xref: /openbmc/linux/ipc/sem.c (revision 9ee0034b8f49aaaa7e7c2da8db1038915db99c19)
1  /*
2   * linux/ipc/sem.c
3   * Copyright (C) 1992 Krishna Balasubramanian
4   * Copyright (C) 1995 Eric Schenk, Bruno Haible
5   *
6   * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7   *
8   * SMP-threaded, sysctl's added
9   * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10   * Enforced range limit on SEM_UNDO
11   * (c) 2001 Red Hat Inc
12   * Lockless wakeup
13   * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14   * Further wakeup optimizations, documentation
15   * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
16   *
17   * support for audit of ipc object properties and permission changes
18   * Dustin Kirkland <dustin.kirkland@us.ibm.com>
19   *
20   * namespaces support
21   * OpenVZ, SWsoft Inc.
22   * Pavel Emelianov <xemul@openvz.org>
23   *
24   * Implementation notes: (May 2010)
25   * This file implements System V semaphores.
26   *
27   * User space visible behavior:
28   * - FIFO ordering for semop() operations (just FIFO, not starvation
29   *   protection)
30   * - multiple semaphore operations that alter the same semaphore in
31   *   one semop() are handled.
32   * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33   *   SETALL calls.
34   * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35   * - undo adjustments at process exit are limited to 0..SEMVMX.
36   * - namespace are supported.
37   * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38   *   to /proc/sys/kernel/sem.
39   * - statistics about the usage are reported in /proc/sysvipc/sem.
40   *
41   * Internals:
42   * - scalability:
43   *   - all global variables are read-mostly.
44   *   - semop() calls and semctl(RMID) are synchronized by RCU.
45   *   - most operations do write operations (actually: spin_lock calls) to
46   *     the per-semaphore array structure.
47   *   Thus: Perfect SMP scaling between independent semaphore arrays.
48   *         If multiple semaphores in one array are used, then cache line
49   *         trashing on the semaphore array spinlock will limit the scaling.
50   * - semncnt and semzcnt are calculated on demand in count_semcnt()
51   * - the task that performs a successful semop() scans the list of all
52   *   sleeping tasks and completes any pending operations that can be fulfilled.
53   *   Semaphores are actively given to waiting tasks (necessary for FIFO).
54   *   (see update_queue())
55   * - To improve the scalability, the actual wake-up calls are performed after
56   *   dropping all locks. (see wake_up_sem_queue_prepare(),
57   *   wake_up_sem_queue_do())
58   * - All work is done by the waker, the woken up task does not have to do
59   *   anything - not even acquiring a lock or dropping a refcount.
60   * - A woken up task may not even touch the semaphore array anymore, it may
61   *   have been destroyed already by a semctl(RMID).
62   * - The synchronizations between wake-ups due to a timeout/signal and a
63   *   wake-up due to a completed semaphore operation is achieved by using an
64   *   intermediate state (IN_WAKEUP).
65   * - UNDO values are stored in an array (one per process and per
66   *   semaphore array, lazily allocated). For backwards compatibility, multiple
67   *   modes for the UNDO variables are supported (per process, per thread)
68   *   (see copy_semundo, CLONE_SYSVSEM)
69   * - There are two lists of the pending operations: a per-array list
70   *   and per-semaphore list (stored in the array). This allows to achieve FIFO
71   *   ordering without always scanning all pending operations.
72   *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
73   */
74  
75  #include <linux/slab.h>
76  #include <linux/spinlock.h>
77  #include <linux/init.h>
78  #include <linux/proc_fs.h>
79  #include <linux/time.h>
80  #include <linux/security.h>
81  #include <linux/syscalls.h>
82  #include <linux/audit.h>
83  #include <linux/capability.h>
84  #include <linux/seq_file.h>
85  #include <linux/rwsem.h>
86  #include <linux/nsproxy.h>
87  #include <linux/ipc_namespace.h>
88  
89  #include <linux/uaccess.h>
90  #include "util.h"
91  
92  /* One semaphore structure for each semaphore in the system. */
93  struct sem {
94  	int	semval;		/* current value */
95  	/*
96  	 * PID of the process that last modified the semaphore. For
97  	 * Linux, specifically these are:
98  	 *  - semop
99  	 *  - semctl, via SETVAL and SETALL.
100  	 *  - at task exit when performing undo adjustments (see exit_sem).
101  	 */
102  	int	sempid;
103  	spinlock_t	lock;	/* spinlock for fine-grained semtimedop */
104  	struct list_head pending_alter; /* pending single-sop operations */
105  					/* that alter the semaphore */
106  	struct list_head pending_const; /* pending single-sop operations */
107  					/* that do not alter the semaphore*/
108  	time_t	sem_otime;	/* candidate for sem_otime */
109  } ____cacheline_aligned_in_smp;
110  
111  /* One queue for each sleeping process in the system. */
112  struct sem_queue {
113  	struct list_head	list;	 /* queue of pending operations */
114  	struct task_struct	*sleeper; /* this process */
115  	struct sem_undo		*undo;	 /* undo structure */
116  	int			pid;	 /* process id of requesting process */
117  	int			status;	 /* completion status of operation */
118  	struct sembuf		*sops;	 /* array of pending operations */
119  	struct sembuf		*blocking; /* the operation that blocked */
120  	int			nsops;	 /* number of operations */
121  	int			alter;	 /* does *sops alter the array? */
122  };
123  
124  /* Each task has a list of undo requests. They are executed automatically
125   * when the process exits.
126   */
127  struct sem_undo {
128  	struct list_head	list_proc;	/* per-process list: *
129  						 * all undos from one process
130  						 * rcu protected */
131  	struct rcu_head		rcu;		/* rcu struct for sem_undo */
132  	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
133  	struct list_head	list_id;	/* per semaphore array list:
134  						 * all undos for one array */
135  	int			semid;		/* semaphore set identifier */
136  	short			*semadj;	/* array of adjustments */
137  						/* one per semaphore */
138  };
139  
140  /* sem_undo_list controls shared access to the list of sem_undo structures
141   * that may be shared among all a CLONE_SYSVSEM task group.
142   */
143  struct sem_undo_list {
144  	atomic_t		refcnt;
145  	spinlock_t		lock;
146  	struct list_head	list_proc;
147  };
148  
149  
150  #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
151  
152  #define sem_checkid(sma, semid)	ipc_checkid(&sma->sem_perm, semid)
153  
154  static int newary(struct ipc_namespace *, struct ipc_params *);
155  static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
156  #ifdef CONFIG_PROC_FS
157  static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
158  #endif
159  
160  #define SEMMSL_FAST	256 /* 512 bytes on stack */
161  #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
162  
163  /*
164   * Locking:
165   *	sem_undo.id_next,
166   *	sem_array.complex_count,
167   *	sem_array.pending{_alter,_cont},
168   *	sem_array.sem_undo: global sem_lock() for read/write
169   *	sem_undo.proc_next: only "current" is allowed to read/write that field.
170   *
171   *	sem_array.sem_base[i].pending_{const,alter}:
172   *		global or semaphore sem_lock() for read/write
173   */
174  
175  #define sc_semmsl	sem_ctls[0]
176  #define sc_semmns	sem_ctls[1]
177  #define sc_semopm	sem_ctls[2]
178  #define sc_semmni	sem_ctls[3]
179  
180  void sem_init_ns(struct ipc_namespace *ns)
181  {
182  	ns->sc_semmsl = SEMMSL;
183  	ns->sc_semmns = SEMMNS;
184  	ns->sc_semopm = SEMOPM;
185  	ns->sc_semmni = SEMMNI;
186  	ns->used_sems = 0;
187  	ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
188  }
189  
190  #ifdef CONFIG_IPC_NS
191  void sem_exit_ns(struct ipc_namespace *ns)
192  {
193  	free_ipcs(ns, &sem_ids(ns), freeary);
194  	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
195  }
196  #endif
197  
198  void __init sem_init(void)
199  {
200  	sem_init_ns(&init_ipc_ns);
201  	ipc_init_proc_interface("sysvipc/sem",
202  				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
203  				IPC_SEM_IDS, sysvipc_sem_proc_show);
204  }
205  
206  /**
207   * unmerge_queues - unmerge queues, if possible.
208   * @sma: semaphore array
209   *
210   * The function unmerges the wait queues if complex_count is 0.
211   * It must be called prior to dropping the global semaphore array lock.
212   */
213  static void unmerge_queues(struct sem_array *sma)
214  {
215  	struct sem_queue *q, *tq;
216  
217  	/* complex operations still around? */
218  	if (sma->complex_count)
219  		return;
220  	/*
221  	 * We will switch back to simple mode.
222  	 * Move all pending operation back into the per-semaphore
223  	 * queues.
224  	 */
225  	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
226  		struct sem *curr;
227  		curr = &sma->sem_base[q->sops[0].sem_num];
228  
229  		list_add_tail(&q->list, &curr->pending_alter);
230  	}
231  	INIT_LIST_HEAD(&sma->pending_alter);
232  }
233  
234  /**
235   * merge_queues - merge single semop queues into global queue
236   * @sma: semaphore array
237   *
238   * This function merges all per-semaphore queues into the global queue.
239   * It is necessary to achieve FIFO ordering for the pending single-sop
240   * operations when a multi-semop operation must sleep.
241   * Only the alter operations must be moved, the const operations can stay.
