xref: /openbmc/linux/ipc/sem.c (revision 9b9c2cd4)
1 /*
2  * linux/ipc/sem.c
3  * Copyright (C) 1992 Krishna Balasubramanian
4  * Copyright (C) 1995 Eric Schenk, Bruno Haible
5  *
6  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7  *
8  * SMP-threaded, sysctl's added
9  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10  * Enforced range limit on SEM_UNDO
11  * (c) 2001 Red Hat Inc
12  * Lockless wakeup
13  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14  * Further wakeup optimizations, documentation
15  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
16  *
17  * support for audit of ipc object properties and permission changes
18  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
19  *
20  * namespaces support
21  * OpenVZ, SWsoft Inc.
22  * Pavel Emelianov <xemul@openvz.org>
23  *
24  * Implementation notes: (May 2010)
25  * This file implements System V semaphores.
26  *
27  * User space visible behavior:
28  * - FIFO ordering for semop() operations (just FIFO, not starvation
29  *   protection)
30  * - multiple semaphore operations that alter the same semaphore in
31  *   one semop() are handled.
32  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33  *   SETALL calls.
34  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35  * - undo adjustments at process exit are limited to 0..SEMVMX.
36  * - namespace are supported.
37  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38  *   to /proc/sys/kernel/sem.
39  * - statistics about the usage are reported in /proc/sysvipc/sem.
40  *
41  * Internals:
42  * - scalability:
43  *   - all global variables are read-mostly.
44  *   - semop() calls and semctl(RMID) are synchronized by RCU.
45  *   - most operations do write operations (actually: spin_lock calls) to
46  *     the per-semaphore array structure.
47  *   Thus: Perfect SMP scaling between independent semaphore arrays.
48  *         If multiple semaphores in one array are used, then cache line
49  *         trashing on the semaphore array spinlock will limit the scaling.
50  * - semncnt and semzcnt are calculated on demand in count_semcnt()
51  * - the task that performs a successful semop() scans the list of all
52  *   sleeping tasks and completes any pending operations that can be fulfilled.
53  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
54  *   (see update_queue())
55  * - To improve the scalability, the actual wake-up calls are performed after
56  *   dropping all locks. (see wake_up_sem_queue_prepare(),
57  *   wake_up_sem_queue_do())
58  * - All work is done by the waker, the woken up task does not have to do
59  *   anything - not even acquiring a lock or dropping a refcount.
60  * - A woken up task may not even touch the semaphore array anymore, it may
61  *   have been destroyed already by a semctl(RMID).
62  * - The synchronizations between wake-ups due to a timeout/signal and a
63  *   wake-up due to a completed semaphore operation is achieved by using an
64  *   intermediate state (IN_WAKEUP).
65  * - UNDO values are stored in an array (one per process and per
66  *   semaphore array, lazily allocated). For backwards compatibility, multiple
67  *   modes for the UNDO variables are supported (per process, per thread)
68  *   (see copy_semundo, CLONE_SYSVSEM)
69  * - There are two lists of the pending operations: a per-array list
70  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
71  *   ordering without always scanning all pending operations.
72  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
73  */
74 
75 #include <linux/slab.h>
76 #include <linux/spinlock.h>
77 #include <linux/init.h>
78 #include <linux/proc_fs.h>
79 #include <linux/time.h>
80 #include <linux/security.h>
81 #include <linux/syscalls.h>
82 #include <linux/audit.h>
83 #include <linux/capability.h>
84 #include <linux/seq_file.h>
85 #include <linux/rwsem.h>
86 #include <linux/nsproxy.h>
87 #include <linux/ipc_namespace.h>
88 
89 #include <linux/uaccess.h>
90 #include "util.h"
91 
92 /* One semaphore structure for each semaphore in the system. */
93 struct sem {
94 	int	semval;		/* current value */
95 	int	sempid;		/* pid of last operation */
96 	spinlock_t	lock;	/* spinlock for fine-grained semtimedop */
97 	struct list_head pending_alter; /* pending single-sop operations */
98 					/* that alter the semaphore */
99 	struct list_head pending_const; /* pending single-sop operations */
100 					/* that do not alter the semaphore*/
101 	time_t	sem_otime;	/* candidate for sem_otime */
102 } ____cacheline_aligned_in_smp;
103 
104 /* One queue for each sleeping process in the system. */
105 struct sem_queue {
106 	struct list_head	list;	 /* queue of pending operations */
107 	struct task_struct	*sleeper; /* this process */
108 	struct sem_undo		*undo;	 /* undo structure */
109 	int			pid;	 /* process id of requesting process */
110 	int			status;	 /* completion status of operation */
111 	struct sembuf		*sops;	 /* array of pending operations */
112 	struct sembuf		*blocking; /* the operation that blocked */
113 	int			nsops;	 /* number of operations */
114 	int			alter;	 /* does *sops alter the array? */
115 };
116 
117 /* Each task has a list of undo requests. They are executed automatically
118  * when the process exits.
119  */
120 struct sem_undo {
121 	struct list_head	list_proc;	/* per-process list: *
122 						 * all undos from one process
123 						 * rcu protected */
124 	struct rcu_head		rcu;		/* rcu struct for sem_undo */
125 	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
126 	struct list_head	list_id;	/* per semaphore array list:
127 						 * all undos for one array */
128 	int			semid;		/* semaphore set identifier */
129 	short			*semadj;	/* array of adjustments */
130 						/* one per semaphore */
131 };
132 
133 /* sem_undo_list controls shared access to the list of sem_undo structures
134  * that may be shared among all a CLONE_SYSVSEM task group.
135  */
136 struct sem_undo_list {
137 	atomic_t		refcnt;
138 	spinlock_t		lock;
139 	struct list_head	list_proc;
140 };
141 
142 
143 #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
144 
145 #define sem_checkid(sma, semid)	ipc_checkid(&sma->sem_perm, semid)
146 
147 static int newary(struct ipc_namespace *, struct ipc_params *);
148 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
149 #ifdef CONFIG_PROC_FS
150 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
151 #endif
152 
153 #define SEMMSL_FAST	256 /* 512 bytes on stack */
154 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
155 
156 /*
157  * Locking:
158  *	sem_undo.id_next,
159  *	sem_array.complex_count,
160  *	sem_array.pending{_alter,_cont},
161  *	sem_array.sem_undo: global sem_lock() for read/write
162  *	sem_undo.proc_next: only "current" is allowed to read/write that field.
163  *
164  *	sem_array.sem_base[i].pending_{const,alter}:
165  *		global or semaphore sem_lock() for read/write
166  */
167 
168 #define sc_semmsl	sem_ctls[0]
169 #define sc_semmns	sem_ctls[1]
170 #define sc_semopm	sem_ctls[2]
171 #define sc_semmni	sem_ctls[3]
172 
173 void sem_init_ns(struct ipc_namespace *ns)
174 {
175 	ns->sc_semmsl = SEMMSL;
176 	ns->sc_semmns = SEMMNS;
177 	ns->sc_semopm = SEMOPM;
178 	ns->sc_semmni = SEMMNI;
179 	ns->used_sems = 0;
180 	ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
181 }
182 
183 #ifdef CONFIG_IPC_NS
184 void sem_exit_ns(struct ipc_namespace *ns)
185 {
186 	free_ipcs(ns, &sem_ids(ns), freeary);
187 	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
188 }
189 #endif
190 
191 void __init sem_init(void)
192 {
193 	sem_init_ns(&init_ipc_ns);
194 	ipc_init_proc_interface("sysvipc/sem",
195 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
196 				IPC_SEM_IDS, sysvipc_sem_proc_show);
197 }
198 
199 /**
200  * unmerge_queues - unmerge queues, if possible.
201  * @sma: semaphore array
202  *
203  * The function unmerges the wait queues if complex_count is 0.
204  * It must be called prior to dropping the global semaphore array lock.
205  */
206 static void unmerge_queues(struct sem_array *sma)
207 {
208 	struct sem_queue *q, *tq;
209 
210 	/* complex operations still around? */
211 	if (sma->complex_count)
212 		return;
213 	/*
214 	 * We will switch back to simple mode.
215 	 * Move all pending operation back into the per-semaphore
216 	 * queues.
217 	 */
218 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
219 		struct sem *curr;
220 		curr = &sma->sem_base[q->sops[0].sem_num];
221 
222 		list_add_tail(&q->list, &curr->pending_alter);
223 	}
224 	INIT_LIST_HEAD(&sma->pending_alter);
225 }
226 
227 /**
228  * merge_queues - merge single semop queues into global queue
229  * @sma: semaphore array
230  *
231  * This function merges all per-semaphore queues into the global queue.
232  * It is necessary to achieve FIFO ordering for the pending single-sop
233  * operations when a multi-semop operation must sleep.
234  * Only the alter operations must be moved, the const operations can stay.
235  */
236 static void merge_queues(struct sem_array *sma)
237 {
238 	int i;
239 	for (i = 0; i < sma->sem_nsems; i++) {
240 		struct sem *sem = sma->sem_base + i;
241 
242 		list_splice_init(&sem->pending_alter, &sma->pending_alter);
243 	}
244 }
245 
246 static void sem_rcu_free(struct rcu_head *head)
247 {
248 	struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
249 	struct sem_array *sma = ipc_rcu_to_struct(p);
250 
251 	security_sem_free(sma);
252 	ipc_rcu_free(head);
253 }
254 
255 /*
256  * spin_unlock_wait() and !spin_is_locked() are not memory barriers, they
257  * are only control barriers.
