xref: /openbmc/linux/ipc/sem.c (revision a0ae2562c6c4b2721d9fddba63b7286c13517d9f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/ipc/sem.c
4  * Copyright (C) 1992 Krishna Balasubramanian
5  * Copyright (C) 1995 Eric Schenk, Bruno Haible
6  *
7  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8  *
9  * SMP-threaded, sysctl's added
10  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11  * Enforced range limit on SEM_UNDO
12  * (c) 2001 Red Hat Inc
13  * Lockless wakeup
14  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15  * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16  * Further wakeup optimizations, documentation
17  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
18  *
19  * support for audit of ipc object properties and permission changes
20  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
21  *
22  * namespaces support
23  * OpenVZ, SWsoft Inc.
24  * Pavel Emelianov <xemul@openvz.org>
25  *
26  * Implementation notes: (May 2010)
27  * This file implements System V semaphores.
28  *
29  * User space visible behavior:
30  * - FIFO ordering for semop() operations (just FIFO, not starvation
31  *   protection)
32  * - multiple semaphore operations that alter the same semaphore in
33  *   one semop() are handled.
34  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35  *   SETALL calls.
36  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37  * - undo adjustments at process exit are limited to 0..SEMVMX.
38  * - namespace are supported.
39  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40  *   to /proc/sys/kernel/sem.
41  * - statistics about the usage are reported in /proc/sysvipc/sem.
42  *
43  * Internals:
44  * - scalability:
45  *   - all global variables are read-mostly.
46  *   - semop() calls and semctl(RMID) are synchronized by RCU.
47  *   - most operations do write operations (actually: spin_lock calls) to
48  *     the per-semaphore array structure.
49  *   Thus: Perfect SMP scaling between independent semaphore arrays.
50  *         If multiple semaphores in one array are used, then cache line
51  *         trashing on the semaphore array spinlock will limit the scaling.
52  * - semncnt and semzcnt are calculated on demand in count_semcnt()
53  * - the task that performs a successful semop() scans the list of all
54  *   sleeping tasks and completes any pending operations that can be fulfilled.
55  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
56  *   (see update_queue())
57  * - To improve the scalability, the actual wake-up calls are performed after
58  *   dropping all locks. (see wake_up_sem_queue_prepare())
59  * - All work is done by the waker, the woken up task does not have to do
60  *   anything - not even acquiring a lock or dropping a refcount.
61  * - A woken up task may not even touch the semaphore array anymore, it may
62  *   have been destroyed already by a semctl(RMID).
63  * - UNDO values are stored in an array (one per process and per
64  *   semaphore array, lazily allocated). For backwards compatibility, multiple
65  *   modes for the UNDO variables are supported (per process, per thread)
66  *   (see copy_semundo, CLONE_SYSVSEM)
67  * - There are two lists of the pending operations: a per-array list
68  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
69  *   ordering without always scanning all pending operations.
70  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
71  */
72 
73 #include <linux/compat.h>
74 #include <linux/slab.h>
75 #include <linux/spinlock.h>
76 #include <linux/init.h>
77 #include <linux/proc_fs.h>
78 #include <linux/time.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/audit.h>
82 #include <linux/capability.h>
83 #include <linux/seq_file.h>
84 #include <linux/rwsem.h>
85 #include <linux/nsproxy.h>
86 #include <linux/ipc_namespace.h>
87 #include <linux/sched/wake_q.h>
88 #include <linux/nospec.h>
89 #include <linux/rhashtable.h>
90 
91 #include <linux/uaccess.h>
92 #include "util.h"
93 
94 /* One semaphore structure for each semaphore in the system. */
95 struct sem {
96 	int	semval;		/* current value */
97 	/*
98 	 * PID of the process that last modified the semaphore. For
99 	 * Linux, specifically these are:
100 	 *  - semop
101 	 *  - semctl, via SETVAL and SETALL.
102 	 *  - at task exit when performing undo adjustments (see exit_sem).
103 	 */
104 	struct pid *sempid;
105 	spinlock_t	lock;	/* spinlock for fine-grained semtimedop */
106 	struct list_head pending_alter; /* pending single-sop operations */
107 					/* that alter the semaphore */
108 	struct list_head pending_const; /* pending single-sop operations */
109 					/* that do not alter the semaphore*/
110 	time64_t	 sem_otime;	/* candidate for sem_otime */
111 } ____cacheline_aligned_in_smp;
112 
113 /* One sem_array data structure for each set of semaphores in the system. */
114 struct sem_array {
115 	struct kern_ipc_perm	sem_perm;	/* permissions .. see ipc.h */
116 	time64_t		sem_ctime;	/* create/last semctl() time */
117 	struct list_head	pending_alter;	/* pending operations */
118 						/* that alter the array */
119 	struct list_head	pending_const;	/* pending complex operations */
120 						/* that do not alter semvals */
121 	struct list_head	list_id;	/* undo requests on this array */
122 	int			sem_nsems;	/* no. of semaphores in array */
123 	int			complex_count;	/* pending complex operations */
124 	unsigned int		use_global_lock;/* >0: global lock required */
125 
126 	struct sem		sems[];
127 } __randomize_layout;
128 
129 /* One queue for each sleeping process in the system. */
130 struct sem_queue {
131 	struct list_head	list;	 /* queue of pending operations */
132 	struct task_struct	*sleeper; /* this process */
133 	struct sem_undo		*undo;	 /* undo structure */
134 	struct pid		*pid;	 /* process id of requesting process */
135 	int			status;	 /* completion status of operation */
136 	struct sembuf		*sops;	 /* array of pending operations */
137 	struct sembuf		*blocking; /* the operation that blocked */
138 	int			nsops;	 /* number of operations */
139 	bool			alter;	 /* does *sops alter the array? */
140 	bool                    dupsop;	 /* sops on more than one sem_num */
141 };
142 
143 /* Each task has a list of undo requests. They are executed automatically
144  * when the process exits.
145  */
146 struct sem_undo {
147 	struct list_head	list_proc;	/* per-process list: *
148 						 * all undos from one process
149 						 * rcu protected */
150 	struct rcu_head		rcu;		/* rcu struct for sem_undo */
151 	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
152 	struct list_head	list_id;	/* per semaphore array list:
153 						 * all undos for one array */
154 	int			semid;		/* semaphore set identifier */
155 	short			*semadj;	/* array of adjustments */
156 						/* one per semaphore */
157 };
158 
159 /* sem_undo_list controls shared access to the list of sem_undo structures
160  * that may be shared among all a CLONE_SYSVSEM task group.
161  */
162 struct sem_undo_list {
163 	refcount_t		refcnt;
164 	spinlock_t		lock;
165 	struct list_head	list_proc;
166 };
167 
168 
169 #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
170 
171 static int newary(struct ipc_namespace *, struct ipc_params *);
172 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
173 #ifdef CONFIG_PROC_FS
174 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
175 #endif
176 
177 #define SEMMSL_FAST	256 /* 512 bytes on stack */
178 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
179 
180 /*
181  * Switching from the mode suitable for simple ops
182  * to the mode for complex ops is costly. Therefore:
183  * use some hysteresis
184  */
185 #define USE_GLOBAL_LOCK_HYSTERESIS	10
186 
187 /*
188  * Locking:
189  * a) global sem_lock() for read/write
190  *	sem_undo.id_next,
191  *	sem_array.complex_count,
192  *	sem_array.pending{_alter,_const},
193  *	sem_array.sem_undo
194  *
195  * b) global or semaphore sem_lock() for read/write:
196  *	sem_array.sems[i].pending_{const,alter}:
197  *
198  * c) special:
199  *	sem_undo_list.list_proc:
200  *	* undo_list->lock for write
201  *	* rcu for read
202  *	use_global_lock:
203  *	* global sem_lock() for write
204  *	* either local or global sem_lock() for read.
205  *
206  * Memory ordering:
207  * Most ordering is enforced by using spin_lock() and spin_unlock().
208  * The special case is use_global_lock:
209  * Setting it from non-zero to 0 is a RELEASE, this is ensured by
210  * using smp_store_release().
211  * Testing if it is non-zero is an ACQUIRE, this is ensured by using
212  * smp_load_acquire().
213  * Setting it from 0 to non-zero must be ordered with regards to
214  * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
215  * is inside a spin_lock() and after a write from 0 to non-zero a
216  * spin_lock()+spin_unlock() is done.
217  */
218 
219 #define sc_semmsl	sem_ctls[0]
220 #define sc_semmns	sem_ctls[1]
221 #define sc_semopm	sem_ctls[2]
222 #define sc_semmni	sem_ctls[3]
223 
224 int sem_init_ns(struct ipc_namespace *ns)
225 {
226 	ns->sc_semmsl = SEMMSL;
227 	ns->sc_semmns = SEMMNS;
228 	ns->sc_semopm = SEMOPM;
229 	ns->sc_semmni = SEMMNI;
230 	ns->used_sems = 0;
231 	return ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
232 }
233 
234 #ifdef CONFIG_IPC_NS
235 void sem_exit_ns(struct ipc_namespace *ns)
236 {
237 	free_ipcs(ns, &sem_ids(ns), freeary);
238 	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
239 	rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
240 }
241 #endif
242 
243 int __init sem_init(void)
244 {
245 	const int err = sem_init_ns(&init_ipc_ns);
246 
247 	ipc_init_proc_interface("sysvipc/sem",
248 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
249 				IPC_SEM_IDS, sysvipc_sem_proc_show);
250 	return err;
251 }
252 
253 /**
254  * unmerge_queues - unmerge queues, if possible.
255  * @sma: semaphore array
256  *
257  * The function unmerges the wait queues if complex_count is 0.
258  * It must be called prior to dropping the global semaphore array lock.
259  */
260 static void unmerge_queues(struct sem_array *sma)
261 {
262 	struct sem_queue *q, *tq;
263 
264 	/* complex operations still around? */
265 	if (sma->complex_count)
266 		return;
267 	/*
268 	 * We will switch back to simple mode.
269 	 * Move all pending operation back into the per-semaphore
270 	 * queues.
