1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/ipc/sem.c 4 * Copyright (C) 1992 Krishna Balasubramanian 5 * Copyright (C) 1995 Eric Schenk, Bruno Haible 6 * 7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> 8 * 9 * SMP-threaded, sysctl's added 10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com> 11 * Enforced range limit on SEM_UNDO 12 * (c) 2001 Red Hat Inc 13 * Lockless wakeup 14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com> 15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net> 16 * Further wakeup optimizations, documentation 17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com> 18 * 19 * support for audit of ipc object properties and permission changes 20 * Dustin Kirkland <dustin.kirkland@us.ibm.com> 21 * 22 * namespaces support 23 * OpenVZ, SWsoft Inc. 24 * Pavel Emelianov <xemul@openvz.org> 25 * 26 * Implementation notes: (May 2010) 27 * This file implements System V semaphores. 28 * 29 * User space visible behavior: 30 * - FIFO ordering for semop() operations (just FIFO, not starvation 31 * protection) 32 * - multiple semaphore operations that alter the same semaphore in 33 * one semop() are handled. 34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and 35 * SETALL calls. 36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. 37 * - undo adjustments at process exit are limited to 0..SEMVMX. 38 * - namespace are supported. 39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing 40 * to /proc/sys/kernel/sem. 41 * - statistics about the usage are reported in /proc/sysvipc/sem. 42 * 43 * Internals: 44 * - scalability: 45 * - all global variables are read-mostly. 46 * - semop() calls and semctl(RMID) are synchronized by RCU. 47 * - most operations do write operations (actually: spin_lock calls) to 48 * the per-semaphore array structure. 49 * Thus: Perfect SMP scaling between independent semaphore arrays. 50 * If multiple semaphores in one array are used, then cache line 51 * trashing on the semaphore array spinlock will limit the scaling. 52 * - semncnt and semzcnt are calculated on demand in count_semcnt() 53 * - the task that performs a successful semop() scans the list of all 54 * sleeping tasks and completes any pending operations that can be fulfilled. 55 * Semaphores are actively given to waiting tasks (necessary for FIFO). 56 * (see update_queue()) 57 * - To improve the scalability, the actual wake-up calls are performed after 58 * dropping all locks. (see wake_up_sem_queue_prepare()) 59 * - All work is done by the waker, the woken up task does not have to do 60 * anything - not even acquiring a lock or dropping a refcount. 61 * - A woken up task may not even touch the semaphore array anymore, it may 62 * have been destroyed already by a semctl(RMID). 63 * - UNDO values are stored in an array (one per process and per 64 * semaphore array, lazily allocated). For backwards compatibility, multiple 65 * modes for the UNDO variables are supported (per process, per thread) 66 * (see copy_semundo, CLONE_SYSVSEM) 67 * - There are two lists of the pending operations: a per-array list 68 * and per-semaphore list (stored in the array). This allows to achieve FIFO 69 * ordering without always scanning all pending operations. 70 * The worst-case behavior is nevertheless O(N^2) for N wakeups. 71 */ 72 73 #include <linux/compat.h> 74 #include <linux/slab.h> 75 #include <linux/spinlock.h> 76 #include <linux/init.h> 77 #include <linux/proc_fs.h> 78 #include <linux/time.h> 79 #include <linux/security.h> 80 #include <linux/syscalls.h> 81 #include <linux/audit.h> 82 #include <linux/capability.h> 83 #include <linux/seq_file.h> 84 #include <linux/rwsem.h> 85 #include <linux/nsproxy.h> 86 #include <linux/ipc_namespace.h> 87 #include <linux/sched/wake_q.h> 88 #include <linux/nospec.h> 89 #include <linux/rhashtable.h> 90 91 #include <linux/uaccess.h> 92 #include "util.h" 93 94 /* One semaphore structure for each semaphore in the system. */ 95 struct sem { 96 int semval; /* current value */ 97 /* 98 * PID of the process that last modified the semaphore. For 99 * Linux, specifically these are: 100 * - semop 101 * - semctl, via SETVAL and SETALL. 102 * - at task exit when performing undo adjustments (see exit_sem). 103 */ 104 struct pid *sempid; 105 spinlock_t lock; /* spinlock for fine-grained semtimedop */ 106 struct list_head pending_alter; /* pending single-sop operations */ 107 /* that alter the semaphore */ 108 struct list_head pending_const; /* pending single-sop operations */ 109 /* that do not alter the semaphore*/ 110 time64_t sem_otime; /* candidate for sem_otime */ 111 } ____cacheline_aligned_in_smp; 112 113 /* One sem_array data structure for each set of semaphores in the system. */ 114 struct sem_array { 115 struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */ 116 time64_t sem_ctime; /* create/last semctl() time */ 117 struct list_head pending_alter; /* pending operations */ 118 /* that alter the array */ 119 struct list_head pending_const; /* pending complex operations */ 120 /* that do not alter semvals */ 121 struct list_head list_id; /* undo requests on this array */ 122 int sem_nsems; /* no. of semaphores in array */ 123 int complex_count; /* pending complex operations */ 124 unsigned int use_global_lock;/* >0: global lock required */ 125 126 struct sem sems[]; 127 } __randomize_layout; 128 129 /* One queue for each sleeping process in the system. */ 130 struct sem_queue { 131 struct list_head list; /* queue of pending operations */ 132 struct task_struct *sleeper; /* this process */ 133 struct sem_undo *undo; /* undo structure */ 134 struct pid *pid; /* process id of requesting process */ 135 int status; /* completion status of operation */ 136 struct sembuf *sops; /* array of pending operations */ 137 struct sembuf *blocking; /* the operation that blocked */ 138 int nsops; /* number of operations */ 139 bool alter; /* does *sops alter the array? */ 140 bool dupsop; /* sops on more than one sem_num */ 141 }; 142 143 /* Each task has a list of undo requests. They are executed automatically 144 * when the process exits. 145 */ 146 struct sem_undo { 147 struct list_head list_proc; /* per-process list: * 148 * all undos from one process 149 * rcu protected */ 150 struct rcu_head rcu; /* rcu struct for sem_undo */ 151 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */ 152 struct list_head list_id; /* per semaphore array list: 153 * all undos for one array */ 154 int semid; /* semaphore set identifier */ 155 short *semadj; /* array of adjustments */ 156 /* one per semaphore */ 157 }; 158 159 /* sem_undo_list controls shared access to the list of sem_undo structures 160 * that may be shared among all a CLONE_SYSVSEM task group. 161 */ 162 struct sem_undo_list { 163 refcount_t refcnt; 164 spinlock_t lock; 165 struct list_head list_proc; 166 }; 167 168 169 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) 170 171 static int newary(struct ipc_namespace *, struct ipc_params *); 172 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); 173 #ifdef CONFIG_PROC_FS 174 static int sysvipc_sem_proc_show(struct seq_file *s, void *it); 175 #endif 176 177 #define SEMMSL_FAST 256 /* 512 bytes on stack */ 178 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ 179 180 /* 181 * Switching from the mode suitable for simple ops 182 * to the mode for complex ops is costly. Therefore: 183 * use some hysteresis 184 */ 185 #define USE_GLOBAL_LOCK_HYSTERESIS 10 186 187 /* 188 * Locking: 189 * a) global sem_lock() for read/write 190 * sem_undo.id_next, 191 * sem_array.complex_count, 192 * sem_array.pending{_alter,_const}, 193 * sem_array.sem_undo 194 * 195 * b) global or semaphore sem_lock() for read/write: 196 * sem_array.sems[i].pending_{const,alter}: 197 * 198 * c) special: 199 * sem_undo_list.list_proc: 200 * * undo_list->lock for write 201 * * rcu for read 202 * use_global_lock: 203 * * global sem_lock() for write 204 * * either local or global sem_lock() for read. 205 * 206 * Memory ordering: 207 * Most ordering is enforced by using spin_lock() and spin_unlock(). 