1 /* 2 * linux/ipc/sem.c 3 * Copyright (C) 1992 Krishna Balasubramanian 4 * Copyright (C) 1995 Eric Schenk, Bruno Haible 5 * 6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> 7 * 8 * SMP-threaded, sysctl's added 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com> 10 * Enforced range limit on SEM_UNDO 11 * (c) 2001 Red Hat Inc 12 * Lockless wakeup 13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com> 14 * Further wakeup optimizations, documentation 15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com> 16 * 17 * support for audit of ipc object properties and permission changes 18 * Dustin Kirkland <dustin.kirkland@us.ibm.com> 19 * 20 * namespaces support 21 * OpenVZ, SWsoft Inc. 22 * Pavel Emelianov <xemul@openvz.org> 23 * 24 * Implementation notes: (May 2010) 25 * This file implements System V semaphores. 26 * 27 * User space visible behavior: 28 * - FIFO ordering for semop() operations (just FIFO, not starvation 29 * protection) 30 * - multiple semaphore operations that alter the same semaphore in 31 * one semop() are handled. 32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and 33 * SETALL calls. 34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. 35 * - undo adjustments at process exit are limited to 0..SEMVMX. 36 * - namespace are supported. 37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing 38 * to /proc/sys/kernel/sem. 39 * - statistics about the usage are reported in /proc/sysvipc/sem. 40 * 41 * Internals: 42 * - scalability: 43 * - all global variables are read-mostly. 44 * - semop() calls and semctl(RMID) are synchronized by RCU. 45 * - most operations do write operations (actually: spin_lock calls) to 46 * the per-semaphore array structure. 47 * Thus: Perfect SMP scaling between independent semaphore arrays. 48 * If multiple semaphores in one array are used, then cache line 49 * trashing on the semaphore array spinlock will limit the scaling. 50 * - semncnt and semzcnt are calculated on demand in count_semncnt() and 51 * count_semzcnt() 52 * - the task that performs a successful semop() scans the list of all 53 * sleeping tasks and completes any pending operations that can be fulfilled. 54 * Semaphores are actively given to waiting tasks (necessary for FIFO). 55 * (see update_queue()) 56 * - To improve the scalability, the actual wake-up calls are performed after 57 * dropping all locks. (see wake_up_sem_queue_prepare(), 58 * wake_up_sem_queue_do()) 59 * - All work is done by the waker, the woken up task does not have to do 60 * anything - not even acquiring a lock or dropping a refcount. 61 * - A woken up task may not even touch the semaphore array anymore, it may 62 * have been destroyed already by a semctl(RMID). 63 * - The synchronizations between wake-ups due to a timeout/signal and a 64 * wake-up due to a completed semaphore operation is achieved by using an 65 * intermediate state (IN_WAKEUP). 66 * - UNDO values are stored in an array (one per process and per 67 * semaphore array, lazily allocated). For backwards compatibility, multiple 68 * modes for the UNDO variables are supported (per process, per thread) 69 * (see copy_semundo, CLONE_SYSVSEM) 70 * - There are two lists of the pending operations: a per-array list 71 * and per-semaphore list (stored in the array). This allows to achieve FIFO 72 * ordering without always scanning all pending operations. 73 * The worst-case behavior is nevertheless O(N^2) for N wakeups. 74 */ 75 76 #include <linux/slab.h> 77 #include <linux/spinlock.h> 78 #include <linux/init.h> 79 #include <linux/proc_fs.h> 80 #include <linux/time.h> 81 #include <linux/security.h> 82 #include <linux/syscalls.h> 83 #include <linux/audit.h> 84 #include <linux/capability.h> 85 #include <linux/seq_file.h> 86 #include <linux/rwsem.h> 87 #include <linux/nsproxy.h> 88 #include <linux/ipc_namespace.h> 89 90 #include <asm/uaccess.h> 91 #include "util.h" 92 93 /* One semaphore structure for each semaphore in the system. */ 94 struct sem { 95 int semval; /* current value */ 96 int sempid; /* pid of last operation */ 97 spinlock_t lock; /* spinlock for fine-grained semtimedop */ 98 struct list_head pending_alter; /* pending single-sop operations */ 99 /* that alter the semaphore */ 100 struct list_head pending_const; /* pending single-sop operations */ 101 /* that do not alter the semaphore*/ 102 time_t sem_otime; /* candidate for sem_otime */ 103 } ____cacheline_aligned_in_smp; 104 105 /* One queue for each sleeping process in the system. */ 106 struct sem_queue { 107 struct list_head list; /* queue of pending operations */ 108 struct task_struct *sleeper; /* this process */ 109 struct sem_undo *undo; /* undo structure */ 110 int pid; /* process id of requesting process */ 111 int status; /* completion status of operation */ 112 struct sembuf *sops; /* array of pending operations */ 113 int nsops; /* number of operations */ 114 int alter; /* does *sops alter the array? */ 115 }; 116 117 /* Each task has a list of undo requests. They are executed automatically 118 * when the process exits. 119 */ 120 struct sem_undo { 121 struct list_head list_proc; /* per-process list: * 122 * all undos from one process 123 * rcu protected */ 124 struct rcu_head rcu; /* rcu struct for sem_undo */ 125 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */ 126 struct list_head list_id; /* per semaphore array list: 127 * all undos for one array */ 128 int semid; /* semaphore set identifier */ 129 short *semadj; /* array of adjustments */ 130 /* one per semaphore */ 131 }; 132 133 /* sem_undo_list controls shared access to the list of sem_undo structures 134 * that may be shared among all a CLONE_SYSVSEM task group. 135 */ 136 struct sem_undo_list { 137 atomic_t refcnt; 138 spinlock_t lock; 139 struct list_head list_proc; 140 }; 141 142 143 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) 144 145 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid) 146 147 static int newary(struct ipc_namespace *, struct ipc_params *); 148 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); 149 #ifdef CONFIG_PROC_FS 150 static int sysvipc_sem_proc_show(struct seq_file *s, void *it); 151 #endif 152 153 #define SEMMSL_FAST 256 /* 512 bytes on stack */ 154 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ 155 156 /* 157 * Locking: 158 * sem_undo.id_next, 159 * sem_array.complex_count, 160 * sem_array.pending{_alter,_cont}, 161 * sem_array.sem_undo: global sem_lock() for read/write 162 * sem_undo.proc_next: only "current" is allowed to read/write that field. 163 * 164 * sem_array.sem_base[i].pending_{const,alter}: 165 * global or semaphore sem_lock() for read/write 166 */ 167 168 #define sc_semmsl sem_ctls[0] 169 #define sc_semmns sem_ctls[1] 170 #define sc_semopm sem_ctls[2] 171 #define sc_semmni sem_ctls[3] 172 173 void sem_init_ns(struct ipc_namespace *ns) 174 { 175 ns->sc_semmsl = SEMMSL; 176 ns->sc_semmns = SEMMNS; 177 ns->sc_semopm = SEMOPM; 178 ns->sc_semmni = SEMMNI; 179 ns->used_sems = 0; 180 ipc_init_ids(&ns->ids[IPC_SEM_IDS]); 181 } 182 183 #ifdef CONFIG_IPC_NS 184 void sem_exit_ns(struct ipc_namespace *ns) 185 { 186 free_ipcs(ns, &sem_ids(ns), freeary); 187 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); 188 } 189 #endif 190 191 void __init sem_init (void) 192 { 193 sem_init_ns(&init_ipc_ns); 194 ipc_init_proc_interface("sysvipc/sem", 195 " key semid perms nsems uid gid cuid cgid otime ctime\n", 196 IPC_SEM_IDS, sysvipc_sem_proc_show); 197 } 198 199 /** 200 * unmerge_queues - unmerge queues, if possible. 