271 	 */
272 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
273 		struct sem *curr;
274 		curr = &sma->sems[q->sops[0].sem_num];
275 
276 		list_add_tail(&q->list, &curr->pending_alter);
277 	}
278 	INIT_LIST_HEAD(&sma->pending_alter);
279 }
280 
281 /**
282  * merge_queues - merge single semop queues into global queue
283  * @sma: semaphore array
284  *
285  * This function merges all per-semaphore queues into the global queue.
286  * It is necessary to achieve FIFO ordering for the pending single-sop
287  * operations when a multi-semop operation must sleep.
288  * Only the alter operations must be moved, the const operations can stay.
289  */
290 static void merge_queues(struct sem_array *sma)
291 {
292 	int i;
293 	for (i = 0; i < sma->sem_nsems; i++) {
294 		struct sem *sem = &sma->sems[i];
295 
296 		list_splice_init(&sem->pending_alter, &sma->pending_alter);
297 	}
298 }
299 
300 static void sem_rcu_free(struct rcu_head *head)
301 {
302 	struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
303 	struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
304 
305 	security_sem_free(&sma->sem_perm);
306 	kvfree(sma);
307 }
308 
309 /*
310  * Enter the mode suitable for non-simple operations:
311  * Caller must own sem_perm.lock.
312  */
313 static void complexmode_enter(struct sem_array *sma)
314 {
315 	int i;
316 	struct sem *sem;
317 
318 	if (sma->use_global_lock > 0)  {
319 		/*
320 		 * We are already in global lock mode.
321 		 * Nothing to do, just reset the
322 		 * counter until we return to simple mode.
323 		 */
324 		sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
325 		return;
326 	}
327 	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
328 
329 	for (i = 0; i < sma->sem_nsems; i++) {
330 		sem = &sma->sems[i];
331 		spin_lock(&sem->lock);
332 		spin_unlock(&sem->lock);
333 	}
334 }
335 
336 /*
337  * Try to leave the mode that disallows simple operations:
338  * Caller must own sem_perm.lock.
339  */
340 static void complexmode_tryleave(struct sem_array *sma)
341 {
342 	if (sma->complex_count)  {
343 		/* Complex ops are sleeping.
344 		 * We must stay in complex mode
345 		 */
346 		return;
347 	}
348 	if (sma->use_global_lock == 1) {
349 		/*
350 		 * Immediately after setting use_global_lock to 0,
351 		 * a simple op can start. Thus: all memory writes
352 		 * performed by the current operation must be visible
353 		 * before we set use_global_lock to 0.
354 		 */
355 		smp_store_release(&sma->use_global_lock, 0);
356 	} else {
357 		sma->use_global_lock--;
358 	}
359 }
360 
361 #define SEM_GLOBAL_LOCK	(-1)
362 /*
363  * If the request contains only one semaphore operation, and there are
364  * no complex transactions pending, lock only the semaphore involved.
365  * Otherwise, lock the entire semaphore array, since we either have
366  * multiple semaphores in our own semops, or we need to look at
367  * semaphores from other pending complex operations.
368  */
369 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
370 			      int nsops)
371 {
372 	struct sem *sem;
373 	int idx;
374 
375 	if (nsops != 1) {
376 		/* Complex operation - acquire a full lock */
377 		ipc_lock_object(&sma->sem_perm);
378 
379 		/* Prevent parallel simple ops */
380 		complexmode_enter(sma);
381 		return SEM_GLOBAL_LOCK;
382 	}
383 
384 	/*
385 	 * Only one semaphore affected - try to optimize locking.
386 	 * Optimized locking is possible if no complex operation
387 	 * is either enqueued or processed right now.
388 	 *
389 	 * Both facts are tracked by use_global_mode.
390 	 */
391 	idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
392 	sem = &sma->sems[idx];
393 
394 	/*
395 	 * Initial check for use_global_lock. Just an optimization,
396 	 * no locking, no memory barrier.
397 	 */
398 	if (!sma->use_global_lock) {
399 		/*
400 		 * It appears that no complex operation is around.
401 		 * Acquire the per-semaphore lock.
402 		 */
403 		spin_lock(&sem->lock);
404 
405 		/* pairs with smp_store_release() */
406 		if (!smp_load_acquire(&sma->use_global_lock)) {
407 			/* fast path successful! */
408 			return sops->sem_num;
409 		}
410 		spin_unlock(&sem->lock);
411 	}
412 
413 	/* slow path: acquire the full lock */
414 	ipc_lock_object(&sma->sem_perm);
415 
416 	if (sma->use_global_lock == 0) {
417 		/*
418 		 * The use_global_lock mode ended while we waited for
419 		 * sma->sem_perm.lock. Thus we must switch to locking
420 		 * with sem->lock.
421 		 * Unlike in the fast path, there is no need to recheck
422 		 * sma->use_global_lock after we have acquired sem->lock:
423 		 * We own sma->sem_perm.lock, thus use_global_lock cannot
424 		 * change.
425 		 */
426 		spin_lock(&sem->lock);
427 
428 		ipc_unlock_object(&sma->sem_perm);
429 		return sops->sem_num;
430 	} else {
431 		/*
432 		 * Not a false alarm, thus continue to use the global lock
433 		 * mode. No need for complexmode_enter(), this was done by
434 		 * the caller that has set use_global_mode to non-zero.
435 		 */
436 		return SEM_GLOBAL_LOCK;
437 	}
438 }
439 
440 static inline void sem_unlock(struct sem_array *sma, int locknum)
441 {
442 	if (locknum == SEM_GLOBAL_LOCK) {
443 		unmerge_queues(sma);
444 		complexmode_tryleave(sma);
445 		ipc_unlock_object(&sma->sem_perm);
446 	} else {
447 		struct sem *sem = &sma->sems[locknum];
448 		spin_unlock(&sem->lock);
449 	}
450 }
451 
452 /*
453  * sem_lock_(check_) routines are called in the paths where the rwsem
454  * is not held.
455  *
456  * The caller holds the RCU read lock.
457  */
458 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
459 {
460 	struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
461 
462 	if (IS_ERR(ipcp))
463 		return ERR_CAST(ipcp);
464 
465 	return container_of(ipcp, struct sem_array, sem_perm);
466 }
467 
468 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
469 							int id)
470 {
471 	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
472 
473 	if (IS_ERR(ipcp))
474 		return ERR_CAST(ipcp);
475 
476 	return container_of(ipcp, struct sem_array, sem_perm);
477 }
478 
479 static inline void sem_lock_and_putref(struct sem_array *sma)
480 {
481 	sem_lock(sma, NULL, -1);
482 	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
483 }
484 
485 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
486 {
487 	ipc_rmid(&sem_ids(ns), &s->sem_perm);
488 }
489 
490 static struct sem_array *sem_alloc(size_t nsems)
491 {
492 	struct sem_array *sma;
493 	size_t size;
494 
495 	if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
496 		return NULL;
497 
498 	size = sizeof(*sma) + nsems * sizeof(sma->sems[0]);
499 	sma = kvmalloc(size, GFP_KERNEL);
500 	if (unlikely(!sma))
501 		return NULL;
502 
503 	memset(sma, 0, size);
504 
505 	return sma;
506 }
507 
508 /**
509  * newary - Create a new semaphore set
510  * @ns: namespace
511  * @params: ptr to the structure that contains key, semflg and nsems
512  *
513  * Called with sem_ids.rwsem held (as a writer)
514  */
515 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
516 {
517 	int retval;
518 	struct sem_array *sma;
519 	key_t key = params->key;
520 	int nsems = params->u.nsems;
521 	int semflg = params->flg;
522 	int i;
523 
524 	if (!nsems)
525 		return -EINVAL;
526 	if (ns->used_sems + nsems > ns->sc_semmns)
527 		return -ENOSPC;
528 
529 	sma = sem_alloc(nsems);
530 	if (!sma)
531 		return -ENOMEM;
532 
533 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
534 	sma->sem_perm.key = key;
535 
536 	sma->sem_perm.security = NULL;
537 	retval = security_sem_alloc(&sma->sem_perm);
538 	if (retval) {
539 		kvfree(sma);
540 		return retval;
541 	}
542 
543 	for (i = 0; i < nsems; i++) {
544 		INIT_LIST_HEAD(&sma->sems[i].pending_alter);
545 		INIT_LIST_HEAD(&sma->sems[i].pending_const);
546 		spin_lock_init(&sma->sems[i].lock);
547 	}
548 
549 	sma->complex_count = 0;
550 	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
551 	INIT_LIST_HEAD(&sma->pending_alter);
552 	INIT_LIST_HEAD(&sma->pending_const);
553 	INIT_LIST_HEAD(&sma->list_id);
554 	sma->sem_nsems = nsems;
555 	sma->sem_ctime = ktime_get_real_seconds();
556 
557 	/* ipc_addid() locks sma upon success. */
558 	retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
559 	if (retval < 0) {
560 		call_rcu(&sma->sem_perm.rcu, sem_rcu_free);
561 		return retval;
562 	}
563 	ns->used_sems += nsems;
564 
565 	sem_unlock(sma, -1);
566 	rcu_read_unlock();
567 
568 	return sma->sem_perm.id;
569 }
570 
571 
572 /*
573  * Called with sem_ids.rwsem and ipcp locked.
574  */
575 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
576 				struct ipc_params *params)
577 {
578 	struct sem_array *sma;
579 
580 	sma = container_of(ipcp, struct sem_array, sem_perm);
581 	if (params->u.nsems > sma->sem_nsems)
582 		return -EINVAL;
583 
584 	return 0;
585 }
586 
587 long ksys_semget(key_t key, int nsems, int semflg)
588 {
589 	struct ipc_namespace *ns;
590 	static const struct ipc_ops sem_ops = {
591 		.getnew = newary,
592 		.associate = security_sem_associate,
593 		.more_checks = sem_more_checks,
594 	};
595 	struct ipc_params sem_params;
596 
597 	ns = current->nsproxy->ipc_ns;
598 
599 	if (nsems < 0 || nsems > ns->sc_semmsl)
600 		return -EINVAL;
601 
602 	sem_params.key = key;
603 	sem_params.flg = semflg;
604 	sem_params.u.nsems = nsems;
605 
606 	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
607 }
608 
609 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
610 {
611 	return ksys_semget(key, nsems, semflg);
612 }
613 
614 /**
615  * perform_atomic_semop[_slow] - Attempt to perform semaphore
616  *                               operations on a given array.