242   */
243  static void merge_queues(struct sem_array *sma)
244  {
245  	int i;
246  	for (i = 0; i < sma->sem_nsems; i++) {
247  		struct sem *sem = sma->sem_base + i;
248  
249  		list_splice_init(&sem->pending_alter, &sma->pending_alter);
250  	}
251  }
252  
253  static void sem_rcu_free(struct rcu_head *head)
254  {
255  	struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
256  	struct sem_array *sma = ipc_rcu_to_struct(p);
257  
258  	security_sem_free(sma);
259  	ipc_rcu_free(head);
260  }
261  
262  /*
263   * Wait until all currently ongoing simple ops have completed.
264   * Caller must own sem_perm.lock.
265   * New simple ops cannot start, because simple ops first check
266   * that sem_perm.lock is free.
267   * that a) sem_perm.lock is free and b) complex_count is 0.
268   */
269  static void sem_wait_array(struct sem_array *sma)
270  {
271  	int i;
272  	struct sem *sem;
273  
274  	if (sma->complex_count)  {
275  		/* The thread that increased sma->complex_count waited on
276  		 * all sem->lock locks. Thus we don't need to wait again.
277  		 */
278  		return;
279  	}
280  
281  	for (i = 0; i < sma->sem_nsems; i++) {
282  		sem = sma->sem_base + i;
283  		spin_unlock_wait(&sem->lock);
284  	}
285  }
286  
287  /*
288   * If the request contains only one semaphore operation, and there are
289   * no complex transactions pending, lock only the semaphore involved.
290   * Otherwise, lock the entire semaphore array, since we either have
291   * multiple semaphores in our own semops, or we need to look at
292   * semaphores from other pending complex operations.
293   */
294  static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
295  			      int nsops)
296  {
297  	struct sem *sem;
298  
299  	if (nsops != 1) {
300  		/* Complex operation - acquire a full lock */
301  		ipc_lock_object(&sma->sem_perm);
302  
303  		/* And wait until all simple ops that are processed
304  		 * right now have dropped their locks.
305  		 */
306  		sem_wait_array(sma);
307  		return -1;
308  	}
309  
310  	/*
311  	 * Only one semaphore affected - try to optimize locking.
312  	 * The rules are:
313  	 * - optimized locking is possible if no complex operation
314  	 *   is either enqueued or processed right now.
315  	 * - The test for enqueued complex ops is simple:
316  	 *      sma->complex_count != 0
317  	 * - Testing for complex ops that are processed right now is
318  	 *   a bit more difficult. Complex ops acquire the full lock
319  	 *   and first wait that the running simple ops have completed.
320  	 *   (see above)
321  	 *   Thus: If we own a simple lock and the global lock is free
322  	 *	and complex_count is now 0, then it will stay 0 and
323  	 *	thus just locking sem->lock is sufficient.
324  	 */
325  	sem = sma->sem_base + sops->sem_num;
326  
327  	if (sma->complex_count == 0) {
328  		/*
329  		 * It appears that no complex operation is around.
330  		 * Acquire the per-semaphore lock.
331  		 */
332  		spin_lock(&sem->lock);
333  
334  		/* Then check that the global lock is free */
335  		if (!spin_is_locked(&sma->sem_perm.lock)) {
336  			/*
337  			 * We need a memory barrier with acquire semantics,
338  			 * otherwise we can race with another thread that does:
339  			 *	complex_count++;
340  			 *	spin_unlock(sem_perm.lock);
341  			 */
342  			smp_acquire__after_ctrl_dep();
343  
344  			/*
345  			 * Now repeat the test of complex_count:
346  			 * It can't change anymore until we drop sem->lock.
347  			 * Thus: if is now 0, then it will stay 0.
348  			 */
349  			if (sma->complex_count == 0) {
350  				/* fast path successful! */
351  				return sops->sem_num;
352  			}
353  		}
354  		spin_unlock(&sem->lock);
355  	}
356  
357  	/* slow path: acquire the full lock */
358  	ipc_lock_object(&sma->sem_perm);
359  
360  	if (sma->complex_count == 0) {
361  		/* False alarm:
362  		 * There is no complex operation, thus we can switch
363  		 * back to the fast path.
364  		 */
365  		spin_lock(&sem->lock);
366  		ipc_unlock_object(&sma->sem_perm);
367  		return sops->sem_num;
368  	} else {
369  		/* Not a false alarm, thus complete the sequence for a
370  		 * full lock.
371  		 */
372  		sem_wait_array(sma);
373  		return -1;
374  	}
375  }
376  
377  static inline void sem_unlock(struct sem_array *sma, int locknum)
378  {
379  	if (locknum == -1) {
380  		unmerge_queues(sma);
381  		ipc_unlock_object(&sma->sem_perm);
382  	} else {
383  		struct sem *sem = sma->sem_base + locknum;
384  		spin_unlock(&sem->lock);
385  	}
386  }
387  
388  /*
389   * sem_lock_(check_) routines are called in the paths where the rwsem
390   * is not held.
391   *
392   * The caller holds the RCU read lock.
393   */
394  static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
395  			int id, struct sembuf *sops, int nsops, int *locknum)
396  {
397  	struct kern_ipc_perm *ipcp;
398  	struct sem_array *sma;
399  
400  	ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
401  	if (IS_ERR(ipcp))
402  		return ERR_CAST(ipcp);
403  
404  	sma = container_of(ipcp, struct sem_array, sem_perm);
405  	*locknum = sem_lock(sma, sops, nsops);
406  
407  	/* ipc_rmid() may have already freed the ID while sem_lock
408  	 * was spinning: verify that the structure is still valid
409  	 */
410  	if (ipc_valid_object(ipcp))
411  		return container_of(ipcp, struct sem_array, sem_perm);
412  
413  	sem_unlock(sma, *locknum);
414  	return ERR_PTR(-EINVAL);
415  }
416  
417  static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
418  {
419  	struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
420  
421  	if (IS_ERR(ipcp))
422  		return ERR_CAST(ipcp);
423  
424  	return container_of(ipcp, struct sem_array, sem_perm);
425  }
426  
427  static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
428  							int id)
429  {
430  	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
431  
432  	if (IS_ERR(ipcp))
433  		return ERR_CAST(ipcp);
434  
435  	return container_of(ipcp, struct sem_array, sem_perm);
436  }
437  
438  static inline void sem_lock_and_putref(struct sem_array *sma)
439  {
440  	sem_lock(sma, NULL, -1);
441  	ipc_rcu_putref(sma, sem_rcu_free);
442  }
443  
444  static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
445  {
446  	ipc_rmid(&sem_ids(ns), &s->sem_perm);
447  }
448  
449  /*
450   * Lockless wakeup algorithm:
451   * Without the check/retry algorithm a lockless wakeup is possible:
452   * - queue.status is initialized to -EINTR before blocking.
453   * - wakeup is performed by
454   *	* unlinking the queue entry from the pending list
455   *	* setting queue.status to IN_WAKEUP
456   *	  This is the notification for the blocked thread that a
457   *	  result value is imminent.
458   *	* call wake_up_process
459   *	* set queue.status to the final value.
460   * - the previously blocked thread checks queue.status:
461   *	* if it's IN_WAKEUP, then it must wait until the value changes
462   *	* if it's not -EINTR, then the operation was completed by
463   *	  update_queue. semtimedop can return queue.status without
464   *	  performing any operation on the sem array.
465   *	* otherwise it must acquire the spinlock and check what's up.
466   *
467   * The two-stage algorithm is necessary to protect against the following
468   * races:
469   * - if queue.status is set after wake_up_process, then the woken up idle
470   *   thread could race forward and try (and fail) to acquire sma->lock
471   *   before update_queue had a chance to set queue.status
472   * - if queue.status is written before wake_up_process and if the
473   *   blocked process is woken up by a signal between writing
474   *   queue.status and the wake_up_process, then the woken up
475   *   process could return from semtimedop and die by calling
476   *   sys_exit before wake_up_process is called. Then wake_up_process
477   *   will oops, because the task structure is already invalid.
478   *   (yes, this happened on s390 with sysv msg).
479   *
480   */
481  #define IN_WAKEUP	1
482  
483  /**
484   * newary - Create a new semaphore set
485   * @ns: namespace
486   * @params: ptr to the structure that contains key, semflg and nsems
487   *
488   * Called with sem_ids.rwsem held (as a writer)
489   */
490  static int newary(struct ipc_namespace *ns, struct ipc_params *params)
491  {
492  	int id;
493  	int retval;
494  	struct sem_array *sma;
495  	int size;
496  	key_t key = params->key;
497  	int nsems = params->u.nsems;
498  	int semflg = params->flg;
499  	int i;
500  
501  	if (!nsems)
502  		return -EINVAL;
503  	if (ns->used_sems + nsems > ns->sc_semmns)
504  		return -ENOSPC;
505  
506  	size = sizeof(*sma) + nsems * sizeof(struct sem);
507  	sma = ipc_rcu_alloc(size);
508  	if (!sma)
509  		return -ENOMEM;
510  
511  	memset(sma, 0, size);
512  
513  	sma->sem_perm.mode = (semflg & S_IRWXUGO);
514  	sma->sem_perm.key = key;
515  
516  	sma->sem_perm.security = NULL;
517  	retval = security_sem_alloc(sma);
518  	if (retval) {
519  		ipc_rcu_putref(sma, ipc_rcu_free);
520  		return retval;
521  	}
522  
523  	sma->sem_base = (struct sem *) &sma[1];
524  
525  	for (i = 0; i < nsems; i++) {
526  		INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
527  		INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
528  		spin_lock_init(&sma->sem_base[i].lock);
529  	}
530  
531  	sma->complex_count = 0;
532  	INIT_LIST_HEAD(&sma->pending_alter);
533  	INIT_LIST_HEAD(&sma->pending_const);
534  	INIT_LIST_HEAD(&sma->list_id);
535  	sma->sem_nsems = nsems;
536  	sma->sem_ctime = get_seconds();
537  
538  	id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
539  	if (id < 0) {
540  		ipc_rcu_putref(sma, sem_rcu_free);
541  		return id;
542  	}
543  	ns->used_sems += nsems;
544  
545  	sem_unlock(sma, -1);
546  	rcu_read_unlock();
547  
548  	return sma->sem_perm.id;
549  }
550  
551  
552  /*
553   * Called with sem_ids.rwsem and ipcp locked.