208 * The special case is use_global_lock: 209 * Setting it from non-zero to 0 is a RELEASE, this is ensured by 210 * using smp_store_release(). 211 * Testing if it is non-zero is an ACQUIRE, this is ensured by using 212 * smp_load_acquire(). 213 * Setting it from 0 to non-zero must be ordered with regards to 214 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire() 215 * is inside a spin_lock() and after a write from 0 to non-zero a 216 * spin_lock()+spin_unlock() is done. 217 */ 218 219 #define sc_semmsl sem_ctls[0] 220 #define sc_semmns sem_ctls[1] 221 #define sc_semopm sem_ctls[2] 222 #define sc_semmni sem_ctls[3] 223 224 void sem_init_ns(struct ipc_namespace *ns) 225 { 226 ns->sc_semmsl = SEMMSL; 227 ns->sc_semmns = SEMMNS; 228 ns->sc_semopm = SEMOPM; 229 ns->sc_semmni = SEMMNI; 230 ns->used_sems = 0; 231 ipc_init_ids(&ns->ids[IPC_SEM_IDS]); 232 } 233 234 #ifdef CONFIG_IPC_NS 235 void sem_exit_ns(struct ipc_namespace *ns) 236 { 237 free_ipcs(ns, &sem_ids(ns), freeary); 238 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); 239 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht); 240 } 241 #endif 242 243 void __init sem_init(void) 244 { 245 sem_init_ns(&init_ipc_ns); 246 ipc_init_proc_interface("sysvipc/sem", 247 " key semid perms nsems uid gid cuid cgid otime ctime\n", 248 IPC_SEM_IDS, sysvipc_sem_proc_show); 249 } 250 251 /** 252 * unmerge_queues - unmerge queues, if possible. 253 * @sma: semaphore array 254 * 255 * The function unmerges the wait queues if complex_count is 0. 256 * It must be called prior to dropping the global semaphore array lock. 257 */ 258 static void unmerge_queues(struct sem_array *sma) 259 { 260 struct sem_queue *q, *tq; 261 262 /* complex operations still around? */ 263 if (sma->complex_count) 264 return; 265 /* 266 * We will switch back to simple mode. 267 * Move all pending operation back into the per-semaphore 268 * queues. 269 */ 270 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 271 struct sem *curr; 272 curr = &sma->sems[q->sops[0].sem_num]; 273 274 list_add_tail(&q->list, &curr->pending_alter); 275 } 276 INIT_LIST_HEAD(&sma->pending_alter); 277 } 278 279 /** 280 * merge_queues - merge single semop queues into global queue 281 * @sma: semaphore array 282 * 283 * This function merges all per-semaphore queues into the global queue. 284 * It is necessary to achieve FIFO ordering for the pending single-sop 285 * operations when a multi-semop operation must sleep. 286 * Only the alter operations must be moved, the const operations can stay. 287 */ 288 static void merge_queues(struct sem_array *sma) 289 { 290 int i; 291 for (i = 0; i < sma->sem_nsems; i++) { 292 struct sem *sem = &sma->sems[i]; 293 294 list_splice_init(&sem->pending_alter, &sma->pending_alter); 295 } 296 } 297 298 static void sem_rcu_free(struct rcu_head *head) 299 { 300 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu); 301 struct sem_array *sma = container_of(p, struct sem_array, sem_perm); 302 303 security_sem_free(&sma->sem_perm); 304 kvfree(sma); 305 } 306 307 /* 308 * Enter the mode suitable for non-simple operations: 309 * Caller must own sem_perm.lock. 310 */ 311 static void complexmode_enter(struct sem_array *sma) 312 { 313 int i; 314 struct sem *sem; 315 316 if (sma->use_global_lock > 0) { 317 /* 318 * We are already in global lock mode. 319 * Nothing to do, just reset the 320 * counter until we return to simple mode. 321 */ 322 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; 323 return; 324 } 325 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; 326 327 for (i = 0; i < sma->sem_nsems; i++) { 328 sem = &sma->sems[i]; 329 spin_lock(&sem->lock); 330 spin_unlock(&sem->lock); 331 } 332 } 333 334 /* 335 * Try to leave the mode that disallows simple operations: 336 * Caller must own sem_perm.lock. 337 */ 338 static void complexmode_tryleave(struct sem_array *sma) 339 { 340 if (sma->complex_count) { 341 /* Complex ops are sleeping. 342 * We must stay in complex mode 343 */ 344 return; 345 } 346 if (sma->use_global_lock == 1) { 347 /* 348 * Immediately after setting use_global_lock to 0, 349 * a simple op can start. Thus: all memory writes 350 * performed by the current operation must be visible 351 * before we set use_global_lock to 0. 352 */ 353 smp_store_release(&sma->use_global_lock, 0); 354 } else { 355 sma->use_global_lock--; 356 } 357 } 358 359 #define SEM_GLOBAL_LOCK (-1) 360 /* 361 * If the request contains only one semaphore operation, and there are 362 * no complex transactions pending, lock only the semaphore involved. 363 * Otherwise, lock the entire semaphore array, since we either have 364 * multiple semaphores in our own semops, or we need to look at 365 * semaphores from other pending complex operations. 366 */ 367 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, 368 int nsops) 369 { 370 struct sem *sem; 371 int idx; 372 373 if (nsops != 1) { 374 /* Complex operation - acquire a full lock */ 375 ipc_lock_object(&sma->sem_perm); 376 377 /* Prevent parallel simple ops */ 378 complexmode_enter(sma); 379 return SEM_GLOBAL_LOCK; 380 } 381 382 /* 383 * Only one semaphore affected - try to optimize locking. 384 * Optimized locking is possible if no complex operation 385 * is either enqueued or processed right now. 386 * 387 * Both facts are tracked by use_global_mode. 388 */ 389 idx = array_index_nospec(sops->sem_num, sma->sem_nsems); 390 sem = &sma->sems[idx]; 391 392 /* 393 * Initial check for use_global_lock. Just an optimization, 394 * no locking, no memory barrier. 395 */ 396 if (!sma->use_global_lock) { 397 /* 398 * It appears that no complex operation is around. 399 * Acquire the per-semaphore lock. 400 */ 401 spin_lock(&sem->lock); 402 403 /* pairs with smp_store_release() */ 404 if (!smp_load_acquire(&sma->use_global_lock)) { 405 /* fast path successful! */ 406 return sops->sem_num; 407 } 408 spin_unlock(&sem->lock); 409 } 410 411 /* slow path: acquire the full lock */ 412 ipc_lock_object(&sma->sem_perm); 413 414 if (sma->use_global_lock == 0) { 415 /* 416 * The use_global_lock mode ended while we waited for 417 * sma->sem_perm.lock. Thus we must switch to locking 418 * with sem->lock. 419 * Unlike in the fast path, there is no need to recheck 420 * sma->use_global_lock after we have acquired sem->lock: 421 * We own sma->sem_perm.lock, thus use_global_lock cannot 422 * change. 423 */ 424 spin_lock(&sem->lock); 425 426 ipc_unlock_object(&sma->sem_perm); 427 return sops->sem_num; 428 } else { 429 /* 430 * Not a false alarm, thus continue to use the global lock 431 * mode. No need for complexmode_enter(), this was done by 432 * the caller that has set use_global_mode to non-zero. 433 */ 434 return SEM_GLOBAL_LOCK; 435 } 436 } 437 438 static inline void sem_unlock(struct sem_array *sma, int locknum) 439 { 440 if (locknum == SEM_GLOBAL_LOCK) { 441 unmerge_queues(sma); 442 complexmode_tryleave(sma); 443 ipc_unlock_object(&sma->sem_perm); 444 } else { 445 struct sem *sem = &sma->sems[locknum]; 446 spin_unlock(&sem->lock); 447 } 448 } 449 450 /* 451 * sem_lock_(check_) routines are called in the paths where the rwsem 452 * is not held. 453 * 454 * The caller holds the RCU read lock. 455 */ 456 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id) 457 { 458 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); 459 460 if (IS_ERR(ipcp)) 461 return ERR_CAST(ipcp); 462 463 return container_of(ipcp, struct sem_array, sem_perm); 464 } 465 466 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, 467 int id) 468 { 469 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id); 470 471 if (IS_ERR(ipcp)) 472 return ERR_CAST(ipcp); 473 474 return container_of(ipcp, struct sem_array, sem_perm); 475 } 476 477 static inline void sem_lock_and_putref(struct sem_array *sma) 478 { 479 sem_lock(sma, NULL, -1); 480 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 481 } 482 483 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) 484 { 485 ipc_rmid(&sem_ids(ns), &s->sem_perm); 486 } 487 488 static struct