617  * @sma: semaphore array
618  * @q: struct sem_queue that describes the operation
619  *
620  * Caller blocking are as follows, based the value
621  * indicated by the semaphore operation (sem_op):
622  *
623  *  (1) >0 never blocks.
624  *  (2)  0 (wait-for-zero operation): semval is non-zero.
625  *  (3) <0 attempting to decrement semval to a value smaller than zero.
626  *
627  * Returns 0 if the operation was possible.
628  * Returns 1 if the operation is impossible, the caller must sleep.
629  * Returns <0 for error codes.
630  */
631 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
632 {
633 	int result, sem_op, nsops;
634 	struct pid *pid;
635 	struct sembuf *sop;
636 	struct sem *curr;
637 	struct sembuf *sops;
638 	struct sem_undo *un;
639 
640 	sops = q->sops;
641 	nsops = q->nsops;
642 	un = q->undo;
643 
644 	for (sop = sops; sop < sops + nsops; sop++) {
645 		int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
646 		curr = &sma->sems[idx];
647 		sem_op = sop->sem_op;
648 		result = curr->semval;
649 
650 		if (!sem_op && result)
651 			goto would_block;
652 
653 		result += sem_op;
654 		if (result < 0)
655 			goto would_block;
656 		if (result > SEMVMX)
657 			goto out_of_range;
658 
659 		if (sop->sem_flg & SEM_UNDO) {
660 			int undo = un->semadj[sop->sem_num] - sem_op;
661 			/* Exceeding the undo range is an error. */
662 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
663 				goto out_of_range;
664 			un->semadj[sop->sem_num] = undo;
665 		}
666 
667 		curr->semval = result;
668 	}
669 
670 	sop--;
671 	pid = q->pid;
672 	while (sop >= sops) {
673 		ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
674 		sop--;
675 	}
676 
677 	return 0;
678 
679 out_of_range:
680 	result = -ERANGE;
681 	goto undo;
682 
683 would_block:
684 	q->blocking = sop;
685 
686 	if (sop->sem_flg & IPC_NOWAIT)
687 		result = -EAGAIN;
688 	else
689 		result = 1;
690 
691 undo:
692 	sop--;
693 	while (sop >= sops) {
694 		sem_op = sop->sem_op;
695 		sma->sems[sop->sem_num].semval -= sem_op;
696 		if (sop->sem_flg & SEM_UNDO)
697 			un->semadj[sop->sem_num] += sem_op;
698 		sop--;
699 	}
700 
701 	return result;
702 }
703 
704 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
705 {
706 	int result, sem_op, nsops;
707 	struct sembuf *sop;
708 	struct sem *curr;
709 	struct sembuf *sops;
710 	struct sem_undo *un;
711 
712 	sops = q->sops;
713 	nsops = q->nsops;
714 	un = q->undo;
715 
716 	if (unlikely(q->dupsop))
717 		return perform_atomic_semop_slow(sma, q);
718 
719 	/*
720 	 * We scan the semaphore set twice, first to ensure that the entire
721 	 * operation can succeed, therefore avoiding any pointless writes
722 	 * to shared memory and having to undo such changes in order to block
723 	 * until the operations can go through.
724 	 */
725 	for (sop = sops; sop < sops + nsops; sop++) {
726 		int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
727 
728 		curr = &sma->sems[idx];
729 		sem_op = sop->sem_op;
730 		result = curr->semval;
731 
732 		if (!sem_op && result)
733 			goto would_block; /* wait-for-zero */
734 
735 		result += sem_op;
736 		if (result < 0)
737 			goto would_block;
738 
739 		if (result > SEMVMX)
740 			return -ERANGE;
741 
742 		if (sop->sem_flg & SEM_UNDO) {
743 			int undo = un->semadj[sop->sem_num] - sem_op;
744 
745 			/* Exceeding the undo range is an error. */
746 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
747 				return -ERANGE;
748 		}
749 	}
750 
751 	for (sop = sops; sop < sops + nsops; sop++) {
752 		curr = &sma->sems[sop->sem_num];
753 		sem_op = sop->sem_op;
754 		result = curr->semval;
755 
756 		if (sop->sem_flg & SEM_UNDO) {
757 			int undo = un->semadj[sop->sem_num] - sem_op;
758 
759 			un->semadj[sop->sem_num] = undo;
760 		}
761 		curr->semval += sem_op;
762 		ipc_update_pid(&curr->sempid, q->pid);
763 	}
764 
765 	return 0;
766 
767 would_block:
768 	q->blocking = sop;
769 	return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
770 }
771 
772 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
773 					     struct wake_q_head *wake_q)
774 {
775 	wake_q_add(wake_q, q->sleeper);
776 	/*
777 	 * Rely on the above implicit barrier, such that we can
778 	 * ensure that we hold reference to the task before setting
779 	 * q->status. Otherwise we could race with do_exit if the
780 	 * task is awoken by an external event before calling
781 	 * wake_up_process().
782 	 */
783 	WRITE_ONCE(q->status, error);
784 }
785 
786 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
787 {
788 	list_del(&q->list);
789 	if (q->nsops > 1)
790 		sma->complex_count--;
791 }
792 
793 /** check_restart(sma, q)
794  * @sma: semaphore array
795  * @q: the operation that just completed
796  *
797  * update_queue is O(N^2) when it restarts scanning the whole queue of
798  * waiting operations. Therefore this function checks if the restart is
799  * really necessary. It is called after a previously waiting operation
800  * modified the array.
801  * Note that wait-for-zero operations are handled without restart.
802  */
803 static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
804 {
805 	/* pending complex alter operations are too difficult to analyse */
806 	if (!list_empty(&sma->pending_alter))
807 		return 1;
808 
809 	/* we were a sleeping complex operation. Too difficult */
810 	if (q->nsops > 1)
811 		return 1;
812 
813 	/* It is impossible that someone waits for the new value:
814 	 * - complex operations always restart.
815 	 * - wait-for-zero are handled seperately.
816 	 * - q is a previously sleeping simple operation that
817 	 *   altered the array. It must be a decrement, because
818 	 *   simple increments never sleep.
819 	 * - If there are older (higher priority) decrements
820 	 *   in the queue, then they have observed the original
821 	 *   semval value and couldn't proceed. The operation
822 	 *   decremented to value - thus they won't proceed either.
823 	 */
824 	return 0;
825 }
826 
827 /**
828  * wake_const_ops - wake up non-alter tasks
829  * @sma: semaphore array.
830  * @semnum: semaphore that was modified.
831  * @wake_q: lockless wake-queue head.
832  *
833  * wake_const_ops must be called after a semaphore in a semaphore array
834  * was set to 0. If complex const operations are pending, wake_const_ops must
835  * be called with semnum = -1, as well as with the number of each modified
836  * semaphore.
837  * The tasks that must be woken up are added to @wake_q. The return code
838  * is stored in q->pid.
839  * The function returns 1 if at least one operation was completed successfully.
840  */
841 static int wake_const_ops(struct sem_array *sma, int semnum,
842 			  struct wake_q_head *wake_q)
843 {
844 	struct sem_queue *q, *tmp;
845 	struct list_head *pending_list;
846 	int semop_completed = 0;
847 
848 	if (semnum == -1)
849 		pending_list = &sma->pending_const;
850 	else
851 		pending_list = &sma->sems[semnum].pending_const;
852 
853 	list_for_each_entry_safe(q, tmp, pending_list, list) {
854 		int error = perform_atomic_semop(sma, q);
855 
856 		if (error > 0)
857 			continue;
858 		/* operation completed, remove from queue & wakeup */
859 		unlink_queue(sma, q);
860 
861 		wake_up_sem_queue_prepare(q, error, wake_q);
862 		if (error == 0)
863 			semop_completed = 1;
864 	}
865 
866 	return semop_completed;
867 }
868 
869 /**
870  * do_smart_wakeup_zero - wakeup all wait for zero tasks
871  * @sma: semaphore array
872  * @sops: operations that were performed
873  * @nsops: number of operations
874  * @wake_q: lockless wake-queue head
875  *
876  * Checks all required queue for wait-for-zero operations, based
877  * on the actual changes that were performed on the semaphore array.
878  * The function returns 1 if at least one operation was completed successfully.
879  */
880 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
881 				int nsops, struct wake_q_head *wake_q)
882 {
883 	int i;
884 	int semop_completed = 0;
885 	int got_zero = 0;
886 
887 	/* first: the per-semaphore queues, if known */
888 	if (sops) {
889 		for (i = 0; i < nsops; i++) {
890 			int num = sops[i].sem_num;
891 
892 			if (sma->sems[num].semval == 0) {
893 				got_zero = 1;
894 				semop_completed |= wake_const_ops(sma, num, wake_q);
895 			}
896 		}
897 	} else {
898 		/*
899 		 * No sops means modified semaphores not known.
900 		 * Assume all were changed.
901 		 */
902 		for (i = 0; i < sma->sem_nsems; i++) {
903 			if (sma->sems[i].semval == 0) {
904 				got_zero = 1;
905 				semop_completed |= wake_const_ops(sma, i, wake_q);
906 			}
907 		}
908 	}
909 	/*
910 	 * If one of the modified semaphores got 0,
911 	 * then check the global queue, too.
912 	 */
913 	if (got_zero)
914 		semop_completed |= wake_const_ops(sma, -1, wake_q);
915 
916 	return semop_completed;
917 }
918 
919 
920 /**
921  * update_queue - look for tasks that can be completed.
922  * @sma: semaphore array.
923  * @semnum: semaphore that was modified.
924  * @wake_q: lockless wake-queue head.
925  *
926  * update_queue must be called after a semaphore in a semaphore array
927  * was modified. If multiple semaphores were modified, update_queue must
928  * be called with semnum = -1, as well as with the number of each modified
929  * semaphore.
930  * The tasks that must be woken up are added to @wake_q. The return code
931  * is stored in q->pid.
932  * The function internally checks if const operations can now succeed.
933  *
934  * The function return 1 if at least one semop was completed successfully.
