP	1
423 
424 /**
425  * newary - Create a new semaphore set
426  * @ns: namespace
427  * @params: ptr to the structure that contains key, semflg and nsems
428  *
429  * Called with sem_ids.rwsem held (as a writer)
430  */
431 
432 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
433 {
434 	int id;
435 	int retval;
436 	struct sem_array *sma;
437 	int size;
438 	key_t key = params->key;
439 	int nsems = params->u.nsems;
440 	int semflg = params->flg;
441 	int i;
442 
443 	if (!nsems)
444 		return -EINVAL;
445 	if (ns->used_sems + nsems > ns->sc_semmns)
446 		return -ENOSPC;
447 
448 	size = sizeof (*sma) + nsems * sizeof (struct sem);
449 	sma = ipc_rcu_alloc(size);
450 	if (!sma) {
451 		return -ENOMEM;
452 	}
453 	memset (sma, 0, size);
454 
455 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
456 	sma->sem_perm.key = key;
457 
458 	sma->sem_perm.security = NULL;
459 	retval = security_sem_alloc(sma);
460 	if (retval) {
461 		ipc_rcu_putref(sma);
462 		return retval;
463 	}
464 
465 	id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
466 	if (id < 0) {
467 		security_sem_free(sma);
468 		ipc_rcu_putref(sma);
469 		return id;
470 	}
471 	ns->used_sems += nsems;
472 
473 	sma->sem_base = (struct sem *) &sma[1];
474 
475 	for (i = 0; i < nsems; i++) {
476 		INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
477 		INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
478 		spin_lock_init(&sma->sem_base[i].lock);
479 	}
480 
481 	sma->complex_count = 0;
482 	INIT_LIST_HEAD(&sma->pending_alter);
483 	INIT_LIST_HEAD(&sma->pending_const);
484 	INIT_LIST_HEAD(&sma->list_id);
485 	sma->sem_nsems = nsems;
486 	sma->sem_ctime = get_seconds();
487 	sem_unlock(sma, -1);
488 	rcu_read_unlock();
489 
490 	return sma->sem_perm.id;
491 }
492 
493 
494 /*
495  * Called with sem_ids.rwsem and ipcp locked.
496  */
497 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
498 {
499 	struct sem_array *sma;
500 
501 	sma = container_of(ipcp, struct sem_array, sem_perm);
502 	return security_sem_associate(sma, semflg);
503 }
504 
505 /*
506  * Called with sem_ids.rwsem and ipcp locked.
507  */
508 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
509 				struct ipc_params *params)
510 {
511 	struct sem_array *sma;
512 
513 	sma = container_of(ipcp, struct sem_array, sem_perm);
514 	if (params->u.nsems > sma->sem_nsems)
515 		return -EINVAL;
516 
517 	return 0;
518 }
519 
520 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
521 {
522 	struct ipc_namespace *ns;
523 	struct ipc_ops sem_ops;
524 	struct ipc_params sem_params;
525 
526 	ns = current->nsproxy->ipc_ns;
527 
528 	if (nsems < 0 || nsems > ns->sc_semmsl)
529 		return -EINVAL;
530 
531 	sem_ops.getnew = newary;
532 	sem_ops.associate = sem_security;
533 	sem_ops.more_checks = sem_more_checks;
534 
535 	sem_params.key = key;
536 	sem_params.flg = semflg;
537 	sem_params.u.nsems = nsems;
538 
539 	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
540 }
541 
542 /** perform_atomic_semop - Perform (if possible) a semaphore operation
543  * @sma: semaphore array
544  * @sops: array with operations that should be checked
545  * @nsems: number of sops
546  * @un: undo array
547  * @pid: pid that did the change
548  *
549  * Returns 0 if the operation was possible.
550  * Returns 1 if the operation is impossible, the caller must sleep.
551  * Negative values are error codes.
552  */
553 
554 static int perform_atomic_semop(struct sem_array *sma, struct sembuf *sops,
555 			     int nsops, struct sem_undo *un, int pid)
556 {
557 	int result, sem_op;
558 	struct sembuf *sop;
559 	struct sem * curr;
560 
561 	for (sop = sops; sop < sops + nsops; sop++) {
562 		curr = sma->sem_base + sop->sem_num;
563 		sem_op = sop->sem_op;
564 		result = curr->semval;
565 
566 		if (!sem_op && result)
567 			goto would_block;
568 
569 		result += sem_op;
570 		if (result < 0)
571 			goto would_block;
572 		if (result > SEMVMX)
573 			goto out_of_range;
574 		if (sop->sem_flg & SEM_UNDO) {
575 			int undo = un->semadj[sop->sem_num] - sem_op;
576 			/*
577 	 		 *	Exceeding the undo range is an error.
578 			 */
579 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
580 				goto out_of_range;
581 		}
582 		curr->semval = result;
583 	}
584 
585 	sop--;
586 	while (sop >= sops) {
587 		sma->sem_base[sop->sem_num].sempid = pid;
588 		if (sop->sem_flg & SEM_UNDO)
589 			un->semadj[sop->sem_num] -= sop->sem_op;
590 		sop--;
591 	}
592 
593 	return 0;
594 
595 out_of_range:
596 	result = -ERANGE;
597 	goto undo;
598 
599 would_block:
600 	if (sop->sem_flg & IPC_NOWAIT)
601 		result = -EAGAIN;
602 	else
603 		result = 1;
604 
605 undo:
606 	sop--;
607 	while (sop >= sops) {
608 		sma->sem_base[sop->sem_num].semval -= sop->sem_op;
609 		sop--;
610 	}
611 
612 	return result;
613 }
614 
615 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
616  * @q: queue entry that must be signaled
617  * @error: Error value for the signal
618  *
619  * Prepare the wake-up of the queue entry q.
620  */
621 static void wake_up_sem_queue_prepare(struct list_head *pt,
622 				struct sem_queue *q, int error)
623 {
624 	if (list_empty(pt)) {
625 		/*
626 		 * Hold preempt off so that we don't get preempted and have the
627 		 * wakee busy-wait until we're scheduled back on.
628 		 */
629 		preempt_disable();
630 	}
631 	q->status = IN_WAKEUP;
632 	q->pid = error;
633 
634 	list_add_tail(&q->list, pt);
635 }
636 
637 /**
638  * wake_up_sem_queue_do(pt) - do the actual wake-up
639  * @pt: list of tasks to be woken up
640  *
641  * Do the actual wake-up.
642  * The function is called without any locks held, thus the semaphore array
643  * could be destroyed already and the tasks can disappear as soon as the
644  * status is set to the actual return code.