554   */
555  static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
556  {
557  	struct sem_array *sma;
558  
559  	sma = container_of(ipcp, struct sem_array, sem_perm);
560  	return security_sem_associate(sma, semflg);
561  }
562  
563  /*
564   * Called with sem_ids.rwsem and ipcp locked.
565   */
566  static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
567  				struct ipc_params *params)
568  {
569  	struct sem_array *sma;
570  
571  	sma = container_of(ipcp, struct sem_array, sem_perm);
572  	if (params->u.nsems > sma->sem_nsems)
573  		return -EINVAL;
574  
575  	return 0;
576  }
577  
578  SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
579  {
580  	struct ipc_namespace *ns;
581  	static const struct ipc_ops sem_ops = {
582  		.getnew = newary,
583  		.associate = sem_security,
584  		.more_checks = sem_more_checks,
585  	};
586  	struct ipc_params sem_params;
587  
588  	ns = current->nsproxy->ipc_ns;
589  
590  	if (nsems < 0 || nsems > ns->sc_semmsl)
591  		return -EINVAL;
592  
593  	sem_params.key = key;
594  	sem_params.flg = semflg;
595  	sem_params.u.nsems = nsems;
596  
597  	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
598  }
599  
600  /**
601   * perform_atomic_semop - Perform (if possible) a semaphore operation
602   * @sma: semaphore array
603   * @q: struct sem_queue that describes the operation
604   *
605   * Returns 0 if the operation was possible.
606   * Returns 1 if the operation is impossible, the caller must sleep.
607   * Negative values are error codes.
608   */
609  static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
610  {
611  	int result, sem_op, nsops, pid;
612  	struct sembuf *sop;
613  	struct sem *curr;
614  	struct sembuf *sops;
615  	struct sem_undo *un;
616  
617  	sops = q->sops;
618  	nsops = q->nsops;
619  	un = q->undo;
620  
621  	for (sop = sops; sop < sops + nsops; sop++) {
622  		curr = sma->sem_base + sop->sem_num;
623  		sem_op = sop->sem_op;
624  		result = curr->semval;
625  
626  		if (!sem_op && result)
627  			goto would_block;
628  
629  		result += sem_op;
630  		if (result < 0)
631  			goto would_block;
632  		if (result > SEMVMX)
633  			goto out_of_range;
634  
635  		if (sop->sem_flg & SEM_UNDO) {
636  			int undo = un->semadj[sop->sem_num] - sem_op;
637  			/* Exceeding the undo range is an error. */
638  			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
639  				goto out_of_range;
640  			un->semadj[sop->sem_num] = undo;
641  		}
642  
643  		curr->semval = result;
644  	}
645  
646  	sop--;
647  	pid = q->pid;
648  	while (sop >= sops) {
649  		sma->sem_base[sop->sem_num].sempid = pid;
650  		sop--;
651  	}
652  
653  	return 0;
654  
655  out_of_range:
656  	result = -ERANGE;
657  	goto undo;
658  
659  would_block:
660  	q->blocking = sop;
661  
662  	if (sop->sem_flg & IPC_NOWAIT)
663  		result = -EAGAIN;
664  	else
665  		result = 1;
666  
667  undo:
668  	sop--;
669  	while (sop >= sops) {
670  		sem_op = sop->sem_op;
671  		sma->sem_base[sop->sem_num].semval -= sem_op;
672  		if (sop->sem_flg & SEM_UNDO)
673  			un->semadj[sop->sem_num] += sem_op;
674  		sop--;
675  	}
676  
677  	return result;
678  }
679  
680  /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
681   * @q: queue entry that must be signaled
682   * @error: Error value for the signal
683   *
684   * Prepare the wake-up of the queue entry q.
685   */
686  static void wake_up_sem_queue_prepare(struct list_head *pt,
687  				struct sem_queue *q, int error)
688  {
689  	if (list_empty(pt)) {
690  		/*
691  		 * Hold preempt off so that we don't get preempted and have the
692  		 * wakee busy-wait until we're scheduled back on.
693  		 */
694  		preempt_disable();
695  	}
696  	q->status = IN_WAKEUP;
697  	q->pid = error;
698  
699  	list_add_tail(&q->list, pt);
700  }
701  
702  /**
703   * wake_up_sem_queue_do - do the actual wake-up
704   * @pt: list of tasks to be woken up
705   *
706   * Do the actual wake-up.
707   * The function is called without any locks held, thus the semaphore array
708   * could be destroyed already and the tasks can disappear as soon as the
709   * status is set to the actual return code.
710   */
711  static void wake_up_sem_queue_do(struct list_head *pt)
712  {
713  	struct sem_queue *q, *t;
714  	int did_something;
715  
716  	did_something = !list_empty(pt);
717  	list_for_each_entry_safe(q, t, pt, list) {
718  		wake_up_process(q->sleeper);
719  		/* q can disappear immediately after writing q->status. */
720  		smp_wmb();
721  		q->status = q->pid;
722  	}
723  	if (did_something)
724  		preempt_enable();
725  }
726  
727  static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
728  {
729  	list_del(&q->list);
730  	if (q->nsops > 1)
731  		sma->complex_count--;
732  }
733  
734  /** check_restart(sma, q)
735   * @sma: semaphore array
736   * @q: the operation that just completed
737   *
738   * update_queue is O(N^2) when it restarts scanning the whole queue of
739   * waiting operations. Therefore this function checks if the restart is
740   * really necessary. It is called after a previously waiting operation
741   * modified the array.
742   * Note that wait-for-zero operations are handled without restart.
743   */
744  static int check_restart(struct sem_array *sma, struct sem_queue *q)
745  {
746  	/* pending complex alter operations are too difficult to analyse */
747  	if (!list_empty(&sma->pending_alter))
748  		return 1;
749  
750  	/* we were a sleeping complex operation. Too difficult */
751  	if (q->nsops > 1)
752  		return 1;
753  
754  	/* It is impossible that someone waits for the new value:
755  	 * - complex operations always restart.
756  	 * - wait-for-zero are handled seperately.
757  	 * - q is a previously sleeping simple operation that
758  	 *   altered the array. It must be a decrement, because
759  	 *   simple increments never sleep.
760  	 * - If there are older (higher priority) decrements
761  	 *   in the queue, then they have observed the original
762  	 *   semval value and couldn't proceed. The operation
763  	 *   decremented to value - thus they won't proceed either.
764  	 */
765  	return 0;
766  }
767  
768  /**
769   * wake_const_ops - wake up non-alter tasks
770   * @sma: semaphore array.
771   * @semnum: semaphore that was modified.
772   * @pt: list head for the tasks that must be woken up.
773   *
774   * wake_const_ops must be called after a semaphore in a semaphore array
775   * was set to 0. If complex const operations are pending, wake_const_ops must
776   * be called with semnum = -1, as well as with the number of each modified
777   * semaphore.
778   * The tasks that must be woken up are added to @pt. The return code
779   * is stored in q->pid.
780   * The function returns 1 if at least one operation was completed successfully.
781   */
782  static int wake_const_ops(struct sem_array *sma, int semnum,
783  				struct list_head *pt)
784  {
785  	struct sem_queue *q;
786  	struct list_head *walk;
787  	struct list_head *pending_list;
788  	int semop_completed = 0;
789  
790  	if (semnum == -1)
791  		pending_list = &sma->pending_const;
792  	else
793  		pending_list = &sma->sem_base[semnum].pending_const;
794  
795  	walk = pending_list->next;
796  	while (walk != pending_list) {
797  		int error;
798  
799  		q = container_of(walk, struct sem_queue, list);
800  		walk = walk->next;
801  
802  		error = perform_atomic_semop(sma, q);
803  
804  		if (error <= 0) {
805  			/* operation completed, remove from queue & wakeup */
806  
807  			unlink_queue(sma, q);
808  
809  			wake_up_sem_queue_prepare(pt, q, error);
810  			if (error == 0)
811  				semop_completed = 1;
812  		}
813  	}
814  	return semop_completed;
815  }
816  
817  /**
818   * do_smart_wakeup_zero - wakeup all wait for zero tasks
819   * @sma: semaphore array
820   * @sops: operations that were performed
821   * @nsops: number of operations
822   * @pt: list head of the tasks that must be woken up.
823   *
824   * Checks all required queue for wait-for-zero operations, based
825   * on the actual changes that were performed on the semaphore array.