201 * @sma: semaphore array 202 * 203 * The function unmerges the wait queues if complex_count is 0. 204 * It must be called prior to dropping the global semaphore array lock. 205 */ 206 static void unmerge_queues(struct sem_array *sma) 207 { 208 struct sem_queue *q, *tq; 209 210 /* complex operations still around? */ 211 if (sma->complex_count) 212 return; 213 /* 214 * We will switch back to simple mode. 215 * Move all pending operation back into the per-semaphore 216 * queues. 217 */ 218 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 219 struct sem *curr; 220 curr = &sma->sem_base[q->sops[0].sem_num]; 221 222 list_add_tail(&q->list, &curr->pending_alter); 223 } 224 INIT_LIST_HEAD(&sma->pending_alter); 225 } 226 227 /** 228 * merge_queues - Merge single semop queues into global queue 229 * @sma: semaphore array 230 * 231 * This function merges all per-semaphore queues into the global queue. 232 * It is necessary to achieve FIFO ordering for the pending single-sop 233 * operations when a multi-semop operation must sleep. 234 * Only the alter operations must be moved, the const operations can stay. 235 */ 236 static void merge_queues(struct sem_array *sma) 237 { 238 int i; 239 for (i = 0; i < sma->sem_nsems; i++) { 240 struct sem *sem = sma->sem_base + i; 241 242 list_splice_init(&sem->pending_alter, &sma->pending_alter); 243 } 244 } 245 246 /* 247 * If the request contains only one semaphore operation, and there are 248 * no complex transactions pending, lock only the semaphore involved. 249 * Otherwise, lock the entire semaphore array, since we either have 250 * multiple semaphores in our own semops, or we need to look at 251 * semaphores from other pending complex operations. 252 * 253 * Carefully guard against sma->complex_count changing between zero 254 * and non-zero while we are spinning for the lock. The value of 255 * sma->complex_count cannot change while we are holding the lock, 256 * so sem_unlock should be fine. 257 * 258 * The global lock path checks that all the local locks have been released, 259 * checking each local lock once. This means that the local lock paths 260 * cannot start their critical sections while the global lock is held. 261 */ 262 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, 263 int nsops) 264 { 265 int locknum; 266 again: 267 if (nsops == 1 && !sma->complex_count) { 268 struct sem *sem = sma->sem_base + sops->sem_num; 269 270 /* Lock just the semaphore we are interested in. */ 271 spin_lock(&sem->lock); 272 273 /* 274 * If sma->complex_count was set while we were spinning, 275 * we may need to look at things we did not lock here. 276 */ 277 if (unlikely(sma->complex_count)) { 278 spin_unlock(&sem->lock); 279 goto lock_array; 280 } 281 282 /* 283 * Another process is holding the global lock on the 284 * sem_array; we cannot enter our critical section, 285 * but have to wait for the global lock to be released. 286 */ 287 if (unlikely(spin_is_locked(&sma->sem_perm.lock))) { 288 spin_unlock(&sem->lock); 289 spin_unlock_wait(&sma->sem_perm.lock); 290 goto again; 291 } 292 293 locknum = sops->sem_num; 294 } else { 295 int i; 296 /* 297 * Lock the semaphore array, and wait for all of the 298 * individual semaphore locks to go away. The code 299 * above ensures no new single-lock holders will enter 300 * their critical section while the array lock is held. 301 */ 302 lock_array: 303 ipc_lock_object(&sma->sem_perm); 304 for (i = 0; i < sma->sem_nsems; i++) { 305 struct sem *sem = sma->sem_base + i; 306 spin_unlock_wait(&sem->lock); 307 } 308 locknum = -1; 309 } 310 return locknum; 311 } 312 313 static inline void sem_unlock(struct sem_array *sma, int locknum) 314 { 315 if (locknum == -1) { 316 unmerge_queues(sma); 317 ipc_unlock_object(&sma->sem_perm); 318 } else { 319 struct sem *sem = sma->sem_base + locknum; 320 spin_unlock(&sem->lock); 321 } 322 } 323 324 /* 325 * sem_lock_(check_) routines are called in the paths where the rwsem 326 * is not held. 327 * 328 * The caller holds the RCU read lock. 329 */ 330 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns, 331 int id, struct sembuf *sops, int nsops, int *locknum) 332 { 333 struct kern_ipc_perm *ipcp; 334 struct sem_array *sma; 335 336 ipcp = ipc_obtain_object(&sem_ids(ns), id); 337 if (IS_ERR(ipcp)) 338 return ERR_CAST(ipcp); 339 340 sma = container_of(ipcp, struct sem_array, sem_perm); 341 *locknum = sem_lock(sma, sops, nsops); 342 343 /* ipc_rmid() may have already freed the ID while sem_lock 344 * was spinning: verify that the structure is still valid 345 */ 346 if (!ipcp->deleted) 347 return container_of(ipcp, struct sem_array, sem_perm); 348 349 sem_unlock(sma, *locknum); 350 return ERR_PTR(-EINVAL); 351 } 352 353 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id) 354 { 355 struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id); 356 357 if (IS_ERR(ipcp)) 358 return ERR_CAST(ipcp); 359 360 return container_of(ipcp, struct sem_array, sem_perm); 361 } 362 363 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, 364 int id) 365 { 366 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id); 367 368 if (IS_ERR(ipcp)) 369 return ERR_CAST(ipcp); 370 371 return container_of(ipcp, struct sem_array, sem_perm); 372 } 373 374 static inline void sem_lock_and_putref(struct sem_array *sma) 375 { 376 sem_lock(sma, NULL, -1); 377 ipc_rcu_putref(sma); 378 } 379 380 static inline void sem_putref(struct sem_array *sma) 381 { 382 ipc_rcu_putref(sma); 383 } 384 385 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) 386 { 387 ipc_rmid(&sem_ids(ns), &s->sem_perm); 388 } 389 390 /* 391 * Lockless wakeup algorithm: 392 * Without the check/retry algorithm a lockless wakeup is possible: 393 * - queue.status is initialized to -EINTR before blocking. 394 * - wakeup is performed by 395 * * unlinking the queue entry from the pending list 396 * * setting queue.status to IN_WAKEUP 397 * This is the notification for the blocked thread that a 398 * result value is imminent. 399 * * call wake_up_process 400 * * set queue.status to the final value. 401 * - the previously blocked thread checks queue.status: 402 * * if it's IN_WAKEUP, then it must wait until the value changes 403 * * if it's not -EINTR, then the operation was completed by 404 * update_queue. semtimedop can return queue.status without 405 * performing any operation on the sem array. 406 * * otherwise it must acquire the spinlock and check what's up. 407 * 408 * The two-stage algorithm is necessary to protect against the following 409 * races: 410 * - if queue.status is set after wake_up_process, then the woken up idle 411 * thread could race forward and try (and fail) to acquire sma->lock 412 * before update_queue had a chance to set queue.status 413 * - if queue.status is written before wake_up_process and if the 414 * blocked process is woken up by a signal between writing 415 * queue.status and the wake_up_process, then the woken up 416 * process could return from semtimedop and die by calling 417 * sys_exit before wake_up_process is called. Then wake_up_process 418 * will oops, because the task structure is already invalid. 419 * (yes, this happened on s390 with sysv msg). 