645  */
646 static void wake_up_sem_queue_do(struct list_head *pt)
647 {
648 	struct sem_queue *q, *t;
649 	int did_something;
650 
651 	did_something = !list_empty(pt);
652 	list_for_each_entry_safe(q, t, pt, list) {
653 		wake_up_process(q->sleeper);
654 		/* q can disappear immediately after writing q->status. */
655 		smp_wmb();
656 		q->status = q->pid;
657 	}
658 	if (did_something)
659 		preempt_enable();
660 }
661 
662 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
663 {
664 	list_del(&q->list);
665 	if (q->nsops > 1)
666 		sma->complex_count--;
667 }
668 
669 /** check_restart(sma, q)
670  * @sma: semaphore array
671  * @q: the operation that just completed
672  *
673  * update_queue is O(N^2) when it restarts scanning the whole queue of
674  * waiting operations. Therefore this function checks if the restart is
675  * really necessary. It is called after a previously waiting operation
676  * modified the array.
677  * Note that wait-for-zero operations are handled without restart.
678  */
679 static int check_restart(struct sem_array *sma, struct sem_queue *q)
680 {
681 	/* pending complex alter operations are too difficult to analyse */
682 	if (!list_empty(&sma->pending_alter))
683 		return 1;
684 
685 	/* we were a sleeping complex operation. Too difficult */
686 	if (q->nsops > 1)
687 		return 1;
688 
689 	/* It is impossible that someone waits for the new value:
690 	 * - complex operations always restart.
691 	 * - wait-for-zero are handled seperately.
692 	 * - q is a previously sleeping simple operation that
693 	 *   altered the array. It must be a decrement, because
694 	 *   simple increments never sleep.
695 	 * - If there are older (higher priority) decrements
696 	 *   in the queue, then they have observed the original
697 	 *   semval value and couldn't proceed. The operation
698 	 *   decremented to value - thus they won't proceed either.
699 	 */
700 	return 0;
701 }
702 
703 /**
704  * wake_const_ops(sma, semnum, pt) - Wake up non-alter tasks
705  * @sma: semaphore array.
706  * @semnum: semaphore that was modified.
707  * @pt: list head for the tasks that must be woken up.
708  *
709  * wake_const_ops must be called after a semaphore in a semaphore array
710  * was set to 0. If complex const operations are pending, wake_const_ops must
711  * be called with semnum = -1, as well as with the number of each modified
712  * semaphore.
713  * The tasks that must be woken up are added to @pt. The return code
714  * is stored in q->pid.
715  * The function returns 1 if at least one operation was completed successfully.
716  */
717 static int wake_const_ops(struct sem_array *sma, int semnum,
718 				struct list_head *pt)
719 {
720 	struct sem_queue *q;
721 	struct list_head *walk;
722 	struct list_head *pending_list;
723 	int semop_completed = 0;
724 
725 	if (semnum == -1)
726 		pending_list = &sma->pending_const;
727 	else
728 		pending_list = &sma->sem_base[semnum].pending_const;
729 
730 	walk = pending_list->next;
731 	while (walk != pending_list) {
732 		int error;
733 
734 		q = container_of(walk, struct sem_queue, list);
735 		walk = walk->next;
736 
737 		error = perform_atomic_semop(sma, q->sops, q->nsops,
738 						 q->undo, q->pid);
739 
740 		if (error <= 0) {
741 			/* operation completed, remove from queue & wakeup */
742 
743 			unlink_queue(sma, q);
744 
745 			wake_up_sem_queue_prepare(pt, q, error);
746 			if (error == 0)
747 				semop_completed = 1;
748 		}
749 	}
750 	return semop_completed;
751 }
752 
753 /**
754  * do_smart_wakeup_zero(sma, sops, nsops, pt) - wakeup all wait for zero tasks
755  * @sma: semaphore array
756  * @sops: operations that were performed
757  * @nsops: number of operations
758  * @pt: list head of the tasks that must be woken up.
759  *
760  * do_smart_wakeup_zero() checks all required queue for wait-for-zero
761  * operations, based on the actual changes that were performed on the
762  * semaphore array.
763  * The function returns 1 if at least one operation was completed successfully.
764  */
765 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
766 					int nsops, struct list_head *pt)
767 {
768 	int i;
769 	int semop_completed = 0;
770 	int got_zero = 0;
771 
772 	/* first: the per-semaphore queues, if known */
773 	if (sops) {
774 		for (i = 0; i < nsops; i++) {
775 			int num = sops[i].sem_num;
776 
777 			if (sma->sem_base[num].semval == 0) {
778 				got_zero = 1;
779 				semop_completed |= wake_const_ops(sma, num, pt);
780 			}
781 		}
782 	} else {
783 		/*
784 		 * No sops means modified semaphores not known.
785 		 * Assume all were changed.
786 		 */
787 		for (i = 0; i < sma->sem_nsems; i++) {
788 			if (sma->sem_base[i].semval == 0) {
789 				got_zero = 1;
790 				semop_completed |= wake_const_ops(sma, i, pt);
791 			}
792 		}
793 	}
794 	/*
795 	 * If one of the modified semaphores got 0,
796 	 * then check the global queue, too.
797 	 */
798 	if (got_zero)
799 		semop_completed |= wake_const_ops(sma, -1, pt);
800 
801 	return semop_completed;
802 }
803 
804 
805 /**
806  * update_queue(sma, semnum): Look for tasks that can be completed.
807  * @sma: semaphore array.
808  * @semnum: semaphore that was modified.
809  * @pt: list head for the tasks that must be woken up.
810  *
811  * update_queue must be called after a semaphore in a semaphore array
812  * was modified. If multiple semaphores were modified, update_queue must
813  * be called with semnum = -1, as well as with the number of each modified
814  * semaphore.
815  * The tasks that must be woken up are added to @pt. The return code
816  * is stored in q->pid.
817  * The function internally checks if const operations can now succeed.
818  *
819  * The function return 1 if at least one semop was completed successfully.
820  */
821 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
822 {
823 	struct sem_queue *q;
824 	struct list_head *walk;
825 	struct list_head *pending_list;
826 	int semop_completed = 0;
827 
828 	if (semnum == -1)
829 		pending_list = &sma->pending_alter;
830 	else
831 		pending_list = &sma->sem_base[semnum].pending_alter;
832 
833 again:
834 	walk = pending_list->next;
835 	while (walk != pending_list) {
836 		int error, restart;
837 
838 		q = container_of(walk, struct sem_queue, list);
839 		walk = walk->next;
840 
841 		/* If we are scanning the single sop, per-semaphore list of
842 		 * one semaphore and that semaphore is 0, then it is not
843 		 * necessary to scan further: simple increments
844 		 * that affect only one entry succeed immediately and cannot
845 		 * be in the  per semaphore pending queue, and decrements
846 		 * cannot be successful if the value is already 0.