826   * The function returns 1 if at least one operation was completed successfully.
827   */
828  static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
829  					int nsops, struct list_head *pt)
830  {
831  	int i;
832  	int semop_completed = 0;
833  	int got_zero = 0;
834  
835  	/* first: the per-semaphore queues, if known */
836  	if (sops) {
837  		for (i = 0; i < nsops; i++) {
838  			int num = sops[i].sem_num;
839  
840  			if (sma->sem_base[num].semval == 0) {
841  				got_zero = 1;
842  				semop_completed |= wake_const_ops(sma, num, pt);
843  			}
844  		}
845  	} else {
846  		/*
847  		 * No sops means modified semaphores not known.
848  		 * Assume all were changed.
849  		 */
850  		for (i = 0; i < sma->sem_nsems; i++) {
851  			if (sma->sem_base[i].semval == 0) {
852  				got_zero = 1;
853  				semop_completed |= wake_const_ops(sma, i, pt);
854  			}
855  		}
856  	}
857  	/*
858  	 * If one of the modified semaphores got 0,
859  	 * then check the global queue, too.
860  	 */
861  	if (got_zero)
862  		semop_completed |= wake_const_ops(sma, -1, pt);
863  
864  	return semop_completed;
865  }
866  
867  
868  /**
869   * update_queue - look for tasks that can be completed.
870   * @sma: semaphore array.
871   * @semnum: semaphore that was modified.
872   * @pt: list head for the tasks that must be woken up.
873   *
874   * update_queue must be called after a semaphore in a semaphore array
875   * was modified. If multiple semaphores were modified, update_queue must
876   * be called with semnum = -1, as well as with the number of each modified
877   * semaphore.
878   * The tasks that must be woken up are added to @pt. The return code
879   * is stored in q->pid.
880   * The function internally checks if const operations can now succeed.
881   *
882   * The function return 1 if at least one semop was completed successfully.
883   */
884  static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
885  {
886  	struct sem_queue *q;
887  	struct list_head *walk;
888  	struct list_head *pending_list;
889  	int semop_completed = 0;
890  
891  	if (semnum == -1)
892  		pending_list = &sma->pending_alter;
893  	else
894  		pending_list = &sma->sem_base[semnum].pending_alter;
895  
896  again:
897  	walk = pending_list->next;
898  	while (walk != pending_list) {
899  		int error, restart;
900  
901  		q = container_of(walk, struct sem_queue, list);
902  		walk = walk->next;
903  
904  		/* If we are scanning the single sop, per-semaphore list of
905  		 * one semaphore and that semaphore is 0, then it is not
906  		 * necessary to scan further: simple increments
907  		 * that affect only one entry succeed immediately and cannot
908  		 * be in the  per semaphore pending queue, and decrements
909  		 * cannot be successful if the value is already 0.
910  		 */
911  		if (semnum != -1 && sma->sem_base[semnum].semval == 0)
912  			break;
913  
914  		error = perform_atomic_semop(sma, q);
915  
916  		/* Does q->sleeper still need to sleep? */
917  		if (error > 0)
918  			continue;
919  
920  		unlink_queue(sma, q);
921  
922  		if (error) {
923  			restart = 0;
924  		} else {
925  			semop_completed = 1;
926  			do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
927  			restart = check_restart(sma, q);
928  		}
929  
930  		wake_up_sem_queue_prepare(pt, q, error);
931  		if (restart)
932  			goto again;
933  	}
934  	return semop_completed;
935  }
936  
937  /**
938   * set_semotime - set sem_otime
939   * @sma: semaphore array
940   * @sops: operations that modified the array, may be NULL
941   *
942   * sem_otime is replicated to avoid cache line trashing.
943   * This function sets one instance to the current time.
944   */
945  static void set_semotime(struct sem_array *sma, struct sembuf *sops)
946  {
947  	if (sops == NULL) {
948  		sma->sem_base[0].sem_otime = get_seconds();
949  	} else {
950  		sma->sem_base[sops[0].sem_num].sem_otime =
951  							get_seconds();
952  	}
953  }
954  
955  /**
956   * do_smart_update - optimized update_queue
957   * @sma: semaphore array
958   * @sops: operations that were performed
959   * @nsops: number of operations
960   * @otime: force setting otime
961   * @pt: list head of the tasks that must be woken up.
962   *
963   * do_smart_update() does the required calls to update_queue and wakeup_zero,
964   * based on the actual changes that were performed on the semaphore array.
965   * Note that the function does not do the actual wake-up: the caller is
966   * responsible for calling wake_up_sem_queue_do(@pt).
967   * It is safe to perform this call after dropping all locks.
968   */
969  static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
970  			int otime, struct list_head *pt)
971  {
972  	int i;
973  
974  	otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
975  
976  	if (!list_empty(&sma->pending_alter)) {
977  		/* semaphore array uses the global queue - just process it. */
978  		otime |= update_queue(sma, -1, pt);
979  	} else {
980  		if (!sops) {
981  			/*
982  			 * No sops, thus the modified semaphores are not
983  			 * known. Check all.
984  			 */
985  			for (i = 0; i < sma->sem_nsems; i++)
986  				otime |= update_queue(sma, i, pt);
987  		} else {
988  			/*
989  			 * Check the semaphores that were increased:
990  			 * - No complex ops, thus all sleeping ops are
991  			 *   decrease.
992  			 * - if we decreased the value, then any sleeping
993  			 *   semaphore ops wont be able to run: If the
994  			 *   previous value was too small, then the new
995  			 *   value will be too small, too.
996  			 */
997  			for (i = 0; i < nsops; i++) {
998  				if (sops[i].sem_op > 0) {
999  					otime |= update_queue(sma,
1000  							sops[i].sem_num, pt);
1001  				}
1002  			}
1003  		}
1004  	}
1005  	if (otime)
1006  		set_semotime(sma, sops);
1007  }
1008  
1009  /*
1010   * check_qop: Test if a queued operation sleeps on the semaphore semnum
1011   */
1012  static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1013  			bool count_zero)
1014  {
1015  	struct sembuf *sop = q->blocking;
1016  
1017  	/*
1018  	 * Linux always (since 0.99.10) reported a task as sleeping on all
1019  	 * semaphores. This violates SUS, therefore it was changed to the
1020  	 * standard compliant behavior.
1021  	 * Give the administrators a chance to notice that an application
1022  	 * might misbehave because it relies on the Linux behavior.
1023  	 */
1024  	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1025  			"The task %s (%d) triggered the difference, watch for misbehavior.\n",
1026  			current->comm, task_pid_nr(current));
1027  
1028  	if (sop->sem_num != semnum)
1029  		return 0;
1030  
1031  	if (count_zero && sop->sem_op == 0)
1032  		return 1;
1033  	if (!count_zero && sop->sem_op < 0)
1034  		return 1;
1035  
1036  	return 0;
1037  }
1038  
1039  /* The following counts are associated to each semaphore:
1040   *   semncnt        number of tasks waiting on semval being nonzero
1041   *   semzcnt        number of tasks waiting on semval being zero
1042   *
1043   * Per definition, a task waits only on the semaphore of the first semop
1044   * that cannot proceed, even if additional operation would block, too.
1045   */
1046  static int count_semcnt(struct sem_array *sma, ushort semnum,
1047  			bool count_zero)
1048  {
1049  	struct list_head *l;
1050  	struct sem_queue *q;
1051  	int semcnt;
1052  
1053  	semcnt = 0;
1054  	/* First: check the simple operations. They are easy to evaluate */
1055  	if (count_zero)
1056  		l = &sma->sem_base[semnum].pending_const;
1057  	else
1058  		l = &sma->sem_base[semnum].pending_alter;
1059  
1060  	list_for_each_entry(q, l, list) {
1061  		/* all task on a per-semaphore list sleep on exactly
1062  		 * that semaphore
1063  		 */
1064  		semcnt++;
1065  	}
1066  
1067  	/* Then: check the complex operations. */
1068  	list_for_each_entry(q, &sma->pending_alter, list) {
1069  		semcnt += check_qop(sma, semnum, q, count_zero);
1070  	}
1071  	if (count_zero) {
1072  		list_for_each_entry(q, &sma->pending_const, list) {
1073  			semcnt += check_qop(sma, semnum, q, count_zero);
1074  		}
1075  	}
1076  	return semcnt;
1077  }
1078  
1079  /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1080   * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1081   * remains locked on exit.