420 * 421 */ 422 #define IN_WAKEUP 1 423 424 /** 425 * newary - Create a new semaphore set 426 * @ns: namespace 427 * @params: ptr to the structure that contains key, semflg and nsems 428 * 429 * Called with sem_ids.rwsem held (as a writer) 430 */ 431 432 static int newary(struct ipc_namespace *ns, struct ipc_params *params) 433 { 434 int id; 435 int retval; 436 struct sem_array *sma; 437 int size; 438 key_t key = params->key; 439 int nsems = params->u.nsems; 440 int semflg = params->flg; 441 int i; 442 443 if (!nsems) 444 return -EINVAL; 445 if (ns->used_sems + nsems > ns->sc_semmns) 446 return -ENOSPC; 447 448 size = sizeof (*sma) + nsems * sizeof (struct sem); 449 sma = ipc_rcu_alloc(size); 450 if (!sma) { 451 return -ENOMEM; 452 } 453 memset (sma, 0, size); 454 455 sma->sem_perm.mode = (semflg & S_IRWXUGO); 456 sma->sem_perm.key = key; 457 458 sma->sem_perm.security = NULL; 459 retval = security_sem_alloc(sma); 460 if (retval) { 461 ipc_rcu_putref(sma); 462 return retval; 463 } 464 465 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); 466 if (id < 0) { 467 security_sem_free(sma); 468 ipc_rcu_putref(sma); 469 return id; 470 } 471 ns->used_sems += nsems; 472 473 sma->sem_base = (struct sem *) &sma[1]; 474 475 for (i = 0; i < nsems; i++) { 476 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter); 477 INIT_LIST_HEAD(&sma->sem_base[i].pending_const); 478 spin_lock_init(&sma->sem_base[i].lock); 479 } 480 481 sma->complex_count = 0; 482 INIT_LIST_HEAD(&sma->pending_alter); 483 INIT_LIST_HEAD(&sma->pending_const); 484 INIT_LIST_HEAD(&sma->list_id); 485 sma->sem_nsems = nsems; 486 sma->sem_ctime = get_seconds(); 487 sem_unlock(sma, -1); 488 rcu_read_unlock(); 489 490 return sma->sem_perm.id; 491 } 492 493 494 /* 495 * Called with sem_ids.rwsem and ipcp locked. 496 */ 497 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg) 498 { 499 struct sem_array *sma; 500 501 sma = container_of(ipcp, struct sem_array, sem_perm); 502 return security_sem_associate(sma, semflg); 503 } 504 505 /* 506 * Called with sem_ids.rwsem and ipcp locked. 507 */ 508 static inline int sem_more_checks(struct kern_ipc_perm *ipcp, 509 struct ipc_params *params) 510 { 511 struct sem_array *sma; 512 513 sma = container_of(ipcp, struct sem_array, sem_perm); 514 if (params->u.nsems > sma->sem_nsems) 515 return -EINVAL; 516 517 return 0; 518 } 519 520 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) 521 { 522 struct ipc_namespace *ns; 523 struct ipc_ops sem_ops; 524 struct ipc_params sem_params; 525 526 ns = current->nsproxy->ipc_ns; 527 528 if (nsems < 0 || nsems > ns->sc_semmsl) 529 return -EINVAL; 530 531 sem_ops.getnew = newary; 532 sem_ops.associate = sem_security; 533 sem_ops.more_checks = sem_more_checks; 534 535 sem_params.key = key; 536 sem_params.flg = semflg; 537 sem_params.u.nsems = nsems; 538 539 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); 540 } 541 542 /** perform_atomic_semop - Perform (if possible) a semaphore operation 543 * @sma: semaphore array 544 * @sops: array with operations that should be checked 545 * @nsems: number of sops 546 * @un: undo array 547 * @pid: pid that did the change 548 * 549 * Returns 0 if the operation was possible. 550 * Returns 1 if the operation is impossible, the caller must sleep. 551 * Negative values are error codes. 552 */ 553 554 static int perform_atomic_semop(struct sem_array *sma, struct sembuf *sops, 555 int nsops, struct sem_undo *un, int pid) 556 { 557 int result, sem_op; 558 struct sembuf *sop; 559 struct sem * curr; 560 561 for (sop = sops; sop < sops + nsops; sop++) { 562 curr = sma->sem_base + sop->sem_num; 563 sem_op = sop->sem_op; 564 result = curr->semval; 565 566 if (!sem_op && result) 567 goto would_block; 568 569 result += sem_op; 570 if (result < 0) 571 goto would_block; 572 if (result > SEMVMX) 573 goto out_of_range; 574 if (sop->sem_flg & SEM_UNDO) { 575 int undo = un->semadj[sop->sem_num] - sem_op; 576 /* 577 * Exceeding the undo range is an error. 578 */ 579 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 580 goto out_of_range; 581 } 582 curr->semval = result; 583 } 584 585 sop--; 586 while (sop >= sops) { 587 sma->sem_base[sop->sem_num].sempid = pid; 588 if (sop->sem_flg & SEM_UNDO) 589 un->semadj[sop->sem_num] -= sop->sem_op; 590 sop--; 591 } 592 593 return 0; 594 595 out_of_range: 596 result = -ERANGE; 597 goto undo; 598 599 would_block: 600 if (sop->sem_flg & IPC_NOWAIT) 601 result = -EAGAIN; 602 else 603 result = 1; 604 605 undo: 606 sop--; 607 while (sop >= sops) { 608 sma->sem_base[sop->sem_num].semval -= sop->sem_op; 609 sop--; 610 } 611 612 return result; 613 } 614 615 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up 616 * @q: queue entry that must be signaled 617 * @error: Error value for the signal 618 * 619 * Prepare the wake-up of the queue entry q. 620 */ 621 static void wake_up_sem_queue_prepare(struct list_head *pt, 622 struct sem_queue *q, int error) 623 { 624 if (list_empty(pt)) { 625 /* 626 * Hold preempt off so that we don't get preempted and have the 627 * wakee busy-wait until we're scheduled back on. 628 */ 629 preempt_disable(); 630 } 631 q->status = IN_WAKEUP; 632 q->pid = error; 633 634 list_add_tail(&q->list, pt); 635 } 636 637 /** 638 * wake_up_sem_queue_do(pt) - do the actual wake-up 639 * @pt: list of tasks to be woken up 640 * 641 * Do the actual wake-up. 642 * The function is called without any locks held, thus the semaphore array 643 * could be destroyed already and the tasks can disappear as soon as the 644 * status is set to the actual return code. 645 */ 646 static void wake_up_sem_queue_do(struct list_head *pt) 647 { 648 struct sem_queue *q, *t; 649 int did_something; 650 651 did_something = !list_empty(pt); 652 list_for_each_entry_safe(q, t, pt, list) { 653 wake_up_process(q->sleeper); 654 /* q can disappear immediately after writing q->status. */ 655 smp_wmb(); 656 q->status = q->pid; 657 } 658 if (did_something) 659 preempt_enable(); 660 } 661 662 static void unlink_queue(struct sem_array *sma, struct sem_queue *q) 663 { 664 list_del(&q->list); 665 if (q->nsops > 1) 666 sma->complex_count--; 667 } 668 669 /** check_restart(sma, q) 670 * @sma: semaphore array 671 * @q: the operation that just completed 672 * 673 * update_queue is O(N^2) when it restarts scanning the whole queue of 674 * waiting operations. Therefore this function checks if the restart is 675 * really necessary. It is called after a previously waiting operation 676 * modified the array. 677 * Note that wait-for-zero operations are handled without restart. 678 */ 679 static int check_restart(struct sem_array *sma, struct sem_queue *q) 680 { 681 /* pending complex alter operations are too difficult to analyse */ 682 if (!list_empty(&sma->pending_alter)) 683 return 1; 684 685 /* we were a sleeping complex operation. Too difficult */ 686 if (q->nsops > 1) 687 return 1; 688 689 /* It is impossible that someone waits for the new value: 690 * - complex operations always restart. 691 * - wait-for-zero are handled seperately. 692 * - q is a previously sleeping simple operation that 693 * altered the array. It must be a decrement, because 694 * simple increments never sleep. 695 * - If there are older (higher priority) decrements 696 * in the queue, then they have observed the original 697 * semval value and couldn't proceed. The operation 698 * decremented to value - thus they won't proceed either. 