847 		 */
848 		if (semnum != -1 && sma->sem_base[semnum].semval == 0)
849 			break;
850 
851 		error = perform_atomic_semop(sma, q->sops, q->nsops,
852 					 q->undo, q->pid);
853 
854 		/* Does q->sleeper still need to sleep? */
855 		if (error > 0)
856 			continue;
857 
858 		unlink_queue(sma, q);
859 
860 		if (error) {
861 			restart = 0;
862 		} else {
863 			semop_completed = 1;
864 			do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
865 			restart = check_restart(sma, q);
866 		}
867 
868 		wake_up_sem_queue_prepare(pt, q, error);
869 		if (restart)
870 			goto again;
871 	}
872 	return semop_completed;
873 }
874 
875 /**
876  * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
877  * @sma: semaphore array
878  * @sops: operations that were performed
879  * @nsops: number of operations
880  * @otime: force setting otime
881  * @pt: list head of the tasks that must be woken up.
882  *
883  * do_smart_update() does the required calls to update_queue and wakeup_zero,
884  * based on the actual changes that were performed on the semaphore array.
885  * Note that the function does not do the actual wake-up: the caller is
886  * responsible for calling wake_up_sem_queue_do(@pt).
887  * It is safe to perform this call after dropping all locks.
888  */
889 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
890 			int otime, struct list_head *pt)
891 {
892 	int i;
893 
894 	otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
895 
896 	if (!list_empty(&sma->pending_alter)) {
897 		/* semaphore array uses the global queue - just process it. */
898 		otime |= update_queue(sma, -1, pt);
899 	} else {
900 		if (!sops) {
901 			/*
902 			 * No sops, thus the modified semaphores are not
903 			 * known. Check all.
904 			 */
905 			for (i = 0; i < sma->sem_nsems; i++)
906 				otime |= update_queue(sma, i, pt);
907 		} else {
908 			/*
909 			 * Check the semaphores that were increased:
910 			 * - No complex ops, thus all sleeping ops are
911 			 *   decrease.
912 			 * - if we decreased the value, then any sleeping
913 			 *   semaphore ops wont be able to run: If the
914 			 *   previous value was too small, then the new
915 			 *   value will be too small, too.
916 			 */
917 			for (i = 0; i < nsops; i++) {
918 				if (sops[i].sem_op > 0) {
919 					otime |= update_queue(sma,
920 							sops[i].sem_num, pt);
921 				}
922 			}
923 		}
924 	}
925 	if (otime) {
926 		if (sops == NULL) {
927 			sma->sem_base[0].sem_otime = get_seconds();
928 		} else {
929 			sma->sem_base[sops[0].sem_num].sem_otime =
930 								get_seconds();
931 		}
932 	}
933 }
934 
935 
936 /* The following counts are associated to each semaphore:
937  *   semncnt        number of tasks waiting on semval being nonzero
938  *   semzcnt        number of tasks waiting on semval being zero
939  * This model assumes that a task waits on exactly one semaphore.
940  * Since semaphore operations are to be performed atomically, tasks actually
941  * wait on a whole sequence of semaphores simultaneously.
942  * The counts we return here are a rough approximation, but still
943  * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
944  */
945 static int count_semncnt (struct sem_array * sma, ushort semnum)
946 {
947 	int semncnt;
948 	struct sem_queue * q;
949 
950 	semncnt = 0;
951 	list_for_each_entry(q, &sma->sem_base[semnum].pending_alter, list) {
952 		struct sembuf * sops = q->sops;
953 		BUG_ON(sops->sem_num != semnum);
954 		if ((sops->sem_op < 0) && !(sops->sem_flg & IPC_NOWAIT))
955 			semncnt++;
956 	}
957 
958 	list_for_each_entry(q, &sma->pending_alter, list) {
959 		struct sembuf * sops = q->sops;
960 		int nsops = q->nsops;
961 		int i;
962 		for (i = 0; i < nsops; i++)
963 			if (sops[i].sem_num == semnum
964 			    && (sops[i].sem_op < 0)
965 			    && !(sops[i].sem_flg & IPC_NOWAIT))
966 				semncnt++;
967 	}
968 	return semncnt;
969 }
970 
971 static int count_semzcnt (struct sem_array * sma, ushort semnum)
972 {
973 	int semzcnt;
974 	struct sem_queue * q;
975 
976 	semzcnt = 0;
977 	list_for_each_entry(q, &sma->sem_base[semnum].pending_const, list) {
978 		struct sembuf * sops = q->sops;
979 		BUG_ON(sops->sem_num != semnum);
980 		if ((sops->sem_op == 0) && !(sops->sem_flg & IPC_NOWAIT))
981 			semzcnt++;
982 	}
983 
984 	list_for_each_entry(q, &sma->pending_const, list) {
985 		struct sembuf * sops = q->sops;
986 		int nsops = q->nsops;
987 		int i;
988 		for (i = 0; i < nsops; i++)
989 			if (sops[i].sem_num == semnum
990 			    && (sops[i].sem_op == 0)
991 			    && !(sops[i].sem_flg & IPC_NOWAIT))
992 				semzcnt++;
993 	}
994 	return semzcnt;
995 }
996 
997 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
998  * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
999  * remains locked on exit.