sem_array *sem_alloc(size_t nsems) 489 { 490 struct sem_array *sma; 491 size_t size; 492 493 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0])) 494 return NULL; 495 496 size = sizeof(*sma) + nsems * sizeof(sma->sems[0]); 497 sma = kvmalloc(size, GFP_KERNEL); 498 if (unlikely(!sma)) 499 return NULL; 500 501 memset(sma, 0, size); 502 503 return sma; 504 } 505 506 /** 507 * newary - Create a new semaphore set 508 * @ns: namespace 509 * @params: ptr to the structure that contains key, semflg and nsems 510 * 511 * Called with sem_ids.rwsem held (as a writer) 512 */ 513 static int newary(struct ipc_namespace *ns, struct ipc_params *params) 514 { 515 int retval; 516 struct sem_array *sma; 517 key_t key = params->key; 518 int nsems = params->u.nsems; 519 int semflg = params->flg; 520 int i; 521 522 if (!nsems) 523 return -EINVAL; 524 if (ns->used_sems + nsems > ns->sc_semmns) 525 return -ENOSPC; 526 527 sma = sem_alloc(nsems); 528 if (!sma) 529 return -ENOMEM; 530 531 sma->sem_perm.mode = (semflg & S_IRWXUGO); 532 sma->sem_perm.key = key; 533 534 sma->sem_perm.security = NULL; 535 retval = security_sem_alloc(&sma->sem_perm); 536 if (retval) { 537 kvfree(sma); 538 return retval; 539 } 540 541 for (i = 0; i < nsems; i++) { 542 INIT_LIST_HEAD(&sma->sems[i].pending_alter); 543 INIT_LIST_HEAD(&sma->sems[i].pending_const); 544 spin_lock_init(&sma->sems[i].lock); 545 } 546 547 sma->complex_count = 0; 548 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; 549 INIT_LIST_HEAD(&sma->pending_alter); 550 INIT_LIST_HEAD(&sma->pending_const); 551 INIT_LIST_HEAD(&sma->list_id); 552 sma->sem_nsems = nsems; 553 sma->sem_ctime = ktime_get_real_seconds(); 554 555 /* ipc_addid() locks sma upon success. */ 556 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); 557 if (retval < 0) { 558 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 559 return retval; 560 } 561 ns->used_sems += nsems; 562 563 sem_unlock(sma, -1); 564 rcu_read_unlock(); 565 566 return sma->sem_perm.id; 567 } 568 569 570 /* 571 * Called with sem_ids.rwsem and ipcp locked. 572 */ 573 static inline int sem_more_checks(struct kern_ipc_perm *ipcp, 574 struct ipc_params *params) 575 { 576 struct sem_array *sma; 577 578 sma = container_of(ipcp, struct sem_array, sem_perm); 579 if (params->u.nsems > sma->sem_nsems) 580 return -EINVAL; 581 582 return 0; 583 } 584 585 long ksys_semget(key_t key, int nsems, int semflg) 586 { 587 struct ipc_namespace *ns; 588 static const struct ipc_ops sem_ops = { 589 .getnew = newary, 590 .associate = security_sem_associate, 591 .more_checks = sem_more_checks, 592 }; 593 struct ipc_params sem_params; 594 595 ns = current->nsproxy->ipc_ns; 596 597 if (nsems < 0 || nsems > ns->sc_semmsl) 598 return -EINVAL; 599 600 sem_params.key = key; 601 sem_params.flg = semflg; 602 sem_params.u.nsems = nsems; 603 604 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); 605 } 606 607 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) 608 { 609 return ksys_semget(key, nsems, semflg); 610 } 611 612 /** 613 * perform_atomic_semop[_slow] - Attempt to perform semaphore 614 * operations on a given array. 615 * @sma: semaphore array 616 * @q: struct sem_queue that describes the operation 617 * 618 * Caller blocking are as follows, based the value 619 * indicated by the semaphore operation (sem_op): 620 * 621 * (1) >0 never blocks. 622 * (2) 0 (wait-for-zero operation): semval is non-zero. 623 * (3) <0 attempting to decrement semval to a value smaller than zero. 624 * 625 * Returns 0 if the operation was possible. 626 * Returns 1 if the operation is impossible, the caller must sleep. 627 * Returns <0 for error codes. 628 */ 629 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q) 630 { 631 int result, sem_op, nsops; 632 struct pid *pid; 633 struct sembuf *sop; 634 struct sem *curr; 635 struct sembuf *sops; 636 struct sem_undo *un; 637 638 sops = q->sops; 639 nsops = q->nsops; 640 un = q->undo; 641 642 for (sop = sops; sop < sops + nsops; sop++) { 643 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems); 644 curr = &sma->sems[idx]; 645 sem_op = sop->sem_op; 646 result = curr->semval; 647 648 if (!sem_op && result) 649 goto would_block; 650 651 result += sem_op; 652 if (result < 0) 653 goto would_block; 654 if (result > SEMVMX) 655 goto out_of_range; 656 657 if (sop->sem_flg & SEM_UNDO) { 658 int undo = un->semadj[sop->sem_num] - sem_op; 659 /* Exceeding the undo range is an error. */ 660 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 661 goto out_of_range; 662 un->semadj[sop->sem_num] = undo; 663 } 664 665 curr->semval = result; 666 } 667 668 sop--; 669 pid = q->pid; 670 while (sop >= sops) { 671 ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid); 672 sop--; 673 } 674 675 return 0; 676 677 out_of_range: 678 result = -ERANGE; 679 goto undo; 680 681 would_block: 682 q->blocking = sop; 683 684 if (sop->sem_flg & IPC_NOWAIT) 685 result = -EAGAIN; 686 else 687 result = 1; 688 689 undo: 690 sop--; 691 while (sop >= sops) { 692 sem_op = sop->sem_op; 693 sma->sems[sop->sem_num].semval -= sem_op; 694 if (sop->sem_flg & SEM_UNDO) 695 un->semadj[sop->sem_num] += sem_op; 696 sop--; 697 } 698 699 return result; 700 } 701 702 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q) 703 { 704 int result, sem_op, nsops; 705 struct sembuf *sop; 706 struct sem *curr; 707 struct sembuf *sops; 708 struct sem_undo *un; 709 710 sops = q->sops; 711 nsops = q->nsops; 712 un = q->undo; 713 714 if (unlikely(q->dupsop)) 715 return perform_atomic_semop_slow(sma, q); 716 717 /* 718 * We scan the semaphore set twice, first to ensure that the entire 719 * operation can succeed, therefore avoiding any pointless writes 720 * to shared memory and having to undo such changes in order to block 721 * until the operations can go through. 722 */ 723 for (sop = sops; sop < sops + nsops; sop++) { 724 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems); 725 726 curr = &sma->sems[idx]; 727 sem_op = sop->sem_op; 728 result = curr->semval; 729 730 if (!sem_op && result) 731 goto would_block; /* wait-for-zero */ 732 733 result += sem_op; 734 if (result < 0) 735 goto would_block; 736 737 if (result > SEMVMX) 738 return -ERANGE; 739 740 if (sop->sem_flg & SEM_UNDO) { 741 int undo = un->semadj[sop->sem_num] - sem_op; 742 743 /* Exceeding the undo range is an error. */ 744 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 745 return -ERANGE; 746 } 747 } 748 749 for (sop = sops; sop < sops + nsops; sop++) { 750 curr = &sma->sems[sop->sem_num]; 751 sem_op = sop->sem_op; 752 result = curr->semval; 753 754 if (sop->sem_flg & SEM_UNDO) { 755 int undo = un->semadj[sop->sem_num] - sem_op; 756 757 un->semadj[sop->sem_num] = undo; 758 } 759 curr->semval += sem_op; 760 ipc_update_pid(&curr->sempid, q->pid); 761 } 762 763 return 0; 764 765 would_block: 766 q->blocking = sop; 767 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1; 768 } 769 770 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error, 771 struct wake_q_head *wake_q) 772 { 773 wake_q_add(wake_q, q->sleeper); 774 /* 775 * Rely on the above implicit barrier, such that we can 776 * ensure that we hold reference to the task before setting 777 * q->status. Otherwise we could race with do_exit if the 778 * task is awoken by an external event before calling 779 * wake_up_process(). 780 */ 781 WRITE_ONCE(q->status, error); 782 } 783 784 static void unlink_queue(struct sem_array *sma, struct sem_queue *q) 785 { 786 list_del(&q->list); 787 if (q->nsops > 1) 788 sma->complex_count--; 789 } 790 791 /** check_restart(sma, q) 792 * @sma: semaphore array 793 * @q: the operation that just completed 794 * 795 * update_queue is O(N^2) when it restarts scanning the whole queue of 796 * waiting operations. Therefore this function checks if the restart is 797 * really necessary. It is called after a previously waiting operation 798 * modified the array. 799 * Note that wait-for-zero operations are handled without restart. 