699 */ 700 return 0; 701 } 702 703 /** 704 * wake_const_ops(sma, semnum, pt) - Wake up non-alter tasks 705 * @sma: semaphore array. 706 * @semnum: semaphore that was modified. 707 * @pt: list head for the tasks that must be woken up. 708 * 709 * wake_const_ops must be called after a semaphore in a semaphore array 710 * was set to 0. If complex const operations are pending, wake_const_ops must 711 * be called with semnum = -1, as well as with the number of each modified 712 * semaphore. 713 * The tasks that must be woken up are added to @pt. The return code 714 * is stored in q->pid. 715 * The function returns 1 if at least one operation was completed successfully. 716 */ 717 static int wake_const_ops(struct sem_array *sma, int semnum, 718 struct list_head *pt) 719 { 720 struct sem_queue *q; 721 struct list_head *walk; 722 struct list_head *pending_list; 723 int semop_completed = 0; 724 725 if (semnum == -1) 726 pending_list = &sma->pending_const; 727 else 728 pending_list = &sma->sem_base[semnum].pending_const; 729 730 walk = pending_list->next; 731 while (walk != pending_list) { 732 int error; 733 734 q = container_of(walk, struct sem_queue, list); 735 walk = walk->next; 736 737 error = perform_atomic_semop(sma, q->sops, q->nsops, 738 q->undo, q->pid); 739 740 if (error <= 0) { 741 /* operation completed, remove from queue & wakeup */ 742 743 unlink_queue(sma, q); 744 745 wake_up_sem_queue_prepare(pt, q, error); 746 if (error == 0) 747 semop_completed = 1; 748 } 749 } 750 return semop_completed; 751 } 752 753 /** 754 * do_smart_wakeup_zero(sma, sops, nsops, pt) - wakeup all wait for zero tasks 755 * @sma: semaphore array 756 * @sops: operations that were performed 757 * @nsops: number of operations 758 * @pt: list head of the tasks that must be woken up. 759 * 760 * do_smart_wakeup_zero() checks all required queue for wait-for-zero 761 * operations, based on the actual changes that were performed on the 762 * semaphore array. 763 * The function returns 1 if at least one operation was completed successfully. 764 */ 765 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops, 766 int nsops, struct list_head *pt) 767 { 768 int i; 769 int semop_completed = 0; 770 int got_zero = 0; 771 772 /* first: the per-semaphore queues, if known */ 773 if (sops) { 774 for (i = 0; i < nsops; i++) { 775 int num = sops[i].sem_num; 776 777 if (sma->sem_base[num].semval == 0) { 778 got_zero = 1; 779 semop_completed |= wake_const_ops(sma, num, pt); 780 } 781 } 782 } else { 783 /* 784 * No sops means modified semaphores not known. 785 * Assume all were changed. 786 */ 787 for (i = 0; i < sma->sem_nsems; i++) { 788 if (sma->sem_base[i].semval == 0) { 789 got_zero = 1; 790 semop_completed |= wake_const_ops(sma, i, pt); 791 } 792 } 793 } 794 /* 795 * If one of the modified semaphores got 0, 796 * then check the global queue, too. 797 */ 798 if (got_zero) 799 semop_completed |= wake_const_ops(sma, -1, pt); 800 801 return semop_completed; 802 } 803 804 805 /** 806 * update_queue(sma, semnum): Look for tasks that can be completed. 807 * @sma: semaphore array. 808 * @semnum: semaphore that was modified. 809 * @pt: list head for the tasks that must be woken up. 810 * 811 * update_queue must be called after a semaphore in a semaphore array 812 * was modified. If multiple semaphores were modified, update_queue must 813 * be called with semnum = -1, as well as with the number of each modified 814 * semaphore. 815 * The tasks that must be woken up are added to @pt. The return code 816 * is stored in q->pid. 817 * The function internally checks if const operations can now succeed. 818 * 819 * The function return 1 if at least one semop was completed successfully. 820 */ 821 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt) 822 { 823 struct sem_queue *q; 824 struct list_head *walk; 825 struct list_head *pending_list; 826 int semop_completed = 0; 827 828 if (semnum == -1) 829 pending_list = &sma->pending_alter; 830 else 831 pending_list = &sma->sem_base[semnum].pending_alter; 832 833 again: 834 walk = pending_list->next; 835 while (walk != pending_list) { 836 int error, restart; 837 838 q = container_of(walk, struct sem_queue, list); 839 walk = walk->next; 840 841 /* If we are scanning the single sop, per-semaphore list of 842 * one semaphore and that semaphore is 0, then it is not 843 * necessary to scan further: simple increments 844 * that affect only one entry succeed immediately and cannot 845 * be in the per semaphore pending queue, and decrements 846 * cannot be successful if the value is already 0. 847 */ 848 if (semnum != -1 && sma->sem_base[semnum].semval == 0) 849 break; 850 851 error = perform_atomic_semop(sma, q->sops, q->nsops, 852 q->undo, q->pid); 853 854 /* Does q->sleeper still need to sleep? */ 855 if (error > 0) 856 continue; 857 858 unlink_queue(sma, q); 859 860 if (error) { 861 restart = 0; 862 } else { 863 semop_completed = 1; 864 do_smart_wakeup_zero(sma, q->sops, q->nsops, pt); 865 restart = check_restart(sma, q); 866 } 867 868 wake_up_sem_queue_prepare(pt, q, error); 869 if (restart) 870 goto again; 871 } 872 return semop_completed; 873 } 874 875 /** 876 * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue 877 * @sma: semaphore array 878 * @sops: operations that were performed 879 * @nsops: number of operations 880 * @otime: force setting otime 881 * @pt: list head of the tasks that must be woken up. 882 * 883 * do_smart_update() does the required calls to update_queue and wakeup_zero, 884 * based on the actual changes that were performed on the semaphore array. 885 * Note that the function does not do the actual wake-up: the caller is 886 * responsible for calling wake_up_sem_queue_do(@pt). 887 * It is safe to perform this call after dropping all locks. 888 */ 889 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, 890 int otime, struct list_head *pt) 891 { 892 int i; 893 894 otime |= do_smart_wakeup_zero(sma, sops, nsops, pt); 895 896 if (!list_empty(&sma->pending_alter)) { 897 /* semaphore array uses the global queue - just process it. */ 898 otime |= update_queue(sma, -1, pt); 899 } else { 900 if (!sops) { 901 /* 902 * No sops, thus the modified semaphores are not 903 * known. Check all. 904 */ 905 for (i = 0; i < sma->sem_nsems; i++) 906 otime |= update_queue(sma, i, pt); 907 } else { 908 /* 909 * Check the semaphores that were increased: 910 * - No complex ops, thus all sleeping ops are 911 * decrease. 912 * - if we decreased the value, then any sleeping 913 * semaphore ops wont be able to run: If the 914 * previous value was too small, then the new 915 * value will be too small, too. 916 */ 917 for (i = 0; i < nsops; i++) { 918 if (sops[i].sem_op > 0) { 919 otime |= update_queue(sma, 920 sops[i].sem_num, pt); 921 } 922 } 923 } 924 } 925 if (otime) { 926 if (sops == NULL) { 927 sma->sem_base[0].sem_otime = get_seconds(); 928 } else { 929 sma->sem_base[sops[0].sem_num].sem_otime = 930 get_seconds(); 931 } 932 } 933 } 934 935 936 /* The following counts are associated to each semaphore: 937 * semncnt number of tasks waiting on semval being nonzero 938 * semzcnt number of tasks waiting on semval being zero 939 * This model assumes that a task waits on exactly one semaphore. 940 * Since semaphore operations are to be performed atomically, tasks actually 941 * wait on a whole sequence of semaphores simultaneously. 