258  * The code must pair with spin_unlock(&sem->lock) or
259  * spin_unlock(&sem_perm.lock), thus just the control barrier is insufficient.
260  *
261  * smp_rmb() is sufficient, as writes cannot pass the control barrier.
262  */
263 #define ipc_smp_acquire__after_spin_is_unlocked()	smp_rmb()
264 
265 /*
266  * Wait until all currently ongoing simple ops have completed.
267  * Caller must own sem_perm.lock.
268  * New simple ops cannot start, because simple ops first check
269  * that sem_perm.lock is free.
270  * that a) sem_perm.lock is free and b) complex_count is 0.
271  */
272 static void sem_wait_array(struct sem_array *sma)
273 {
274 	int i;
275 	struct sem *sem;
276 
277 	if (sma->complex_count)  {
278 		/* The thread that increased sma->complex_count waited on
279 		 * all sem->lock locks. Thus we don't need to wait again.
280 		 */
281 		return;
282 	}
283 
284 	for (i = 0; i < sma->sem_nsems; i++) {
285 		sem = sma->sem_base + i;
286 		spin_unlock_wait(&sem->lock);
287 	}
288 	ipc_smp_acquire__after_spin_is_unlocked();
289 }
290 
291 /*
292  * If the request contains only one semaphore operation, and there are
293  * no complex transactions pending, lock only the semaphore involved.
294  * Otherwise, lock the entire semaphore array, since we either have
295  * multiple semaphores in our own semops, or we need to look at
296  * semaphores from other pending complex operations.
297  */
298 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
299 			      int nsops)
300 {
301 	struct sem *sem;
302 
303 	if (nsops != 1) {
304 		/* Complex operation - acquire a full lock */
305 		ipc_lock_object(&sma->sem_perm);
306 
307 		/* And wait until all simple ops that are processed
308 		 * right now have dropped their locks.
309 		 */
310 		sem_wait_array(sma);
311 		return -1;
312 	}
313 
314 	/*
315 	 * Only one semaphore affected - try to optimize locking.
316 	 * The rules are:
317 	 * - optimized locking is possible if no complex operation
318 	 *   is either enqueued or processed right now.
319 	 * - The test for enqueued complex ops is simple:
320 	 *      sma->complex_count != 0
321 	 * - Testing for complex ops that are processed right now is
322 	 *   a bit more difficult. Complex ops acquire the full lock
323 	 *   and first wait that the running simple ops have completed.
324 	 *   (see above)
325 	 *   Thus: If we own a simple lock and the global lock is free
326 	 *	and complex_count is now 0, then it will stay 0 and
327 	 *	thus just locking sem->lock is sufficient.
328 	 */
329 	sem = sma->sem_base + sops->sem_num;
330 
331 	if (sma->complex_count == 0) {
332 		/*
333 		 * It appears that no complex operation is around.
334 		 * Acquire the per-semaphore lock.
335 		 */
336 		spin_lock(&sem->lock);
337 
338 		/* Then check that the global lock is free */
339 		if (!spin_is_locked(&sma->sem_perm.lock)) {
340 			/*
341 			 * We need a memory barrier with acquire semantics,
342 			 * otherwise we can race with another thread that does:
343 			 *	complex_count++;
344 			 *	spin_unlock(sem_perm.lock);
345 			 */
346 			ipc_smp_acquire__after_spin_is_unlocked();
347 
348 			/*
349 			 * Now repeat the test of complex_count:
350 			 * It can't change anymore until we drop sem->lock.
351 			 * Thus: if is now 0, then it will stay 0.
352 			 */
353 			if (sma->complex_count == 0) {
354 				/* fast path successful! */
355 				return sops->sem_num;
356 			}
357 		}
358 		spin_unlock(&sem->lock);
359 	}
360 
361 	/* slow path: acquire the full lock */
362 	ipc_lock_object(&sma->sem_perm);
363 
364 	if (sma->complex_count == 0) {
365 		/* False alarm:
366 		 * There is no complex operation, thus we can switch
367 		 * back to the fast path.
368 		 */
369 		spin_lock(&sem->lock);
370 		ipc_unlock_object(&sma->sem_perm);
371 		return sops->sem_num;
372 	} else {
373 		/* Not a false alarm, thus complete the sequence for a
374 		 * full lock.
375 		 */
376 		sem_wait_array(sma);
377 		return -1;
378 	}
379 }
380 
381 static inline void sem_unlock(struct sem_array *sma, int locknum)
382 {
383 	if (locknum == -1) {
384 		unmerge_queues(sma);
385 		ipc_unlock_object(&sma->sem_perm);
386 	} else {
387 		struct sem *sem = sma->sem_base + locknum;
388 		spin_unlock(&sem->lock);
389 	}
390 }
391 
392 /*
393  * sem_lock_(check_) routines are called in the paths where the rwsem
394  * is not held.
395  *
396  * The caller holds the RCU read lock.
397  */
398 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
399 			int id, struct sembuf *sops, int nsops, int *locknum)
400 {
401 	struct kern_ipc_perm *ipcp;
402 	struct sem_array *sma;
403 
404 	ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
405 	if (IS_ERR(ipcp))
406 		return ERR_CAST(ipcp);
407 
408 	sma = container_of(ipcp, struct sem_array, sem_perm);
409 	*locknum = sem_lock(sma, sops, nsops);
410 
411 	/* ipc_rmid() may have already freed the ID while sem_lock
412 	 * was spinning: verify that the structure is still valid
413 	 */
414 	if (ipc_valid_object(ipcp))
415 		return container_of(ipcp, struct sem_array, sem_perm);
416 
417 	sem_unlock(sma, *locknum);
418 	return ERR_PTR(-EINVAL);
419 }
420 
421 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
422 {
423 	struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
424 
425 	if (IS_ERR(ipcp))
426 		return ERR_CAST(ipcp);
427 
428 	return container_of(ipcp, struct sem_array, sem_perm);
429 }
430 
431 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
432 							int id)
433 {
434 	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
435 
436 	if (IS_ERR(ipcp))
437 		return ERR_CAST(ipcp);
438 
439 	return container_of(ipcp, struct sem_array, sem_perm);
440 }
441 
442 static inline void sem_lock_and_putref(struct sem_array *sma)
443 {
444 	sem_lock(sma, NULL, -1);
445 	ipc_rcu_putref(sma, ipc_rcu_free);
446 }
447 
448 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
449 {
450 	ipc_rmid(&sem_ids(ns), &s->sem_perm);
451 }
452 
453 /*
454  * Lockless wakeup algorithm:
455  * Without the check/retry algorithm a lockless wakeup is possible:
456  * - queue.status is initialized to -EINTR before blocking.
457  * - wakeup is performed by
458  *	* unlinking the queue entry from the pending list
459  *	* setting queue.status to IN_WAKEUP
460  *	  This is the notification for the blocked thread that a
461  *	  result value is imminent.
462  *	* call wake_up_process
463  *	* set queue.status to the final value.
464  * - the previously blocked thread checks queue.status:
465  *	* if it's IN_WAKEUP, then it must wait until the value changes
466  *	* if it's not -EINTR, then the operation was completed by
467  *	  update_queue. semtimedop can return queue.status without
468  *	  performing any operation on the sem array.
469  *	* otherwise it must acquire the spinlock and check what's up.
470  *
471  * The two-stage algorithm is necessary to protect against the following
472  * races:
473  * - if queue.status is set after wake_up_process, then the woken up idle
474  *   thread could race forward and try (and fail) to acquire sma->lock
475  *   before update_queue had a chance to set queue.status
476  * - if queue.status is written before wake_up_process and if the
477  *   blocked process is woken up by a signal between writing
478  *   queue.status and the wake_up_process, then the woken up
479  *   process could return from semtimedop and die by calling
480  *   sys_exit before wake_up_process is called. Then wake_up_process
481  *   will oops, because the task structure is already invalid.
482  *   (yes, this happened on s390 with sysv msg).
483  *
484  */
485 #define IN_WAKEUP	1
486 
487 /**
488  * newary - Create a new semaphore set
489  * @ns: namespace
490  * @params: ptr to the structure that contains key, semflg and nsems
491  *
492  * Called with sem_ids.rwsem held (as a writer)
493  */
494 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
495 {
496 	int id;
497 	int retval;
498 	struct sem_array *sma;
499 	int size;
500 	key_t key = params->key;
501 	int nsems = params->u.nsems;
502 	int semflg = params->flg;
503 	int i;
504 
505 	if (!nsems)
506 		return -EINVAL;
507 	if (ns->used_sems + nsems > ns->sc_semmns)
508 		return -ENOSPC;
509 
510 	size = sizeof(*sma) + nsems * sizeof(struct sem);
511 	sma = ipc_rcu_alloc(size);
512 	if (!sma)
513 		return -ENOMEM;
514 
515 	memset(sma, 0, size);
516 
517 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
518 	sma->sem_perm.key = key;
519 
520 	sma->sem_perm.security = NULL;
521 	retval = security_sem_alloc(sma);
522 	if (retval) {
523 		ipc_rcu_putref(sma, ipc_rcu_free);
524 		return retval;
525 	}
526 
527 	sma->sem_base = (struct sem *) &sma[1];
528 
529 	for (i = 0; i < nsems; i++) {
530 		INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
531 		INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
532 		spin_lock_init(&sma->sem_base[i].lock);
533 	}
534 
535 	sma->complex_count = 0;
536 	INIT_LIST_HEAD(&sma->pending_alter);
537 	INIT_LIST_HEAD(&sma->pending_const);
538 	INIT_LIST_HEAD(&sma->list_id);
539 	sma->sem_nsems = nsems;
540 	sma->sem_ctime = get_seconds();
541 
542 	id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
543 	if (id < 0) {
544 		ipc_rcu_putref(sma, sem_rcu_free);
545 		return id;
546 	}
547 	ns->used_sems += nsems;
548 
549 	sem_unlock(sma, -1);
550 	rcu_read_unlock();
551 
552 	return sma->sem_perm.id;
553 }
554 
555 
556 /*
557  * Called with sem_ids.rwsem and ipcp locked.