1000  */
1001 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1002 {
1003 	struct sem_undo *un, *tu;
1004 	struct sem_queue *q, *tq;
1005 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1006 	struct list_head tasks;
1007 	int i;
1008 
1009 	/* Free the existing undo structures for this semaphore set.  */
1010 	ipc_assert_locked_object(&sma->sem_perm);
1011 	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1012 		list_del(&un->list_id);
1013 		spin_lock(&un->ulp->lock);
1014 		un->semid = -1;
1015 		list_del_rcu(&un->list_proc);
1016 		spin_unlock(&un->ulp->lock);
1017 		kfree_rcu(un, rcu);
1018 	}
1019 
1020 	/* Wake up all pending processes and let them fail with EIDRM. */
1021 	INIT_LIST_HEAD(&tasks);
1022 	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1023 		unlink_queue(sma, q);
1024 		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1025 	}
1026 
1027 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1028 		unlink_queue(sma, q);
1029 		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1030 	}
1031 	for (i = 0; i < sma->sem_nsems; i++) {
1032 		struct sem *sem = sma->sem_base + i;
1033 		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1034 			unlink_queue(sma, q);
1035 			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1036 		}
1037 		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1038 			unlink_queue(sma, q);
1039 			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1040 		}
1041 	}
1042 
1043 	/* Remove the semaphore set from the IDR */
1044 	sem_rmid(ns, sma);
1045 	sem_unlock(sma, -1);
1046 	rcu_read_unlock();
1047 
1048 	wake_up_sem_queue_do(&tasks);
1049 	ns->used_sems -= sma->sem_nsems;
1050 	security_sem_free(sma);
1051 	ipc_rcu_putref(sma);
1052 }
1053 
1054 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1055 {
1056 	switch(version) {
1057 	case IPC_64:
1058 		return copy_to_user(buf, in, sizeof(*in));
1059 	case IPC_OLD:
1060 	    {
1061 		struct semid_ds out;
1062 
1063 		memset(&out, 0, sizeof(out));
1064 
1065 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1066 
1067 		out.sem_otime	= in->sem_otime;
1068 		out.sem_ctime	= in->sem_ctime;
1069 		out.sem_nsems	= in->sem_nsems;
1070 
1071 		return copy_to_user(buf, &out, sizeof(out));
1072 	    }
1073 	default:
1074 		return -EINVAL;
1075 	}
1076 }
1077 
1078 static time_t get_semotime(struct sem_array *sma)
1079 {
1080 	int i;
1081 	time_t res;
1082 
1083 	res = sma->sem_base[0].sem_otime;
1084 	for (i = 1; i < sma->sem_nsems; i++) {
1085 		time_t to = sma->sem_base[i].sem_otime;
1086 
1087 		if (to > res)
1088 			res = to;
1089 	}
1090 	return res;
1091 }
1092 
1093 static int semctl_nolock(struct ipc_namespace *ns, int semid,
1094 			 int cmd, int version, void __user *p)
1095 {
1096 	int err;
1097 	struct sem_array *sma;
1098 
1099 	switch(cmd) {
1100 	case IPC_INFO:
1101 	case SEM_INFO:
1102 	{
1103 		struct seminfo seminfo;
1104 		int max_id;
1105 
1106 		err = security_sem_semctl(NULL, cmd);
1107 		if (err)
1108 			return err;
1109 
1110 		memset(&seminfo,0,sizeof(seminfo));
1111 		seminfo.semmni = ns->sc_semmni;
1112 		seminfo.semmns = ns->sc_semmns;
1113 		seminfo.semmsl = ns->sc_semmsl;
1114 		seminfo.semopm = ns->sc_semopm;
1115 		seminfo.semvmx = SEMVMX;
1116 		seminfo.semmnu = SEMMNU;
1117 		seminfo.semmap = SEMMAP;
1118 		seminfo.semume = SEMUME;
1119 		down_read(&sem_ids(ns).rwsem);
1120 		if (cmd == SEM_INFO) {
1121 			seminfo.semusz = sem_ids(ns).in_use;
1122 			seminfo.semaem = ns->used_sems;
1123 		} else {
1124 			seminfo.semusz = SEMUSZ;
1125 			seminfo.semaem = SEMAEM;
1126 		}
1127 		max_id = ipc_get_maxid(&sem_ids(ns));
1128 		up_read(&sem_ids(ns).rwsem);
1129 		if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1130 			return -EFAULT;
1131 		return (max_id < 0) ? 0: max_id;
1132 	}
1133 	case IPC_STAT:
1134 	case SEM_STAT:
1135 	{
1136 		struct semid64_ds tbuf;
1137 		int id = 0;
1138 
1139 		memset(&tbuf, 0, sizeof(tbuf));
1140 
1141 		rcu_read_lock();
1142 		if (cmd == SEM_STAT) {
1143 			sma = sem_obtain_object(ns, semid);
1144 			if (IS_ERR(sma)) {
1145 				err = PTR_ERR(sma);
1146 				goto out_unlock;
1147 			}
1148 			id = sma->sem_perm.id;
1149 		} else {
1150 			sma = sem_obtain_object_check(ns, semid);
1151 			if (IS_ERR(sma)) {
1152 				err = PTR_ERR(sma);
1153 				goto out_unlock;
1154 			}
1155 		}
1156 
1157 		err = -EACCES;
1158 		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1159 			goto out_unlock;
1160 
1161 		err = security_sem_semctl(sma, cmd);
1162 		if (err)
1163 			goto out_unlock;
1164 
1165 		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1166 		tbuf.sem_otime = get_semotime(sma);
1167 		tbuf.sem_ctime = sma->sem_ctime;
1168 		tbuf.sem_nsems = sma->sem_nsems;
1169 		rcu_read_unlock();
1170 		if (copy_semid_to_user(p, &tbuf, version))
1171 			return -EFAULT;
1172 		return id;
1173 	}
1174 	default:
1175 		return -EINVAL;
1176 	}
1177 out_unlock:
1178 	rcu_read_unlock();
1179 	return err;
1180 }
1181 
1182 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1183 		unsigned long arg)
1184 {
1185 	struct sem_undo *un;
1186 	struct sem_array *sma;
1187 	struct sem* curr;
1188 	int err;
1189 	struct list_head tasks;
1190 	int val;
1191 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1192 	/* big-endian 64bit */
1193 	val = arg >> 32;
1194 #else
1195 	/* 32bit or little-endian 64bit */
1196 	val = arg;
1197 #endif
1198 
1199 	if (val > SEMVMX || val < 0)
1200 		return -ERANGE;
1201 
1202 	INIT_LIST_HEAD(&tasks);
1203 
1204 	rcu_read_lock();
1205 	sma = sem_obtain_object_check(ns, semid);
1206 	if (IS_ERR(sma)) {
1207 		rcu_read_unlock();
1208 		return PTR_ERR(sma);
1209 	}
1210 
1211 	if (semnum < 0 || semnum >= sma->sem_nsems) {