942 * The counts we return here are a rough approximation, but still 943 * warrant that semncnt+semzcnt>0 if the task is on the pending queue. 944 */ 945 static int count_semncnt (struct sem_array * sma, ushort semnum) 946 { 947 int semncnt; 948 struct sem_queue * q; 949 950 semncnt = 0; 951 list_for_each_entry(q, &sma->sem_base[semnum].pending_alter, list) { 952 struct sembuf * sops = q->sops; 953 BUG_ON(sops->sem_num != semnum); 954 if ((sops->sem_op < 0) && !(sops->sem_flg & IPC_NOWAIT)) 955 semncnt++; 956 } 957 958 list_for_each_entry(q, &sma->pending_alter, list) { 959 struct sembuf * sops = q->sops; 960 int nsops = q->nsops; 961 int i; 962 for (i = 0; i < nsops; i++) 963 if (sops[i].sem_num == semnum 964 && (sops[i].sem_op < 0) 965 && !(sops[i].sem_flg & IPC_NOWAIT)) 966 semncnt++; 967 } 968 return semncnt; 969 } 970 971 static int count_semzcnt (struct sem_array * sma, ushort semnum) 972 { 973 int semzcnt; 974 struct sem_queue * q; 975 976 semzcnt = 0; 977 list_for_each_entry(q, &sma->sem_base[semnum].pending_const, list) { 978 struct sembuf * sops = q->sops; 979 BUG_ON(sops->sem_num != semnum); 980 if ((sops->sem_op == 0) && !(sops->sem_flg & IPC_NOWAIT)) 981 semzcnt++; 982 } 983 984 list_for_each_entry(q, &sma->pending_const, list) { 985 struct sembuf * sops = q->sops; 986 int nsops = q->nsops; 987 int i; 988 for (i = 0; i < nsops; i++) 989 if (sops[i].sem_num == semnum 990 && (sops[i].sem_op == 0) 991 && !(sops[i].sem_flg & IPC_NOWAIT)) 992 semzcnt++; 993 } 994 return semzcnt; 995 } 996 997 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked 998 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem 999 * remains locked on exit. 1000 */ 1001 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) 1002 { 1003 struct sem_undo *un, *tu; 1004 struct sem_queue *q, *tq; 1005 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 1006 struct list_head tasks; 1007 int i; 1008 1009 /* Free the existing undo structures for this semaphore set. */ 1010 ipc_assert_locked_object(&sma->sem_perm); 1011 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { 1012 list_del(&un->list_id); 1013 spin_lock(&un->ulp->lock); 1014 un->semid = -1; 1015 list_del_rcu(&un->list_proc); 1016 spin_unlock(&un->ulp->lock); 1017 kfree_rcu(un, rcu); 1018 } 1019 1020 /* Wake up all pending processes and let them fail with EIDRM. */ 1021 INIT_LIST_HEAD(&tasks); 1022 list_for_each_entry_safe(q, tq, &sma->pending_const, list) { 1023 unlink_queue(sma, q); 1024 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1025 } 1026 1027 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 1028 unlink_queue(sma, q); 1029 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1030 } 1031 for (i = 0; i < sma->sem_nsems; i++) { 1032 struct sem *sem = sma->sem_base + i; 1033 list_for_each_entry_safe(q, tq, &sem->pending_const, list) { 1034 unlink_queue(sma, q); 1035 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1036 } 1037 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) { 1038 unlink_queue(sma, q); 1039 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1040 } 1041 } 1042 1043 /* Remove the semaphore set from the IDR */ 1044 sem_rmid(ns, sma); 1045 sem_unlock(sma, -1); 1046 rcu_read_unlock(); 1047 1048 wake_up_sem_queue_do(&tasks); 1049 ns->used_sems -= sma->sem_nsems; 1050 security_sem_free(sma); 1051 ipc_rcu_putref(sma); 1052 } 1053 1054 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) 1055 { 1056 switch(version) { 1057 case IPC_64: 1058 return copy_to_user(buf, in, sizeof(*in)); 1059 case IPC_OLD: 1060 { 1061 struct semid_ds out; 1062 1063 memset(&out, 0, sizeof(out)); 1064 1065 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); 1066 1067 out.sem_otime = in->sem_otime; 1068 out.sem_ctime = in->sem_ctime; 1069 out.sem_nsems = in->sem_nsems; 1070 1071 return copy_to_user(buf, &out, sizeof(out)); 1072 } 1073 default: 1074 return -EINVAL; 1075 } 1076 } 1077 1078 static time_t get_semotime(struct sem_array *sma) 1079 { 1080 int i; 1081 time_t res; 1082 1083 res = sma->sem_base[0].sem_otime; 1084 for (i = 1; i < sma->sem_nsems; i++) { 1085 time_t to = sma->sem_base[i].sem_otime; 1086 1087 if (to > res) 1088 res = to; 1089 } 1090 return res; 1091 } 1092 1093 static int semctl_nolock(struct ipc_namespace *ns, int semid, 1094 int cmd, int version, void __user *p) 1095 { 1096 int err; 1097 struct sem_array *sma; 1098 1099 switch(cmd) { 1100 case IPC_INFO: 1101 case SEM_INFO: 1102 { 1103 struct seminfo seminfo; 1104 int max_id; 1105 1106 err = security_sem_semctl(NULL, cmd); 1107 if (err) 1108 return err; 1109 1110 memset(&seminfo,0,sizeof(seminfo)); 1111 seminfo.semmni = ns->sc_semmni; 1112 seminfo.semmns = ns->sc_semmns; 1113 seminfo.semmsl = ns->sc_semmsl; 1114 seminfo.semopm = ns->sc_semopm; 1115 seminfo.semvmx = SEMVMX; 1116 seminfo.semmnu = SEMMNU; 1117 seminfo.semmap = SEMMAP; 1118 seminfo.semume = SEMUME; 1119 down_read(&sem_ids(ns).rwsem); 1120 if (cmd == SEM_INFO) { 1121 seminfo.semusz = sem_ids(ns).in_use; 1122 seminfo.semaem = ns->used_sems; 1123 } else { 1124 seminfo.semusz = SEMUSZ; 1125 seminfo.semaem = SEMAEM; 1126 } 1127 max_id = ipc_get_maxid(&sem_ids(ns)); 1128 up_read(&sem_ids(ns).rwsem); 1129 if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) 1130 return -EFAULT; 1131 return (max_id < 0) ? 0: max_id; 1132 } 1133 case IPC_STAT: 1134 case SEM_STAT: 1135 { 1136 struct semid64_ds tbuf; 1137 int id = 0; 1138 1139 memset(&tbuf, 0, sizeof(tbuf)); 1140 1141 rcu_read_lock(); 1142 if (cmd == SEM_STAT) { 1143 sma = sem_obtain_object(ns, semid); 1144 if (IS_ERR(sma)) { 1145 err = PTR_ERR(sma); 1146 goto out_unlock; 1147 } 1148 id = sma->sem_perm.id; 1149 } else { 1150 sma = sem_obtain_object_check(ns, semid); 1151 if (IS_ERR(sma)) { 1152 err = PTR_ERR(sma); 1153 goto out_unlock; 1154 } 1155 } 1156 1157 err = -EACCES; 1158 if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) 1159 goto out_unlock; 1160 1161 err = security_sem_semctl(sma, cmd); 1162 if (err) 1163 goto out_unlock; 1164 1165 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); 1166 tbuf.sem_otime = get_semotime(sma); 1167 tbuf.sem_ctime = sma->sem_ctime; 1168 tbuf.sem_nsems = sma->sem_nsems; 1169 rcu_read_unlock(); 1170 if (copy_semid_to_user(p, &tbuf, version)) 1171 return -EFAULT; 1172 return id; 1173 } 1174 default: 1175 return -EINVAL; 1176 } 1177 out_unlock: 1178 rcu_read_unlock(); 1179 return err; 1180 } 1181 1182 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, 1183 unsigned long arg) 1184 { 1185 struct sem_undo *un; 1186 struct sem_array *sma; 1187 struct sem* curr; 1188 int err; 1189 struct list_head tasks; 1190 int val; 1191 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) 1192 /* big-endian 64bit */ 1193 val = arg >> 32; 1194 #else 1195 /* 32bit or little-endian 64bit */ 1196 val = arg; 1197 #endif 1198 1199 if (val > SEMVMX || val < 0) 1200 return -ERANGE; 1201 1202 INIT_LIST_HEAD(&tasks); 1203 1204 rcu_read_lock(); 1205 sma = sem_obtain_object_check(ns, semid); 1206 if (IS_ERR(sma)) { 1207 rcu_read_unlock(); 1208 return PTR_ERR(sma); 1209 } 1210 1211 if (semnum < 0 || semnum >= sma->sem_nsems) { 1212 rcu_read_unlock(); 1213 return -EINVAL; 1214 } 1215 1216 1217 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) { 1218 rcu_read_unlock(); 1219 return -EACCES; 1220 } 1221 1222 err = security_sem_semctl(sma, SETVAL); 1223 if (err) { 1224 rcu_read_unlock(); 1225 return -EACCES; 1226 } 1227 1228 