558  */
559 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
560 {
561 	struct sem_array *sma;
562 
563 	sma = container_of(ipcp, struct sem_array, sem_perm);
564 	return security_sem_associate(sma, semflg);
565 }
566 
567 /*
568  * Called with sem_ids.rwsem and ipcp locked.
569  */
570 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
571 				struct ipc_params *params)
572 {
573 	struct sem_array *sma;
574 
575 	sma = container_of(ipcp, struct sem_array, sem_perm);
576 	if (params->u.nsems > sma->sem_nsems)
577 		return -EINVAL;
578 
579 	return 0;
580 }
581 
582 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
583 {
584 	struct ipc_namespace *ns;
585 	static const struct ipc_ops sem_ops = {
586 		.getnew = newary,
587 		.associate = sem_security,
588 		.more_checks = sem_more_checks,
589 	};
590 	struct ipc_params sem_params;
591 
592 	ns = current->nsproxy->ipc_ns;
593 
594 	if (nsems < 0 || nsems > ns->sc_semmsl)
595 		return -EINVAL;
596 
597 	sem_params.key = key;
598 	sem_params.flg = semflg;
599 	sem_params.u.nsems = nsems;
600 
601 	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
602 }
603 
604 /**
605  * perform_atomic_semop - Perform (if possible) a semaphore operation
606  * @sma: semaphore array
607  * @q: struct sem_queue that describes the operation
608  *
609  * Returns 0 if the operation was possible.
610  * Returns 1 if the operation is impossible, the caller must sleep.
611  * Negative values are error codes.
612  */
613 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
614 {
615 	int result, sem_op, nsops, pid;
616 	struct sembuf *sop;
617 	struct sem *curr;
618 	struct sembuf *sops;
619 	struct sem_undo *un;
620 
621 	sops = q->sops;
622 	nsops = q->nsops;
623 	un = q->undo;
624 
625 	for (sop = sops; sop < sops + nsops; sop++) {
626 		curr = sma->sem_base + sop->sem_num;
627 		sem_op = sop->sem_op;
628 		result = curr->semval;
629 
630 		if (!sem_op && result)
631 			goto would_block;
632 
633 		result += sem_op;
634 		if (result < 0)
635 			goto would_block;
636 		if (result > SEMVMX)
637 			goto out_of_range;
638 
639 		if (sop->sem_flg & SEM_UNDO) {
640 			int undo = un->semadj[sop->sem_num] - sem_op;
641 			/* Exceeding the undo range is an error. */
642 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
643 				goto out_of_range;
644 			un->semadj[sop->sem_num] = undo;
645 		}
646 
647 		curr->semval = result;
648 	}
649 
650 	sop--;
651 	pid = q->pid;
652 	while (sop >= sops) {
653 		sma->sem_base[sop->sem_num].sempid = pid;
654 		sop--;
655 	}
656 
657 	return 0;
658 
659 out_of_range:
660 	result = -ERANGE;
661 	goto undo;
662 
663 would_block:
664 	q->blocking = sop;
665 
666 	if (sop->sem_flg & IPC_NOWAIT)
667 		result = -EAGAIN;
668 	else
669 		result = 1;
670 
671 undo:
672 	sop--;
673 	while (sop >= sops) {
674 		sem_op = sop->sem_op;
675 		sma->sem_base[sop->sem_num].semval -= sem_op;
676 		if (sop->sem_flg & SEM_UNDO)
677 			un->semadj[sop->sem_num] += sem_op;
678 		sop--;
679 	}
680 
681 	return result;
682 }
683 
684 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
685  * @q: queue entry that must be signaled
686  * @error: Error value for the signal
687  *
688  * Prepare the wake-up of the queue entry q.
689  */
690 static void wake_up_sem_queue_prepare(struct list_head *pt,
691 				struct sem_queue *q, int error)
692 {
693 	if (list_empty(pt)) {
694 		/*
695 		 * Hold preempt off so that we don't get preempted and have the
696 		 * wakee busy-wait until we're scheduled back on.
697 		 */
698 		preempt_disable();
699 	}
700 	q->status = IN_WAKEUP;
701 	q->pid = error;
702 
703 	list_add_tail(&q->list, pt);
704 }
705 
706 /**
707  * wake_up_sem_queue_do - do the actual wake-up
708  * @pt: list of tasks to be woken up
709  *
710  * Do the actual wake-up.
711  * The function is called without any locks held, thus the semaphore array
712  * could be destroyed already and the tasks can disappear as soon as the
713  * status is set to the actual return code.
714  */
715 static void wake_up_sem_queue_do(struct list_head *pt)
716 {
717 	struct sem_queue *q, *t;
718 	int did_something;
719 
720 	did_something = !list_empty(pt);
721 	list_for_each_entry_safe(q, t, pt, list) {
722 		wake_up_process(q->sleeper);
723 		/* q can disappear immediately after writing q->status. */
724 		smp_wmb();
725 		q->status = q->pid;
726 	}
727 	if (did_something)
728 		preempt_enable();
729 }
730 
731 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
732 {
733 	list_del(&q->list);
734 	if (q->nsops > 1)
735 		sma->complex_count--;
736 }
737 
738 /** check_restart(sma, q)
739  * @sma: semaphore array
740  * @q: the operation that just completed
741  *
742  * update_queue is O(N^2) when it restarts scanning the whole queue of
743  * waiting operations. Therefore this function checks if the restart is
744  * really necessary. It is called after a previously waiting operation
745  * modified the array.
746  * Note that wait-for-zero operations are handled without restart.
747  */
748 static int check_restart(struct sem_array *sma, struct sem_queue *q)
749 {
750 	/* pending complex alter operations are too difficult to analyse */
751 	if (!list_empty(&sma->pending_alter))
752 		return 1;
753 
754 	/* we were a sleeping complex operation. Too difficult */
755 	if (q->nsops > 1)
756 		return 1;
757 
758 	/* It is impossible that someone waits for the new value:
759 	 * - complex operations always restart.
760 	 * - wait-for-zero are handled seperately.
761 	 * - q is a previously sleeping simple operation that
762 	 *   altered the array. It must be a decrement, because
763 	 *   simple increments never sleep.
764 	 * - If there are older (higher priority) decrements
765 	 *   in the queue, then they have observed the original
766 	 *   semval value and couldn't proceed. The operation
767 	 *   decremented to value - thus they won't proceed either.
768 	 */
769 	return 0;
770 }
771 
772 /**
773  * wake_const_ops - wake up non-alter tasks
774  * @sma: semaphore array.
775  * @semnum: semaphore that was modified.
776  * @pt: list head for the tasks that must be woken up.
777  *
778  * wake_const_ops must be called after a semaphore in a semaphore array
779  * was set to 0. If complex const operations are pending, wake_const_ops must
780  * be called with semnum = -1, as well as with the number of each modified
781  * semaphore.
782  * The tasks that must be woken up are added to @pt. The return code
783  * is stored in q->pid.
784  * The function returns 1 if at least one operation was completed successfully.
785  */
786 static int wake_const_ops(struct sem_array *sma, int semnum,
787 				struct list_head *pt)
788 {
789 	struct sem_queue *q;
790 	struct list_head *walk;
791 	struct list_head *pending_list;
792 	int semop_completed = 0;
793 
794 	if (semnum == -1)
795 		pending_list = &sma->pending_const;
796 	else
797 		pending_list = &sma->sem_base[semnum].pending_const;
798 
799 	walk = pending_list->next;
800 	while (walk != pending_list) {
801 		int error;
802 
803 		q = container_of(walk, struct sem_queue, list);
804 		walk = walk->next;
805 
806 		error = perform_atomic_semop(sma, q);
807 
808 		if (error <= 0) {
809 			/* operation completed, remove from queue & wakeup */
810 
811 			unlink_queue(sma, q);
812 
813 			wake_up_sem_queue_prepare(pt, q, error);
814 			if (error == 0)
815 				semop_completed = 1;
816 		}
817 	}
818 	return semop_completed;
819 }
820 
821 /**
822  * do_smart_wakeup_zero - wakeup all wait for zero tasks
823  * @sma: semaphore array
824  * @sops: operations that were performed
825  * @nsops: number of operations
826  * @pt: list head of the tasks that must be woken up.
827  *
828  * Checks all required queue for wait-for-zero operations, based
829  * on the actual changes that were performed on the semaphore array.