935  */
936 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
937 {
938 	struct sem_queue *q, *tmp;
939 	struct list_head *pending_list;
940 	int semop_completed = 0;
941 
942 	if (semnum == -1)
943 		pending_list = &sma->pending_alter;
944 	else
945 		pending_list = &sma->sems[semnum].pending_alter;
946 
947 again:
948 	list_for_each_entry_safe(q, tmp, pending_list, list) {
949 		int error, restart;
950 
951 		/* If we are scanning the single sop, per-semaphore list of
952 		 * one semaphore and that semaphore is 0, then it is not
953 		 * necessary to scan further: simple increments
954 		 * that affect only one entry succeed immediately and cannot
955 		 * be in the  per semaphore pending queue, and decrements
956 		 * cannot be successful if the value is already 0.
957 		 */
958 		if (semnum != -1 && sma->sems[semnum].semval == 0)
959 			break;
960 
961 		error = perform_atomic_semop(sma, q);
962 
963 		/* Does q->sleeper still need to sleep? */
964 		if (error > 0)
965 			continue;
966 
967 		unlink_queue(sma, q);
968 
969 		if (error) {
970 			restart = 0;
971 		} else {
972 			semop_completed = 1;
973 			do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
974 			restart = check_restart(sma, q);
975 		}
976 
977 		wake_up_sem_queue_prepare(q, error, wake_q);
978 		if (restart)
979 			goto again;
980 	}
981 	return semop_completed;
982 }
983 
984 /**
985  * set_semotime - set sem_otime
986  * @sma: semaphore array
987  * @sops: operations that modified the array, may be NULL
988  *
989  * sem_otime is replicated to avoid cache line trashing.
990  * This function sets one instance to the current time.
991  */
992 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
993 {
994 	if (sops == NULL) {
995 		sma->sems[0].sem_otime = ktime_get_real_seconds();
996 	} else {
997 		sma->sems[sops[0].sem_num].sem_otime =
998 						ktime_get_real_seconds();
999 	}
1000 }
1001 
1002 /**
1003  * do_smart_update - optimized update_queue
1004  * @sma: semaphore array
1005  * @sops: operations that were performed
1006  * @nsops: number of operations
1007  * @otime: force setting otime
1008  * @wake_q: lockless wake-queue head
1009  *
1010  * do_smart_update() does the required calls to update_queue and wakeup_zero,
1011  * based on the actual changes that were performed on the semaphore array.
1012  * Note that the function does not do the actual wake-up: the caller is
1013  * responsible for calling wake_up_q().
1014  * It is safe to perform this call after dropping all locks.
1015  */
1016 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
1017 			    int otime, struct wake_q_head *wake_q)
1018 {
1019 	int i;
1020 
1021 	otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1022 
1023 	if (!list_empty(&sma->pending_alter)) {
1024 		/* semaphore array uses the global queue - just process it. */
1025 		otime |= update_queue(sma, -1, wake_q);
1026 	} else {
1027 		if (!sops) {
1028 			/*
1029 			 * No sops, thus the modified semaphores are not
1030 			 * known. Check all.
1031 			 */
1032 			for (i = 0; i < sma->sem_nsems; i++)
1033 				otime |= update_queue(sma, i, wake_q);
1034 		} else {
1035 			/*
1036 			 * Check the semaphores that were increased:
1037 			 * - No complex ops, thus all sleeping ops are
1038 			 *   decrease.
1039 			 * - if we decreased the value, then any sleeping
1040 			 *   semaphore ops wont be able to run: If the
1041 			 *   previous value was too small, then the new
1042 			 *   value will be too small, too.
1043 			 */
1044 			for (i = 0; i < nsops; i++) {
1045 				if (sops[i].sem_op > 0) {
1046 					otime |= update_queue(sma,
1047 							      sops[i].sem_num, wake_q);
1048 				}
1049 			}
1050 		}
1051 	}
1052 	if (otime)
1053 		set_semotime(sma, sops);
1054 }
1055 
1056 /*
1057  * check_qop: Test if a queued operation sleeps on the semaphore semnum
1058  */
1059 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1060 			bool count_zero)
1061 {
1062 	struct sembuf *sop = q->blocking;
1063 
1064 	/*
1065 	 * Linux always (since 0.99.10) reported a task as sleeping on all
1066 	 * semaphores. This violates SUS, therefore it was changed to the
1067 	 * standard compliant behavior.
1068 	 * Give the administrators a chance to notice that an application
1069 	 * might misbehave because it relies on the Linux behavior.
1070 	 */
1071 	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1072 			"The task %s (%d) triggered the difference, watch for misbehavior.\n",
1073 			current->comm, task_pid_nr(current));
1074 
1075 	if (sop->sem_num != semnum)
1076 		return 0;
1077 
1078 	if (count_zero && sop->sem_op == 0)
1079 		return 1;
1080 	if (!count_zero && sop->sem_op < 0)
1081 		return 1;
1082 
1083 	return 0;
1084 }
1085 
1086 /* The following counts are associated to each semaphore:
1087  *   semncnt        number of tasks waiting on semval being nonzero
1088  *   semzcnt        number of tasks waiting on semval being zero
1089  *
1090  * Per definition, a task waits only on the semaphore of the first semop
1091  * that cannot proceed, even if additional operation would block, too.
1092  */
1093 static int count_semcnt(struct sem_array *sma, ushort semnum,
1094 			bool count_zero)
1095 {
1096 	struct list_head *l;
1097 	struct sem_queue *q;
1098 	int semcnt;
1099 
1100 	semcnt = 0;
1101 	/* First: check the simple operations. They are easy to evaluate */
1102 	if (count_zero)
1103 		l = &sma->sems[semnum].pending_const;
1104 	else
1105 		l = &sma->sems[semnum].pending_alter;
1106 
1107 	list_for_each_entry(q, l, list) {
1108 		/* all task on a per-semaphore list sleep on exactly
1109 		 * that semaphore
1110 		 */
1111 		semcnt++;
1112 	}
1113 
1114 	/* Then: check the complex operations. */
1115 	list_for_each_entry(q, &sma->pending_alter, list) {
1116 		semcnt += check_qop(sma, semnum, q, count_zero);
1117 	}
1118 	if (count_zero) {
1119 		list_for_each_entry(q, &sma->pending_const, list) {
1120 			semcnt += check_qop(sma, semnum, q, count_zero);
1121 		}
1122 	}
1123 	return semcnt;
1124 }
1125 
1126 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1127  * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1128  * remains locked on exit.
1129  */
1130 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1131 {
1132 	struct sem_undo *un, *tu;
1133 	struct sem_queue *q, *tq;
1134 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1135 	int i;
1136 	DEFINE_WAKE_Q(wake_q);
1137 
1138 	/* Free the existing undo structures for this semaphore set.  */
1139 	ipc_assert_locked_object(&sma->sem_perm);
1140 	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1141 		list_del(&un->list_id);
1142 		spin_lock(&un->ulp->lock);
1143 		un->semid = -1;
1144 		list_del_rcu(&un->list_proc);
1145 		spin_unlock(&un->ulp->lock);
1146 		kfree_rcu(un, rcu);
1147 	}
1148 
1149 	/* Wake up all pending processes and let them fail with EIDRM. */
1150 	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1151 		unlink_queue(sma, q);
1152 		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1153 	}
1154 
1155 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1156 		unlink_queue(sma, q);
1157 		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1158 	}
1159 	for (i = 0; i < sma->sem_nsems; i++) {
1160 		struct sem *sem = &sma->sems[i];
1161 		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1162 			unlink_queue(sma, q);
1163 			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1164 		}
1165 		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1166 			unlink_queue(sma, q);
1167 			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1168 		}
1169 		ipc_update_pid(&sem->sempid, NULL);
1170 	}
1171 
1172 	/* Remove the semaphore set from the IDR */
1173 	sem_rmid(ns, sma);
1174 	sem_unlock(sma, -1);
1175 	rcu_read_unlock();
1176 
1177 	wake_up_q(&wake_q);
1178 	ns->used_sems -= sma->sem_nsems;
1179 	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1180 }
1181 
1182 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1183 {
1184 	switch (version) {
1185 	case IPC_64:
1186 		return copy_to_user(buf, in, sizeof(*in));
1187 	case IPC_OLD:
1188 	    {
1189 		struct semid_ds out;
1190 
1191 		memset(&out, 0, sizeof(out));
1192 
1193 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1194 
1195 		out.sem_otime	= in->sem_otime;
1196 		out.sem_ctime	= in->sem_ctime;
1197 		out.sem_nsems	= in->sem_nsems;
1198 
1199 		return copy_to_user(buf, &out, sizeof(out));
1200 	    }
1201 	default:
1202 		return -EINVAL;
1203 	}
1204 }
1205 
1206 static time64_t get_semotime(struct sem_array *sma)
1207 {
1208 	int i;
1209 	time64_t res;
1210 
1211 	res = sma->sems[0].sem_otime;
1212 	for (i = 1; i < sma->sem_nsems; i++) {
1213 		time64_t to = sma->sems[i].sem_otime;
1214 
1215 		if (to > res)
1216 			res = to;
1217 	}
1218 	return res;
1219 }
1220 
1221 static int semctl_stat(struct ipc_namespace *ns, int semid,
1222 			 int cmd, struct semid64_ds *semid64)
1223 {
1224 	struct sem_array *sma;
1225 	time64_t semotime;
1226 	int id = 0;
1227 	int err;
1228 
1229 	memset(semid64, 0, sizeof(*semid64));
1230 
1231 	rcu_read_lock();
1232 	if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