sem_lock(sma, NULL, -1); 1229 1230 curr = &sma->sem_base[semnum]; 1231 1232 ipc_assert_locked_object(&sma->sem_perm); 1233 list_for_each_entry(un, &sma->list_id, list_id) 1234 un->semadj[semnum] = 0; 1235 1236 curr->semval = val; 1237 curr->sempid = task_tgid_vnr(current); 1238 sma->sem_ctime = get_seconds(); 1239 /* maybe some queued-up processes were waiting for this */ 1240 do_smart_update(sma, NULL, 0, 0, &tasks); 1241 sem_unlock(sma, -1); 1242 rcu_read_unlock(); 1243 wake_up_sem_queue_do(&tasks); 1244 return 0; 1245 } 1246 1247 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, 1248 int cmd, void __user *p) 1249 { 1250 struct sem_array *sma; 1251 struct sem* curr; 1252 int err, nsems; 1253 ushort fast_sem_io[SEMMSL_FAST]; 1254 ushort* sem_io = fast_sem_io; 1255 struct list_head tasks; 1256 1257 INIT_LIST_HEAD(&tasks); 1258 1259 rcu_read_lock(); 1260 sma = sem_obtain_object_check(ns, semid); 1261 if (IS_ERR(sma)) { 1262 rcu_read_unlock(); 1263 return PTR_ERR(sma); 1264 } 1265 1266 nsems = sma->sem_nsems; 1267 1268 err = -EACCES; 1269 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO)) 1270 goto out_rcu_wakeup; 1271 1272 err = security_sem_semctl(sma, cmd); 1273 if (err) 1274 goto out_rcu_wakeup; 1275 1276 err = -EACCES; 1277 switch (cmd) { 1278 case GETALL: 1279 { 1280 ushort __user *array = p; 1281 int i; 1282 1283 sem_lock(sma, NULL, -1); 1284 if(nsems > SEMMSL_FAST) { 1285 if (!ipc_rcu_getref(sma)) { 1286 sem_unlock(sma, -1); 1287 rcu_read_unlock(); 1288 err = -EIDRM; 1289 goto out_free; 1290 } 1291 sem_unlock(sma, -1); 1292 rcu_read_unlock(); 1293 sem_io = ipc_alloc(sizeof(ushort)*nsems); 1294 if(sem_io == NULL) { 1295 sem_putref(sma); 1296 return -ENOMEM; 1297 } 1298 1299 rcu_read_lock(); 1300 sem_lock_and_putref(sma); 1301 if (sma->sem_perm.deleted) { 1302 sem_unlock(sma, -1); 1303 rcu_read_unlock(); 1304 err = -EIDRM; 1305 goto out_free; 1306 } 1307 } 1308 for (i = 0; i < sma->sem_nsems; i++) 1309 sem_io[i] = sma->sem_base[i].semval; 1310 sem_unlock(sma, -1); 1311 rcu_read_unlock(); 1312 err = 0; 1313 if(copy_to_user(array, sem_io, nsems*sizeof(ushort))) 1314 err = -EFAULT; 1315 goto out_free; 1316 } 1317 case SETALL: 1318 { 1319 int i; 1320 struct sem_undo *un; 1321 1322 if (!ipc_rcu_getref(sma)) { 1323 rcu_read_unlock(); 1324 return -EIDRM; 1325 } 1326 rcu_read_unlock(); 1327 1328 if(nsems > SEMMSL_FAST) { 1329 sem_io = ipc_alloc(sizeof(ushort)*nsems); 1330 if(sem_io == NULL) { 1331 sem_putref(sma); 1332 return -ENOMEM; 1333 } 1334 } 1335 1336 if (copy_from_user (sem_io, p, nsems*sizeof(ushort))) { 1337 sem_putref(sma); 1338 err = -EFAULT; 1339 goto out_free; 1340 } 1341 1342 for (i = 0; i < nsems; i++) { 1343 if (sem_io[i] > SEMVMX) { 1344 sem_putref(sma); 1345 err = -ERANGE; 1346 goto out_free; 1347 } 1348 } 1349 rcu_read_lock(); 1350 sem_lock_and_putref(sma); 1351 if (sma->sem_perm.deleted) { 1352 sem_unlock(sma, -1); 1353 rcu_read_unlock(); 1354 err = -EIDRM; 1355 goto out_free; 1356 } 1357 1358 for (i = 0; i < nsems; i++) 1359 sma->sem_base[i].semval = sem_io[i]; 1360 1361 ipc_assert_locked_object(&sma->sem_perm); 1362 list_for_each_entry(un, &sma->list_id, list_id) { 1363 for (i = 0; i < nsems; i++) 1364 un->semadj[i] = 0; 1365 } 1366 sma->sem_ctime = get_seconds(); 1367 /* maybe some queued-up processes were waiting for this */ 1368 do_smart_update(sma, NULL, 0, 0, &tasks); 1369 err = 0; 1370 goto out_unlock; 1371 } 1372 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */ 1373 } 1374 err = -EINVAL; 1375 if (semnum < 0 || semnum >= nsems) 1376 goto out_rcu_wakeup; 1377 1378 sem_lock(sma, NULL, -1); 1379 curr = &sma->sem_base[semnum]; 1380 1381 switch (cmd) { 1382 case GETVAL: 1383 err = curr->semval; 1384 goto out_unlock; 1385 case GETPID: 1386 err = curr->sempid; 1387 goto out_unlock; 1388 case GETNCNT: 1389 err = count_semncnt(sma,semnum); 1390 goto out_unlock; 1391 case GETZCNT: 1392 err = count_semzcnt(sma,semnum); 1393 goto out_unlock; 1394 } 1395 1396 out_unlock: 1397 sem_unlock(sma, -1); 1398 out_rcu_wakeup: 1399 rcu_read_unlock(); 1400 wake_up_sem_queue_do(&tasks); 1401 out_free: 1402 if(sem_io != fast_sem_io) 1403 ipc_free(sem_io, sizeof(ushort)*nsems); 1404 return err; 1405 } 1406 1407 static inline unsigned long 1408 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) 1409 { 1410 switch(version) { 1411 case IPC_64: 1412 if (copy_from_user(out, buf, sizeof(*out))) 1413 return -EFAULT; 1414 return 0; 1415 case IPC_OLD: 1416 { 1417 struct semid_ds tbuf_old; 1418 1419 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) 1420 return -EFAULT; 1421 1422 out->sem_perm.uid = tbuf_old.sem_perm.uid; 1423 out->sem_perm.gid = tbuf_old.sem_perm.gid; 1424 out->sem_perm.mode = tbuf_old.sem_perm.mode; 1425 1426 return 0; 1427 } 1428 default: 1429 return -EINVAL; 1430 } 1431 } 1432 1433 /* 1434 * This function handles some semctl commands which require the rwsem 1435 * to be held in write mode. 1436 * NOTE: no locks must be held, the rwsem is taken inside this function. 1437 */ 1438 static int semctl_down(struct ipc_namespace *ns, int semid, 1439 int cmd, int version, void __user *p) 1440 { 1441 struct sem_array *sma; 1442 int err; 1443 struct semid64_ds semid64; 1444 struct kern_ipc_perm *ipcp; 1445 1446 if(cmd == IPC_SET) { 1447 if (copy_semid_from_user(&semid64, p, version)) 1448 return -EFAULT; 1449 } 1450 1451 down_write(&sem_ids(ns).rwsem); 1452 rcu_read_lock(); 1453 1454 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd, 1455 &semid64.sem_perm, 0); 1456 if (IS_ERR(ipcp)) { 1457 err = PTR_ERR(ipcp); 1458 goto out_unlock1; 1459 } 1460 1461 sma = container_of(ipcp, struct sem_array, sem_perm); 1462 1463 err = security_sem_semctl(sma, cmd); 1464 if (err) 1465 goto out_unlock1; 1466 1467 switch (cmd) { 1468 case IPC_RMID: 1469 sem_lock(sma, NULL, -1); 1470 /* freeary unlocks the ipc object and rcu */ 1471 freeary(ns, ipcp); 1472 goto out_up; 1473 case IPC_SET: 1474 sem_lock(sma, NULL, -1); 1475 err = ipc_update_perm(&semid64.sem_perm, ipcp); 1476 if (err) 1477 goto out_unlock0; 1478 sma->sem_ctime = get_seconds(); 1479 break; 1480 default: 1481 err = -EINVAL; 1482 goto out_unlock1; 1483 } 1484 1485 out_unlock0: 1486 sem_unlock(sma, -1); 1487 out_unlock1: 1488 rcu_read_unlock(); 1489 out_up: 1490 up_write(&sem_ids(ns).rwsem); 1491 return err; 1492 } 1493 1494 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) 1495 { 1496 int version; 1497 struct ipc_namespace *ns; 1498 void __user *p = (void __user *)arg; 1499 1500 if (semid < 0) 1501 return -EINVAL; 1502 1503 version = ipc_parse_version(&cmd); 1504 ns = current->nsproxy->ipc_ns; 1505 1506 switch(cmd) { 1507 case IPC_INFO: 1508 case SEM_INFO: 1509 case IPC_STAT: 1510 case SEM_STAT: 1511 return semctl_nolock(ns, semid, cmd, version, p); 1512 case GETALL: 1513 case GETVAL: 1514 case GETPID: 1515 case GETNCNT: 1516 case GETZCNT: 1517 case SETALL: 1518 return semctl_main(ns, semid, semnum, cmd, p); 1519 case SETVAL: 1520 return semctl_setval(ns, semid, semnum, arg); 1521 case IPC_RMID: 1522 case IPC_SET: 1523 return semctl_down(ns, semid, cmd, version, p); 1524 default: 1525 return -EINVAL; 1526 } 1527 } 1528 1529 /* If the task doesn't already have a undo_list, then allocate one 1530 * here. We guarantee there is only one thread using this undo list, 1531 * and current is THE ONE 1532 * 1533 * If this allocation and assignment succeeds, but later 1534 * portions of this code fail, there is no need to free the sem_undo_list. 1535 * Just let it stay associated with the task, and it'll be freed later 1536 * at exit time. 1537 * 1538 * This can block, so callers must hold no locks. 