830  * The function returns 1 if at least one operation was completed successfully.
831  */
832 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
833 					int nsops, struct list_head *pt)
834 {
835 	int i;
836 	int semop_completed = 0;
837 	int got_zero = 0;
838 
839 	/* first: the per-semaphore queues, if known */
840 	if (sops) {
841 		for (i = 0; i < nsops; i++) {
842 			int num = sops[i].sem_num;
843 
844 			if (sma->sem_base[num].semval == 0) {
845 				got_zero = 1;
846 				semop_completed |= wake_const_ops(sma, num, pt);
847 			}
848 		}
849 	} else {
850 		/*
851 		 * No sops means modified semaphores not known.
852 		 * Assume all were changed.
853 		 */
854 		for (i = 0; i < sma->sem_nsems; i++) {
855 			if (sma->sem_base[i].semval == 0) {
856 				got_zero = 1;
857 				semop_completed |= wake_const_ops(sma, i, pt);
858 			}
859 		}
860 	}
861 	/*
862 	 * If one of the modified semaphores got 0,
863 	 * then check the global queue, too.
864 	 */
865 	if (got_zero)
866 		semop_completed |= wake_const_ops(sma, -1, pt);
867 
868 	return semop_completed;
869 }
870 
871 
872 /**
873  * update_queue - look for tasks that can be completed.
874  * @sma: semaphore array.
875  * @semnum: semaphore that was modified.
876  * @pt: list head for the tasks that must be woken up.
877  *
878  * update_queue must be called after a semaphore in a semaphore array
879  * was modified. If multiple semaphores were modified, update_queue must
880  * be called with semnum = -1, as well as with the number of each modified
881  * semaphore.
882  * The tasks that must be woken up are added to @pt. The return code
883  * is stored in q->pid.
884  * The function internally checks if const operations can now succeed.
885  *
886  * The function return 1 if at least one semop was completed successfully.
887  */
888 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
889 {
890 	struct sem_queue *q;
891 	struct list_head *walk;
892 	struct list_head *pending_list;
893 	int semop_completed = 0;
894 
895 	if (semnum == -1)
896 		pending_list = &sma->pending_alter;
897 	else
898 		pending_list = &sma->sem_base[semnum].pending_alter;
899 
900 again:
901 	walk = pending_list->next;
902 	while (walk != pending_list) {
903 		int error, restart;
904 
905 		q = container_of(walk, struct sem_queue, list);
906 		walk = walk->next;
907 
908 		/* If we are scanning the single sop, per-semaphore list of
909 		 * one semaphore and that semaphore is 0, then it is not
910 		 * necessary to scan further: simple increments
911 		 * that affect only one entry succeed immediately and cannot
912 		 * be in the  per semaphore pending queue, and decrements
913 		 * cannot be successful if the value is already 0.
914 		 */
915 		if (semnum != -1 && sma->sem_base[semnum].semval == 0)
916 			break;
917 
918 		error = perform_atomic_semop(sma, q);
919 
920 		/* Does q->sleeper still need to sleep? */
921 		if (error > 0)
922 			continue;
923 
924 		unlink_queue(sma, q);
925 
926 		if (error) {
927 			restart = 0;
928 		} else {
929 			semop_completed = 1;
930 			do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
931 			restart = check_restart(sma, q);
932 		}
933 
934 		wake_up_sem_queue_prepare(pt, q, error);
935 		if (restart)
936 			goto again;
937 	}
938 	return semop_completed;
939 }
940 
941 /**
942  * set_semotime - set sem_otime
943  * @sma: semaphore array
944  * @sops: operations that modified the array, may be NULL
945  *
946  * sem_otime is replicated to avoid cache line trashing.
947  * This function sets one instance to the current time.
948  */
949 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
950 {
951 	if (sops == NULL) {
952 		sma->sem_base[0].sem_otime = get_seconds();
953 	} else {
954 		sma->sem_base[sops[0].sem_num].sem_otime =
955 							get_seconds();
956 	}
957 }
958 
959 /**
960  * do_smart_update - optimized update_queue
961  * @sma: semaphore array
962  * @sops: operations that were performed
963  * @nsops: number of operations
964  * @otime: force setting otime
965  * @pt: list head of the tasks that must be woken up.
966  *
967  * do_smart_update() does the required calls to update_queue and wakeup_zero,
968  * based on the actual changes that were performed on the semaphore array.
969  * Note that the function does not do the actual wake-up: the caller is
970  * responsible for calling wake_up_sem_queue_do(@pt).
971  * It is safe to perform this call after dropping all locks.
972  */
973 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
974 			int otime, struct list_head *pt)
975 {
976 	int i;
977 
978 	otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
979 
980 	if (!list_empty(&sma->pending_alter)) {
981 		/* semaphore array uses the global queue - just process it. */
982 		otime |= update_queue(sma, -1, pt);
983 	} else {
984 		if (!sops) {
985 			/*
986 			 * No sops, thus the modified semaphores are not
987 			 * known. Check all.
988 			 */
989 			for (i = 0; i < sma->sem_nsems; i++)
990 				otime |= update_queue(sma, i, pt);
991 		} else {
992 			/*
993 			 * Check the semaphores that were increased:
994 			 * - No complex ops, thus all sleeping ops are
995 			 *   decrease.
996 			 * - if we decreased the value, then any sleeping
997 			 *   semaphore ops wont be able to run: If the
998 			 *   previous value was too small, then the new
999 			 *   value will be too small, too.
1000 			 */
1001 			for (i = 0; i < nsops; i++) {
1002 				if (sops[i].sem_op > 0) {
1003 					otime |= update_queue(sma,
1004 							sops[i].sem_num, pt);
1005 				}
1006 			}
1007 		}
1008 	}
1009 	if (otime)
1010 		set_semotime(sma, sops);
1011 }
1012 
1013 /*
1014  * check_qop: Test if a queued operation sleeps on the semaphore semnum
1015  */
1016 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1017 			bool count_zero)
1018 {
1019 	struct sembuf *sop = q->blocking;
1020 
1021 	/*
1022 	 * Linux always (since 0.99.10) reported a task as sleeping on all
1023 	 * semaphores. This violates SUS, therefore it was changed to the
1024 	 * standard compliant behavior.
1025 	 * Give the administrators a chance to notice that an application
1026 	 * might misbehave because it relies on the Linux behavior.
1027 	 */
1028 	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1029 			"The task %s (%d) triggered the difference, watch for misbehavior.\n",
1030 			current->comm, task_pid_nr(current));
1031 
1032 	if (sop->sem_num != semnum)
1033 		return 0;
1034 
1035 	if (count_zero && sop->sem_op == 0)
1036 		return 1;
1037 	if (!count_zero && sop->sem_op < 0)
1038 		return 1;
1039 
1040 	return 0;
1041 }
1042 
1043 /* The following counts are associated to each semaphore:
1044  *   semncnt        number of tasks waiting on semval being nonzero
1045  *   semzcnt        number of tasks waiting on semval being zero
1046  *
1047  * Per definition, a task waits only on the semaphore of the first semop
1048  * that cannot proceed, even if additional operation would block, too.
1049  */
1050 static int count_semcnt(struct sem_array *sma, ushort semnum,
1051 			bool count_zero)
1052 {
1053 	struct list_head *l;
1054 	struct sem_queue *q;
1055 	int semcnt;
1056 
1057 	semcnt = 0;
1058 	/* First: check the simple operations. They are easy to evaluate */
1059 	if (count_zero)
1060 		l = &sma->sem_base[semnum].pending_const;
1061 	else
1062 		l = &sma->sem_base[semnum].pending_alter;
1063 
1064 	list_for_each_entry(q, l, list) {
1065 		/* all task on a per-semaphore list sleep on exactly
1066 		 * that semaphore
1067 		 */
1068 		semcnt++;
1069 	}
1070 
1071 	/* Then: check the complex operations. */
1072 	list_for_each_entry(q, &sma->pending_alter, list) {
1073 		semcnt += check_qop(sma, semnum, q, count_zero);
1074 	}
1075 	if (count_zero) {
1076 		list_for_each_entry(q, &sma->pending_const, list) {
1077 			semcnt += check_qop(sma, semnum, q, count_zero);
1078 		}
1079 	}
1080 	return semcnt;
1081 }
1082 
1083 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1084  * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1085  * remains locked on exit.