800 */ 801 static inline int check_restart(struct sem_array *sma, struct sem_queue *q) 802 { 803 /* pending complex alter operations are too difficult to analyse */ 804 if (!list_empty(&sma->pending_alter)) 805 return 1; 806 807 /* we were a sleeping complex operation. Too difficult */ 808 if (q->nsops > 1) 809 return 1; 810 811 /* It is impossible that someone waits for the new value: 812 * - complex operations always restart. 813 * - wait-for-zero are handled seperately. 814 * - q is a previously sleeping simple operation that 815 * altered the array. It must be a decrement, because 816 * simple increments never sleep. 817 * - If there are older (higher priority) decrements 818 * in the queue, then they have observed the original 819 * semval value and couldn't proceed. The operation 820 * decremented to value - thus they won't proceed either. 821 */ 822 return 0; 823 } 824 825 /** 826 * wake_const_ops - wake up non-alter tasks 827 * @sma: semaphore array. 828 * @semnum: semaphore that was modified. 829 * @wake_q: lockless wake-queue head. 830 * 831 * wake_const_ops must be called after a semaphore in a semaphore array 832 * was set to 0. If complex const operations are pending, wake_const_ops must 833 * be called with semnum = -1, as well as with the number of each modified 834 * semaphore. 835 * The tasks that must be woken up are added to @wake_q. The return code 836 * is stored in q->pid. 837 * The function returns 1 if at least one operation was completed successfully. 838 */ 839 static int wake_const_ops(struct sem_array *sma, int semnum, 840 struct wake_q_head *wake_q) 841 { 842 struct sem_queue *q, *tmp; 843 struct list_head *pending_list; 844 int semop_completed = 0; 845 846 if (semnum == -1) 847 pending_list = &sma->pending_const; 848 else 849 pending_list = &sma->sems[semnum].pending_const; 850 851 list_for_each_entry_safe(q, tmp, pending_list, list) { 852 int error = perform_atomic_semop(sma, q); 853 854 if (error > 0) 855 continue; 856 /* operation completed, remove from queue & wakeup */ 857 unlink_queue(sma, q); 858 859 wake_up_sem_queue_prepare(q, error, wake_q); 860 if (error == 0) 861 semop_completed = 1; 862 } 863 864 return semop_completed; 865 } 866 867 /** 868 * do_smart_wakeup_zero - wakeup all wait for zero tasks 869 * @sma: semaphore array 870 * @sops: operations that were performed 871 * @nsops: number of operations 872 * @wake_q: lockless wake-queue head 873 * 874 * Checks all required queue for wait-for-zero operations, based 875 * on the actual changes that were performed on the semaphore array. 876 * The function returns 1 if at least one operation was completed successfully. 877 */ 878 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops, 879 int nsops, struct wake_q_head *wake_q) 880 { 881 int i; 882 int semop_completed = 0; 883 int got_zero = 0; 884 885 /* first: the per-semaphore queues, if known */ 886 if (sops) { 887 for (i = 0; i < nsops; i++) { 888 int num = sops[i].sem_num; 889 890 if (sma->sems[num].semval == 0) { 891 got_zero = 1; 892 semop_completed |= wake_const_ops(sma, num, wake_q); 893 } 894 } 895 } else { 896 /* 897 * No sops means modified semaphores not known. 898 * Assume all were changed. 899 */ 900 for (i = 0; i < sma->sem_nsems; i++) { 901 if (sma->sems[i].semval == 0) { 902 got_zero = 1; 903 semop_completed |= wake_const_ops(sma, i, wake_q); 904 } 905 } 906 } 907 /* 908 * If one of the modified semaphores got 0, 909 * then check the global queue, too. 910 */ 911 if (got_zero) 912 semop_completed |= wake_const_ops(sma, -1, wake_q); 913 914 return semop_completed; 915 } 916 917 918 /** 919 * update_queue - look for tasks that can be completed. 920 * @sma: semaphore array. 921 * @semnum: semaphore that was modified. 922 * @wake_q: lockless wake-queue head. 923 * 924 * update_queue must be called after a semaphore in a semaphore array 925 * was modified. If multiple semaphores were modified, update_queue must 926 * be called with semnum = -1, as well as with the number of each modified 927 * semaphore. 928 * The tasks that must be woken up are added to @wake_q. The return code 929 * is stored in q->pid. 930 * The function internally checks if const operations can now succeed. 931 * 932 * The function return 1 if at least one semop was completed successfully. 933 */ 934 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q) 935 { 936 struct sem_queue *q, *tmp; 937 struct list_head *pending_list; 938 int semop_completed = 0; 939 940 if (semnum == -1) 941 pending_list = &sma->pending_alter; 942 else 943 pending_list = &sma->sems[semnum].pending_alter; 944 945 again: 946 list_for_each_entry_safe(q, tmp, pending_list, list) { 947 int error, restart; 948 949 /* If we are scanning the single sop, per-semaphore list of 950 * one semaphore and that semaphore is 0, then it is not 951 * necessary to scan further: simple increments 952 * that affect only one entry succeed immediately and cannot 953 * be in the per semaphore pending queue, and decrements 954 * cannot be successful if the value is already 0. 955 */ 956 if (semnum != -1 && sma->sems[semnum].semval == 0) 957 break; 958 959 error = perform_atomic_semop(sma, q); 960 961 /* Does q->sleeper still need to sleep? */ 962 if (error > 0) 963 continue; 964 965 unlink_queue(sma, q); 966 967 if (error) { 968 restart = 0; 969 } else { 970 semop_completed = 1; 971 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q); 972 restart = check_restart(sma, q); 973 } 974 975 wake_up_sem_queue_prepare(q, error, wake_q); 976 if (restart) 977 goto again; 978 } 979 return semop_completed; 980 } 981 982 /** 983 * set_semotime - set sem_otime 984 * @sma: semaphore array 985 * @sops: operations that modified the array, may be NULL 986 * 987 * sem_otime is replicated to avoid cache line trashing. 988 * This function sets one instance to the current time. 989 */ 990 static void set_semotime(struct sem_array *sma, struct sembuf *sops) 991 { 992 if (sops == NULL) { 993 sma->sems[0].sem_otime = ktime_get_real_seconds(); 994 } else { 995 sma->sems[sops[0].sem_num].sem_otime = 996 ktime_get_real_seconds(); 997 } 998 } 999 1000 /** 1001 * do_smart_update - optimized update_queue 1002 * @sma: semaphore array 1003 * @sops: operations that were performed 1004 * @nsops: number of operations 1005 * @otime: force setting otime 1006 * @wake_q: lockless wake-queue head 1007 * 1008 * do_smart_update() does the required calls to update_queue and wakeup_zero, 1009 * based on the actual changes that were performed on the semaphore array. 1010 * Note that the function does not do the actual wake-up: the caller is 1011 * responsible for calling wake_up_q(). 1012 * It is safe to perform this call after dropping all locks. 1013 */ 1014 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, 1015 int otime, struct wake_q_head *wake_q) 1016 { 1017 int i; 1018 1019 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q); 1020 1021 if (!list_empty(&sma->pending_alter)) { 1022 /* semaphore array uses the global queue - just process it. */ 1023 otime |= update_queue(sma, -1, wake_q); 1024 } else { 1025 if (!sops) { 1026 /* 1027 * No sops, thus the modified semaphores are not 1028 * known. Check all. 1029 */ 1030 for (i = 0; i < sma->sem_nsems; i++) 1031 otime |= update_queue(sma, i, wake_q); 1032 } else { 1033 /* 1034 * Check the semaphores that were increased: 1035 * - No complex ops, thus all sleeping ops are 1036 * decrease. 1037 * - if we decreased the value, then any sleeping 1038 * semaphore ops wont be able to run: If the 1039 * previous value was too small, then the new 1040 * value will be too small, too. 1041 */ 1042 for (i = 0; i < nsops; i++) { 1043 if (sops[i].sem_op > 0) { 1044 otime |= update_queue(sma, 1045 sops[i].sem_num, wake_q); 1046 } 1047 } 1048 } 1049 } 1050 if (otime) 1051 set_semotime(sma, sops); 1052 } 1053 1054 /* 1055 * check_qop: Test if a queued operation sleeps on the semaphore semnum 1056 */ 1057 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q, 1058 bool count_zero) 1059 { 1060 struct sembuf *sop = q->blocking; 1061 1062 /* 1063 * Linux always (since 0.99.10) reported a task as sleeping on all 1064 * semaphores. This violates SUS, therefore it was changed to the 1065 * standard compliant behavior. 