1539 */ 1540 static inline int get_undo_list(struct sem_undo_list **undo_listp) 1541 { 1542 struct sem_undo_list *undo_list; 1543 1544 undo_list = current->sysvsem.undo_list; 1545 if (!undo_list) { 1546 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); 1547 if (undo_list == NULL) 1548 return -ENOMEM; 1549 spin_lock_init(&undo_list->lock); 1550 atomic_set(&undo_list->refcnt, 1); 1551 INIT_LIST_HEAD(&undo_list->list_proc); 1552 1553 current->sysvsem.undo_list = undo_list; 1554 } 1555 *undo_listp = undo_list; 1556 return 0; 1557 } 1558 1559 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) 1560 { 1561 struct sem_undo *un; 1562 1563 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) { 1564 if (un->semid == semid) 1565 return un; 1566 } 1567 return NULL; 1568 } 1569 1570 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) 1571 { 1572 struct sem_undo *un; 1573 1574 assert_spin_locked(&ulp->lock); 1575 1576 un = __lookup_undo(ulp, semid); 1577 if (un) { 1578 list_del_rcu(&un->list_proc); 1579 list_add_rcu(&un->list_proc, &ulp->list_proc); 1580 } 1581 return un; 1582 } 1583 1584 /** 1585 * find_alloc_undo - Lookup (and if not present create) undo array 1586 * @ns: namespace 1587 * @semid: semaphore array id 1588 * 1589 * The function looks up (and if not present creates) the undo structure. 1590 * The size of the undo structure depends on the size of the semaphore 1591 * array, thus the alloc path is not that straightforward. 1592 * Lifetime-rules: sem_undo is rcu-protected, on success, the function 1593 * performs a rcu_read_lock(). 1594 */ 1595 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) 1596 { 1597 struct sem_array *sma; 1598 struct sem_undo_list *ulp; 1599 struct sem_undo *un, *new; 1600 int nsems, error; 1601 1602 error = get_undo_list(&ulp); 1603 if (error) 1604 return ERR_PTR(error); 1605 1606 rcu_read_lock(); 1607 spin_lock(&ulp->lock); 1608 un = lookup_undo(ulp, semid); 1609 spin_unlock(&ulp->lock); 1610 if (likely(un!=NULL)) 1611 goto out; 1612 1613 /* no undo structure around - allocate one. */ 1614 /* step 1: figure out the size of the semaphore array */ 1615 sma = sem_obtain_object_check(ns, semid); 1616 if (IS_ERR(sma)) { 1617 rcu_read_unlock(); 1618 return ERR_CAST(sma); 1619 } 1620 1621 nsems = sma->sem_nsems; 1622 if (!ipc_rcu_getref(sma)) { 1623 rcu_read_unlock(); 1624 un = ERR_PTR(-EIDRM); 1625 goto out; 1626 } 1627 rcu_read_unlock(); 1628 1629 /* step 2: allocate new undo structure */ 1630 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); 1631 if (!new) { 1632 sem_putref(sma); 1633 return ERR_PTR(-ENOMEM); 1634 } 1635 1636 /* step 3: Acquire the lock on semaphore array */ 1637 rcu_read_lock(); 1638 sem_lock_and_putref(sma); 1639 if (sma->sem_perm.deleted) { 1640 sem_unlock(sma, -1); 1641 rcu_read_unlock(); 1642 kfree(new); 1643 un = ERR_PTR(-EIDRM); 1644 goto out; 1645 } 1646 spin_lock(&ulp->lock); 1647 1648 /* 1649 * step 4: check for races: did someone else allocate the undo struct? 1650 */ 1651 un = lookup_undo(ulp, semid); 1652 if (un) { 1653 kfree(new); 1654 goto success; 1655 } 1656 /* step 5: initialize & link new undo structure */ 1657 new->semadj = (short *) &new[1]; 1658 new->ulp = ulp; 1659 new->semid = semid; 1660 assert_spin_locked(&ulp->lock); 1661 list_add_rcu(&new->list_proc, &ulp->list_proc); 1662 ipc_assert_locked_object(&sma->sem_perm); 1663 list_add(&new->list_id, &sma->list_id); 1664 un = new; 1665 1666 success: 1667 spin_unlock(&ulp->lock); 1668 sem_unlock(sma, -1); 1669 out: 1670 return un; 1671 } 1672 1673 1674 /** 1675 * get_queue_result - Retrieve the result code from sem_queue 1676 * @q: Pointer to queue structure 1677 * 1678 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in 1679 * q->status, then we must loop until the value is replaced with the final 1680 * value: This may happen if a task is woken up by an unrelated event (e.g. 1681 * signal) and in parallel the task is woken up by another task because it got 1682 * the requested semaphores. 1683 * 1684 * The function can be called with or without holding the semaphore spinlock. 1685 */ 1686 static int get_queue_result(struct sem_queue *q) 1687 { 1688 int error; 1689 1690 error = q->status; 1691 while (unlikely(error == IN_WAKEUP)) { 1692 cpu_relax(); 1693 error = q->status; 1694 } 1695 1696 return error; 1697 } 1698 1699 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, 1700 unsigned, nsops, const struct timespec __user *, timeout) 1701 { 1702 int error = -EINVAL; 1703 struct sem_array *sma; 1704 struct sembuf fast_sops[SEMOPM_FAST]; 1705 struct sembuf* sops = fast_sops, *sop; 1706 struct sem_undo *un; 1707 int undos = 0, alter = 0, max, locknum; 1708 struct sem_queue queue; 1709 unsigned long jiffies_left = 0; 1710 struct ipc_namespace *ns; 1711 struct list_head tasks; 1712 1713 ns = current->nsproxy->ipc_ns; 1714 1715 if (nsops < 1 || semid < 0) 1716 return -EINVAL; 1717 if (nsops > ns->sc_semopm) 1718 return -E2BIG; 1719 if(nsops > SEMOPM_FAST) { 1720 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL); 1721 if(sops==NULL) 1722 return -ENOMEM; 1723 } 1724 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) { 1725 error=-EFAULT; 1726 goto out_free; 1727 } 1728 if (timeout) { 1729 struct timespec _timeout; 1730 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) { 1731 error = -EFAULT; 1732 goto out_free; 1733 } 1734 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 || 1735 _timeout.tv_nsec >= 1000000000L) { 1736 error = -EINVAL; 1737 goto out_free; 1738 } 1739 jiffies_left = timespec_to_jiffies(&_timeout); 1740 } 1741 max = 0; 1742 for (sop = sops; sop < sops + nsops; sop++) { 1743 if (sop->sem_num >= max) 1744 max = sop->sem_num; 1745 if (sop->sem_flg & SEM_UNDO) 1746 undos = 1; 1747 if (sop->sem_op != 0) 1748 alter = 1; 1749 } 1750 1751 INIT_LIST_HEAD(&tasks); 1752 1753 if (undos) { 1754 /* On success, find_alloc_undo takes the rcu_read_lock */ 1755 un = find_alloc_undo(ns, semid); 1756 if (IS_ERR(un)) { 1757 error = PTR_ERR(un); 1758 goto out_free; 1759 } 1760 } else { 1761 un = NULL; 1762 rcu_read_lock(); 1763 } 1764 1765 sma = sem_obtain_object_check(ns, semid); 1766 if (IS_ERR(sma)) { 1767 rcu_read_unlock(); 1768 error = PTR_ERR(sma); 1769 goto out_free; 1770 } 1771 1772 error = -EFBIG; 1773 if (max >= sma->sem_nsems) 1774 goto out_rcu_wakeup; 1775 1776 error = -EACCES; 1777 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) 1778 goto out_rcu_wakeup; 1779 1780 error = security_sem_semop(sma, sops, nsops, alter); 1781 if (error) 1782 goto out_rcu_wakeup; 1783 1784 /* 1785 * semid identifiers are not unique - find_alloc_undo may have 1786 * allocated an undo structure, it was invalidated by an RMID 1787 * and now a new array with received the same id. Check and fail. 1788 * This case can be detected checking un->semid. The existence of 1789 * "un" itself is guaranteed by rcu. 1790 */ 1791 error = -EIDRM; 1792 locknum = sem_lock(sma, sops, nsops); 1793 if (un && un->semid == -1) 1794 goto out_unlock_free; 1795 1796 error = perform_atomic_semop(sma, sops, nsops, un, 1797 task_tgid_vnr(current)); 1798 if (error <= 0) { 1799 if (alter && error == 0) 1800 do_smart_update(sma, sops, nsops, 1, &tasks); 1801 1802 goto out_unlock_free; 1803 } 1804 1805 /* We need to sleep on this operation, so we put the current 1806 * task into the pending queue and go to sleep. 