1086  */
1087 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1088 {
1089 	struct sem_undo *un, *tu;
1090 	struct sem_queue *q, *tq;
1091 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1092 	struct list_head tasks;
1093 	int i;
1094 
1095 	/* Free the existing undo structures for this semaphore set.  */
1096 	ipc_assert_locked_object(&sma->sem_perm);
1097 	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1098 		list_del(&un->list_id);
1099 		spin_lock(&un->ulp->lock);
1100 		un->semid = -1;
1101 		list_del_rcu(&un->list_proc);
1102 		spin_unlock(&un->ulp->lock);
1103 		kfree_rcu(un, rcu);
1104 	}
1105 
1106 	/* Wake up all pending processes and let them fail with EIDRM. */
1107 	INIT_LIST_HEAD(&tasks);
1108 	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1109 		unlink_queue(sma, q);
1110 		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1111 	}
1112 
1113 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1114 		unlink_queue(sma, q);
1115 		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1116 	}
1117 	for (i = 0; i < sma->sem_nsems; i++) {
1118 		struct sem *sem = sma->sem_base + i;
1119 		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1120 			unlink_queue(sma, q);
1121 			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1122 		}
1123 		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1124 			unlink_queue(sma, q);
1125 			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1126 		}
1127 	}
1128 
1129 	/* Remove the semaphore set from the IDR */
1130 	sem_rmid(ns, sma);
1131 	sem_unlock(sma, -1);
1132 	rcu_read_unlock();
1133 
1134 	wake_up_sem_queue_do(&tasks);
1135 	ns->used_sems -= sma->sem_nsems;
1136 	ipc_rcu_putref(sma, sem_rcu_free);
1137 }
1138 
1139 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1140 {
1141 	switch (version) {
1142 	case IPC_64:
1143 		return copy_to_user(buf, in, sizeof(*in));
1144 	case IPC_OLD:
1145 	    {
1146 		struct semid_ds out;
1147 
1148 		memset(&out, 0, sizeof(out));
1149 
1150 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1151 
1152 		out.sem_otime	= in->sem_otime;
1153 		out.sem_ctime	= in->sem_ctime;
1154 		out.sem_nsems	= in->sem_nsems;
1155 
1156 		return copy_to_user(buf, &out, sizeof(out));
1157 	    }
1158 	default:
1159 		return -EINVAL;
1160 	}
1161 }
1162 
1163 static time_t get_semotime(struct sem_array *sma)
1164 {
1165 	int i;
1166 	time_t res;
1167 
1168 	res = sma->sem_base[0].sem_otime;
1169 	for (i = 1; i < sma->sem_nsems; i++) {
1170 		time_t to = sma->sem_base[i].sem_otime;
1171 
1172 		if (to > res)
1173 			res = to;
1174 	}
1175 	return res;
1176 }
1177 
1178 static int semctl_nolock(struct ipc_namespace *ns, int semid,
1179 			 int cmd, int version, void __user *p)
1180 {
1181 	int err;
1182 	struct sem_array *sma;
1183 
1184 	switch (cmd) {
1185 	case IPC_INFO:
1186 	case SEM_INFO:
1187 	{
1188 		struct seminfo seminfo;
1189 		int max_id;
1190 
1191 		err = security_sem_semctl(NULL, cmd);
1192 		if (err)
1193 			return err;
1194 
1195 		memset(&seminfo, 0, sizeof(seminfo));
1196 		seminfo.semmni = ns->sc_semmni;
1197 		seminfo.semmns = ns->sc_semmns;
1198 		seminfo.semmsl = ns->sc_semmsl;
1199 		seminfo.semopm = ns->sc_semopm;
1200 		seminfo.semvmx = SEMVMX;
1201 		seminfo.semmnu = SEMMNU;
1202 		seminfo.semmap = SEMMAP;
1203 		seminfo.semume = SEMUME;
1204 		down_read(&sem_ids(ns).rwsem);
1205 		if (cmd == SEM_INFO) {
1206 			seminfo.semusz = sem_ids(ns).in_use;
1207 			seminfo.semaem = ns->used_sems;
1208 		} else {
1209 			seminfo.semusz = SEMUSZ;
1210 			seminfo.semaem = SEMAEM;
1211 		}
1212 		max_id = ipc_get_maxid(&sem_ids(ns));
1213 		up_read(&sem_ids(ns).rwsem);
1214 		if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1215 			return -EFAULT;
1216 		return (max_id < 0) ? 0 : max_id;
1217 	}
1218 	case IPC_STAT:
1219 	case SEM_STAT:
1220 	{
1221 		struct semid64_ds tbuf;
1222 		int id = 0;
1223 
1224 		memset(&tbuf, 0, sizeof(tbuf));
1225 
1226 		rcu_read_lock();
1227 		if (cmd == SEM_STAT) {
1228 			sma = sem_obtain_object(ns, semid);
1229 			if (IS_ERR(sma)) {
1230 				err = PTR_ERR(sma);
1231 				goto out_unlock;
1232 			}
1233 			id = sma->sem_perm.id;
1234 		} else {
1235 			sma = sem_obtain_object_check(ns, semid);
1236 			if (IS_ERR(sma)) {
1237 				err = PTR_ERR(sma);
1238 				goto out_unlock;
1239 			}
1240 		}
1241 
1242 		err = -EACCES;
1243 		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1244 			goto out_unlock;
1245 
1246 		err = security_sem_semctl(sma, cmd);
1247 		if (err)
1248 			goto out_unlock;
1249 
1250 		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1251 		tbuf.sem_otime = get_semotime(sma);
1252 		tbuf.sem_ctime = sma->sem_ctime;
1253 		tbuf.sem_nsems = sma->sem_nsems;
1254 		rcu_read_unlock();
1255 		if (copy_semid_to_user(p, &tbuf, version))
1256 			return -EFAULT;
1257 		return id;
1258 	}
1259 	default:
1260 		return -EINVAL;
1261 	}
1262 out_unlock:
1263 	rcu_read_unlock();
1264 	return err;
1265 }
1266 
1267 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1268 		unsigned long arg)
1269 {
1270 	struct sem_undo *un;
1271 	struct sem_array *sma;
1272 	struct sem *curr;
1273 	int err;
1274 	struct list_head tasks;
1275 	int val;
1276 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1277 	/* big-endian 64bit */
1278 	val = arg >> 32;
1279 #else
1280 	/* 32bit or little-endian 64bit */
1281 	val = arg;
1282 #endif
1283 
1284 	if (val > SEMVMX || val < 0)
1285 		return -ERANGE;
1286 
1287 	INIT_LIST_HEAD(&tasks);
1288 
1289 	rcu_read_lock();
1290 	sma = sem_obtain_object_check(ns, semid);
1291 	if (IS_ERR(sma)) {
1292 		rcu_read_unlock();
1293 		return PTR_ERR(sma);
1294 	}
1295 
1296 	if (semnum < 0 || semnum >= sma->sem_nsems) {
1297 		rcu_read_unlock();
1298 		return -EINVAL;
1299 	}
1300 
1301 
1302 	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1303 		rcu_read_unlock();
1304 		return -EACCES;
1305 	}
1306 
1307 	err = security_sem_semctl(sma, SETVAL);
1308 	if (err) {
1309 		rcu_read_unlock();
1310 		return -EACCES;
1311 	}
1312 
1313 	sem_lock(sma, NULL, -1);
1314 
1315 	if (!ipc_valid_object(&sma->sem_perm)) {
1316 		sem_unlock(sma, -1);
1317 		rcu_read_unlock();
1318 		return -EIDRM;
1319 	}
1320 
1321 	curr = &sma->sem_base[semnum];
1322 
1323 	ipc_assert_locked_object(&sma->sem_perm);
1324 	list_for_each_entry(un, &sma->list_id, list_id)
1325 		un->semadj[semnum] = 0;
1326 
1327 	curr->semval = val;
1328 	curr->sempid = task_tgid_vnr(current);
1329 	sma->sem_ctime = get_seconds();
1330 	/* maybe some queued-up processes were waiting for this */
1331 	do_smart_update(sma, NULL, 0, 0, &tasks);
1332 	sem_unlock(sma, -1);
1333 	rcu_read_unlock();
1334 	wake_up_sem_queue_do(&tasks);
1335 	return 0;
1336 }
1337 
1338 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1339 		int cmd, void __user *p)
1340 {
1341 	struct sem_array *sma;
1342 	struct sem *curr;
1343 	int err, nsems;
1344 	ushort fast_sem_io[SEMMSL_FAST];
1345 	ushort *sem_io = fast_sem_io;
1346 	struct list_head tasks;
1347 
1348 	INIT_LIST_HEAD(&tasks);
1349 
1350 	rcu_read_lock();
1351 	sma = sem_obtain_object_check(ns, semid);
1352 	if (IS_ERR(sma)) {
1353 		rcu_read_unlock();
1354 		return PTR_ERR(sma);
1355 	}
1356 
1357 	nsems = sma->sem_nsems;
1358 
1359 	err = -EACCES;
1360 	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1361 		goto out_rcu_wakeup;
1362 
1363 	err = security_sem_semctl(sma, cmd);
1364 	if (err)
1365 		goto out_rcu_wakeup;
1366 
1367 	err = -EACCES;
1368 	switch (cmd) {
1369 	case GETALL:
1370 	{
1371 		ushort __user *array = p;
1372 		int i;
1373 
1374 		sem_lock(sma, NULL, -1);
1375 		if (!ipc_valid_object(&sma->sem_perm)) {
1376 			err = -EIDRM;
1377 			goto out_unlock;
1378 		}
1379 		if (nsems > SEMMSL_FAST) {
1380 			if (!ipc_rcu_getref(sma)) {
1381 				err = -EIDRM;
1382 				goto out_unlock;
1383 			}
1384 			sem_unlock(sma, -1);
1385 			rcu_read_unlock();
1386 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1387 			if (sem_io == NULL) {