1066 * Give the administrators a chance to notice that an application 1067 * might misbehave because it relies on the Linux behavior. 1068 */ 1069 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n" 1070 "The task %s (%d) triggered the difference, watch for misbehavior.\n", 1071 current->comm, task_pid_nr(current)); 1072 1073 if (sop->sem_num != semnum) 1074 return 0; 1075 1076 if (count_zero && sop->sem_op == 0) 1077 return 1; 1078 if (!count_zero && sop->sem_op < 0) 1079 return 1; 1080 1081 return 0; 1082 } 1083 1084 /* The following counts are associated to each semaphore: 1085 * semncnt number of tasks waiting on semval being nonzero 1086 * semzcnt number of tasks waiting on semval being zero 1087 * 1088 * Per definition, a task waits only on the semaphore of the first semop 1089 * that cannot proceed, even if additional operation would block, too. 1090 */ 1091 static int count_semcnt(struct sem_array *sma, ushort semnum, 1092 bool count_zero) 1093 { 1094 struct list_head *l; 1095 struct sem_queue *q; 1096 int semcnt; 1097 1098 semcnt = 0; 1099 /* First: check the simple operations. They are easy to evaluate */ 1100 if (count_zero) 1101 l = &sma->sems[semnum].pending_const; 1102 else 1103 l = &sma->sems[semnum].pending_alter; 1104 1105 list_for_each_entry(q, l, list) { 1106 /* all task on a per-semaphore list sleep on exactly 1107 * that semaphore 1108 */ 1109 semcnt++; 1110 } 1111 1112 /* Then: check the complex operations. */ 1113 list_for_each_entry(q, &sma->pending_alter, list) { 1114 semcnt += check_qop(sma, semnum, q, count_zero); 1115 } 1116 if (count_zero) { 1117 list_for_each_entry(q, &sma->pending_const, list) { 1118 semcnt += check_qop(sma, semnum, q, count_zero); 1119 } 1120 } 1121 return semcnt; 1122 } 1123 1124 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked 1125 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem 1126 * remains locked on exit. 1127 */ 1128 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) 1129 { 1130 struct sem_undo *un, *tu; 1131 struct sem_queue *q, *tq; 1132 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 1133 int i; 1134 DEFINE_WAKE_Q(wake_q); 1135 1136 /* Free the existing undo structures for this semaphore set. */ 1137 ipc_assert_locked_object(&sma->sem_perm); 1138 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { 1139 list_del(&un->list_id); 1140 spin_lock(&un->ulp->lock); 1141 un->semid = -1; 1142 list_del_rcu(&un->list_proc); 1143 spin_unlock(&un->ulp->lock); 1144 kfree_rcu(un, rcu); 1145 } 1146 1147 /* Wake up all pending processes and let them fail with EIDRM. */ 1148 list_for_each_entry_safe(q, tq, &sma->pending_const, list) { 1149 unlink_queue(sma, q); 1150 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1151 } 1152 1153 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 1154 unlink_queue(sma, q); 1155 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1156 } 1157 for (i = 0; i < sma->sem_nsems; i++) { 1158 struct sem *sem = &sma->sems[i]; 1159 list_for_each_entry_safe(q, tq, &sem->pending_const, list) { 1160 unlink_queue(sma, q); 1161 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1162 } 1163 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) { 1164 unlink_queue(sma, q); 1165 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1166 } 1167 ipc_update_pid(&sem->sempid, NULL); 1168 } 1169 1170 /* Remove the semaphore set from the IDR */ 1171 sem_rmid(ns, sma); 1172 sem_unlock(sma, -1); 1173 rcu_read_unlock(); 1174 1175 wake_up_q(&wake_q); 1176 ns->used_sems -= sma->sem_nsems; 1177 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1178 } 1179 1180 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) 1181 { 1182 switch (version) { 1183 case IPC_64: 1184 return copy_to_user(buf, in, sizeof(*in)); 1185 case IPC_OLD: 1186 { 1187 struct semid_ds out; 1188 1189 memset(&out, 0, sizeof(out)); 1190 1191 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); 1192 1193 out.sem_otime = in->sem_otime; 1194 out.sem_ctime = in->sem_ctime; 1195 out.sem_nsems = in->sem_nsems; 1196 1197 return copy_to_user(buf, &out, sizeof(out)); 1198 } 1199 default: 1200 return -EINVAL; 1201 } 1202 } 1203 1204 static time64_t get_semotime(struct sem_array *sma) 1205 { 1206 int i; 1207 time64_t res; 1208 1209 res = sma->sems[0].sem_otime; 1210 for (i = 1; i < sma->sem_nsems; i++) { 1211 time64_t to = sma->sems[i].sem_otime; 1212 1213 if (to > res) 1214 res = to; 1215 } 1216 return res; 1217 } 1218 1219 static int semctl_stat(struct ipc_namespace *ns, int semid, 1220 int cmd, struct semid64_ds *semid64) 1221 { 1222 struct sem_array *sma; 1223 time64_t semotime; 1224 int err; 1225 1226 memset(semid64, 0, sizeof(*semid64)); 1227 1228 rcu_read_lock(); 1229 if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) { 1230 sma = sem_obtain_object(ns, semid); 1231 if (IS_ERR(sma)) { 1232 err = PTR_ERR(sma); 1233 goto out_unlock; 1234 } 1235 } else { /* IPC_STAT */ 1236 sma = sem_obtain_object_check(ns, semid); 1237 if (IS_ERR(sma)) { 1238 err = PTR_ERR(sma); 1239 goto out_unlock; 1240 } 1241 } 1242 1243 /* see comment for SHM_STAT_ANY */ 1244 if (cmd == SEM_STAT_ANY) 1245 audit_ipc_obj(&sma->sem_perm); 1246 else { 1247 err = -EACCES; 1248 if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) 1249 goto out_unlock; 1250 } 1251 1252 err = security_sem_semctl(&sma->sem_perm, cmd); 1253 if (err) 1254 goto out_unlock; 1255 1256 ipc_lock_object(&sma->sem_perm); 1257 1258 if (!ipc_valid_object(&sma->sem_perm)) { 1259 ipc_unlock_object(&sma->sem_perm); 1260 err = -EIDRM; 1261 goto out_unlock; 1262 } 1263 1264 kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm); 1265 semotime = get_semotime(sma); 1266 semid64->sem_otime = semotime; 1267 semid64->sem_ctime = sma->sem_ctime; 1268 #ifndef CONFIG_64BIT 1269 semid64->sem_otime_high = semotime >> 32; 1270 semid64->sem_ctime_high = sma->sem_ctime >> 32; 1271 #endif 1272 semid64->sem_nsems = sma->sem_nsems; 1273 1274 if (cmd == IPC_STAT) { 1275 /* 1276 * As defined in SUS: 1277 * Return 0 on success 1278 */ 1279 err = 0; 1280 } else { 1281 /* 1282 * SEM_STAT and SEM_STAT_ANY (both Linux specific) 1283 * Return the full id, including the sequence number 1284 */ 1285 err = sma->sem_perm.id; 1286 } 1287 ipc_unlock_object(&sma->sem_perm); 1288 out_unlock: 1289 rcu_read_unlock(); 1290 return err; 1291 } 1292 1293 static int semctl_info(struct ipc_namespace *ns, int semid, 1294 int cmd, void __user *p) 1295 { 1296 struct seminfo seminfo; 1297 int max_idx; 1298 int err; 1299 1300 err = security_sem_semctl(NULL, cmd); 1301 if (err) 1302 return err; 1303 1304 memset(&seminfo, 0, sizeof(seminfo)); 1305 seminfo.semmni = ns->sc_semmni; 1306 seminfo.semmns = ns->sc_semmns; 1307 seminfo.semmsl = ns->sc_semmsl; 1308 seminfo.semopm = ns->sc_semopm; 1309 seminfo.semvmx = SEMVMX; 1310 seminfo.semmnu = SEMMNU; 1311 seminfo.semmap = SEMMAP; 1312 seminfo.semume = SEMUME; 1313 down_read(&sem_ids(ns).rwsem); 1314 if (cmd == SEM_INFO) { 1315 seminfo.semusz = sem_ids(ns).in_use; 1316 seminfo.semaem = ns->used_sems; 1317 } else { 1318 seminfo.semusz = SEMUSZ; 1319 seminfo.semaem = SEMAEM; 1320 } 1321 max_idx = ipc_get_maxidx(&sem_ids(ns)); 1322 up_read(&sem_ids(ns).rwsem); 1323 if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) 1324 return -EFAULT; 1325 return (max_idx < 0) ? 