1233 		sma = sem_obtain_object(ns, semid);
1234 		if (IS_ERR(sma)) {
1235 			err = PTR_ERR(sma);
1236 			goto out_unlock;
1237 		}
1238 		id = sma->sem_perm.id;
1239 	} else { /* IPC_STAT */
1240 		sma = sem_obtain_object_check(ns, semid);
1241 		if (IS_ERR(sma)) {
1242 			err = PTR_ERR(sma);
1243 			goto out_unlock;
1244 		}
1245 	}
1246 
1247 	/* see comment for SHM_STAT_ANY */
1248 	if (cmd == SEM_STAT_ANY)
1249 		audit_ipc_obj(&sma->sem_perm);
1250 	else {
1251 		err = -EACCES;
1252 		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1253 			goto out_unlock;
1254 	}
1255 
1256 	err = security_sem_semctl(&sma->sem_perm, cmd);
1257 	if (err)
1258 		goto out_unlock;
1259 
1260 	ipc_lock_object(&sma->sem_perm);
1261 
1262 	if (!ipc_valid_object(&sma->sem_perm)) {
1263 		ipc_unlock_object(&sma->sem_perm);
1264 		err = -EIDRM;
1265 		goto out_unlock;
1266 	}
1267 
1268 	kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1269 	semotime = get_semotime(sma);
1270 	semid64->sem_otime = semotime;
1271 	semid64->sem_ctime = sma->sem_ctime;
1272 #ifndef CONFIG_64BIT
1273 	semid64->sem_otime_high = semotime >> 32;
1274 	semid64->sem_ctime_high = sma->sem_ctime >> 32;
1275 #endif
1276 	semid64->sem_nsems = sma->sem_nsems;
1277 
1278 	ipc_unlock_object(&sma->sem_perm);
1279 	rcu_read_unlock();
1280 	return id;
1281 
1282 out_unlock:
1283 	rcu_read_unlock();
1284 	return err;
1285 }
1286 
1287 static int semctl_info(struct ipc_namespace *ns, int semid,
1288 			 int cmd, void __user *p)
1289 {
1290 	struct seminfo seminfo;
1291 	int max_id;
1292 	int err;
1293 
1294 	err = security_sem_semctl(NULL, cmd);
1295 	if (err)
1296 		return err;
1297 
1298 	memset(&seminfo, 0, sizeof(seminfo));
1299 	seminfo.semmni = ns->sc_semmni;
1300 	seminfo.semmns = ns->sc_semmns;
1301 	seminfo.semmsl = ns->sc_semmsl;
1302 	seminfo.semopm = ns->sc_semopm;
1303 	seminfo.semvmx = SEMVMX;
1304 	seminfo.semmnu = SEMMNU;
1305 	seminfo.semmap = SEMMAP;
1306 	seminfo.semume = SEMUME;
1307 	down_read(&sem_ids(ns).rwsem);
1308 	if (cmd == SEM_INFO) {
1309 		seminfo.semusz = sem_ids(ns).in_use;
1310 		seminfo.semaem = ns->used_sems;
1311 	} else {
1312 		seminfo.semusz = SEMUSZ;
1313 		seminfo.semaem = SEMAEM;
1314 	}
1315 	max_id = ipc_get_maxid(&sem_ids(ns));
1316 	up_read(&sem_ids(ns).rwsem);
1317 	if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1318 		return -EFAULT;
1319 	return (max_id < 0) ? 0 : max_id;
1320 }
1321 
1322 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1323 		int val)
1324 {
1325 	struct sem_undo *un;
1326 	struct sem_array *sma;
1327 	struct sem *curr;
1328 	int err;
1329 	DEFINE_WAKE_Q(wake_q);
1330 
1331 	if (val > SEMVMX || val < 0)
1332 		return -ERANGE;
1333 
1334 	rcu_read_lock();
1335 	sma = sem_obtain_object_check(ns, semid);
1336 	if (IS_ERR(sma)) {
1337 		rcu_read_unlock();
1338 		return PTR_ERR(sma);
1339 	}
1340 
1341 	if (semnum < 0 || semnum >= sma->sem_nsems) {
1342 		rcu_read_unlock();
1343 		return -EINVAL;
1344 	}
1345 
1346 
1347 	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1348 		rcu_read_unlock();
1349 		return -EACCES;
1350 	}
1351 
1352 	err = security_sem_semctl(&sma->sem_perm, SETVAL);
1353 	if (err) {
1354 		rcu_read_unlock();
1355 		return -EACCES;
1356 	}
1357 
1358 	sem_lock(sma, NULL, -1);
1359 
1360 	if (!ipc_valid_object(&sma->sem_perm)) {
1361 		sem_unlock(sma, -1);
1362 		rcu_read_unlock();
1363 		return -EIDRM;
1364 	}
1365 
1366 	semnum = array_index_nospec(semnum, sma->sem_nsems);
1367 	curr = &sma->sems[semnum];
1368 
1369 	ipc_assert_locked_object(&sma->sem_perm);
1370 	list_for_each_entry(un, &sma->list_id, list_id)
1371 		un->semadj[semnum] = 0;
1372 
1373 	curr->semval = val;
1374 	ipc_update_pid(&curr->sempid, task_tgid(current));
1375 	sma->sem_ctime = ktime_get_real_seconds();
1376 	/* maybe some queued-up processes were waiting for this */
1377 	do_smart_update(sma, NULL, 0, 0, &wake_q);
1378 	sem_unlock(sma, -1);
1379 	rcu_read_unlock();
1380 	wake_up_q(&wake_q);
1381 	return 0;
1382 }
1383 
1384 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1385 		int cmd, void __user *p)
1386 {
1387 	struct sem_array *sma;
1388 	struct sem *curr;
1389 	int err, nsems;
1390 	ushort fast_sem_io[SEMMSL_FAST];
1391 	ushort *sem_io = fast_sem_io;
1392 	DEFINE_WAKE_Q(wake_q);
1393 
1394 	rcu_read_lock();
1395 	sma = sem_obtain_object_check(ns, semid);
1396 	if (IS_ERR(sma)) {
1397 		rcu_read_unlock();
1398 		return PTR_ERR(sma);
1399 	}
1400 
1401 	nsems = sma->sem_nsems;
1402 
1403 	err = -EACCES;
1404 	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1405 		goto out_rcu_wakeup;
1406 
1407 	err = security_sem_semctl(&sma->sem_perm, cmd);
1408 	if (err)
1409 		goto out_rcu_wakeup;
1410 
1411 	err = -EACCES;
1412 	switch (cmd) {
1413 	case GETALL:
1414 	{
1415 		ushort __user *array = p;
1416 		int i;
1417 
1418 		sem_lock(sma, NULL, -1);
1419 		if (!ipc_valid_object(&sma->sem_perm)) {
1420 			err = -EIDRM;
1421 			goto out_unlock;
1422 		}
1423 		if (nsems > SEMMSL_FAST) {
1424 			if (!ipc_rcu_getref(&sma->sem_perm)) {
1425 				err = -EIDRM;
1426 				goto out_unlock;
1427 			}
1428 			sem_unlock(sma, -1);
1429 			rcu_read_unlock();
1430 			sem_io = kvmalloc_array(nsems, sizeof(ushort),
1431 						GFP_KERNEL);
1432 			if (sem_io == NULL) {
1433 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1434 				return -ENOMEM;
1435 			}
1436 
1437 			rcu_read_lock();
1438 			sem_lock_and_putref(sma);
1439 			if (!ipc_valid_object(&sma->sem_perm)) {
1440 				err = -EIDRM;
1441 				goto out_unlock;
1442 			}
1443 		}
1444 		for (i = 0; i < sma->sem_nsems; i++)
1445 			sem_io[i] = sma->sems[i].semval;
1446 		sem_unlock(sma, -1);
1447 		rcu_read_unlock();
1448 		err = 0;
1449 		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1450 			err = -EFAULT;
1451 		goto out_free;
1452 	}
1453 	case SETALL:
1454 	{
1455 		int i;
1456 		struct sem_undo *un;
1457 
1458 		if (!ipc_rcu_getref(&sma->sem_perm)) {
1459 			err = -EIDRM;
1460 			goto out_rcu_wakeup;
1461 		}
1462 		rcu_read_unlock();
1463 
1464 		if (nsems > SEMMSL_FAST) {
1465 			sem_io = kvmalloc_array(nsems, sizeof(ushort),
1466 						GFP_KERNEL);
1467 			if (sem_io == NULL) {
1468 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1469 				return -ENOMEM;
1470 			}
1471 		}
1472 
1473 		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1474 			ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1475 			err = -EFAULT;
1476 			goto out_free;
1477 		}
1478 
1479 		for (i = 0; i < nsems; i++) {
1480 			if (sem_io[i] > SEMVMX) {
1481 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1482 				err = -ERANGE;
1483 				goto out_free;
1484 			}
1485 		}
1486 		rcu_read_lock();
1487 		sem_lock_and_putref(sma);
1488 		if (!ipc_valid_object(&sma->sem_perm)) {
1489 			err = -EIDRM;
1490 			goto out_unlock;
1491 		}
1492 
1493 		for (i = 0; i < nsems; i++) {
1494 			sma->sems[i].semval = sem_io[i];
1495 			ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
1496 		}
1497 
1498 		ipc_assert_locked_object(&sma->sem_perm);
1499 		list_for_each_entry(un, &sma->list_id, list_id) {
1500 			for (i = 0; i < nsems; i++)
1501 				un->semadj[i] = 0;
1502 		}
1503 		sma->sem_ctime = ktime_get_real_seconds();
1504 		/* maybe some queued-up processes were waiting for this */
1505 		do_smart_update(sma, NULL, 0, 0, &wake_q);
1506 		err = 0;
1507 		goto out_unlock;
1508 	}
1509 	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1510 	}
1511 	err = -EINVAL;
1512 	if (semnum < 0 || semnum >= nsems)
1513 		goto out_rcu_wakeup;
1514 
1515 	sem_lock(sma, NULL, -1);
1516 	if (!ipc_valid_object(&sma->sem_perm)) {
1517 		err = -EIDRM;
1518 		goto out_unlock;
1519 	}
1520 
1521 	semnum = array_index_nospec(semnum, nsems);
1522 	curr = &sma->sems[semnum];
1523 
1524 	switch (cmd) {
1525 	case GETVAL:
1526 		err = curr->semval;
1527 		goto out_unlock;
1528 	case GETPID:
1529 		err = pid_vnr(curr->sempid);
1530 		goto out_unlock;
1531 	case GETNCNT:
1532 		err = count_semcnt(sma, semnum, 0);
1533 		goto out_unlock;
1534 	case GETZCNT:
1535 		err = count_semcnt(sma, semnum, 1);
1536 		goto out_unlock;
1537 	}
1538 
1539 out_unlock:
1540 	sem_unlock(sma, -1);
1541 out_rcu_wakeup:
1542 	rcu_read_unlock();
1543 	wake_up_q(&wake_q);
1544 out_free:
1545 	if (sem_io != fast_sem_io)
1546 		kvfree(sem_io);
1547 	return err;
1548 }
1549 
1550 static inline unsigned long
1551 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1552 {
1553 	switch (version) {
1554 	case IPC_64:
1555 		if (copy_from_user(out, buf, sizeof(*out)))
1556 			return -EFAULT;
1557 		return 0;
1558 	case IPC_OLD:
1559 	    {
1560 		struct semid_ds tbuf_old;
1561 
1562 		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1563 			return -EFAULT;
1564 
1565 		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1566 		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1567 		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1568 
1569 		return 0;
1570 	    }
1571 	default:
1572 		return -EINVAL;
1573 	}
1574 }
1575 
1576 /*
1577  * This function handles some semctl commands which require the rwsem
1578  * to be held in write mode.