1388 				ipc_rcu_putref(sma, ipc_rcu_free);
1389 				return -ENOMEM;
1390 			}
1391 
1392 			rcu_read_lock();
1393 			sem_lock_and_putref(sma);
1394 			if (!ipc_valid_object(&sma->sem_perm)) {
1395 				err = -EIDRM;
1396 				goto out_unlock;
1397 			}
1398 		}
1399 		for (i = 0; i < sma->sem_nsems; i++)
1400 			sem_io[i] = sma->sem_base[i].semval;
1401 		sem_unlock(sma, -1);
1402 		rcu_read_unlock();
1403 		err = 0;
1404 		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1405 			err = -EFAULT;
1406 		goto out_free;
1407 	}
1408 	case SETALL:
1409 	{
1410 		int i;
1411 		struct sem_undo *un;
1412 
1413 		if (!ipc_rcu_getref(sma)) {
1414 			err = -EIDRM;
1415 			goto out_rcu_wakeup;
1416 		}
1417 		rcu_read_unlock();
1418 
1419 		if (nsems > SEMMSL_FAST) {
1420 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1421 			if (sem_io == NULL) {
1422 				ipc_rcu_putref(sma, ipc_rcu_free);
1423 				return -ENOMEM;
1424 			}
1425 		}
1426 
1427 		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1428 			ipc_rcu_putref(sma, ipc_rcu_free);
1429 			err = -EFAULT;
1430 			goto out_free;
1431 		}
1432 
1433 		for (i = 0; i < nsems; i++) {
1434 			if (sem_io[i] > SEMVMX) {
1435 				ipc_rcu_putref(sma, ipc_rcu_free);
1436 				err = -ERANGE;
1437 				goto out_free;
1438 			}
1439 		}
1440 		rcu_read_lock();
1441 		sem_lock_and_putref(sma);
1442 		if (!ipc_valid_object(&sma->sem_perm)) {
1443 			err = -EIDRM;
1444 			goto out_unlock;
1445 		}
1446 
1447 		for (i = 0; i < nsems; i++)
1448 			sma->sem_base[i].semval = sem_io[i];
1449 
1450 		ipc_assert_locked_object(&sma->sem_perm);
1451 		list_for_each_entry(un, &sma->list_id, list_id) {
1452 			for (i = 0; i < nsems; i++)
1453 				un->semadj[i] = 0;
1454 		}
1455 		sma->sem_ctime = get_seconds();
1456 		/* maybe some queued-up processes were waiting for this */
1457 		do_smart_update(sma, NULL, 0, 0, &tasks);
1458 		err = 0;
1459 		goto out_unlock;
1460 	}
1461 	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1462 	}
1463 	err = -EINVAL;
1464 	if (semnum < 0 || semnum >= nsems)
1465 		goto out_rcu_wakeup;
1466 
1467 	sem_lock(sma, NULL, -1);
1468 	if (!ipc_valid_object(&sma->sem_perm)) {
1469 		err = -EIDRM;
1470 		goto out_unlock;
1471 	}
1472 	curr = &sma->sem_base[semnum];
1473 
1474 	switch (cmd) {
1475 	case GETVAL:
1476 		err = curr->semval;
1477 		goto out_unlock;
1478 	case GETPID:
1479 		err = curr->sempid;
1480 		goto out_unlock;
1481 	case GETNCNT:
1482 		err = count_semcnt(sma, semnum, 0);
1483 		goto out_unlock;
1484 	case GETZCNT:
1485 		err = count_semcnt(sma, semnum, 1);
1486 		goto out_unlock;
1487 	}
1488 
1489 out_unlock:
1490 	sem_unlock(sma, -1);
1491 out_rcu_wakeup:
1492 	rcu_read_unlock();
1493 	wake_up_sem_queue_do(&tasks);
1494 out_free:
1495 	if (sem_io != fast_sem_io)
1496 		ipc_free(sem_io, sizeof(ushort)*nsems);
1497 	return err;
1498 }
1499 
1500 static inline unsigned long
1501 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1502 {
1503 	switch (version) {
1504 	case IPC_64:
1505 		if (copy_from_user(out, buf, sizeof(*out)))
1506 			return -EFAULT;
1507 		return 0;
1508 	case IPC_OLD:
1509 	    {
1510 		struct semid_ds tbuf_old;
1511 
1512 		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1513 			return -EFAULT;
1514 
1515 		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1516 		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1517 		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1518 
1519 		return 0;
1520 	    }
1521 	default:
1522 		return -EINVAL;
1523 	}
1524 }
1525 
1526 /*
1527  * This function handles some semctl commands which require the rwsem
1528  * to be held in write mode.
1529  * NOTE: no locks must be held, the rwsem is taken inside this function.
1530  */
1531 static int semctl_down(struct ipc_namespace *ns, int semid,
1532 		       int cmd, int version, void __user *p)
1533 {
1534 	struct sem_array *sma;
1535 	int err;
1536 	struct semid64_ds semid64;
1537 	struct kern_ipc_perm *ipcp;
1538 
1539 	if (cmd == IPC_SET) {
1540 		if (copy_semid_from_user(&semid64, p, version))
1541 			return -EFAULT;
1542 	}
1543 
1544 	down_write(&sem_ids(ns).rwsem);
1545 	rcu_read_lock();
1546 
1547 	ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1548 				      &semid64.sem_perm, 0);
1549 	if (IS_ERR(ipcp)) {
1550 		err = PTR_ERR(ipcp);
1551 		goto out_unlock1;
1552 	}
1553 
1554 	sma = container_of(ipcp, struct sem_array, sem_perm);
1555 
1556 	err = security_sem_semctl(sma, cmd);
1557 	if (err)
1558 		goto out_unlock1;
1559 
1560 	switch (cmd) {
1561 	case IPC_RMID:
1562 		sem_lock(sma, NULL, -1);
1563 		/* freeary unlocks the ipc object and rcu */
1564 		freeary(ns, ipcp);
1565 		goto out_up;
1566 	case IPC_SET:
1567 		sem_lock(sma, NULL, -1);
1568 		err = ipc_update_perm(&semid64.sem_perm, ipcp);
1569 		if (err)
1570 			goto out_unlock0;
1571 		sma->sem_ctime = get_seconds();
1572 		break;
1573 	default:
1574 		err = -EINVAL;
1575 		goto out_unlock1;
1576 	}
1577 
1578 out_unlock0:
1579 	sem_unlock(sma, -1);
1580 out_unlock1:
1581 	rcu_read_unlock();
1582 out_up:
1583 	up_write(&sem_ids(ns).rwsem);
1584 	return err;
1585 }
1586 
1587 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1588 {
1589 	int version;
1590 	struct ipc_namespace *ns;
1591 	void __user *p = (void __user *)arg;
1592 
1593 	if (semid < 0)
1594 		return -EINVAL;
1595 
1596 	version = ipc_parse_version(&cmd);
1597 	ns = current->nsproxy->ipc_ns;
1598 
1599 	switch (cmd) {
1600 	case IPC_INFO:
1601 	case SEM_INFO:
1602 	case IPC_STAT:
1603 	case SEM_STAT:
1604 		return semctl_nolock(ns, semid, cmd, version, p);
1605 	case GETALL:
1606 	case GETVAL:
1607 	case GETPID:
1608 	case GETNCNT:
1609 	case GETZCNT:
1610 	case SETALL:
1611 		return semctl_main(ns, semid, semnum, cmd, p);
1612 	case SETVAL:
1613 		return semctl_setval(ns, semid, semnum, arg);
1614 	case IPC_RMID:
1615 	case IPC_SET:
1616 		return semctl_down(ns, semid, cmd, version, p);
1617 	default:
1618 		return -EINVAL;
1619 	}
1620 }
1621 
1622 /* If the task doesn't already have a undo_list, then allocate one
1623  * here.  We guarantee there is only one thread using this undo list,
1624  * and current is THE ONE
1625  *
1626  * If this allocation and assignment succeeds, but later
1627  * portions of this code fail, there is no need to free the sem_undo_list.
1628  * Just let it stay associated with the task, and it'll be freed later
1629  * at exit time.
1630  *
1631  * This can block, so callers must hold no locks.
1632  */
1633 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1634 {
1635 	struct sem_undo_list *undo_list;
1636 
1637 	undo_list = current->sysvsem.undo_list;
1638 	if (!undo_list) {
1639 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1640 		if (undo_list == NULL)
1641 			return -ENOMEM;
1642 		spin_lock_init(&undo_list->lock);
1643 		atomic_set(&undo_list->refcnt, 1);
1644 		INIT_LIST_HEAD(&undo_list->list_proc);
1645 
1646 		current->sysvsem.undo_list = undo_list;
1647 	}
1648 	*undo_listp = undo_list;
1649 	return 0;
1650 }
1651 
1652 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1653 {
1654 	struct sem_undo *un;
1655 
1656 	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1657 		if (un->semid == semid)
1658 			return un;
1659 	}
1660 	return NULL;
1661 }
1662 
1663 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1664 {
1665 	struct sem_undo *un;
1666 
1667 	assert_spin_locked(&ulp->lock);
1668 
1669 	un = __lookup_undo(ulp, semid);
1670 	if (un) {
1671 		list_del_rcu(&un->list_proc);
1672 		list_add_rcu(&un->list_proc, &ulp->list_proc);
1673 	}
1674 	return un;
1675 }
1676 
1677 /**
1678  * find_alloc_undo - lookup (and if not present create) undo array
1679  * @ns: namespace
1680  * @semid: semaphore array id
1681  *
1682  * The function looks up (and if not present creates) the undo structure.
1683  * The size of the undo structure depends on the size of the semaphore
1684  * array, thus the alloc path is not that straightforward.