0 : max_idx; 1326 } 1327 1328 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, 1329 int val) 1330 { 1331 struct sem_undo *un; 1332 struct sem_array *sma; 1333 struct sem *curr; 1334 int err; 1335 DEFINE_WAKE_Q(wake_q); 1336 1337 if (val > SEMVMX || val < 0) 1338 return -ERANGE; 1339 1340 rcu_read_lock(); 1341 sma = sem_obtain_object_check(ns, semid); 1342 if (IS_ERR(sma)) { 1343 rcu_read_unlock(); 1344 return PTR_ERR(sma); 1345 } 1346 1347 if (semnum < 0 || semnum >= sma->sem_nsems) { 1348 rcu_read_unlock(); 1349 return -EINVAL; 1350 } 1351 1352 1353 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) { 1354 rcu_read_unlock(); 1355 return -EACCES; 1356 } 1357 1358 err = security_sem_semctl(&sma->sem_perm, SETVAL); 1359 if (err) { 1360 rcu_read_unlock(); 1361 return -EACCES; 1362 } 1363 1364 sem_lock(sma, NULL, -1); 1365 1366 if (!ipc_valid_object(&sma->sem_perm)) { 1367 sem_unlock(sma, -1); 1368 rcu_read_unlock(); 1369 return -EIDRM; 1370 } 1371 1372 semnum = array_index_nospec(semnum, sma->sem_nsems); 1373 curr = &sma->sems[semnum]; 1374 1375 ipc_assert_locked_object(&sma->sem_perm); 1376 list_for_each_entry(un, &sma->list_id, list_id) 1377 un->semadj[semnum] = 0; 1378 1379 curr->semval = val; 1380 ipc_update_pid(&curr->sempid, task_tgid(current)); 1381 sma->sem_ctime = ktime_get_real_seconds(); 1382 /* maybe some queued-up processes were waiting for this */ 1383 do_smart_update(sma, NULL, 0, 0, &wake_q); 1384 sem_unlock(sma, -1); 1385 rcu_read_unlock(); 1386 wake_up_q(&wake_q); 1387 return 0; 1388 } 1389 1390 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, 1391 int cmd, void __user *p) 1392 { 1393 struct sem_array *sma; 1394 struct sem *curr; 1395 int err, nsems; 1396 ushort fast_sem_io[SEMMSL_FAST]; 1397 ushort *sem_io = fast_sem_io; 1398 DEFINE_WAKE_Q(wake_q); 1399 1400 rcu_read_lock(); 1401 sma = sem_obtain_object_check(ns, semid); 1402 if (IS_ERR(sma)) { 1403 rcu_read_unlock(); 1404 return PTR_ERR(sma); 1405 } 1406 1407 nsems = sma->sem_nsems; 1408 1409 err = -EACCES; 1410 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO)) 1411 goto out_rcu_wakeup; 1412 1413 err = security_sem_semctl(&sma->sem_perm, cmd); 1414 if (err) 1415 goto out_rcu_wakeup; 1416 1417 err = -EACCES; 1418 switch (cmd) { 1419 case GETALL: 1420 { 1421 ushort __user *array = p; 1422 int i; 1423 1424 sem_lock(sma, NULL, -1); 1425 if (!ipc_valid_object(&sma->sem_perm)) { 1426 err = -EIDRM; 1427 goto out_unlock; 1428 } 1429 if (nsems > SEMMSL_FAST) { 1430 if (!ipc_rcu_getref(&sma->sem_perm)) { 1431 err = -EIDRM; 1432 goto out_unlock; 1433 } 1434 sem_unlock(sma, -1); 1435 rcu_read_unlock(); 1436 sem_io = kvmalloc_array(nsems, sizeof(ushort), 1437 GFP_KERNEL); 1438 if (sem_io == NULL) { 1439 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1440 return -ENOMEM; 1441 } 1442 1443 rcu_read_lock(); 1444 sem_lock_and_putref(sma); 1445 if (!ipc_valid_object(&sma->sem_perm)) { 1446 err = -EIDRM; 1447 goto out_unlock; 1448 } 1449 } 1450 for (i = 0; i < sma->sem_nsems; i++) 1451 sem_io[i] = sma->sems[i].semval; 1452 sem_unlock(sma, -1); 1453 rcu_read_unlock(); 1454 err = 0; 1455 if (copy_to_user(array, sem_io, nsems*sizeof(ushort))) 1456 err = -EFAULT; 1457 goto out_free; 1458 } 1459 case SETALL: 1460 { 1461 int i; 1462 struct sem_undo *un; 1463 1464 if (!ipc_rcu_getref(&sma->sem_perm)) { 1465 err = -EIDRM; 1466 goto out_rcu_wakeup; 1467 } 1468 rcu_read_unlock(); 1469 1470 if (nsems > SEMMSL_FAST) { 1471 sem_io = kvmalloc_array(nsems, sizeof(ushort), 1472 GFP_KERNEL); 1473 if (sem_io == NULL) { 1474 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1475 return -ENOMEM; 1476 } 1477 } 1478 1479 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) { 1480 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1481 err = -EFAULT; 1482 goto out_free; 1483 } 1484 1485 for (i = 0; i < nsems; i++) { 1486 if (sem_io[i] > SEMVMX) { 1487 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1488 err = -ERANGE; 1489 goto out_free; 1490 } 1491 } 1492 rcu_read_lock(); 1493 sem_lock_and_putref(sma); 1494 if (!ipc_valid_object(&sma->sem_perm)) { 1495 err = -EIDRM; 1496 goto out_unlock; 1497 } 1498 1499 for (i = 0; i < nsems; i++) { 1500 sma->sems[i].semval = sem_io[i]; 1501 ipc_update_pid(&sma->sems[i].sempid, task_tgid(current)); 1502 } 1503 1504 ipc_assert_locked_object(&sma->sem_perm); 1505 list_for_each_entry(un, &sma->list_id, list_id) { 1506 for (i = 0; i < nsems; i++) 1507 un->semadj[i] = 0; 1508 } 1509 sma->sem_ctime = ktime_get_real_seconds(); 1510 /* maybe some queued-up processes were waiting for this */ 1511 do_smart_update(sma, NULL, 0, 0, &wake_q); 1512 err = 0; 1513 goto out_unlock; 1514 } 1515 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */ 1516 } 1517 err = -EINVAL; 1518 if (semnum < 0 || semnum >= nsems) 1519 goto out_rcu_wakeup; 1520 1521 sem_lock(sma, NULL, -1); 1522 if (!ipc_valid_object(&sma->sem_perm)) { 1523 err = -EIDRM; 1524 goto out_unlock; 1525 } 1526 1527 semnum = array_index_nospec(semnum, nsems); 1528 curr = &sma->sems[semnum]; 1529 1530 switch (cmd) { 1531 case GETVAL: 1532 err = curr->semval; 1533 goto out_unlock; 1534 case GETPID: 1535 err = pid_vnr(curr->sempid); 1536 goto out_unlock; 1537 case GETNCNT: 1538 err = count_semcnt(sma, semnum, 0); 1539 goto out_unlock; 1540 case GETZCNT: 1541 err = count_semcnt(sma, semnum, 1); 1542 goto out_unlock; 1543 } 1544 1545 out_unlock: 1546 sem_unlock(sma, -1); 1547 out_rcu_wakeup: 1548 rcu_read_unlock(); 1549 wake_up_q(&wake_q); 1550 out_free: 1551 if (sem_io != fast_sem_io) 1552 kvfree(sem_io); 1553 return err; 1554 } 1555 1556 static inline unsigned long 1557 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) 1558 { 1559 switch (version) { 1560 case IPC_64: 1561 if (copy_from_user(out, buf, sizeof(*out))) 1562 return -EFAULT; 1563 return 0; 1564 case IPC_OLD: 1565 { 1566 struct semid_ds tbuf_old; 1567 1568 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) 1569 return -EFAULT; 1570 1571 out->sem_perm.uid = tbuf_old.sem_perm.uid; 1572 out->sem_perm.gid = tbuf_old.sem_perm.gid; 1573 out->sem_perm.mode = tbuf_old.sem_perm.mode; 1574 1575 return 0; 1576 } 1577 default: 1578 return -EINVAL; 1579 } 1580 } 1581 1582 /* 1583 * This function handles some semctl commands which require the rwsem 1584 * to be held in write mode. 1585 * NOTE: no locks must be held, the rwsem is taken inside this function. 1586 */ 1587 static int semctl_down(struct ipc_namespace *ns, int semid, 1588 int cmd, struct semid64_ds *semid64) 1589 { 1590 struct sem_array *sma; 1591 int err; 1592 struct kern_ipc_perm *ipcp; 1593 1594 down_write(&sem_ids(ns).rwsem); 1595 rcu_read_lock(); 1596 1597 ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd, 1598 &semid64->sem_perm, 0); 1599 if (IS_ERR(ipcp)) { 1600 err = PTR_ERR(ipcp); 1601 goto out_unlock1; 1602 } 1603 1604 sma = container_of(ipcp, struct sem_array, sem_perm); 1605 1606 err = security_sem_semctl(&sma->sem_perm, cmd); 1607 if (err) 1608 goto out_unlock1; 1609 1610 switch (cmd) { 1611 case IPC_RMID: 1612 sem_lock(sma, NULL, -1); 1613 /* freeary unlocks the ipc object and rcu */ 1614 freeary(ns, ipcp); 1615 goto out_up; 1616 case IPC_SET: 1617 sem_lock(sma, NULL, -1); 1618 err = ipc_update_perm(&semid64->sem_perm, ipcp); 1619 if (err) 1620 goto out_unlock0; 1621 sma->sem_ctime = ktime_get_real_seconds(); 1622 break; 1623 default: 1624 err = -EINVAL; 1625 goto out_unlock1; 1626 } 1627 1628 out_unlock0: 1629 sem_unlock(sma, -1); 1630 out_unlock1: 1631 rcu_read_unlock(); 1632 out_up: 1633 up_write(&sem_ids(ns).rwsem); 1634 return err; 1635 } 1636 1637 long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg) 1638 { 1639 int version; 1640 struct ipc_namespace *ns; 1641 void __user *p = (void __user *)arg; 1642 struct semid64_ds semid64; 1643 int err; 1644 1645 if (semid < 0) 1646 return -EINVAL; 1647 1648 version = ipc_parse_version(&cmd); 1649 ns = current->nsproxy->ipc_ns; 1650 1651 switch (cmd) { 1652 case IPC_INFO: 1653 case SEM_INFO: 1654 return semctl_info(ns, semid, cmd, p); 1655 case IPC_STAT: 1656 case SEM_STAT: 1657 case SEM_STAT_ANY: 1658 err = semctl_stat(ns, semid, cmd, &semid64); 1659 if (err < 0) 1660 return err; 1661 if (copy_semid_to_user(p, &semid64, version)) 1662 err = -EFAULT; 1663 return err; 1664 case GETALL: 1665 case GETVAL: 1666 case GETPID: 1667 case GETNCNT: 1668 case GETZCNT: 1669 case SETALL: 1670 return semctl_main(ns, semid, semnum, cmd, p); 1671 case SETVAL: { 1672 int val; 1673 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) 1674 /* big-endian 64bit */ 1675 val = arg >> 32; 1676 #else 1677 /* 32bit or little-endian 64bit */ 1678 val = arg; 1679 #endif 