1212 		rcu_read_unlock();
1213 		return -EINVAL;
1214 	}
1215 
1216 
1217 	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1218 		rcu_read_unlock();
1219 		return -EACCES;
1220 	}
1221 
1222 	err = security_sem_semctl(sma, SETVAL);
1223 	if (err) {
1224 		rcu_read_unlock();
1225 		return -EACCES;
1226 	}
1227 
1228 	sem_lock(sma, NULL, -1);
1229 
1230 	curr = &sma->sem_base[semnum];
1231 
1232 	ipc_assert_locked_object(&sma->sem_perm);
1233 	list_for_each_entry(un, &sma->list_id, list_id)
1234 		un->semadj[semnum] = 0;
1235 
1236 	curr->semval = val;
1237 	curr->sempid = task_tgid_vnr(current);
1238 	sma->sem_ctime = get_seconds();
1239 	/* maybe some queued-up processes were waiting for this */
1240 	do_smart_update(sma, NULL, 0, 0, &tasks);
1241 	sem_unlock(sma, -1);
1242 	rcu_read_unlock();
1243 	wake_up_sem_queue_do(&tasks);
1244 	return 0;
1245 }
1246 
1247 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1248 		int cmd, void __user *p)
1249 {
1250 	struct sem_array *sma;
1251 	struct sem* curr;
1252 	int err, nsems;
1253 	ushort fast_sem_io[SEMMSL_FAST];
1254 	ushort* sem_io = fast_sem_io;
1255 	struct list_head tasks;
1256 
1257 	INIT_LIST_HEAD(&tasks);
1258 
1259 	rcu_read_lock();
1260 	sma = sem_obtain_object_check(ns, semid);
1261 	if (IS_ERR(sma)) {
1262 		rcu_read_unlock();
1263 		return PTR_ERR(sma);
1264 	}
1265 
1266 	nsems = sma->sem_nsems;
1267 
1268 	err = -EACCES;
1269 	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1270 		goto out_rcu_wakeup;
1271 
1272 	err = security_sem_semctl(sma, cmd);
1273 	if (err)
1274 		goto out_rcu_wakeup;
1275 
1276 	err = -EACCES;
1277 	switch (cmd) {
1278 	case GETALL:
1279 	{
1280 		ushort __user *array = p;
1281 		int i;
1282 
1283 		sem_lock(sma, NULL, -1);
1284 		if(nsems > SEMMSL_FAST) {
1285 			if (!ipc_rcu_getref(sma)) {
1286 				sem_unlock(sma, -1);
1287 				rcu_read_unlock();
1288 				err = -EIDRM;
1289 				goto out_free;
1290 			}
1291 			sem_unlock(sma, -1);
1292 			rcu_read_unlock();
1293 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1294 			if(sem_io == NULL) {
1295 				sem_putref(sma);
1296 				return -ENOMEM;
1297 			}
1298 
1299 			rcu_read_lock();
1300 			sem_lock_and_putref(sma);
1301 			if (sma->sem_perm.deleted) {
1302 				sem_unlock(sma, -1);
1303 				rcu_read_unlock();
1304 				err = -EIDRM;
1305 				goto out_free;
1306 			}
1307 		}
1308 		for (i = 0; i < sma->sem_nsems; i++)
1309 			sem_io[i] = sma->sem_base[i].semval;
1310 		sem_unlock(sma, -1);
1311 		rcu_read_unlock();
1312 		err = 0;
1313 		if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1314 			err = -EFAULT;
1315 		goto out_free;
1316 	}
1317 	case SETALL:
1318 	{
1319 		int i;
1320 		struct sem_undo *un;
1321 
1322 		if (!ipc_rcu_getref(sma)) {
1323 			rcu_read_unlock();
1324 			return -EIDRM;
1325 		}
1326 		rcu_read_unlock();
1327 
1328 		if(nsems > SEMMSL_FAST) {
1329 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1330 			if(sem_io == NULL) {
1331 				sem_putref(sma);
1332 				return -ENOMEM;
1333 			}
1334 		}
1335 
1336 		if (copy_from_user (sem_io, p, nsems*sizeof(ushort))) {
1337 			sem_putref(sma);
1338 			err = -EFAULT;
1339 			goto out_free;
1340 		}
1341 
1342 		for (i = 0; i < nsems; i++) {
1343 			if (sem_io[i] > SEMVMX) {
1344 				sem_putref(sma);
1345 				err = -ERANGE;
1346 				goto out_free;
1347 			}
1348 		}
1349 		rcu_read_lock();
1350 		sem_lock_and_putref(sma);
1351 		if (sma->sem_perm.deleted) {
1352 			sem_unlock(sma, -1);
1353 			rcu_read_unlock();
1354 			err = -EIDRM;
1355 			goto out_free;
1356 		}
1357 
1358 		for (i = 0; i < nsems; i++)
1359 			sma->sem_base[i].semval = sem_io[i];
1360 
1361 		ipc_assert_locked_object(&sma->sem_perm);
1362 		list_for_each_entry(un, &sma->list_id, list_id) {
1363 			for (i = 0; i < nsems; i++)
1364 				un->semadj[i] = 0;
1365 		}
1366 		sma->sem_ctime = get_seconds();
1367 		/* maybe some queued-up processes were waiting for this */
1368 		do_smart_update(sma, NULL, 0, 0, &tasks);
1369 		err = 0;
1370 		goto out_unlock;
1371 	}
1372 	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1373 	}
1374 	err = -EINVAL;
1375 	if (semnum < 0 || semnum >= nsems)
1376 		goto out_rcu_wakeup;
1377 
1378 	sem_lock(sma, NULL, -1);
1379 	curr = &sma->sem_base[semnum];
1380 
1381 	switch (cmd) {
1382 	case GETVAL:
1383 		err = curr->semval;
1384 		goto out_unlock;
1385 	case GETPID:
1386 		err = curr->sempid;
1387 		goto out_unlock;
1388 	case GETNCNT:
1389 		err = count_semncnt(sma,semnum);
1390 		goto out_unlock;
1391 	case GETZCNT:
1392 		err = count_semzcnt(sma,semnum);
1393 		goto out_unlock;
1394 	}
1395 
1396 out_unlock:
1397 	sem_unlock(sma, -1);
1398 out_rcu_wakeup:
1399 	rcu_read_unlock();
1400 	wake_up_sem_queue_do(&tasks);
1401 out_free:
1402 	if(sem_io != fast_sem_io)
1403 		ipc_free(sem_io, sizeof(ushort)*nsems);
1404 	return err;
1405 }
1406 
1407 static inline unsigned long
1408 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1409 {
1410 	switch(version) {
1411 	case IPC_64:
1412 		if (copy_from_user(out, buf, sizeof(*out)))
1413 			return -EFAULT;
1414 		return 0;
1415 	case IPC_OLD:
1416 	    {
1417 		struct semid_ds tbuf_old;
1418 
1419 		if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1420 			return -EFAULT;
1421 
1422 		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1423 		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1424 		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1425 
1426 		return 0;
1427 	    }
1428 	default:
1429 		return -EINVAL;
1430 	}
1431 }
1432 
1433 /*
1434  * This function handles some semctl commands which require the rwsem
1435  * to be held in write mode.
1436  * NOTE: no locks must be held, the rwsem is taken inside this function.