1685  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1686  * performs a rcu_read_lock().
1687  */
1688 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1689 {
1690 	struct sem_array *sma;
1691 	struct sem_undo_list *ulp;
1692 	struct sem_undo *un, *new;
1693 	int nsems, error;
1694 
1695 	error = get_undo_list(&ulp);
1696 	if (error)
1697 		return ERR_PTR(error);
1698 
1699 	rcu_read_lock();
1700 	spin_lock(&ulp->lock);
1701 	un = lookup_undo(ulp, semid);
1702 	spin_unlock(&ulp->lock);
1703 	if (likely(un != NULL))
1704 		goto out;
1705 
1706 	/* no undo structure around - allocate one. */
1707 	/* step 1: figure out the size of the semaphore array */
1708 	sma = sem_obtain_object_check(ns, semid);
1709 	if (IS_ERR(sma)) {
1710 		rcu_read_unlock();
1711 		return ERR_CAST(sma);
1712 	}
1713 
1714 	nsems = sma->sem_nsems;
1715 	if (!ipc_rcu_getref(sma)) {
1716 		rcu_read_unlock();
1717 		un = ERR_PTR(-EIDRM);
1718 		goto out;
1719 	}
1720 	rcu_read_unlock();
1721 
1722 	/* step 2: allocate new undo structure */
1723 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1724 	if (!new) {
1725 		ipc_rcu_putref(sma, ipc_rcu_free);
1726 		return ERR_PTR(-ENOMEM);
1727 	}
1728 
1729 	/* step 3: Acquire the lock on semaphore array */
1730 	rcu_read_lock();
1731 	sem_lock_and_putref(sma);
1732 	if (!ipc_valid_object(&sma->sem_perm)) {
1733 		sem_unlock(sma, -1);
1734 		rcu_read_unlock();
1735 		kfree(new);
1736 		un = ERR_PTR(-EIDRM);
1737 		goto out;
1738 	}
1739 	spin_lock(&ulp->lock);
1740 
1741 	/*
1742 	 * step 4: check for races: did someone else allocate the undo struct?
1743 	 */
1744 	un = lookup_undo(ulp, semid);
1745 	if (un) {
1746 		kfree(new);
1747 		goto success;
1748 	}
1749 	/* step 5: initialize & link new undo structure */
1750 	new->semadj = (short *) &new[1];
1751 	new->ulp = ulp;
1752 	new->semid = semid;
1753 	assert_spin_locked(&ulp->lock);
1754 	list_add_rcu(&new->list_proc, &ulp->list_proc);
1755 	ipc_assert_locked_object(&sma->sem_perm);
1756 	list_add(&new->list_id, &sma->list_id);
1757 	un = new;
1758 
1759 success:
1760 	spin_unlock(&ulp->lock);
1761 	sem_unlock(sma, -1);
1762 out:
1763 	return un;
1764 }
1765 
1766 
1767 /**
1768  * get_queue_result - retrieve the result code from sem_queue
1769  * @q: Pointer to queue structure
1770  *
1771  * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1772  * q->status, then we must loop until the value is replaced with the final
1773  * value: This may happen if a task is woken up by an unrelated event (e.g.
1774  * signal) and in parallel the task is woken up by another task because it got
1775  * the requested semaphores.
1776  *
1777  * The function can be called with or without holding the semaphore spinlock.
1778  */
1779 static int get_queue_result(struct sem_queue *q)
1780 {
1781 	int error;
1782 
1783 	error = q->status;
1784 	while (unlikely(error == IN_WAKEUP)) {
1785 		cpu_relax();
1786 		error = q->status;
1787 	}
1788 
1789 	return error;
1790 }
1791 
1792 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1793 		unsigned, nsops, const struct timespec __user *, timeout)
1794 {
1795 	int error = -EINVAL;
1796 	struct sem_array *sma;
1797 	struct sembuf fast_sops[SEMOPM_FAST];
1798 	struct sembuf *sops = fast_sops, *sop;
1799 	struct sem_undo *un;
1800 	int undos = 0, alter = 0, max, locknum;
1801 	struct sem_queue queue;
1802 	unsigned long jiffies_left = 0;
1803 	struct ipc_namespace *ns;
1804 	struct list_head tasks;
1805 
1806 	ns = current->nsproxy->ipc_ns;
1807 
1808 	if (nsops < 1 || semid < 0)
1809 		return -EINVAL;
1810 	if (nsops > ns->sc_semopm)
1811 		return -E2BIG;
1812 	if (nsops > SEMOPM_FAST) {
1813 		sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1814 		if (sops == NULL)
1815 			return -ENOMEM;
1816 	}
1817 	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1818 		error =  -EFAULT;
1819 		goto out_free;
1820 	}
1821 	if (timeout) {
1822 		struct timespec _timeout;
1823 		if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1824 			error = -EFAULT;
1825 			goto out_free;
1826 		}
1827 		if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1828 			_timeout.tv_nsec >= 1000000000L) {
1829 			error = -EINVAL;
1830 			goto out_free;
1831 		}
1832 		jiffies_left = timespec_to_jiffies(&_timeout);
1833 	}
1834 	max = 0;
1835 	for (sop = sops; sop < sops + nsops; sop++) {
1836 		if (sop->sem_num >= max)
1837 			max = sop->sem_num;
1838 		if (sop->sem_flg & SEM_UNDO)
1839 			undos = 1;
1840 		if (sop->sem_op != 0)
1841 			alter = 1;
1842 	}
1843 
1844 	INIT_LIST_HEAD(&tasks);
1845 
1846 	if (undos) {
1847 		/* On success, find_alloc_undo takes the rcu_read_lock */
1848 		un = find_alloc_undo(ns, semid);
1849 		if (IS_ERR(un)) {
1850 			error = PTR_ERR(un);
1851 			goto out_free;
1852 		}
1853 	} else {
1854 		un = NULL;
1855 		rcu_read_lock();
1856 	}
1857 
1858 	sma = sem_obtain_object_check(ns, semid);
1859 	if (IS_ERR(sma)) {
1860 		rcu_read_unlock();
1861 		error = PTR_ERR(sma);
1862 		goto out_free;
1863 	}
1864 
1865 	error = -EFBIG;
1866 	if (max >= sma->sem_nsems)
1867 		goto out_rcu_wakeup;
1868 
1869 	error = -EACCES;
1870 	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1871 		goto out_rcu_wakeup;
1872 
1873 	error = security_sem_semop(sma, sops, nsops, alter);
1874 	if (error)
1875 		goto out_rcu_wakeup;
1876 
1877 	error = -EIDRM;
1878 	locknum = sem_lock(sma, sops, nsops);
1879 	/*
1880 	 * We eventually might perform the following check in a lockless
1881 	 * fashion, considering ipc_valid_object() locking constraints.
1882 	 * If nsops == 1 and there is no contention for sem_perm.lock, then
1883 	 * only a per-semaphore lock is held and it's OK to proceed with the
1884 	 * check below. More details on the fine grained locking scheme
1885 	 * entangled here and why it's RMID race safe on comments at sem_lock()
1886 	 */
1887 	if (!ipc_valid_object(&sma->sem_perm))
1888 		goto out_unlock_free;
1889 	/*
1890 	 * semid identifiers are not unique - find_alloc_undo may have
1891 	 * allocated an undo structure, it was invalidated by an RMID
1892 	 * and now a new array with received the same id. Check and fail.
1893 	 * This case can be detected checking un->semid. The existence of
1894 	 * "un" itself is guaranteed by rcu.
1895 	 */
1896 	if (un && un->semid == -1)
1897 		goto out_unlock_free;
1898 
1899 	queue.sops = sops;
1900 	queue.nsops = nsops;
1901 	queue.undo = un;
1902 	queue.pid = task_tgid_vnr(current);
1903 	queue.alter = alter;
1904 
1905 	error = perform_atomic_semop(sma, &queue);
1906 	if (error == 0) {
1907 		/* If the operation was successful, then do
1908 		 * the required updates.
1909 		 */
1910 		if (alter)
1911 			do_smart_update(sma, sops, nsops, 1, &tasks);
1912 		else
1913 			set_semotime(sma, sops);
1914 	}
1915 	if (error <= 0)
1916 		goto out_unlock_free;
1917 
1918 	/* We need to sleep on this operation, so we put the current
1919 	 * task into the pending queue and go to sleep.
1920 	 */
1921 
1922 	if (nsops == 1) {
1923 		struct sem *curr;
1924 		curr = &sma->sem_base[sops->sem_num];
1925 
1926 		if (alter) {
1927 			if (sma->complex_count) {
1928 				list_add_tail(&queue.list,
1929 						&sma->pending_alter);
1930 			} else {
1931 
1932 				list_add_tail(&queue.list,
1933 						&curr->pending_alter);
1934 			}
1935 		} else {
1936 			list_add_tail(&queue.list, &curr->pending_const);
1937 		}
1938 	} else {
1939 		if (!sma->complex_count)
1940 			merge_queues(sma);
1941 
1942 		if (alter)
1943 			list_add_tail(&queue.list, &sma->pending_alter);
1944 		else
1945 			list_add_tail(&queue.list, &sma->pending_const);
1946 
1947 		sma->complex_count++;
1948 	}
1949 
1950 	queue.status = -EINTR;
1951 	queue.sleeper = current;
1952 
1953 sleep_again:
1954 	__set_current_state(TASK_INTERRUPTIBLE);
1955 	sem_unlock(sma, locknum);
1956 	rcu_read_unlock();
1957 
1958 	if (timeout)
1959 		jiffies_left = schedule_timeout(jiffies_left);
1960 	else
1961 		schedule();
1962 
1963 	error = get_queue_result(&queue);
1964 
1965 	if (error != -EINTR) {
1966 		/* fast path: update_queue already obtained all requested
1967 		 * resources.