1579  * NOTE: no locks must be held, the rwsem is taken inside this function.
1580  */
1581 static int semctl_down(struct ipc_namespace *ns, int semid,
1582 		       int cmd, struct semid64_ds *semid64)
1583 {
1584 	struct sem_array *sma;
1585 	int err;
1586 	struct kern_ipc_perm *ipcp;
1587 
1588 	down_write(&sem_ids(ns).rwsem);
1589 	rcu_read_lock();
1590 
1591 	ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1592 				      &semid64->sem_perm, 0);
1593 	if (IS_ERR(ipcp)) {
1594 		err = PTR_ERR(ipcp);
1595 		goto out_unlock1;
1596 	}
1597 
1598 	sma = container_of(ipcp, struct sem_array, sem_perm);
1599 
1600 	err = security_sem_semctl(&sma->sem_perm, cmd);
1601 	if (err)
1602 		goto out_unlock1;
1603 
1604 	switch (cmd) {
1605 	case IPC_RMID:
1606 		sem_lock(sma, NULL, -1);
1607 		/* freeary unlocks the ipc object and rcu */
1608 		freeary(ns, ipcp);
1609 		goto out_up;
1610 	case IPC_SET:
1611 		sem_lock(sma, NULL, -1);
1612 		err = ipc_update_perm(&semid64->sem_perm, ipcp);
1613 		if (err)
1614 			goto out_unlock0;
1615 		sma->sem_ctime = ktime_get_real_seconds();
1616 		break;
1617 	default:
1618 		err = -EINVAL;
1619 		goto out_unlock1;
1620 	}
1621 
1622 out_unlock0:
1623 	sem_unlock(sma, -1);
1624 out_unlock1:
1625 	rcu_read_unlock();
1626 out_up:
1627 	up_write(&sem_ids(ns).rwsem);
1628 	return err;
1629 }
1630 
1631 long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg)
1632 {
1633 	int version;
1634 	struct ipc_namespace *ns;
1635 	void __user *p = (void __user *)arg;
1636 	struct semid64_ds semid64;
1637 	int err;
1638 
1639 	if (semid < 0)
1640 		return -EINVAL;
1641 
1642 	version = ipc_parse_version(&cmd);
1643 	ns = current->nsproxy->ipc_ns;
1644 
1645 	switch (cmd) {
1646 	case IPC_INFO:
1647 	case SEM_INFO:
1648 		return semctl_info(ns, semid, cmd, p);
1649 	case IPC_STAT:
1650 	case SEM_STAT:
1651 	case SEM_STAT_ANY:
1652 		err = semctl_stat(ns, semid, cmd, &semid64);
1653 		if (err < 0)
1654 			return err;
1655 		if (copy_semid_to_user(p, &semid64, version))
1656 			err = -EFAULT;
1657 		return err;
1658 	case GETALL:
1659 	case GETVAL:
1660 	case GETPID:
1661 	case GETNCNT:
1662 	case GETZCNT:
1663 	case SETALL:
1664 		return semctl_main(ns, semid, semnum, cmd, p);
1665 	case SETVAL: {
1666 		int val;
1667 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1668 		/* big-endian 64bit */
1669 		val = arg >> 32;
1670 #else
1671 		/* 32bit or little-endian 64bit */
1672 		val = arg;
1673 #endif
1674 		return semctl_setval(ns, semid, semnum, val);
1675 	}
1676 	case IPC_SET:
1677 		if (copy_semid_from_user(&semid64, p, version))
1678 			return -EFAULT;
1679 	case IPC_RMID:
1680 		return semctl_down(ns, semid, cmd, &semid64);
1681 	default:
1682 		return -EINVAL;
1683 	}
1684 }
1685 
1686 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1687 {
1688 	return ksys_semctl(semid, semnum, cmd, arg);
1689 }
1690 
1691 #ifdef CONFIG_COMPAT
1692 
1693 struct compat_semid_ds {
1694 	struct compat_ipc_perm sem_perm;
1695 	compat_time_t sem_otime;
1696 	compat_time_t sem_ctime;
1697 	compat_uptr_t sem_base;
1698 	compat_uptr_t sem_pending;
1699 	compat_uptr_t sem_pending_last;
1700 	compat_uptr_t undo;
1701 	unsigned short sem_nsems;
1702 };
1703 
1704 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1705 					int version)
1706 {
1707 	memset(out, 0, sizeof(*out));
1708 	if (version == IPC_64) {
1709 		struct compat_semid64_ds __user *p = buf;
1710 		return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1711 	} else {
1712 		struct compat_semid_ds __user *p = buf;
1713 		return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1714 	}
1715 }
1716 
1717 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1718 					int version)
1719 {
1720 	if (version == IPC_64) {
1721 		struct compat_semid64_ds v;
1722 		memset(&v, 0, sizeof(v));
1723 		to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1724 		v.sem_otime	 = lower_32_bits(in->sem_otime);
1725 		v.sem_otime_high = upper_32_bits(in->sem_otime);
1726 		v.sem_ctime	 = lower_32_bits(in->sem_ctime);
1727 		v.sem_ctime_high = upper_32_bits(in->sem_ctime);
1728 		v.sem_nsems = in->sem_nsems;
1729 		return copy_to_user(buf, &v, sizeof(v));
1730 	} else {
1731 		struct compat_semid_ds v;
1732 		memset(&v, 0, sizeof(v));
1733 		to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1734 		v.sem_otime = in->sem_otime;
1735 		v.sem_ctime = in->sem_ctime;
1736 		v.sem_nsems = in->sem_nsems;
1737 		return copy_to_user(buf, &v, sizeof(v));
1738 	}
1739 }
1740 
1741 long compat_ksys_semctl(int semid, int semnum, int cmd, int arg)
1742 {
1743 	void __user *p = compat_ptr(arg);
1744 	struct ipc_namespace *ns;
1745 	struct semid64_ds semid64;
1746 	int version = compat_ipc_parse_version(&cmd);
1747 	int err;
1748 
1749 	ns = current->nsproxy->ipc_ns;
1750 
1751 	if (semid < 0)
1752 		return -EINVAL;
1753 
1754 	switch (cmd & (~IPC_64)) {
1755 	case IPC_INFO:
1756 	case SEM_INFO:
1757 		return semctl_info(ns, semid, cmd, p);
1758 	case IPC_STAT:
1759 	case SEM_STAT:
1760 	case SEM_STAT_ANY:
1761 		err = semctl_stat(ns, semid, cmd, &semid64);
1762 		if (err < 0)
1763 			return err;
1764 		if (copy_compat_semid_to_user(p, &semid64, version))
1765 			err = -EFAULT;
1766 		return err;
1767 	case GETVAL:
1768 	case GETPID:
1769 	case GETNCNT:
1770 	case GETZCNT:
1771 	case GETALL:
1772 	case SETALL:
1773 		return semctl_main(ns, semid, semnum, cmd, p);
1774 	case SETVAL:
1775 		return semctl_setval(ns, semid, semnum, arg);
1776 	case IPC_SET:
1777 		if (copy_compat_semid_from_user(&semid64, p, version))
1778 			return -EFAULT;
1779 		/* fallthru */
1780 	case IPC_RMID:
1781 		return semctl_down(ns, semid, cmd, &semid64);
1782 	default:
1783 		return -EINVAL;
1784 	}
1785 }
1786 
1787 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1788 {
1789 	return compat_ksys_semctl(semid, semnum, cmd, arg);
1790 }
1791 #endif
1792 
1793 /* If the task doesn't already have a undo_list, then allocate one
1794  * here.  We guarantee there is only one thread using this undo list,
1795  * and current is THE ONE
1796  *
1797  * If this allocation and assignment succeeds, but later
1798  * portions of this code fail, there is no need to free the sem_undo_list.
1799  * Just let it stay associated with the task, and it'll be freed later
1800  * at exit time.
1801  *
1802  * This can block, so callers must hold no locks.
1803  */
1804 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1805 {
1806 	struct sem_undo_list *undo_list;
1807 
1808 	undo_list = current->sysvsem.undo_list;
1809 	if (!undo_list) {
1810 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1811 		if (undo_list == NULL)
1812 			return -ENOMEM;
1813 		spin_lock_init(&undo_list->lock);
1814 		refcount_set(&undo_list->refcnt, 1);
1815 		INIT_LIST_HEAD(&undo_list->list_proc);
1816 
1817 		current->sysvsem.undo_list = undo_list;
1818 	}
1819 	*undo_listp = undo_list;
1820 	return 0;
1821 }
1822 
1823 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1824 {
1825 	struct sem_undo *un;
1826 
1827 	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1828 		if (un->semid == semid)
1829 			return un;
1830 	}
1831 	return NULL;
1832 }
1833 
1834 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1835 {
1836 	struct sem_undo *un;
1837 
1838 	assert_spin_locked(&ulp->lock);
1839 
1840 	un = __lookup_undo(ulp, semid);
1841 	if (un) {
1842 		list_del_rcu(&un->list_proc);
1843 		list_add_rcu(&un->list_proc, &ulp->list_proc);
1844 	}
1845 	return un;
1846 }
1847 
1848 /**
1849  * find_alloc_undo - lookup (and if not present create) undo array
1850  * @ns: namespace
1851  * @semid: semaphore array id
1852  *
1853  * The function looks up (and if not present creates) the undo structure.