1680 return semctl_setval(ns, semid, semnum, val); 1681 } 1682 case IPC_SET: 1683 if (copy_semid_from_user(&semid64, p, version)) 1684 return -EFAULT; 1685 case IPC_RMID: 1686 return semctl_down(ns, semid, cmd, &semid64); 1687 default: 1688 return -EINVAL; 1689 } 1690 } 1691 1692 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) 1693 { 1694 return ksys_semctl(semid, semnum, cmd, arg); 1695 } 1696 1697 #ifdef CONFIG_COMPAT 1698 1699 struct compat_semid_ds { 1700 struct compat_ipc_perm sem_perm; 1701 compat_time_t sem_otime; 1702 compat_time_t sem_ctime; 1703 compat_uptr_t sem_base; 1704 compat_uptr_t sem_pending; 1705 compat_uptr_t sem_pending_last; 1706 compat_uptr_t undo; 1707 unsigned short sem_nsems; 1708 }; 1709 1710 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf, 1711 int version) 1712 { 1713 memset(out, 0, sizeof(*out)); 1714 if (version == IPC_64) { 1715 struct compat_semid64_ds __user *p = buf; 1716 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm); 1717 } else { 1718 struct compat_semid_ds __user *p = buf; 1719 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm); 1720 } 1721 } 1722 1723 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in, 1724 int version) 1725 { 1726 if (version == IPC_64) { 1727 struct compat_semid64_ds v; 1728 memset(&v, 0, sizeof(v)); 1729 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm); 1730 v.sem_otime = lower_32_bits(in->sem_otime); 1731 v.sem_otime_high = upper_32_bits(in->sem_otime); 1732 v.sem_ctime = lower_32_bits(in->sem_ctime); 1733 v.sem_ctime_high = upper_32_bits(in->sem_ctime); 1734 v.sem_nsems = in->sem_nsems; 1735 return copy_to_user(buf, &v, sizeof(v)); 1736 } else { 1737 struct compat_semid_ds v; 1738 memset(&v, 0, sizeof(v)); 1739 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm); 1740 v.sem_otime = in->sem_otime; 1741 v.sem_ctime = in->sem_ctime; 1742 v.sem_nsems = in->sem_nsems; 1743 return copy_to_user(buf, &v, sizeof(v)); 1744 } 1745 } 1746 1747 long compat_ksys_semctl(int semid, int semnum, int cmd, int arg) 1748 { 1749 void __user *p = compat_ptr(arg); 1750 struct ipc_namespace *ns; 1751 struct semid64_ds semid64; 1752 int version = compat_ipc_parse_version(&cmd); 1753 int err; 1754 1755 ns = current->nsproxy->ipc_ns; 1756 1757 if (semid < 0) 1758 return -EINVAL; 1759 1760 switch (cmd & (~IPC_64)) { 1761 case IPC_INFO: 1762 case SEM_INFO: 1763 return semctl_info(ns, semid, cmd, p); 1764 case IPC_STAT: 1765 case SEM_STAT: 1766 case SEM_STAT_ANY: 1767 err = semctl_stat(ns, semid, cmd, &semid64); 1768 if (err < 0) 1769 return err; 1770 if (copy_compat_semid_to_user(p, &semid64, version)) 1771 err = -EFAULT; 1772 return err; 1773 case GETVAL: 1774 case GETPID: 1775 case GETNCNT: 1776 case GETZCNT: 1777 case GETALL: 1778 case SETALL: 1779 return semctl_main(ns, semid, semnum, cmd, p); 1780 case SETVAL: 1781 return semctl_setval(ns, semid, semnum, arg); 1782 case IPC_SET: 1783 if (copy_compat_semid_from_user(&semid64, p, version)) 1784 return -EFAULT; 1785 /* fallthru */ 1786 case IPC_RMID: 1787 return semctl_down(ns, semid, cmd, &semid64); 1788 default: 1789 return -EINVAL; 1790 } 1791 } 1792 1793 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg) 1794 { 1795 return compat_ksys_semctl(semid, semnum, cmd, arg); 1796 } 1797 #endif 1798 1799 /* If the task doesn't already have a undo_list, then allocate one 1800 * here. We guarantee there is only one thread using this undo list, 1801 * and current is THE ONE 1802 * 1803 * If this allocation and assignment succeeds, but later 1804 * portions of this code fail, there is no need to free the sem_undo_list. 1805 * Just let it stay associated with the task, and it'll be freed later 1806 * at exit time. 1807 * 1808 * This can block, so callers must hold no locks. 1809 */ 1810 static inline int get_undo_list(struct sem_undo_list **undo_listp) 1811 { 1812 struct sem_undo_list *undo_list; 1813 1814 undo_list = current->sysvsem.undo_list; 1815 if (!undo_list) { 1816 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); 1817 if (undo_list == NULL) 1818 return -ENOMEM; 1819 spin_lock_init(&undo_list->lock); 1820 refcount_set(&undo_list->refcnt, 1); 1821 INIT_LIST_HEAD(&undo_list->list_proc); 1822 1823 current->sysvsem.undo_list = undo_list; 1824 } 1825 *undo_listp = undo_list; 1826 return 0; 1827 } 1828 1829 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) 1830 { 1831 struct sem_undo *un; 1832 1833 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) { 1834 if (un->semid == semid) 1835 return un; 1836 } 1837 return NULL; 1838 } 1839 1840 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) 1841 { 1842 struct sem_undo *un; 1843 1844 assert_spin_locked(&ulp->lock); 1845 1846 un = __lookup_undo(ulp, semid); 1847 if (un) { 1848 list_del_rcu(&un->list_proc); 1849 list_add_rcu(&un->list_proc, &ulp->list_proc); 1850 } 1851 return un; 1852 } 1853 1854 /** 1855 * find_alloc_undo - lookup (and if not present create) undo array 1856 * @ns: namespace 1857 * @semid: semaphore array id 1858 * 1859 * The function looks up (and if not present creates) the undo structure. 1860 * The size of the undo structure depends on the size of the semaphore 1861 * array, thus the alloc path is not that straightforward. 1862 * Lifetime-rules: sem_undo is rcu-protected, on success, the function 1863 * performs a rcu_read_lock(). 1864 */ 1865 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) 1866 { 1867 struct sem_array *sma; 1868 struct sem_undo_list *ulp; 1869 struct sem_undo *un, *new; 1870 int nsems, error; 1871 1872 error = get_undo_list(&ulp); 1873 if (error) 1874 return ERR_PTR(error); 1875 1876 rcu_read_lock(); 1877 spin_lock(&ulp->lock); 1878 un = lookup_undo(ulp, semid); 1879 spin_unlock(&ulp->lock); 1880 if (likely(un != NULL)) 1881 goto out; 1882 1883 /* no undo structure around - allocate one. */ 1884 /* step 1: figure out the size of the semaphore array */ 1885 sma = sem_obtain_object_check(ns, semid); 1886 if (IS_ERR(sma)) { 1887 rcu_read_unlock(); 1888 return ERR_CAST(sma); 1889 } 1890 1891 nsems = sma->sem_nsems; 1892 if (!ipc_rcu_getref(&sma->sem_perm)) { 1893 rcu_read_unlock(); 1894 un = ERR_PTR(-EIDRM); 1895 goto out; 1896 } 1897 rcu_read_unlock(); 1898 1899 /* step 2: allocate new undo structure */ 1900 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); 1901 if (!new) { 1902 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1903 return ERR_PTR(-ENOMEM); 1904 } 1905 1906 /* step 3: Acquire the lock on semaphore array */ 1907 rcu_read_lock(); 1908 sem_lock_and_putref(sma); 1909 if (!ipc_valid_object(&sma->sem_perm)) { 1910 sem_unlock(sma, -1); 1911 rcu_read_unlock(); 1912 kfree(new); 1913 un = ERR_PTR(-EIDRM); 1914 goto out; 1915 } 1916 spin_lock(&ulp->lock); 1917 1918 /* 1919 * step 4: check for races: did someone else allocate the undo struct? 1920 */ 1921 un = lookup_undo(ulp, semid); 1922 if (un) { 1923 kfree(new); 1924 goto success; 1925 } 1926 /* step 5: initialize & link new undo structure */ 1927 new->semadj = (short *) &new[1]; 1928 new->ulp = ulp; 1929 new->semid = semid; 1930 assert_spin_locked(&ulp->lock); 1931 list_add_rcu(&new->list_proc, &ulp->list_proc); 1932 ipc_assert_locked_object(&sma->sem_perm); 1933 list_add(&new->list_id, &sma->list_id); 1934 un = new; 1935 1936 success: 1937 spin_unlock(&ulp->lock); 1938 sem_unlock(sma, -1); 1939 out: 1940 return un; 1941 } 1942 1943 static long do_semtimedop(int semid, struct sembuf __user *tsops, 1944 unsigned nsops, const struct timespec64 *timeout) 1945 { 1946 int error = -EINVAL; 1947 struct sem_array *sma; 1948 struct sembuf fast_sops[SEMOPM_FAST]; 1949 struct sembuf *sops = fast_sops, *sop; 1950 struct sem_undo *un; 1951 int max, locknum; 1952 bool undos = false, alter = false, dupsop = false; 1953 struct sem_queue queue; 1954 unsigned long dup = 0, jiffies_left = 0; 1955 struct ipc_namespace *ns; 1956 1957 ns = current->nsproxy->ipc_ns; 1958 1959 if (nsops < 1 || semid < 0) 1960 return -EINVAL; 1961 if (nsops > ns->sc_semopm) 1962 return -E2BIG; 1963 if (nsops > SEMOPM_FAST) { 