1968 		 * Perform a smp_mb(): User space could assume that semop()
1969 		 * is a memory barrier: Without the mb(), the cpu could
1970 		 * speculatively read in user space stale data that was
1971 		 * overwritten by the previous owner of the semaphore.
1972 		 */
1973 		smp_mb();
1974 
1975 		goto out_free;
1976 	}
1977 
1978 	rcu_read_lock();
1979 	sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
1980 
1981 	/*
1982 	 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1983 	 */
1984 	error = get_queue_result(&queue);
1985 
1986 	/*
1987 	 * Array removed? If yes, leave without sem_unlock().
1988 	 */
1989 	if (IS_ERR(sma)) {
1990 		rcu_read_unlock();
1991 		goto out_free;
1992 	}
1993 
1994 
1995 	/*
1996 	 * If queue.status != -EINTR we are woken up by another process.
1997 	 * Leave without unlink_queue(), but with sem_unlock().
1998 	 */
1999 	if (error != -EINTR)
2000 		goto out_unlock_free;
2001 
2002 	/*
2003 	 * If an interrupt occurred we have to clean up the queue
2004 	 */
2005 	if (timeout && jiffies_left == 0)
2006 		error = -EAGAIN;
2007 
2008 	/*
2009 	 * If the wakeup was spurious, just retry
2010 	 */
2011 	if (error == -EINTR && !signal_pending(current))
2012 		goto sleep_again;
2013 
2014 	unlink_queue(sma, &queue);
2015 
2016 out_unlock_free:
2017 	sem_unlock(sma, locknum);
2018 out_rcu_wakeup:
2019 	rcu_read_unlock();
2020 	wake_up_sem_queue_do(&tasks);
2021 out_free:
2022 	if (sops != fast_sops)
2023 		kfree(sops);
2024 	return error;
2025 }
2026 
2027 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2028 		unsigned, nsops)
2029 {
2030 	return sys_semtimedop(semid, tsops, nsops, NULL);
2031 }
2032 
2033 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2034  * parent and child tasks.
2035  */
2036 
2037 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2038 {
2039 	struct sem_undo_list *undo_list;
2040 	int error;
2041 
2042 	if (clone_flags & CLONE_SYSVSEM) {
2043 		error = get_undo_list(&undo_list);
2044 		if (error)
2045 			return error;
2046 		atomic_inc(&undo_list->refcnt);
2047 		tsk->sysvsem.undo_list = undo_list;
2048 	} else
2049 		tsk->sysvsem.undo_list = NULL;
2050 
2051 	return 0;
2052 }
2053 
2054 /*
2055  * add semadj values to semaphores, free undo structures.
2056  * undo structures are not freed when semaphore arrays are destroyed
2057  * so some of them may be out of date.
2058  * IMPLEMENTATION NOTE: There is some confusion over whether the
2059  * set of adjustments that needs to be done should be done in an atomic
2060  * manner or not. That is, if we are attempting to decrement the semval
2061  * should we queue up and wait until we can do so legally?
2062  * The original implementation attempted to do this (queue and wait).
2063  * The current implementation does not do so. The POSIX standard
2064  * and SVID should be consulted to determine what behavior is mandated.
2065  */
2066 void exit_sem(struct task_struct *tsk)
2067 {
2068 	struct sem_undo_list *ulp;
2069 
2070 	ulp = tsk->sysvsem.undo_list;
2071 	if (!ulp)
2072 		return;
2073 	tsk->sysvsem.undo_list = NULL;
2074 
2075 	if (!atomic_dec_and_test(&ulp->refcnt))
2076 		return;
2077 
2078 	for (;;) {
2079 		struct sem_array *sma;
2080 		struct sem_undo *un;
2081 		struct list_head tasks;
2082 		int semid, i;
2083 
2084 		rcu_read_lock();
2085 		un = list_entry_rcu(ulp->list_proc.next,
2086 				    struct sem_undo, list_proc);
2087 		if (&un->list_proc == &ulp->list_proc) {
2088 			/*
2089 			 * We must wait for freeary() before freeing this ulp,
2090 			 * in case we raced with last sem_undo. There is a small
2091 			 * possibility where we exit while freeary() didn't
2092 			 * finish unlocking sem_undo_list.
2093 			 */
2094 			spin_unlock_wait(&ulp->lock);
2095 			rcu_read_unlock();
2096 			break;
2097 		}
2098 		spin_lock(&ulp->lock);
2099 		semid = un->semid;
2100 		spin_unlock(&ulp->lock);
2101 
2102 		/* exit_sem raced with IPC_RMID, nothing to do */
2103 		if (semid == -1) {
2104 			rcu_read_unlock();
2105 			continue;
2106 		}
2107 
2108 		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2109 		/* exit_sem raced with IPC_RMID, nothing to do */
2110 		if (IS_ERR(sma)) {
2111 			rcu_read_unlock();
2112 			continue;
2113 		}
2114 
2115 		sem_lock(sma, NULL, -1);
2116 		/* exit_sem raced with IPC_RMID, nothing to do */
2117 		if (!ipc_valid_object(&sma->sem_perm)) {
2118 			sem_unlock(sma, -1);
2119 			rcu_read_unlock();
2120 			continue;
2121 		}
2122 		un = __lookup_undo(ulp, semid);
2123 		if (un == NULL) {
2124 			/* exit_sem raced with IPC_RMID+semget() that created
2125 			 * exactly the same semid. Nothing to do.
2126 			 */
2127 			sem_unlock(sma, -1);
2128 			rcu_read_unlock();
2129 			continue;
2130 		}
2131 
2132 		/* remove un from the linked lists */
2133 		ipc_assert_locked_object(&sma->sem_perm);
2134 		list_del(&un->list_id);
2135 
2136 		/* we are the last process using this ulp, acquiring ulp->lock
2137 		 * isn't required. Besides that, we are also protected against
2138 		 * IPC_RMID as we hold sma->sem_perm lock now
2139 		 */
2140 		list_del_rcu(&un->list_proc);
2141 
2142 		/* perform adjustments registered in un */
2143 		for (i = 0; i < sma->sem_nsems; i++) {
2144 			struct sem *semaphore = &sma->sem_base[i];
2145 			if (un->semadj[i]) {
2146 				semaphore->semval += un->semadj[i];
2147 				/*
2148 				 * Range checks of the new semaphore value,
2149 				 * not defined by sus:
2150 				 * - Some unices ignore the undo entirely
2151 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2152 				 * - some cap the value (e.g. FreeBSD caps
2153 				 *   at 0, but doesn't enforce SEMVMX)
2154 				 *
2155 				 * Linux caps the semaphore value, both at 0
2156 				 * and at SEMVMX.
2157 				 *
2158 				 *	Manfred <manfred@colorfullife.com>
2159 				 */
2160 				if (semaphore->semval < 0)
2161 					semaphore->semval = 0;
2162 				if (semaphore->semval > SEMVMX)
2163 					semaphore->semval = SEMVMX;
2164 				semaphore->sempid = task_tgid_vnr(current);
2165 			}
2166 		}
2167 		/* maybe some queued-up processes were waiting for this */
2168 		INIT_LIST_HEAD(&tasks);
2169 		do_smart_update(sma, NULL, 0, 1, &tasks);
2170 		sem_unlock(sma, -1);
2171 		rcu_read_unlock();
2172 		wake_up_sem_queue_do(&tasks);
2173 
2174 		kfree_rcu(un, rcu);
2175 	}
2176 	kfree(ulp);
2177 }
2178 
2179 #ifdef CONFIG_PROC_FS
2180 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2181 {
2182 	struct user_namespace *user_ns = seq_user_ns(s);
2183 	struct sem_array *sma = it;
2184 	time_t sem_otime;
2185 
2186 	/*
2187 	 * The proc interface isn't aware of sem_lock(), it calls
2188 	 * ipc_lock_object() directly (in sysvipc_find_ipc).
2189 	 * In order to stay compatible with sem_lock(), we must wait until
2190 	 * all simple semop() calls have left their critical regions.
2191 	 */
2192 	sem_wait_array(sma);
2193 
2194 	sem_otime = get_semotime(sma);
2195 
2196 	seq_printf(s,
2197 		   "%10d %10d  %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2198 		   sma->sem_perm.key,
2199 		   sma->sem_perm.id,
2200 		   sma->sem_perm.mode,
2201 		   sma->sem_nsems,
2202 		   from_kuid_munged(user_ns, sma->sem_perm.uid),
2203 		   from_kgid_munged(user_ns, sma->sem_perm.gid),
2204 		   from_kuid_munged(user_ns, sma->sem_perm.cuid),
2205 		   from_kgid_munged(user_ns, sma->sem_perm.cgid),
2206 		   sem_otime,
2207 		   sma->sem_ctime);
2208 
2209 	return 0;
2210 }
2211 #endif
2212