1082   */
1083  static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1084  {
1085  	struct sem_undo *un, *tu;
1086  	struct sem_queue *q, *tq;
1087  	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1088  	struct list_head tasks;
1089  	int i;
1090  
1091  	/* Free the existing undo structures for this semaphore set.  */
1092  	ipc_assert_locked_object(&sma->sem_perm);
1093  	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1094  		list_del(&un->list_id);
1095  		spin_lock(&un->ulp->lock);
1096  		un->semid = -1;
1097  		list_del_rcu(&un->list_proc);
1098  		spin_unlock(&un->ulp->lock);
1099  		kfree_rcu(un, rcu);
1100  	}
1101  
1102  	/* Wake up all pending processes and let them fail with EIDRM. */
1103  	INIT_LIST_HEAD(&tasks);
1104  	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1105  		unlink_queue(sma, q);
1106  		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1107  	}
1108  
1109  	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1110  		unlink_queue(sma, q);
1111  		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1112  	}
1113  	for (i = 0; i < sma->sem_nsems; i++) {
1114  		struct sem *sem = sma->sem_base + i;
1115  		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1116  			unlink_queue(sma, q);
1117  			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1118  		}
1119  		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1120  			unlink_queue(sma, q);
1121  			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1122  		}
1123  	}
1124  
1125  	/* Remove the semaphore set from the IDR */
1126  	sem_rmid(ns, sma);
1127  	sem_unlock(sma, -1);
1128  	rcu_read_unlock();
1129  
1130  	wake_up_sem_queue_do(&tasks);
1131  	ns->used_sems -= sma->sem_nsems;
1132  	ipc_rcu_putref(sma, sem_rcu_free);
1133  }
1134  
1135  static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1136  {
1137  	switch (version) {
1138  	case IPC_64:
1139  		return copy_to_user(buf, in, sizeof(*in));
1140  	case IPC_OLD:
1141  	    {
1142  		struct semid_ds out;
1143  
1144  		memset(&out, 0, sizeof(out));
1145  
1146  		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1147  
1148  		out.sem_otime	= in->sem_otime;
1149  		out.sem_ctime	= in->sem_ctime;
1150  		out.sem_nsems	= in->sem_nsems;
1151  
1152  		return copy_to_user(buf, &out, sizeof(out));
1153  	    }
1154  	default:
1155  		return -EINVAL;
1156  	}
1157  }
1158  
1159  static time_t get_semotime(struct sem_array *sma)
1160  {
1161  	int i;
1162  	time_t res;
1163  
1164  	res = sma->sem_base[0].sem_otime;
1165  	for (i = 1; i < sma->sem_nsems; i++) {
1166  		time_t to = sma->sem_base[i].sem_otime;
1167  
1168  		if (to > res)
1169  			res = to;
1170  	}
1171  	return res;
1172  }
1173  
1174  static int semctl_nolock(struct ipc_namespace *ns, int semid,
1175  			 int cmd, int version, void __user *p)
1176  {
1177  	int err;
1178  	struct sem_array *sma;
1179  
1180  	switch (cmd) {
1181  	case IPC_INFO:
1182  	case SEM_INFO:
1183  	{
1184  		struct seminfo seminfo;
1185  		int max_id;
1186  
1187  		err = security_sem_semctl(NULL, cmd);
1188  		if (err)
1189  			return err;
1190  
1191  		memset(&seminfo, 0, sizeof(seminfo));
1192  		seminfo.semmni = ns->sc_semmni;
1193  		seminfo.semmns = ns->sc_semmns;
1194  		seminfo.semmsl = ns->sc_semmsl;
1195  		seminfo.semopm = ns->sc_semopm;
1196  		seminfo.semvmx = SEMVMX;
1197  		seminfo.semmnu = SEMMNU;
1198  		seminfo.semmap = SEMMAP;
1199  		seminfo.semume = SEMUME;
1200  		down_read(&sem_ids(ns).rwsem);
1201  		if (cmd == SEM_INFO) {
1202  			seminfo.semusz = sem_ids(ns).in_use;
1203  			seminfo.semaem = ns->used_sems;
1204  		} else {
1205  			seminfo.semusz = SEMUSZ;
1206  			seminfo.semaem = SEMAEM;
1207  		}
1208  		max_id = ipc_get_maxid(&sem_ids(ns));
1209  		up_read(&sem_ids(ns).rwsem);
1210  		if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1211  			return -EFAULT;
1212  		return (max_id < 0) ? 0 : max_id;
1213  	}
1214  	case IPC_STAT:
1215  	case SEM_STAT:
1216  	{
1217  		struct semid64_ds tbuf;
1218  		int id = 0;
1219  
1220  		memset(&tbuf, 0, sizeof(tbuf));
1221  
1222  		rcu_read_lock();
1223  		if (cmd == SEM_STAT) {
1224  			sma = sem_obtain_object(ns, semid);
1225  			if (IS_ERR(sma)) {
1226  				err = PTR_ERR(sma);
1227  				goto out_unlock;
1228  			}
1229  			id = sma->sem_perm.id;
1230  		} else {
1231  			sma = sem_obtain_object_check(ns, semid);
1232  			if (IS_ERR(sma)) {
1233  				err = PTR_ERR(sma);
1234  				goto out_unlock;
1235  			}
1236  		}
1237  
1238  		err = -EACCES;
1239  		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1240  			goto out_unlock;
1241  
1242  		err = security_sem_semctl(sma, cmd);
1243  		if (err)
1244  			goto out_unlock;
1245  
1246  		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1247  		tbuf.sem_otime = get_semotime(sma);
1248  		tbuf.sem_ctime = sma->sem_ctime;
1249  		tbuf.sem_nsems = sma->sem_nsems;
1250  		rcu_read_unlock();
1251  		if (copy_semid_to_user(p, &tbuf, version))
1252  			return -EFAULT;
1253  		return id;
1254  	}
1255  	default:
1256  		return -EINVAL;
1257  	}
1258  out_unlock:
1259  	rcu_read_unlock();
1260  	return err;
1261  }
1262  
1263  static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1264  		unsigned long arg)
1265  {
1266  	struct sem_undo *un;
1267  	struct sem_array *sma;
1268  	struct sem *curr;
1269  	int err;
1270  	struct list_head tasks;
1271  	int val;
1272  #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1273  	/* big-endian 64bit */
1274  	val = arg >> 32;
1275  #else
1276  	/* 32bit or little-endian 64bit */
1277  	val = arg;
1278  #endif
1279  
1280  	if (val > SEMVMX || val < 0)
1281  		return -ERANGE;
1282  
1283  	INIT_LIST_HEAD(&tasks);
1284  
1285  	rcu_read_lock();
1286  	sma = sem_obtain_object_check(ns, semid);
1287  	if (IS_ERR(sma)) {
1288  		rcu_read_unlock();
1289  		return PTR_ERR(sma);
1290  	}
1291  
1292  	if (semnum < 0 || semnum >= sma->sem_nsems) {
1293  		rcu_read_unlock();
1294  		return -EINVAL;
1295  	}
1296  
1297  
1298  	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1299  		rcu_read_unlock();
1300  		return -EACCES;
1301  	}
1302  
1303  	err = security_sem_semctl(sma, SETVAL);
1304  	if (err) {
1305  		rcu_read_unlock();
1306  		return -EACCES;
1307  	}
1308  
1309  	sem_lock(sma, NULL, -1);
1310  
1311  	if (!ipc_valid_object(&sma->sem_perm)) {
1312  		sem_unlock(sma, -1);
1313  		rcu_read_unlock();
1314  		return -EIDRM;
1315  	}
1316  
1317  	curr = &sma->sem_base[semnum];
1318  
1319  	ipc_assert_locked_object(&sma->sem_perm);
1320  	list_for_each_entry(un, &sma->list_id, list_id)
1321  		un->semadj[semnum] = 0;
1322  
1323  	curr->semval = val;
1324  	curr->sempid = task_tgid_vnr(current);
1325  	sma->sem_ctime = get_seconds();
1326  	/* maybe some queued-up processes were waiting for this */
1327  	do_smart_update(sma, NULL, 0, 0, &tasks);
1328  	sem_unlock(sma, -1);
1329  	rcu_read_unlock();
1330  	wake_up_sem_queue_do(&tasks);
1331  	return 0;
1332  }
1333  
1334  static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1335  		int cmd, void __user *p)
1336  {
1337  	struct sem_array *sma;
1338  	struct sem *curr;
1339  	int err, nsems;
1340  	ushort fast_sem_io[SEMMSL_FAST];
1341  	ushort *sem_io = fast_sem_io;
1342  	struct list_head tasks;
1343  
1344  	INIT_LIST_HEAD(&tasks);
1345  
1346  	rcu_read_lock();
1347  	sma = sem_obtain_object_check(ns, semid);
1348  	if (IS_ERR(sma)) {
1349  		rcu_read_unlock();
1350  		return PTR_ERR(sma);
1351  	}
1352  
1353  	nsems = sma->sem_nsems;
1354  
1355  	err = -EACCES;
1356  	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1357  		goto out_rcu_wakeup;
1358  
1359  	err = security_sem_semctl(sma, cmd);
1360  	if (err)
1361  		goto out_rcu_wakeup;
1362  
1363  	err = -EACCES;
1364  	switch (cmd) {
1365  	case GETALL:
1366  	{
1367  		ushort __user *array = p;
1368  		int i;
1369  
1370  		sem_lock(sma, NULL, -1);
1371  		if (!ipc_valid_object(&sma->sem_perm)) {
1372  			err = -EIDRM;
1373  			goto out_unlock;
1374  		}
1375  		if (nsems > SEMMSL_FAST) {
1376  			if (!ipc_rcu_getref(sma)) {
1377  				err = -EIDRM;
1378  				goto out_unlock;
1379  			}
1380  			sem_unlock(sma, -1);
1381  			rcu_read_unlock();