1437  */
1438 static int semctl_down(struct ipc_namespace *ns, int semid,
1439 		       int cmd, int version, void __user *p)
1440 {
1441 	struct sem_array *sma;
1442 	int err;
1443 	struct semid64_ds semid64;
1444 	struct kern_ipc_perm *ipcp;
1445 
1446 	if(cmd == IPC_SET) {
1447 		if (copy_semid_from_user(&semid64, p, version))
1448 			return -EFAULT;
1449 	}
1450 
1451 	down_write(&sem_ids(ns).rwsem);
1452 	rcu_read_lock();
1453 
1454 	ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1455 				      &semid64.sem_perm, 0);
1456 	if (IS_ERR(ipcp)) {
1457 		err = PTR_ERR(ipcp);
1458 		goto out_unlock1;
1459 	}
1460 
1461 	sma = container_of(ipcp, struct sem_array, sem_perm);
1462 
1463 	err = security_sem_semctl(sma, cmd);
1464 	if (err)
1465 		goto out_unlock1;
1466 
1467 	switch (cmd) {
1468 	case IPC_RMID:
1469 		sem_lock(sma, NULL, -1);
1470 		/* freeary unlocks the ipc object and rcu */
1471 		freeary(ns, ipcp);
1472 		goto out_up;
1473 	case IPC_SET:
1474 		sem_lock(sma, NULL, -1);
1475 		err = ipc_update_perm(&semid64.sem_perm, ipcp);
1476 		if (err)
1477 			goto out_unlock0;
1478 		sma->sem_ctime = get_seconds();
1479 		break;
1480 	default:
1481 		err = -EINVAL;
1482 		goto out_unlock1;
1483 	}
1484 
1485 out_unlock0:
1486 	sem_unlock(sma, -1);
1487 out_unlock1:
1488 	rcu_read_unlock();
1489 out_up:
1490 	up_write(&sem_ids(ns).rwsem);
1491 	return err;
1492 }
1493 
1494 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1495 {
1496 	int version;
1497 	struct ipc_namespace *ns;
1498 	void __user *p = (void __user *)arg;
1499 
1500 	if (semid < 0)
1501 		return -EINVAL;
1502 
1503 	version = ipc_parse_version(&cmd);
1504 	ns = current->nsproxy->ipc_ns;
1505 
1506 	switch(cmd) {
1507 	case IPC_INFO:
1508 	case SEM_INFO:
1509 	case IPC_STAT:
1510 	case SEM_STAT:
1511 		return semctl_nolock(ns, semid, cmd, version, p);
1512 	case GETALL:
1513 	case GETVAL:
1514 	case GETPID:
1515 	case GETNCNT:
1516 	case GETZCNT:
1517 	case SETALL:
1518 		return semctl_main(ns, semid, semnum, cmd, p);
1519 	case SETVAL:
1520 		return semctl_setval(ns, semid, semnum, arg);
1521 	case IPC_RMID:
1522 	case IPC_SET:
1523 		return semctl_down(ns, semid, cmd, version, p);
1524 	default:
1525 		return -EINVAL;
1526 	}
1527 }
1528 
1529 /* If the task doesn't already have a undo_list, then allocate one
1530  * here.  We guarantee there is only one thread using this undo list,
1531  * and current is THE ONE
1532  *
1533  * If this allocation and assignment succeeds, but later
1534  * portions of this code fail, there is no need to free the sem_undo_list.
1535  * Just let it stay associated with the task, and it'll be freed later
1536  * at exit time.
1537  *
1538  * This can block, so callers must hold no locks.
1539  */
1540 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1541 {
1542 	struct sem_undo_list *undo_list;
1543 
1544 	undo_list = current->sysvsem.undo_list;
1545 	if (!undo_list) {
1546 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1547 		if (undo_list == NULL)
1548 			return -ENOMEM;
1549 		spin_lock_init(&undo_list->lock);
1550 		atomic_set(&undo_list->refcnt, 1);
1551 		INIT_LIST_HEAD(&undo_list->list_proc);
1552 
1553 		current->sysvsem.undo_list = undo_list;
1554 	}
1555 	*undo_listp = undo_list;
1556 	return 0;
1557 }
1558 
1559 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1560 {
1561 	struct sem_undo *un;
1562 
1563 	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1564 		if (un->semid == semid)
1565 			return un;
1566 	}
1567 	return NULL;
1568 }
1569 
1570 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1571 {
1572 	struct sem_undo *un;
1573 
1574   	assert_spin_locked(&ulp->lock);
1575 
1576 	un = __lookup_undo(ulp, semid);
1577 	if (un) {
1578 		list_del_rcu(&un->list_proc);
1579 		list_add_rcu(&un->list_proc, &ulp->list_proc);
1580 	}
1581 	return un;
1582 }
1583 
1584 /**
1585  * find_alloc_undo - Lookup (and if not present create) undo array
1586  * @ns: namespace
1587  * @semid: semaphore array id
1588  *
1589  * The function looks up (and if not present creates) the undo structure.
1590  * The size of the undo structure depends on the size of the semaphore
1591  * array, thus the alloc path is not that straightforward.
1592  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1593  * performs a rcu_read_lock().
1594  */
1595 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1596 {
1597 	struct sem_array *sma;
1598 	struct sem_undo_list *ulp;
1599 	struct sem_undo *un, *new;
1600 	int nsems, error;
1601 
1602 	error = get_undo_list(&ulp);
1603 	if (error)
1604 		return ERR_PTR(error);
1605 
1606 	rcu_read_lock();
1607 	spin_lock(&ulp->lock);
1608 	un = lookup_undo(ulp, semid);
1609 	spin_unlock(&ulp->lock);
1610 	if (likely(un!=NULL))
1611 		goto out;
1612 
1613 	/* no undo structure around - allocate one. */
1614 	/* step 1: figure out the size of the semaphore array */
1615 	sma = sem_obtain_object_check(ns, semid);
1616 	if (IS_ERR(sma)) {
1617 		rcu_read_unlock();
1618 		return ERR_CAST(sma);
1619 	}
1620 
1621 	nsems = sma->sem_nsems;
1622 	if (!ipc_rcu_getref(sma)) {
1623 		rcu_read_unlock();
1624 		un = ERR_PTR(-EIDRM);
1625 		goto out;
1626 	}
1627 	rcu_read_unlock();
1628 
1629 	/* step 2: allocate new undo structure */
1630 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1631 	if (!new) {
1632 		sem_putref(sma);
1633 		return ERR_PTR(-ENOMEM);
1634 	}
1635 
1636 	/* step 3: Acquire the lock on semaphore array */
1637 	rcu_read_lock();
1638 	sem_lock_and_putref(sma);
1639 	if (sma->sem_perm.deleted) {
1640 		sem_unlock(sma, -1);
1641 		rcu_read_unlock();
1642 		kfree(new);
1643 		un = ERR_PTR(-EIDRM);
1644 		goto out;
1645 	}
1646 	spin_lock(&ulp->lock);
1647 
1648 	/*
1649 	 * step 4: check for races: did someone else allocate the undo struct?
1650 	 */
1651 	un = lookup_undo(ulp, semid);
1652 	if (un) {
1653 		kfree(new);
1654 		goto success;
1655 	}
1656 	/* step 5: initialize & link new undo structure */
1657 	new->semadj = (short *) &new[1];
1658 	new->ulp = ulp;
1659 	new->semid = semid;
1660 	assert_spin_locked(&ulp->lock);
1661 	list_add_rcu(&new->list_proc, &ulp->list_proc);
1662 	ipc_assert_locked_object(&sma->sem_perm);
1663 	list_add(&new->list_id, &sma->list_id);
1664 	un = new;
1665 
1666 success:
1667 	spin_unlock(&ulp->lock);
1668 	sem_unlock(sma, -1);
1669 out:
1670 	return un;
1671 }
1672 
1673 
1674 /**
1675  * get_queue_result - Retrieve the result code from sem_queue
1676  * @q: Pointer to queue structure
1677  *
1678  * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1679  * q->status, then we must loop until the value is replaced with the final
1680  * value: This may happen if a task is woken up by an unrelated event (e.g.