1854  * The size of the undo structure depends on the size of the semaphore
1855  * array, thus the alloc path is not that straightforward.
1856  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1857  * performs a rcu_read_lock().
1858  */
1859 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1860 {
1861 	struct sem_array *sma;
1862 	struct sem_undo_list *ulp;
1863 	struct sem_undo *un, *new;
1864 	int nsems, error;
1865 
1866 	error = get_undo_list(&ulp);
1867 	if (error)
1868 		return ERR_PTR(error);
1869 
1870 	rcu_read_lock();
1871 	spin_lock(&ulp->lock);
1872 	un = lookup_undo(ulp, semid);
1873 	spin_unlock(&ulp->lock);
1874 	if (likely(un != NULL))
1875 		goto out;
1876 
1877 	/* no undo structure around - allocate one. */
1878 	/* step 1: figure out the size of the semaphore array */
1879 	sma = sem_obtain_object_check(ns, semid);
1880 	if (IS_ERR(sma)) {
1881 		rcu_read_unlock();
1882 		return ERR_CAST(sma);
1883 	}
1884 
1885 	nsems = sma->sem_nsems;
1886 	if (!ipc_rcu_getref(&sma->sem_perm)) {
1887 		rcu_read_unlock();
1888 		un = ERR_PTR(-EIDRM);
1889 		goto out;
1890 	}
1891 	rcu_read_unlock();
1892 
1893 	/* step 2: allocate new undo structure */
1894 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1895 	if (!new) {
1896 		ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1897 		return ERR_PTR(-ENOMEM);
1898 	}
1899 
1900 	/* step 3: Acquire the lock on semaphore array */
1901 	rcu_read_lock();
1902 	sem_lock_and_putref(sma);
1903 	if (!ipc_valid_object(&sma->sem_perm)) {
1904 		sem_unlock(sma, -1);
1905 		rcu_read_unlock();
1906 		kfree(new);
1907 		un = ERR_PTR(-EIDRM);
1908 		goto out;
1909 	}
1910 	spin_lock(&ulp->lock);
1911 
1912 	/*
1913 	 * step 4: check for races: did someone else allocate the undo struct?
1914 	 */
1915 	un = lookup_undo(ulp, semid);
1916 	if (un) {
1917 		kfree(new);
1918 		goto success;
1919 	}
1920 	/* step 5: initialize & link new undo structure */
1921 	new->semadj = (short *) &new[1];
1922 	new->ulp = ulp;
1923 	new->semid = semid;
1924 	assert_spin_locked(&ulp->lock);
1925 	list_add_rcu(&new->list_proc, &ulp->list_proc);
1926 	ipc_assert_locked_object(&sma->sem_perm);
1927 	list_add(&new->list_id, &sma->list_id);
1928 	un = new;
1929 
1930 success:
1931 	spin_unlock(&ulp->lock);
1932 	sem_unlock(sma, -1);
1933 out:
1934 	return un;
1935 }
1936 
1937 static long do_semtimedop(int semid, struct sembuf __user *tsops,
1938 		unsigned nsops, const struct timespec64 *timeout)
1939 {
1940 	int error = -EINVAL;
1941 	struct sem_array *sma;
1942 	struct sembuf fast_sops[SEMOPM_FAST];
1943 	struct sembuf *sops = fast_sops, *sop;
1944 	struct sem_undo *un;
1945 	int max, locknum;
1946 	bool undos = false, alter = false, dupsop = false;
1947 	struct sem_queue queue;
1948 	unsigned long dup = 0, jiffies_left = 0;
1949 	struct ipc_namespace *ns;
1950 
1951 	ns = current->nsproxy->ipc_ns;
1952 
1953 	if (nsops < 1 || semid < 0)
1954 		return -EINVAL;
1955 	if (nsops > ns->sc_semopm)
1956 		return -E2BIG;
1957 	if (nsops > SEMOPM_FAST) {
1958 		sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL);
1959 		if (sops == NULL)
1960 			return -ENOMEM;
1961 	}
1962 
1963 	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1964 		error =  -EFAULT;
1965 		goto out_free;
1966 	}
1967 
1968 	if (timeout) {
1969 		if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
1970 			timeout->tv_nsec >= 1000000000L) {
1971 			error = -EINVAL;
1972 			goto out_free;
1973 		}
1974 		jiffies_left = timespec64_to_jiffies(timeout);
1975 	}
1976 
1977 	max = 0;
1978 	for (sop = sops; sop < sops + nsops; sop++) {
1979 		unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
1980 
1981 		if (sop->sem_num >= max)
1982 			max = sop->sem_num;
1983 		if (sop->sem_flg & SEM_UNDO)
1984 			undos = true;
1985 		if (dup & mask) {
1986 			/*
1987 			 * There was a previous alter access that appears
1988 			 * to have accessed the same semaphore, thus use
1989 			 * the dupsop logic. "appears", because the detection
1990 			 * can only check % BITS_PER_LONG.
1991 			 */
1992 			dupsop = true;
1993 		}
1994 		if (sop->sem_op != 0) {
1995 			alter = true;
1996 			dup |= mask;
1997 		}
1998 	}
1999 
2000 	if (undos) {
2001 		/* On success, find_alloc_undo takes the rcu_read_lock */
2002 		un = find_alloc_undo(ns, semid);
2003 		if (IS_ERR(un)) {
2004 			error = PTR_ERR(un);
2005 			goto out_free;
2006 		}
2007 	} else {
2008 		un = NULL;
2009 		rcu_read_lock();
2010 	}
2011 
2012 	sma = sem_obtain_object_check(ns, semid);
2013 	if (IS_ERR(sma)) {
2014 		rcu_read_unlock();
2015 		error = PTR_ERR(sma);
2016 		goto out_free;
2017 	}
2018 
2019 	error = -EFBIG;
2020 	if (max >= sma->sem_nsems) {
2021 		rcu_read_unlock();
2022 		goto out_free;
2023 	}
2024 
2025 	error = -EACCES;
2026 	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2027 		rcu_read_unlock();
2028 		goto out_free;
2029 	}
2030 
2031 	error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
2032 	if (error) {
2033 		rcu_read_unlock();
2034 		goto out_free;
2035 	}
2036 
2037 	error = -EIDRM;
2038 	locknum = sem_lock(sma, sops, nsops);
2039 	/*
2040 	 * We eventually might perform the following check in a lockless
2041 	 * fashion, considering ipc_valid_object() locking constraints.
2042 	 * If nsops == 1 and there is no contention for sem_perm.lock, then
2043 	 * only a per-semaphore lock is held and it's OK to proceed with the
2044 	 * check below. More details on the fine grained locking scheme
2045 	 * entangled here and why it's RMID race safe on comments at sem_lock()
2046 	 */
2047 	if (!ipc_valid_object(&sma->sem_perm))
2048 		goto out_unlock_free;
2049 	/*
2050 	 * semid identifiers are not unique - find_alloc_undo may have
2051 	 * allocated an undo structure, it was invalidated by an RMID
2052 	 * and now a new array with received the same id. Check and fail.
2053 	 * This case can be detected checking un->semid. The existence of
2054 	 * "un" itself is guaranteed by rcu.
2055 	 */
2056 	if (un && un->semid == -1)
2057 		goto out_unlock_free;
2058 
2059 	queue.sops = sops;
2060 	queue.nsops = nsops;
2061 	queue.undo = un;
2062 	queue.pid = task_tgid(current);
2063 	queue.alter = alter;
2064 	queue.dupsop = dupsop;
2065 
2066 	error = perform_atomic_semop(sma, &queue);
2067 	if (error == 0) { /* non-blocking succesfull path */
2068 		DEFINE_WAKE_Q(wake_q);
2069 
2070 		/*
2071 		 * If the operation was successful, then do
2072 		 * the required updates.
2073 		 */
2074 		if (alter)
2075 			do_smart_update(sma, sops, nsops, 1, &wake_q);
2076 		else
2077 			set_semotime(sma, sops);
2078 
2079 		sem_unlock(sma, locknum);
2080 		rcu_read_unlock();
2081 		wake_up_q(&wake_q);
2082 
2083 		goto out_free;
2084 	}
2085 	if (error < 0) /* non-blocking error path */
2086 		goto out_unlock_free;
2087 
2088 	/*
2089 	 * We need to sleep on this operation, so we put the current
2090 	 * task into the pending queue and go to sleep.
2091 	 */
2092 	if (nsops == 1) {
2093 		struct sem *curr;
2094 		int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
2095 		curr = &sma->sems[idx];
2096 
2097 		if (alter) {
2098 			if (sma->complex_count) {
2099 				list_add_tail(&queue.list,
2100 						&sma->pending_alter);
2101 			} else {
2102 
2103 				list_add_tail(&queue.list,
2104 						&curr->pending_alter);
2105 			}
2106 		} else {
2107 			list_add_tail(&queue.list, &curr->pending_const);
2108 		}
2109 	} else {
2110 		if (!sma->complex_count)
2111 			merge_queues(sma);
2112 
2113 		if (alter)
2114 			list_add_tail(&queue.list, &sma->pending_alter);
2115 		else
2116 			list_add_tail(&queue.list, &sma->pending_const);
2117 
2118 		sma->complex_count++;
2119 	}
2120 
2121 	do {
2122 		queue.status = -EINTR;
2123 		queue.sleeper = current;
2124 
2125 		__set_current_state(TASK_INTERRUPTIBLE);
2126 		sem_unlock(sma, locknum);
2127 		rcu_read_unlock();
2128 
2129 		if (timeout)
2130 			jiffies_left = schedule_timeout(jiffies_left);
2131 		else
2132 			schedule();
2133 
2134 		/*
2135 		 * fastpath: the semop has completed, either successfully or
2136 		 * not, from the syscall pov, is quite irrelevant to us at this
2137 		 * point; we're done.
2138 		 *
2139 		 * We _do_ care, nonetheless, about being awoken by a signal or
2140 		 * spuriously.  The queue.status is checked again in the
2141 		 * slowpath (aka after taking sem_lock), such that we can detect
2142 		 * scenarios where we were awakened externally, during the
2143 		 * window between wake_q_add() and wake_up_q().