1382  			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1383  			if (sem_io == NULL) {
1384  				ipc_rcu_putref(sma, sem_rcu_free);
1385  				return -ENOMEM;
1386  			}
1387  
1388  			rcu_read_lock();
1389  			sem_lock_and_putref(sma);
1390  			if (!ipc_valid_object(&sma->sem_perm)) {
1391  				err = -EIDRM;
1392  				goto out_unlock;
1393  			}
1394  		}
1395  		for (i = 0; i < sma->sem_nsems; i++)
1396  			sem_io[i] = sma->sem_base[i].semval;
1397  		sem_unlock(sma, -1);
1398  		rcu_read_unlock();
1399  		err = 0;
1400  		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1401  			err = -EFAULT;
1402  		goto out_free;
1403  	}
1404  	case SETALL:
1405  	{
1406  		int i;
1407  		struct sem_undo *un;
1408  
1409  		if (!ipc_rcu_getref(sma)) {
1410  			err = -EIDRM;
1411  			goto out_rcu_wakeup;
1412  		}
1413  		rcu_read_unlock();
1414  
1415  		if (nsems > SEMMSL_FAST) {
1416  			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1417  			if (sem_io == NULL) {
1418  				ipc_rcu_putref(sma, sem_rcu_free);
1419  				return -ENOMEM;
1420  			}
1421  		}
1422  
1423  		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1424  			ipc_rcu_putref(sma, sem_rcu_free);
1425  			err = -EFAULT;
1426  			goto out_free;
1427  		}
1428  
1429  		for (i = 0; i < nsems; i++) {
1430  			if (sem_io[i] > SEMVMX) {
1431  				ipc_rcu_putref(sma, sem_rcu_free);
1432  				err = -ERANGE;
1433  				goto out_free;
1434  			}
1435  		}
1436  		rcu_read_lock();
1437  		sem_lock_and_putref(sma);
1438  		if (!ipc_valid_object(&sma->sem_perm)) {
1439  			err = -EIDRM;
1440  			goto out_unlock;
1441  		}
1442  
1443  		for (i = 0; i < nsems; i++) {
1444  			sma->sem_base[i].semval = sem_io[i];
1445  			sma->sem_base[i].sempid = task_tgid_vnr(current);
1446  		}
1447  
1448  		ipc_assert_locked_object(&sma->sem_perm);
1449  		list_for_each_entry(un, &sma->list_id, list_id) {
1450  			for (i = 0; i < nsems; i++)
1451  				un->semadj[i] = 0;
1452  		}
1453  		sma->sem_ctime = get_seconds();
1454  		/* maybe some queued-up processes were waiting for this */
1455  		do_smart_update(sma, NULL, 0, 0, &tasks);
1456  		err = 0;
1457  		goto out_unlock;
1458  	}
1459  	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1460  	}
1461  	err = -EINVAL;
1462  	if (semnum < 0 || semnum >= nsems)
1463  		goto out_rcu_wakeup;
1464  
1465  	sem_lock(sma, NULL, -1);
1466  	if (!ipc_valid_object(&sma->sem_perm)) {
1467  		err = -EIDRM;
1468  		goto out_unlock;
1469  	}
1470  	curr = &sma->sem_base[semnum];
1471  
1472  	switch (cmd) {
1473  	case GETVAL:
1474  		err = curr->semval;
1475  		goto out_unlock;
1476  	case GETPID:
1477  		err = curr->sempid;
1478  		goto out_unlock;
1479  	case GETNCNT:
1480  		err = count_semcnt(sma, semnum, 0);
1481  		goto out_unlock;
1482  	case GETZCNT:
1483  		err = count_semcnt(sma, semnum, 1);
1484  		goto out_unlock;
1485  	}
1486  
1487  out_unlock:
1488  	sem_unlock(sma, -1);
1489  out_rcu_wakeup:
1490  	rcu_read_unlock();
1491  	wake_up_sem_queue_do(&tasks);
1492  out_free:
1493  	if (sem_io != fast_sem_io)
1494  		ipc_free(sem_io);
1495  	return err;
1496  }
1497  
1498  static inline unsigned long
1499  copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1500  {
1501  	switch (version) {
1502  	case IPC_64:
1503  		if (copy_from_user(out, buf, sizeof(*out)))
1504  			return -EFAULT;
1505  		return 0;
1506  	case IPC_OLD:
1507  	    {
1508  		struct semid_ds tbuf_old;
1509  
1510  		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1511  			return -EFAULT;
1512  
1513  		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1514  		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1515  		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1516  
1517  		return 0;
1518  	    }
1519  	default:
1520  		return -EINVAL;
1521  	}
1522  }
1523  
1524  /*
1525   * This function handles some semctl commands which require the rwsem
1526   * to be held in write mode.
1527   * NOTE: no locks must be held, the rwsem is taken inside this function.
1528   */
1529  static int semctl_down(struct ipc_namespace *ns, int semid,
1530  		       int cmd, int version, void __user *p)
1531  {
1532  	struct sem_array *sma;
1533  	int err;
1534  	struct semid64_ds semid64;
1535  	struct kern_ipc_perm *ipcp;
1536  
1537  	if (cmd == IPC_SET) {
1538  		if (copy_semid_from_user(&semid64, p, version))
1539  			return -EFAULT;
1540  	}
1541  
1542  	down_write(&sem_ids(ns).rwsem);
1543  	rcu_read_lock();
1544  
1545  	ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1546  				      &semid64.sem_perm, 0);
1547  	if (IS_ERR(ipcp)) {
1548  		err = PTR_ERR(ipcp);
1549  		goto out_unlock1;
1550  	}
1551  
1552  	sma = container_of(ipcp, struct sem_array, sem_perm);
1553  
1554  	err = security_sem_semctl(sma, cmd);
1555  	if (err)
1556  		goto out_unlock1;
1557  
1558  	switch (cmd) {
1559  	case IPC_RMID:
1560  		sem_lock(sma, NULL, -1);
1561  		/* freeary unlocks the ipc object and rcu */
1562  		freeary(ns, ipcp);
1563  		goto out_up;
1564  	case IPC_SET:
1565  		sem_lock(sma, NULL, -1);
1566  		err = ipc_update_perm(&semid64.sem_perm, ipcp);
1567  		if (err)
1568  			goto out_unlock0;
1569  		sma->sem_ctime = get_seconds();
1570  		break;
1571  	default:
1572  		err = -EINVAL;
1573  		goto out_unlock1;
1574  	}
1575  
1576  out_unlock0:
1577  	sem_unlock(sma, -1);
1578  out_unlock1:
1579  	rcu_read_unlock();
1580  out_up:
1581  	up_write(&sem_ids(ns).rwsem);
1582  	return err;
1583  }
1584  
1585  SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1586  {
1587  	int version;
1588  	struct ipc_namespace *ns;
1589  	void __user *p = (void __user *)arg;
1590  
1591  	if (semid < 0)
1592  		return -EINVAL;
1593  
1594  	version = ipc_parse_version(&cmd);
1595  	ns = current->nsproxy->ipc_ns;
1596  
1597  	switch (cmd) {
1598  	case IPC_INFO:
1599  	case SEM_INFO:
1600  	case IPC_STAT:
1601  	case SEM_STAT:
1602  		return semctl_nolock(ns, semid, cmd, version, p);
1603  	case GETALL:
1604  	case GETVAL:
1605  	case GETPID:
1606  	case GETNCNT:
1607  	case GETZCNT:
1608  	case SETALL:
1609  		return semctl_main(ns, semid, semnum, cmd, p);
1610  	case SETVAL:
1611  		return semctl_setval(ns, semid, semnum, arg);
1612  	case IPC_RMID:
1613  	case IPC_SET:
1614  		return semctl_down(ns, semid, cmd, version, p);
1615  	default:
1616  		return -EINVAL;
1617  	}
1618  }
1619  
1620  /* If the task doesn't already have a undo_list, then allocate one
1621   * here.  We guarantee there is only one thread using this undo list,
1622   * and current is THE ONE
1623   *
1624   * If this allocation and assignment succeeds, but later
1625   * portions of this code fail, there is no need to free the sem_undo_list.
1626   * Just let it stay associated with the task, and it'll be freed later
1627   * at exit time.
1628   *
1629   * This can block, so callers must hold no locks.
1630   */
1631  static inline int get_undo_list(struct sem_undo_list **undo_listp)
1632  {
1633  	struct sem_undo_list *undo_list;
1634  
1635  	undo_list = current->sysvsem.undo_list;
1636  	if (!undo_list) {
1637  		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1638  		if (undo_list == NULL)
1639  			return -ENOMEM;
1640  		spin_lock_init(&undo_list->lock);
1641  		atomic_set(&undo_list->refcnt, 1);
1642  		INIT_LIST_HEAD(&undo_list->list_proc);
1643  
1644  		current->sysvsem.undo_list = undo_list;
1645  	}
1646  	*undo_listp = undo_list;
1647  	return 0;
1648  }
1649  
1650  static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1651  {
1652  	struct sem_undo *un;
1653  
1654  	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1655  		if (un->semid == semid)
1656  			return un;
1657  	}
1658  	return NULL;
1659  }
1660  
1661  static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1662  {
1663  	struct sem_undo *un;
1664  
1665  	assert_spin_locked(&ulp->lock);
1666  
1667  	un = __lookup_undo(ulp, semid);
1668  	if (un) {
1669  		list_del_rcu(&un->list_proc);
1670  		list_add_rcu(&un->list_proc, &ulp->list_proc);
1671  	}
1672  	return un;
1673  }
1674  
1675  /**
1676   * find_alloc_undo - lookup (and if not present create) undo array
1677   * @ns: namespace
1678   * @semid: semaphore array id
1679   *
1680   * The function looks up (and if not present creates) the undo structure.