1681  * signal) and in parallel the task is woken up by another task because it got
1682  * the requested semaphores.
1683  *
1684  * The function can be called with or without holding the semaphore spinlock.
1685  */
1686 static int get_queue_result(struct sem_queue *q)
1687 {
1688 	int error;
1689 
1690 	error = q->status;
1691 	while (unlikely(error == IN_WAKEUP)) {
1692 		cpu_relax();
1693 		error = q->status;
1694 	}
1695 
1696 	return error;
1697 }
1698 
1699 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1700 		unsigned, nsops, const struct timespec __user *, timeout)
1701 {
1702 	int error = -EINVAL;
1703 	struct sem_array *sma;
1704 	struct sembuf fast_sops[SEMOPM_FAST];
1705 	struct sembuf* sops = fast_sops, *sop;
1706 	struct sem_undo *un;
1707 	int undos = 0, alter = 0, max, locknum;
1708 	struct sem_queue queue;
1709 	unsigned long jiffies_left = 0;
1710 	struct ipc_namespace *ns;
1711 	struct list_head tasks;
1712 
1713 	ns = current->nsproxy->ipc_ns;
1714 
1715 	if (nsops < 1 || semid < 0)
1716 		return -EINVAL;
1717 	if (nsops > ns->sc_semopm)
1718 		return -E2BIG;
1719 	if(nsops > SEMOPM_FAST) {
1720 		sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1721 		if(sops==NULL)
1722 			return -ENOMEM;
1723 	}
1724 	if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1725 		error=-EFAULT;
1726 		goto out_free;
1727 	}
1728 	if (timeout) {
1729 		struct timespec _timeout;
1730 		if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1731 			error = -EFAULT;
1732 			goto out_free;
1733 		}
1734 		if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1735 			_timeout.tv_nsec >= 1000000000L) {
1736 			error = -EINVAL;
1737 			goto out_free;
1738 		}
1739 		jiffies_left = timespec_to_jiffies(&_timeout);
1740 	}
1741 	max = 0;
1742 	for (sop = sops; sop < sops + nsops; sop++) {
1743 		if (sop->sem_num >= max)
1744 			max = sop->sem_num;
1745 		if (sop->sem_flg & SEM_UNDO)
1746 			undos = 1;
1747 		if (sop->sem_op != 0)
1748 			alter = 1;
1749 	}
1750 
1751 	INIT_LIST_HEAD(&tasks);
1752 
1753 	if (undos) {
1754 		/* On success, find_alloc_undo takes the rcu_read_lock */
1755 		un = find_alloc_undo(ns, semid);
1756 		if (IS_ERR(un)) {
1757 			error = PTR_ERR(un);
1758 			goto out_free;
1759 		}
1760 	} else {
1761 		un = NULL;
1762 		rcu_read_lock();
1763 	}
1764 
1765 	sma = sem_obtain_object_check(ns, semid);
1766 	if (IS_ERR(sma)) {
1767 		rcu_read_unlock();
1768 		error = PTR_ERR(sma);
1769 		goto out_free;
1770 	}
1771 
1772 	error = -EFBIG;
1773 	if (max >= sma->sem_nsems)
1774 		goto out_rcu_wakeup;
1775 
1776 	error = -EACCES;
1777 	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1778 		goto out_rcu_wakeup;
1779 
1780 	error = security_sem_semop(sma, sops, nsops, alter);
1781 	if (error)
1782 		goto out_rcu_wakeup;
1783 
1784 	/*
1785 	 * semid identifiers are not unique - find_alloc_undo may have
1786 	 * allocated an undo structure, it was invalidated by an RMID
1787 	 * and now a new array with received the same id. Check and fail.
1788 	 * This case can be detected checking un->semid. The existence of
1789 	 * "un" itself is guaranteed by rcu.
1790 	 */
1791 	error = -EIDRM;
1792 	locknum = sem_lock(sma, sops, nsops);
1793 	if (un && un->semid == -1)
1794 		goto out_unlock_free;
1795 
1796 	error = perform_atomic_semop(sma, sops, nsops, un,
1797 					task_tgid_vnr(current));
1798 	if (error <= 0) {
1799 		if (alter && error == 0)
1800 			do_smart_update(sma, sops, nsops, 1, &tasks);
1801 
1802 		goto out_unlock_free;
1803 	}
1804 
1805 	/* We need to sleep on this operation, so we put the current
1806 	 * task into the pending queue and go to sleep.
1807 	 */
1808 
1809 	queue.sops = sops;
1810 	queue.nsops = nsops;
1811 	queue.undo = un;
1812 	queue.pid = task_tgid_vnr(current);
1813 	queue.alter = alter;
1814 
1815 	if (nsops == 1) {
1816 		struct sem *curr;
1817 		curr = &sma->sem_base[sops->sem_num];
1818 
1819 		if (alter) {
1820 			if (sma->complex_count) {
1821 				list_add_tail(&queue.list,
1822 						&sma->pending_alter);
1823 			} else {
1824 
1825 				list_add_tail(&queue.list,
1826 						&curr->pending_alter);
1827 			}
1828 		} else {
1829 			list_add_tail(&queue.list, &curr->pending_const);
1830 		}
1831 	} else {
1832 		if (!sma->complex_count)
1833 			merge_queues(sma);
1834 
1835 		if (alter)
1836 			list_add_tail(&queue.list, &sma->pending_alter);
1837 		else
1838 			list_add_tail(&queue.list, &sma->pending_const);
1839 
1840 		sma->complex_count++;
1841 	}
1842 
1843 	queue.status = -EINTR;
1844 	queue.sleeper = current;
1845 
1846 sleep_again:
1847 	current->state = TASK_INTERRUPTIBLE;
1848 	sem_unlock(sma, locknum);
1849 	rcu_read_unlock();
1850 
1851 	if (timeout)
1852 		jiffies_left = schedule_timeout(jiffies_left);
1853 	else
1854 		schedule();
1855 
1856 	error = get_queue_result(&queue);
1857 
1858 	if (error != -EINTR) {
1859 		/* fast path: update_queue already obtained all requested
1860 		 * resources.
1861 		 * Perform a smp_mb(): User space could assume that semop()
1862 		 * is a memory barrier: Without the mb(), the cpu could
1863 		 * speculatively read in user space stale data that was
1864 		 * overwritten by the previous owner of the semaphore.
1865 		 */
1866 		smp_mb();
1867 
1868 		goto out_free;
1869 	}
1870 
1871 	rcu_read_lock();
1872 	sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
1873 
1874 	/*
1875 	 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1876 	 */
1877 	error = get_queue_result(&queue);
1878 
1879 	/*
1880 	 * Array removed? If yes, leave without sem_unlock().
1881 	 */
1882 	if (IS_ERR(sma)) {
1883 		rcu_read_unlock();
1884 		goto out_free;
1885 	}
1886 
1887 
1888 	/*
1889 	 * If queue.status != -EINTR we are woken up by another process.