2144 		 */
2145 		error = READ_ONCE(queue.status);
2146 		if (error != -EINTR) {
2147 			/*
2148 			 * User space could assume that semop() is a memory
2149 			 * barrier: Without the mb(), the cpu could
2150 			 * speculatively read in userspace stale data that was
2151 			 * overwritten by the previous owner of the semaphore.
2152 			 */
2153 			smp_mb();
2154 			goto out_free;
2155 		}
2156 
2157 		rcu_read_lock();
2158 		locknum = sem_lock(sma, sops, nsops);
2159 
2160 		if (!ipc_valid_object(&sma->sem_perm))
2161 			goto out_unlock_free;
2162 
2163 		error = READ_ONCE(queue.status);
2164 
2165 		/*
2166 		 * If queue.status != -EINTR we are woken up by another process.
2167 		 * Leave without unlink_queue(), but with sem_unlock().
2168 		 */
2169 		if (error != -EINTR)
2170 			goto out_unlock_free;
2171 
2172 		/*
2173 		 * If an interrupt occurred we have to clean up the queue.
2174 		 */
2175 		if (timeout && jiffies_left == 0)
2176 			error = -EAGAIN;
2177 	} while (error == -EINTR && !signal_pending(current)); /* spurious */
2178 
2179 	unlink_queue(sma, &queue);
2180 
2181 out_unlock_free:
2182 	sem_unlock(sma, locknum);
2183 	rcu_read_unlock();
2184 out_free:
2185 	if (sops != fast_sops)
2186 		kvfree(sops);
2187 	return error;
2188 }
2189 
2190 long ksys_semtimedop(int semid, struct sembuf __user *tsops,
2191 		     unsigned int nsops, const struct __kernel_timespec __user *timeout)
2192 {
2193 	if (timeout) {
2194 		struct timespec64 ts;
2195 		if (get_timespec64(&ts, timeout))
2196 			return -EFAULT;
2197 		return do_semtimedop(semid, tsops, nsops, &ts);
2198 	}
2199 	return do_semtimedop(semid, tsops, nsops, NULL);
2200 }
2201 
2202 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2203 		unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
2204 {
2205 	return ksys_semtimedop(semid, tsops, nsops, timeout);
2206 }
2207 
2208 #ifdef CONFIG_COMPAT_32BIT_TIME
2209 long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2210 			    unsigned int nsops,
2211 			    const struct compat_timespec __user *timeout)
2212 {
2213 	if (timeout) {
2214 		struct timespec64 ts;
2215 		if (compat_get_timespec64(&ts, timeout))
2216 			return -EFAULT;
2217 		return do_semtimedop(semid, tsems, nsops, &ts);
2218 	}
2219 	return do_semtimedop(semid, tsems, nsops, NULL);
2220 }
2221 
2222 COMPAT_SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsems,
2223 		       unsigned int, nsops,
2224 		       const struct compat_timespec __user *, timeout)
2225 {
2226 	return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2227 }
2228 #endif
2229 
2230 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2231 		unsigned, nsops)
2232 {
2233 	return do_semtimedop(semid, tsops, nsops, NULL);
2234 }
2235 
2236 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2237  * parent and child tasks.
2238  */
2239 
2240 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2241 {
2242 	struct sem_undo_list *undo_list;
2243 	int error;
2244 
2245 	if (clone_flags & CLONE_SYSVSEM) {
2246 		error = get_undo_list(&undo_list);
2247 		if (error)
2248 			return error;
2249 		refcount_inc(&undo_list->refcnt);
2250 		tsk->sysvsem.undo_list = undo_list;
2251 	} else
2252 		tsk->sysvsem.undo_list = NULL;
2253 
2254 	return 0;
2255 }
2256 
2257 /*
2258  * add semadj values to semaphores, free undo structures.
2259  * undo structures are not freed when semaphore arrays are destroyed
2260  * so some of them may be out of date.
2261  * IMPLEMENTATION NOTE: There is some confusion over whether the
2262  * set of adjustments that needs to be done should be done in an atomic
2263  * manner or not. That is, if we are attempting to decrement the semval
2264  * should we queue up and wait until we can do so legally?
2265  * The original implementation attempted to do this (queue and wait).
2266  * The current implementation does not do so. The POSIX standard
2267  * and SVID should be consulted to determine what behavior is mandated.
2268  */
2269 void exit_sem(struct task_struct *tsk)
2270 {
2271 	struct sem_undo_list *ulp;
2272 
2273 	ulp = tsk->sysvsem.undo_list;
2274 	if (!ulp)
2275 		return;
2276 	tsk->sysvsem.undo_list = NULL;
2277 
2278 	if (!refcount_dec_and_test(&ulp->refcnt))
2279 		return;
2280 
2281 	for (;;) {
2282 		struct sem_array *sma;
2283 		struct sem_undo *un;
2284 		int semid, i;
2285 		DEFINE_WAKE_Q(wake_q);
2286 
2287 		cond_resched();
2288 
2289 		rcu_read_lock();
2290 		un = list_entry_rcu(ulp->list_proc.next,
2291 				    struct sem_undo, list_proc);
2292 		if (&un->list_proc == &ulp->list_proc) {
2293 			/*
2294 			 * We must wait for freeary() before freeing this ulp,
2295 			 * in case we raced with last sem_undo. There is a small
2296 			 * possibility where we exit while freeary() didn't
2297 			 * finish unlocking sem_undo_list.
2298 			 */
2299 			spin_lock(&ulp->lock);
2300 			spin_unlock(&ulp->lock);
2301 			rcu_read_unlock();
2302 			break;
2303 		}
2304 		spin_lock(&ulp->lock);
2305 		semid = un->semid;
2306 		spin_unlock(&ulp->lock);
2307 
2308 		/* exit_sem raced with IPC_RMID, nothing to do */
2309 		if (semid == -1) {
2310 			rcu_read_unlock();
2311 			continue;
2312 		}
2313 
2314 		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2315 		/* exit_sem raced with IPC_RMID, nothing to do */
2316 		if (IS_ERR(sma)) {
2317 			rcu_read_unlock();
2318 			continue;
2319 		}
2320 
2321 		sem_lock(sma, NULL, -1);
2322 		/* exit_sem raced with IPC_RMID, nothing to do */
2323 		if (!ipc_valid_object(&sma->sem_perm)) {
2324 			sem_unlock(sma, -1);
2325 			rcu_read_unlock();
2326 			continue;
2327 		}
2328 		un = __lookup_undo(ulp, semid);
2329 		if (un == NULL) {
2330 			/* exit_sem raced with IPC_RMID+semget() that created
2331 			 * exactly the same semid. Nothing to do.
2332 			 */
2333 			sem_unlock(sma, -1);
2334 			rcu_read_unlock();
2335 			continue;
2336 		}
2337 
2338 		/* remove un from the linked lists */
2339 		ipc_assert_locked_object(&sma->sem_perm);
2340 		list_del(&un->list_id);
2341 
2342 		/* we are the last process using this ulp, acquiring ulp->lock
2343 		 * isn't required. Besides that, we are also protected against
2344 		 * IPC_RMID as we hold sma->sem_perm lock now
2345 		 */
2346 		list_del_rcu(&un->list_proc);
2347 
2348 		/* perform adjustments registered in un */
2349 		for (i = 0; i < sma->sem_nsems; i++) {
2350 			struct sem *semaphore = &sma->sems[i];
2351 			if (un->semadj[i]) {
2352 				semaphore->semval += un->semadj[i];
2353 				/*
2354 				 * Range checks of the new semaphore value,
2355 				 * not defined by sus:
2356 				 * - Some unices ignore the undo entirely
2357 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2358 				 * - some cap the value (e.g. FreeBSD caps
2359 				 *   at 0, but doesn't enforce SEMVMX)
2360 				 *
2361 				 * Linux caps the semaphore value, both at 0
2362 				 * and at SEMVMX.
2363 				 *
2364 				 *	Manfred <manfred@colorfullife.com>
2365 				 */
2366 				if (semaphore->semval < 0)
2367 					semaphore->semval = 0;
2368 				if (semaphore->semval > SEMVMX)
2369 					semaphore->semval = SEMVMX;
2370 				ipc_update_pid(&semaphore->sempid, task_tgid(current));
2371 			}
2372 		}
2373 		/* maybe some queued-up processes were waiting for this */
2374 		do_smart_update(sma, NULL, 0, 1, &wake_q);
2375 		sem_unlock(sma, -1);
2376 		rcu_read_unlock();
2377 		wake_up_q(&wake_q);
2378 
2379 		kfree_rcu(un, rcu);
2380 	}
2381 	kfree(ulp);
2382 }
2383 
2384 #ifdef CONFIG_PROC_FS
2385 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2386 {
2387 	struct user_namespace *user_ns = seq_user_ns(s);
2388 	struct kern_ipc_perm *ipcp = it;
2389 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2390 	time64_t sem_otime;
2391 
2392 	/*
2393 	 * The proc interface isn't aware of sem_lock(), it calls
2394 	 * ipc_lock_object() directly (in sysvipc_find_ipc).
2395 	 * In order to stay compatible with sem_lock(), we must
2396 	 * enter / leave complex_mode.
2397 	 */
2398 	complexmode_enter(sma);
2399 
2400 	sem_otime = get_semotime(sma);
2401 
2402 	seq_printf(s,
2403 		   "%10d %10d  %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2404 		   sma->sem_perm.key,
2405 		   sma->sem_perm.id,
2406 		   sma->sem_perm.mode,
2407 		   sma->sem_nsems,
2408 		   from_kuid_munged(user_ns, sma->sem_perm.uid),
2409 		   from_kgid_munged(user_ns, sma->sem_perm.gid),
2410 		   from_kuid_munged(user_ns, sma->sem_perm.cuid),
2411 		   from_kgid_munged(user_ns, sma->sem_perm.cgid),
2412 		   sem_otime,
2413 		   sma->sem_ctime);
2414 
2415 	complexmode_tryleave(sma);
2416 
2417 	return 0;
2418 }
2419 #endif
2420