1681   * The size of the undo structure depends on the size of the semaphore
1682   * array, thus the alloc path is not that straightforward.
1683   * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1684   * performs a rcu_read_lock().
1685   */
1686  static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1687  {
1688  	struct sem_array *sma;
1689  	struct sem_undo_list *ulp;
1690  	struct sem_undo *un, *new;
1691  	int nsems, error;
1692  
1693  	error = get_undo_list(&ulp);
1694  	if (error)
1695  		return ERR_PTR(error);
1696  
1697  	rcu_read_lock();
1698  	spin_lock(&ulp->lock);
1699  	un = lookup_undo(ulp, semid);
1700  	spin_unlock(&ulp->lock);
1701  	if (likely(un != NULL))
1702  		goto out;
1703  
1704  	/* no undo structure around - allocate one. */
1705  	/* step 1: figure out the size of the semaphore array */
1706  	sma = sem_obtain_object_check(ns, semid);
1707  	if (IS_ERR(sma)) {
1708  		rcu_read_unlock();
1709  		return ERR_CAST(sma);
1710  	}
1711  
1712  	nsems = sma->sem_nsems;
1713  	if (!ipc_rcu_getref(sma)) {
1714  		rcu_read_unlock();
1715  		un = ERR_PTR(-EIDRM);
1716  		goto out;
1717  	}
1718  	rcu_read_unlock();
1719  
1720  	/* step 2: allocate new undo structure */
1721  	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1722  	if (!new) {
1723  		ipc_rcu_putref(sma, sem_rcu_free);
1724  		return ERR_PTR(-ENOMEM);
1725  	}
1726  
1727  	/* step 3: Acquire the lock on semaphore array */
1728  	rcu_read_lock();
1729  	sem_lock_and_putref(sma);
1730  	if (!ipc_valid_object(&sma->sem_perm)) {
1731  		sem_unlock(sma, -1);
1732  		rcu_read_unlock();
1733  		kfree(new);
1734  		un = ERR_PTR(-EIDRM);
1735  		goto out;
1736  	}
1737  	spin_lock(&ulp->lock);
1738  
1739  	/*
1740  	 * step 4: check for races: did someone else allocate the undo struct?
1741  	 */
1742  	un = lookup_undo(ulp, semid);
1743  	if (un) {
1744  		kfree(new);
1745  		goto success;
1746  	}
1747  	/* step 5: initialize & link new undo structure */
1748  	new->semadj = (short *) &new[1];
1749  	new->ulp = ulp;
1750  	new->semid = semid;
1751  	assert_spin_locked(&ulp->lock);
1752  	list_add_rcu(&new->list_proc, &ulp->list_proc);
1753  	ipc_assert_locked_object(&sma->sem_perm);
1754  	list_add(&new->list_id, &sma->list_id);
1755  	un = new;
1756  
1757  success:
1758  	spin_unlock(&ulp->lock);
1759  	sem_unlock(sma, -1);
1760  out:
1761  	return un;
1762  }
1763  
1764  
1765  /**
1766   * get_queue_result - retrieve the result code from sem_queue
1767   * @q: Pointer to queue structure
1768   *
1769   * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1770   * q->status, then we must loop until the value is replaced with the final
1771   * value: This may happen if a task is woken up by an unrelated event (e.g.
1772   * signal) and in parallel the task is woken up by another task because it got
1773   * the requested semaphores.
1774   *
1775   * The function can be called with or without holding the semaphore spinlock.
1776   */
1777  static int get_queue_result(struct sem_queue *q)
1778  {
1779  	int error;
1780  
1781  	error = q->status;
1782  	while (unlikely(error == IN_WAKEUP)) {
1783  		cpu_relax();
1784  		error = q->status;
1785  	}
1786  
1787  	return error;
1788  }
1789  
1790  SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1791  		unsigned, nsops, const struct timespec __user *, timeout)
1792  {
1793  	int error = -EINVAL;
1794  	struct sem_array *sma;
1795  	struct sembuf fast_sops[SEMOPM_FAST];
1796  	struct sembuf *sops = fast_sops, *sop;
1797  	struct sem_undo *un;
1798  	int undos = 0, alter = 0, max, locknum;
1799  	struct sem_queue queue;
1800  	unsigned long jiffies_left = 0;
1801  	struct ipc_namespace *ns;
1802  	struct list_head tasks;
1803  
1804  	ns = current->nsproxy->ipc_ns;
1805  
1806  	if (nsops < 1 || semid < 0)
1807  		return -EINVAL;
1808  	if (nsops > ns->sc_semopm)
1809  		return -E2BIG;
1810  	if (nsops > SEMOPM_FAST) {
1811  		sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1812  		if (sops == NULL)
1813  			return -ENOMEM;
1814  	}
1815  	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1816  		error =  -EFAULT;
1817  		goto out_free;
1818  	}
1819  	if (timeout) {
1820  		struct timespec _timeout;
1821  		if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1822  			error = -EFAULT;
1823  			goto out_free;
1824  		}
1825  		if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1826  			_timeout.tv_nsec >= 1000000000L) {
1827  			error = -EINVAL;
1828  			goto out_free;
1829  		}
1830  		jiffies_left = timespec_to_jiffies(&_timeout);
1831  	}
1832  	max = 0;
1833  	for (sop = sops; sop < sops + nsops; sop++) {
1834  		if (sop->sem_num >= max)
1835  			max = sop->sem_num;
1836  		if (sop->sem_flg & SEM_UNDO)
1837  			undos = 1;
1838  		if (sop->sem_op != 0)
1839  			alter = 1;
1840  	}
1841  
1842  	INIT_LIST_HEAD(&tasks);
1843  
1844  	if (undos) {
1845  		/* On success, find_alloc_undo takes the rcu_read_lock */
1846  		un = find_alloc_undo(ns, semid);
1847  		if (IS_ERR(un)) {
1848  			error = PTR_ERR(un);
1849  			goto out_free;
1850  		}
1851  	} else {
1852  		un = NULL;
1853  		rcu_read_lock();
1854  	}
1855  
1856  	sma = sem_obtain_object_check(ns, semid);
1857  	if (IS_ERR(sma)) {
1858  		rcu_read_unlock();
1859  		error = PTR_ERR(sma);
1860  		goto out_free;
1861  	}
1862  
1863  	error = -EFBIG;
1864  	if (max >= sma->sem_nsems)
1865  		goto out_rcu_wakeup;
1866  
1867  	error = -EACCES;
1868  	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1869  		goto out_rcu_wakeup;
1870  
1871  	error = security_sem_semop(sma, sops, nsops, alter);
1872  	if (error)
1873  		goto out_rcu_wakeup;
1874  
1875  	error = -EIDRM;
1876  	locknum = sem_lock(sma, sops, nsops);
1877  	/*
1878  	 * We eventually might perform the following check in a lockless
1879  	 * fashion, considering ipc_valid_object() locking constraints.
1880  	 * If nsops == 1 and there is no contention for sem_perm.lock, then
1881  	 * only a per-semaphore lock is held and it's OK to proceed with the
1882  	 * check below. More details on the fine grained locking scheme
1883  	 * entangled here and why it's RMID race safe on comments at sem_lock()
1884  	 */
1885  	if (!ipc_valid_object(&sma->sem_perm))
1886  		goto out_unlock_free;
1887  	/*
1888  	 * semid identifiers are not unique - find_alloc_undo may have
1889  	 * allocated an undo structure, it was invalidated by an RMID
1890  	 * and now a new array with received the same id. Check and fail.
1891  	 * This case can be detected checking un->semid. The existence of
1892  	 * "un" itself is guaranteed by rcu.
1893  	 */
1894  	if (un && un->semid == -1)
1895  		goto out_unlock_free;
1896  
1897  	queue.sops = sops;
1898  	queue.nsops = nsops;
1899  	queue.undo = un;
1900  	queue.pid = task_tgid_vnr(current);
1901  	queue.alter = alter;
1902  
1903  	error = perform_atomic_semop(sma, &queue);
1904  	if (error == 0) {
1905  		/* If the operation was successful, then do
1906  		 * the required updates.
1907  		 */
1908  		if (alter)
1909  			do_smart_update(sma, sops, nsops, 1, &tasks);
1910  		else
1911  			set_semotime(sma, sops);
1912  	}
1913  	if (error <= 0)
1914  		goto out_unlock_free;
1915  
1916  	/* We need to sleep on this operation, so we put the current
1917  	 * task into the pending queue and go to sleep.
1918  	 */
1919  
1920  	if (nsops == 1) {
1921  		struct sem *curr;
1922  		curr = &sma->sem_base[sops->sem_num];
1923  
1924  		if (alter) {
1925  			if (sma->complex_count) {
1926  				list_add_tail(&queue.list,
1927  						&sma->pending_alter);
1928  			} else {
1929  
1930  				list_add_tail(&queue.list,
1931  						&curr->pending_alter);
1932  			}
1933  		} else {
1934  			list_add_tail(&queue.list, &curr->pending_const);
1935  		}
1936  	} else {
1937  		if (!sma->complex_count)
1938  			merge_queues(sma);
1939  
1940  		if (alter)
1941  			list_add_tail(&queue.list, &sma->pending_alter);
1942  		else
1943  			list_add_tail(&queue.list, &sma->pending_const);
1944  
1945  		sma->complex_count++;
1946  	}
1947  
1948  	queue.status = -EINTR;
1949  	queue.sleeper = current;
1950  
1951  sleep_again:
1952  	__set_current_state(TASK_INTERRUPTIBLE);
1953  	sem_unlock(sma, locknum);
1954  	rcu_read_unlock();
1955  
1956  	if (timeout)
1957  		jiffies_left = schedule_timeout(jiffies_left);
1958  	else
1959  		schedule();
1960  
1961  	error = get_queue_result(&queue);
1962  
1963  	if (error != -EINTR) {
1964  		/* fast path: update_queue already obtained all requested
1965  		 * resources.