1807 */ 1808 1809 queue.sops = sops; 1810 queue.nsops = nsops; 1811 queue.undo = un; 1812 queue.pid = task_tgid_vnr(current); 1813 queue.alter = alter; 1814 1815 if (nsops == 1) { 1816 struct sem *curr; 1817 curr = &sma->sem_base[sops->sem_num]; 1818 1819 if (alter) { 1820 if (sma->complex_count) { 1821 list_add_tail(&queue.list, 1822 &sma->pending_alter); 1823 } else { 1824 1825 list_add_tail(&queue.list, 1826 &curr->pending_alter); 1827 } 1828 } else { 1829 list_add_tail(&queue.list, &curr->pending_const); 1830 } 1831 } else { 1832 if (!sma->complex_count) 1833 merge_queues(sma); 1834 1835 if (alter) 1836 list_add_tail(&queue.list, &sma->pending_alter); 1837 else 1838 list_add_tail(&queue.list, &sma->pending_const); 1839 1840 sma->complex_count++; 1841 } 1842 1843 queue.status = -EINTR; 1844 queue.sleeper = current; 1845 1846 sleep_again: 1847 current->state = TASK_INTERRUPTIBLE; 1848 sem_unlock(sma, locknum); 1849 rcu_read_unlock(); 1850 1851 if (timeout) 1852 jiffies_left = schedule_timeout(jiffies_left); 1853 else 1854 schedule(); 1855 1856 error = get_queue_result(&queue); 1857 1858 if (error != -EINTR) { 1859 /* fast path: update_queue already obtained all requested 1860 * resources. 1861 * Perform a smp_mb(): User space could assume that semop() 1862 * is a memory barrier: Without the mb(), the cpu could 1863 * speculatively read in user space stale data that was 1864 * overwritten by the previous owner of the semaphore. 1865 */ 1866 smp_mb(); 1867 1868 goto out_free; 1869 } 1870 1871 rcu_read_lock(); 1872 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum); 1873 1874 /* 1875 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing. 1876 */ 1877 error = get_queue_result(&queue); 1878 1879 /* 1880 * Array removed? If yes, leave without sem_unlock(). 1881 */ 1882 if (IS_ERR(sma)) { 1883 rcu_read_unlock(); 1884 goto out_free; 1885 } 1886 1887 1888 /* 1889 * If queue.status != -EINTR we are woken up by another process. 1890 * Leave without unlink_queue(), but with sem_unlock(). 1891 */ 1892 1893 if (error != -EINTR) { 1894 goto out_unlock_free; 1895 } 1896 1897 /* 1898 * If an interrupt occurred we have to clean up the queue 1899 */ 1900 if (timeout && jiffies_left == 0) 1901 error = -EAGAIN; 1902 1903 /* 1904 * If the wakeup was spurious, just retry 1905 */ 1906 if (error == -EINTR && !signal_pending(current)) 1907 goto sleep_again; 1908 1909 unlink_queue(sma, &queue); 1910 1911 out_unlock_free: 1912 sem_unlock(sma, locknum); 1913 out_rcu_wakeup: 1914 rcu_read_unlock(); 1915 wake_up_sem_queue_do(&tasks); 1916 out_free: 1917 if(sops != fast_sops) 1918 kfree(sops); 1919 return error; 1920 } 1921 1922 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, 1923 unsigned, nsops) 1924 { 1925 return sys_semtimedop(semid, tsops, nsops, NULL); 1926 } 1927 1928 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between 1929 * parent and child tasks. 1930 */ 1931 1932 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) 1933 { 1934 struct sem_undo_list *undo_list; 1935 int error; 1936 1937 if (clone_flags & CLONE_SYSVSEM) { 1938 error = get_undo_list(&undo_list); 1939 if (error) 1940 return error; 1941 atomic_inc(&undo_list->refcnt); 1942 tsk->sysvsem.undo_list = undo_list; 1943 } else 1944 tsk->sysvsem.undo_list = NULL; 1945 1946 return 0; 1947 } 1948 1949 /* 1950 * add semadj values to semaphores, free undo structures. 1951 * undo structures are not freed when semaphore arrays are destroyed 1952 * so some of them may be out of date. 1953 * IMPLEMENTATION NOTE: There is some confusion over whether the 1954 * set of adjustments that needs to be done should be done in an atomic 1955 * manner or not. That is, if we are attempting to decrement the semval 1956 * should we queue up and wait until we can do so legally? 1957 * The original implementation attempted to do this (queue and wait). 1958 * The current implementation does not do so. The POSIX standard 1959 * and SVID should be consulted to determine what behavior is mandated. 1960 */ 1961 void exit_sem(struct task_struct *tsk) 1962 { 1963 struct sem_undo_list *ulp; 1964 1965 ulp = tsk->sysvsem.undo_list; 1966 if (!ulp) 1967 return; 1968 tsk->sysvsem.undo_list = NULL; 1969 1970 if (!atomic_dec_and_test(&ulp->refcnt)) 1971 return; 1972 1973 for (;;) { 1974 struct sem_array *sma; 1975 struct sem_undo *un; 1976 struct list_head tasks; 1977 int semid, i; 1978 1979 rcu_read_lock(); 1980 un = list_entry_rcu(ulp->list_proc.next, 1981 struct sem_undo, list_proc); 1982 if (&un->list_proc == &ulp->list_proc) 1983 semid = -1; 1984 else 1985 semid = un->semid; 1986 1987 if (semid == -1) { 1988 rcu_read_unlock(); 1989 break; 1990 } 1991 1992 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid); 1993 /* exit_sem raced with IPC_RMID, nothing to do */ 1994 if (IS_ERR(sma)) { 1995 rcu_read_unlock(); 1996 continue; 1997 } 1998 1999 sem_lock(sma, NULL, -1); 2000 un = __lookup_undo(ulp, semid); 2001 if (un == NULL) { 2002 /* exit_sem raced with IPC_RMID+semget() that created 2003 * exactly the same semid. Nothing to do. 2004 */ 2005 sem_unlock(sma, -1); 2006 rcu_read_unlock(); 2007 continue; 2008 } 2009 2010 /* remove un from the linked lists */ 2011 ipc_assert_locked_object(&sma->sem_perm); 2012 list_del(&un->list_id); 2013 2014 spin_lock(&ulp->lock); 2015 list_del_rcu(&un->list_proc); 2016 spin_unlock(&ulp->lock); 2017 2018 /* perform adjustments registered in un */ 2019 for (i = 0; i < sma->sem_nsems; i++) { 2020 struct sem * semaphore = &sma->sem_base[i]; 2021 if (un->semadj[i]) { 2022 semaphore->semval += un->semadj[i]; 2023 /* 2024 * Range checks of the new semaphore value, 2025 * not defined by sus: 2026 * - Some unices ignore the undo entirely 2027 * (e.g. HP UX 11i 11.22, Tru64 V5.1) 2028 * - some cap the value (e.g. FreeBSD caps 2029 * at 0, but doesn't enforce SEMVMX) 2030 * 2031 * Linux caps the semaphore value, both at 0 2032 * and at SEMVMX. 2033 * 2034 * Manfred <manfred@colorfullife.com> 2035 */ 2036 if (semaphore->semval < 0) 2037 semaphore->semval = 0; 2038 if (semaphore->semval > SEMVMX) 2039 semaphore->semval = SEMVMX; 2040 semaphore->sempid = task_tgid_vnr(current); 2041 } 2042 } 2043 /* maybe some queued-up processes were waiting for this */ 2044 INIT_LIST_HEAD(&tasks); 2045 do_smart_update(sma, NULL, 0, 1, &tasks); 2046 sem_unlock(sma, -1); 2047 rcu_read_unlock(); 2048 wake_up_sem_queue_do(&tasks); 2049 2050 kfree_rcu(un, rcu); 2051 } 2052 kfree(ulp); 2053 } 2054 2055 #ifdef CONFIG_PROC_FS 2056 static int sysvipc_sem_proc_show(struct seq_file *s, void *it) 2057 { 2058 struct user_namespace *user_ns = seq_user_ns(s); 2059 struct sem_array *sma = it; 2060 time_t sem_otime; 2061 2062 sem_otime = get_semotime(sma); 2063 2064 return seq_printf(s, 2065 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n", 2066 sma->sem_perm.key, 2067 sma->sem_perm.id, 2068 sma->sem_perm.mode, 2069 sma->sem_nsems, 2070 from_kuid_munged(user_ns, sma->sem_perm.uid), 2071 from_kgid_munged(user_ns, sma->sem_perm.gid), 2072 from_kuid_munged(user_ns, sma->sem_perm.cuid), 2073 from_kgid_munged(user_ns, sma->sem_perm.cgid), 2074 sem_otime, 2075 sma->sem_ctime); 2076 } 2077 #endif 2078