1890 	 * Leave without unlink_queue(), but with sem_unlock().
1891 	 */
1892 
1893 	if (error != -EINTR) {
1894 		goto out_unlock_free;
1895 	}
1896 
1897 	/*
1898 	 * If an interrupt occurred we have to clean up the queue
1899 	 */
1900 	if (timeout && jiffies_left == 0)
1901 		error = -EAGAIN;
1902 
1903 	/*
1904 	 * If the wakeup was spurious, just retry
1905 	 */
1906 	if (error == -EINTR && !signal_pending(current))
1907 		goto sleep_again;
1908 
1909 	unlink_queue(sma, &queue);
1910 
1911 out_unlock_free:
1912 	sem_unlock(sma, locknum);
1913 out_rcu_wakeup:
1914 	rcu_read_unlock();
1915 	wake_up_sem_queue_do(&tasks);
1916 out_free:
1917 	if(sops != fast_sops)
1918 		kfree(sops);
1919 	return error;
1920 }
1921 
1922 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1923 		unsigned, nsops)
1924 {
1925 	return sys_semtimedop(semid, tsops, nsops, NULL);
1926 }
1927 
1928 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1929  * parent and child tasks.
1930  */
1931 
1932 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1933 {
1934 	struct sem_undo_list *undo_list;
1935 	int error;
1936 
1937 	if (clone_flags & CLONE_SYSVSEM) {
1938 		error = get_undo_list(&undo_list);
1939 		if (error)
1940 			return error;
1941 		atomic_inc(&undo_list->refcnt);
1942 		tsk->sysvsem.undo_list = undo_list;
1943 	} else
1944 		tsk->sysvsem.undo_list = NULL;
1945 
1946 	return 0;
1947 }
1948 
1949 /*
1950  * add semadj values to semaphores, free undo structures.
1951  * undo structures are not freed when semaphore arrays are destroyed
1952  * so some of them may be out of date.
1953  * IMPLEMENTATION NOTE: There is some confusion over whether the
1954  * set of adjustments that needs to be done should be done in an atomic
1955  * manner or not. That is, if we are attempting to decrement the semval
1956  * should we queue up and wait until we can do so legally?
1957  * The original implementation attempted to do this (queue and wait).
1958  * The current implementation does not do so. The POSIX standard
1959  * and SVID should be consulted to determine what behavior is mandated.
1960  */
1961 void exit_sem(struct task_struct *tsk)
1962 {
1963 	struct sem_undo_list *ulp;
1964 
1965 	ulp = tsk->sysvsem.undo_list;
1966 	if (!ulp)
1967 		return;
1968 	tsk->sysvsem.undo_list = NULL;
1969 
1970 	if (!atomic_dec_and_test(&ulp->refcnt))
1971 		return;
1972 
1973 	for (;;) {
1974 		struct sem_array *sma;
1975 		struct sem_undo *un;
1976 		struct list_head tasks;
1977 		int semid, i;
1978 
1979 		rcu_read_lock();
1980 		un = list_entry_rcu(ulp->list_proc.next,
1981 				    struct sem_undo, list_proc);
1982 		if (&un->list_proc == &ulp->list_proc)
1983 			semid = -1;
1984 		 else
1985 			semid = un->semid;
1986 
1987 		if (semid == -1) {
1988 			rcu_read_unlock();
1989 			break;
1990 		}
1991 
1992 		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid);
1993 		/* exit_sem raced with IPC_RMID, nothing to do */
1994 		if (IS_ERR(sma)) {
1995 			rcu_read_unlock();
1996 			continue;
1997 		}
1998 
1999 		sem_lock(sma, NULL, -1);
2000 		un = __lookup_undo(ulp, semid);
2001 		if (un == NULL) {
2002 			/* exit_sem raced with IPC_RMID+semget() that created
2003 			 * exactly the same semid. Nothing to do.
2004 			 */
2005 			sem_unlock(sma, -1);
2006 			rcu_read_unlock();
2007 			continue;
2008 		}
2009 
2010 		/* remove un from the linked lists */
2011 		ipc_assert_locked_object(&sma->sem_perm);
2012 		list_del(&un->list_id);
2013 
2014 		spin_lock(&ulp->lock);
2015 		list_del_rcu(&un->list_proc);
2016 		spin_unlock(&ulp->lock);
2017 
2018 		/* perform adjustments registered in un */
2019 		for (i = 0; i < sma->sem_nsems; i++) {
2020 			struct sem * semaphore = &sma->sem_base[i];
2021 			if (un->semadj[i]) {
2022 				semaphore->semval += un->semadj[i];
2023 				/*
2024 				 * Range checks of the new semaphore value,
2025 				 * not defined by sus:
2026 				 * - Some unices ignore the undo entirely
2027 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2028 				 * - some cap the value (e.g. FreeBSD caps
2029 				 *   at 0, but doesn't enforce SEMVMX)
2030 				 *
2031 				 * Linux caps the semaphore value, both at 0
2032 				 * and at SEMVMX.
2033 				 *
2034 				 * 	Manfred <manfred@colorfullife.com>
2035 				 */
2036 				if (semaphore->semval < 0)
2037 					semaphore->semval = 0;
2038 				if (semaphore->semval > SEMVMX)
2039 					semaphore->semval = SEMVMX;
2040 				semaphore->sempid = task_tgid_vnr(current);
2041 			}
2042 		}
2043 		/* maybe some queued-up processes were waiting for this */
2044 		INIT_LIST_HEAD(&tasks);
2045 		do_smart_update(sma, NULL, 0, 1, &tasks);
2046 		sem_unlock(sma, -1);
2047 		rcu_read_unlock();
2048 		wake_up_sem_queue_do(&tasks);
2049 
2050 		kfree_rcu(un, rcu);
2051 	}
2052 	kfree(ulp);
2053 }
2054 
2055 #ifdef CONFIG_PROC_FS
2056 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2057 {
2058 	struct user_namespace *user_ns = seq_user_ns(s);
2059 	struct sem_array *sma = it;
2060 	time_t sem_otime;
2061 
2062 	sem_otime = get_semotime(sma);
2063 
2064 	return seq_printf(s,
2065 			  "%10d %10d  %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2066 			  sma->sem_perm.key,
2067 			  sma->sem_perm.id,
2068 			  sma->sem_perm.mode,
2069 			  sma->sem_nsems,
2070 			  from_kuid_munged(user_ns, sma->sem_perm.uid),
2071 			  from_kgid_munged(user_ns, sma->sem_perm.gid),
2072 			  from_kuid_munged(user_ns, sma->sem_perm.cuid),
2073 			  from_kgid_munged(user_ns, sma->sem_perm.cgid),
2074 			  sem_otime,
2075 			  sma->sem_ctime);
2076 }
2077 #endif
2078