1966  		 * Perform a smp_mb(): User space could assume that semop()
1967  		 * is a memory barrier: Without the mb(), the cpu could
1968  		 * speculatively read in user space stale data that was
1969  		 * overwritten by the previous owner of the semaphore.
1970  		 */
1971  		smp_mb();
1972  
1973  		goto out_free;
1974  	}
1975  
1976  	rcu_read_lock();
1977  	sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
1978  
1979  	/*
1980  	 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1981  	 */
1982  	error = get_queue_result(&queue);
1983  
1984  	/*
1985  	 * Array removed? If yes, leave without sem_unlock().
1986  	 */
1987  	if (IS_ERR(sma)) {
1988  		rcu_read_unlock();
1989  		goto out_free;
1990  	}
1991  
1992  
1993  	/*
1994  	 * If queue.status != -EINTR we are woken up by another process.
1995  	 * Leave without unlink_queue(), but with sem_unlock().
1996  	 */
1997  	if (error != -EINTR)
1998  		goto out_unlock_free;
1999  
2000  	/*
2001  	 * If an interrupt occurred we have to clean up the queue
2002  	 */
2003  	if (timeout && jiffies_left == 0)
2004  		error = -EAGAIN;
2005  
2006  	/*
2007  	 * If the wakeup was spurious, just retry
2008  	 */
2009  	if (error == -EINTR && !signal_pending(current))
2010  		goto sleep_again;
2011  
2012  	unlink_queue(sma, &queue);
2013  
2014  out_unlock_free:
2015  	sem_unlock(sma, locknum);
2016  out_rcu_wakeup:
2017  	rcu_read_unlock();
2018  	wake_up_sem_queue_do(&tasks);
2019  out_free:
2020  	if (sops != fast_sops)
2021  		kfree(sops);
2022  	return error;
2023  }
2024  
2025  SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2026  		unsigned, nsops)
2027  {
2028  	return sys_semtimedop(semid, tsops, nsops, NULL);
2029  }
2030  
2031  /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2032   * parent and child tasks.
2033   */
2034  
2035  int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2036  {
2037  	struct sem_undo_list *undo_list;
2038  	int error;
2039  
2040  	if (clone_flags & CLONE_SYSVSEM) {
2041  		error = get_undo_list(&undo_list);
2042  		if (error)
2043  			return error;
2044  		atomic_inc(&undo_list->refcnt);
2045  		tsk->sysvsem.undo_list = undo_list;
2046  	} else
2047  		tsk->sysvsem.undo_list = NULL;
2048  
2049  	return 0;
2050  }
2051  
2052  /*
2053   * add semadj values to semaphores, free undo structures.
2054   * undo structures are not freed when semaphore arrays are destroyed
2055   * so some of them may be out of date.
2056   * IMPLEMENTATION NOTE: There is some confusion over whether the
2057   * set of adjustments that needs to be done should be done in an atomic
2058   * manner or not. That is, if we are attempting to decrement the semval
2059   * should we queue up and wait until we can do so legally?
2060   * The original implementation attempted to do this (queue and wait).
2061   * The current implementation does not do so. The POSIX standard
2062   * and SVID should be consulted to determine what behavior is mandated.
2063   */
2064  void exit_sem(struct task_struct *tsk)
2065  {
2066  	struct sem_undo_list *ulp;
2067  
2068  	ulp = tsk->sysvsem.undo_list;
2069  	if (!ulp)
2070  		return;
2071  	tsk->sysvsem.undo_list = NULL;
2072  
2073  	if (!atomic_dec_and_test(&ulp->refcnt))
2074  		return;
2075  
2076  	for (;;) {
2077  		struct sem_array *sma;
2078  		struct sem_undo *un;
2079  		struct list_head tasks;
2080  		int semid, i;
2081  
2082  		rcu_read_lock();
2083  		un = list_entry_rcu(ulp->list_proc.next,
2084  				    struct sem_undo, list_proc);
2085  		if (&un->list_proc == &ulp->list_proc) {
2086  			/*
2087  			 * We must wait for freeary() before freeing this ulp,
2088  			 * in case we raced with last sem_undo. There is a small
2089  			 * possibility where we exit while freeary() didn't
2090  			 * finish unlocking sem_undo_list.
2091  			 */
2092  			spin_unlock_wait(&ulp->lock);
2093  			rcu_read_unlock();
2094  			break;
2095  		}
2096  		spin_lock(&ulp->lock);
2097  		semid = un->semid;
2098  		spin_unlock(&ulp->lock);
2099  
2100  		/* exit_sem raced with IPC_RMID, nothing to do */
2101  		if (semid == -1) {
2102  			rcu_read_unlock();
2103  			continue;
2104  		}
2105  
2106  		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2107  		/* exit_sem raced with IPC_RMID, nothing to do */
2108  		if (IS_ERR(sma)) {
2109  			rcu_read_unlock();
2110  			continue;
2111  		}
2112  
2113  		sem_lock(sma, NULL, -1);
2114  		/* exit_sem raced with IPC_RMID, nothing to do */
2115  		if (!ipc_valid_object(&sma->sem_perm)) {
2116  			sem_unlock(sma, -1);
2117  			rcu_read_unlock();
2118  			continue;
2119  		}
2120  		un = __lookup_undo(ulp, semid);
2121  		if (un == NULL) {
2122  			/* exit_sem raced with IPC_RMID+semget() that created
2123  			 * exactly the same semid. Nothing to do.
2124  			 */
2125  			sem_unlock(sma, -1);
2126  			rcu_read_unlock();
2127  			continue;
2128  		}
2129  
2130  		/* remove un from the linked lists */
2131  		ipc_assert_locked_object(&sma->sem_perm);
2132  		list_del(&un->list_id);
2133  
2134  		/* we are the last process using this ulp, acquiring ulp->lock
2135  		 * isn't required. Besides that, we are also protected against
2136  		 * IPC_RMID as we hold sma->sem_perm lock now
2137  		 */
2138  		list_del_rcu(&un->list_proc);
2139  
2140  		/* perform adjustments registered in un */
2141  		for (i = 0; i < sma->sem_nsems; i++) {
2142  			struct sem *semaphore = &sma->sem_base[i];
2143  			if (un->semadj[i]) {
2144  				semaphore->semval += un->semadj[i];
2145  				/*
2146  				 * Range checks of the new semaphore value,
2147  				 * not defined by sus:
2148  				 * - Some unices ignore the undo entirely
2149  				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2150  				 * - some cap the value (e.g. FreeBSD caps
2151  				 *   at 0, but doesn't enforce SEMVMX)
2152  				 *
2153  				 * Linux caps the semaphore value, both at 0
2154  				 * and at SEMVMX.
2155  				 *
2156  				 *	Manfred <manfred@colorfullife.com>
2157  				 */
2158  				if (semaphore->semval < 0)
2159  					semaphore->semval = 0;
2160  				if (semaphore->semval > SEMVMX)
2161  					semaphore->semval = SEMVMX;
2162  				semaphore->sempid = task_tgid_vnr(current);
2163  			}
2164  		}
2165  		/* maybe some queued-up processes were waiting for this */
2166  		INIT_LIST_HEAD(&tasks);
2167  		do_smart_update(sma, NULL, 0, 1, &tasks);
2168  		sem_unlock(sma, -1);
2169  		rcu_read_unlock();
2170  		wake_up_sem_queue_do(&tasks);
2171  
2172  		kfree_rcu(un, rcu);
2173  	}
2174  	kfree(ulp);
2175  }
2176  
2177  #ifdef CONFIG_PROC_FS
2178  static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2179  {
2180  	struct user_namespace *user_ns = seq_user_ns(s);
2181  	struct sem_array *sma = it;
2182  	time_t sem_otime;
2183  
2184  	/*
2185  	 * The proc interface isn't aware of sem_lock(), it calls
2186  	 * ipc_lock_object() directly (in sysvipc_find_ipc).
2187  	 * In order to stay compatible with sem_lock(), we must wait until
2188  	 * all simple semop() calls have left their critical regions.
2189  	 */
2190  	sem_wait_array(sma);
2191  
2192  	sem_otime = get_semotime(sma);
2193  
2194  	seq_printf(s,
2195  		   "%10d %10d  %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2196  		   sma->sem_perm.key,
2197  		   sma->sem_perm.id,
2198  		   sma->sem_perm.mode,
2199  		   sma->sem_nsems,
2200  		   from_kuid_munged(user_ns, sma->sem_perm.uid),
2201  		   from_kgid_munged(user_ns, sma->sem_perm.gid),
2202  		   from_kuid_munged(user_ns, sma->sem_perm.cuid),
2203  		   from_kgid_munged(user_ns, sma->sem_perm.cgid),
2204  		   sem_otime,
2205  		   sma->sem_ctime);
2206  
2207  	return 0;
2208  }
2209  #endif
2210