1964 sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL); 1965 if (sops == NULL) 1966 return -ENOMEM; 1967 } 1968 1969 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) { 1970 error = -EFAULT; 1971 goto out_free; 1972 } 1973 1974 if (timeout) { 1975 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 || 1976 timeout->tv_nsec >= 1000000000L) { 1977 error = -EINVAL; 1978 goto out_free; 1979 } 1980 jiffies_left = timespec64_to_jiffies(timeout); 1981 } 1982 1983 max = 0; 1984 for (sop = sops; sop < sops + nsops; sop++) { 1985 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG); 1986 1987 if (sop->sem_num >= max) 1988 max = sop->sem_num; 1989 if (sop->sem_flg & SEM_UNDO) 1990 undos = true; 1991 if (dup & mask) { 1992 /* 1993 * There was a previous alter access that appears 1994 * to have accessed the same semaphore, thus use 1995 * the dupsop logic. "appears", because the detection 1996 * can only check % BITS_PER_LONG. 1997 */ 1998 dupsop = true; 1999 } 2000 if (sop->sem_op != 0) { 2001 alter = true; 2002 dup |= mask; 2003 } 2004 } 2005 2006 if (undos) { 2007 /* On success, find_alloc_undo takes the rcu_read_lock */ 2008 un = find_alloc_undo(ns, semid); 2009 if (IS_ERR(un)) { 2010 error = PTR_ERR(un); 2011 goto out_free; 2012 } 2013 } else { 2014 un = NULL; 2015 rcu_read_lock(); 2016 } 2017 2018 sma = sem_obtain_object_check(ns, semid); 2019 if (IS_ERR(sma)) { 2020 rcu_read_unlock(); 2021 error = PTR_ERR(sma); 2022 goto out_free; 2023 } 2024 2025 error = -EFBIG; 2026 if (max >= sma->sem_nsems) { 2027 rcu_read_unlock(); 2028 goto out_free; 2029 } 2030 2031 error = -EACCES; 2032 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) { 2033 rcu_read_unlock(); 2034 goto out_free; 2035 } 2036 2037 error = security_sem_semop(&sma->sem_perm, sops, nsops, alter); 2038 if (error) { 2039 rcu_read_unlock(); 2040 goto out_free; 2041 } 2042 2043 error = -EIDRM; 2044 locknum = sem_lock(sma, sops, nsops); 2045 /* 2046 * We eventually might perform the following check in a lockless 2047 * fashion, considering ipc_valid_object() locking constraints. 2048 * If nsops == 1 and there is no contention for sem_perm.lock, then 2049 * only a per-semaphore lock is held and it's OK to proceed with the 2050 * check below. More details on the fine grained locking scheme 2051 * entangled here and why it's RMID race safe on comments at sem_lock() 2052 */ 2053 if (!ipc_valid_object(&sma->sem_perm)) 2054 goto out_unlock_free; 2055 /* 2056 * semid identifiers are not unique - find_alloc_undo may have 2057 * allocated an undo structure, it was invalidated by an RMID 2058 * and now a new array with received the same id. Check and fail. 2059 * This case can be detected checking un->semid. The existence of 2060 * "un" itself is guaranteed by rcu. 2061 */ 2062 if (un && un->semid == -1) 2063 goto out_unlock_free; 2064 2065 queue.sops = sops; 2066 queue.nsops = nsops; 2067 queue.undo = un; 2068 queue.pid = task_tgid(current); 2069 queue.alter = alter; 2070 queue.dupsop = dupsop; 2071 2072 error = perform_atomic_semop(sma, &queue); 2073 if (error == 0) { /* non-blocking succesfull path */ 2074 DEFINE_WAKE_Q(wake_q); 2075 2076 /* 2077 * If the operation was successful, then do 2078 * the required updates. 2079 */ 2080 if (alter) 2081 do_smart_update(sma, sops, nsops, 1, &wake_q); 2082 else 2083 set_semotime(sma, sops); 2084 2085 sem_unlock(sma, locknum); 2086 rcu_read_unlock(); 2087 wake_up_q(&wake_q); 2088 2089 goto out_free; 2090 } 2091 if (error < 0) /* non-blocking error path */ 2092 goto out_unlock_free; 2093 2094 /* 2095 * We need to sleep on this operation, so we put the current 2096 * task into the pending queue and go to sleep. 2097 */ 2098 if (nsops == 1) { 2099 struct sem *curr; 2100 int idx = array_index_nospec(sops->sem_num, sma->sem_nsems); 2101 curr = &sma->sems[idx]; 2102 2103 if (alter) { 2104 if (sma->complex_count) { 2105 list_add_tail(&queue.list, 2106 &sma->pending_alter); 2107 } else { 2108 2109 list_add_tail(&queue.list, 2110 &curr->pending_alter); 2111 } 2112 } else { 2113 list_add_tail(&queue.list, &curr->pending_const); 2114 } 2115 } else { 2116 if (!sma->complex_count) 2117 merge_queues(sma); 2118 2119 if (alter) 2120 list_add_tail(&queue.list, &sma->pending_alter); 2121 else 2122 list_add_tail(&queue.list, &sma->pending_const); 2123 2124 sma->complex_count++; 2125 } 2126 2127 do { 2128 WRITE_ONCE(queue.status, -EINTR); 2129 queue.sleeper = current; 2130 2131 __set_current_state(TASK_INTERRUPTIBLE); 2132 sem_unlock(sma, locknum); 2133 rcu_read_unlock(); 2134 2135 if (timeout) 2136 jiffies_left = schedule_timeout(jiffies_left); 2137 else 2138 schedule(); 2139 2140 /* 2141 * fastpath: the semop has completed, either successfully or 2142 * not, from the syscall pov, is quite irrelevant to us at this 2143 * point; we're done. 2144 * 2145 * We _do_ care, nonetheless, about being awoken by a signal or 2146 * spuriously. The queue.status is checked again in the 2147 * slowpath (aka after taking sem_lock), such that we can detect 2148 * scenarios where we were awakened externally, during the 2149 * window between wake_q_add() and wake_up_q(). 2150 */ 2151 error = READ_ONCE(queue.status); 2152 if (error != -EINTR) { 2153 /* 2154 * User space could assume that semop() is a memory 2155 * barrier: Without the mb(), the cpu could 2156 * speculatively read in userspace stale data that was 2157 * overwritten by the previous owner of the semaphore. 2158 */ 2159 smp_mb(); 2160 goto out_free; 2161 } 2162 2163 rcu_read_lock(); 2164 locknum = sem_lock(sma, sops, nsops); 2165 2166 if (!ipc_valid_object(&sma->sem_perm)) 2167 goto out_unlock_free; 2168 2169 error = READ_ONCE(queue.status); 2170 2171 /* 2172 * If queue.status != -EINTR we are woken up by another process. 2173 * Leave without unlink_queue(), but with sem_unlock(). 2174 */ 2175 if (error != -EINTR) 2176 goto out_unlock_free; 2177 2178 /* 2179 * If an interrupt occurred we have to clean up the queue. 2180 */ 2181 if (timeout && jiffies_left == 0) 2182 error = -EAGAIN; 2183 } while (error == -EINTR && !signal_pending(current)); /* spurious */ 2184 2185 unlink_queue(sma, &queue); 2186 2187 out_unlock_free: 2188 sem_unlock(sma, locknum); 2189 rcu_read_unlock(); 2190 out_free: 2191 if (sops != fast_sops) 2192 kvfree(sops); 2193 return error; 2194 } 2195 2196 long ksys_semtimedop(int semid, struct sembuf __user *tsops, 2197 unsigned int nsops, const struct __kernel_timespec __user *timeout) 2198 { 2199 if (timeout) { 2200 struct timespec64 ts; 2201 if (get_timespec64(&ts, timeout)) 2202 return -EFAULT; 2203 return do_semtimedop(semid, tsops, nsops, &ts); 2204 } 2205 return do_semtimedop(semid, tsops, nsops, NULL); 2206 } 2207 2208 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, 2209 unsigned int, nsops, const struct __kernel_timespec __user *, timeout) 2210 { 2211 return ksys_semtimedop(semid, tsops, nsops, timeout); 2212 } 2213 2214 #ifdef CONFIG_COMPAT_32BIT_TIME 2215 long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems, 2216 unsigned int nsops, 2217 const struct compat_timespec __user *timeout) 2218 { 2219 if (timeout) { 2220 struct timespec64 ts; 2221 if (compat_get_timespec64(&ts, timeout)) 2222 return -EFAULT; 2223 return do_semtimedop(semid, tsems, nsops, &ts); 2224 } 2225 return do_semtimedop(semid, tsems, nsops, NULL); 2226 } 2227 2228 COMPAT_SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsems, 2229 unsigned int, nsops, 2230 const struct compat_timespec __user *, timeout) 2231 { 2232 return compat_ksys_semtimedop(semid, tsems, nsops, timeout); 2233 } 2234 #endif 2235 2236 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, 2237 unsigned, nsops) 2238 { 2239 return do_semtimedop(semid, tsops, nsops, NULL); 2240 } 2241 2242 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between 2243 * parent and child tasks. 2244 */ 2245 2246 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) 2247 { 2248 struct sem_undo_list *undo_list; 2249 int error; 2250 2251 if (clone_flags & CLONE_SYSVSEM) { 2252 error = get_undo_list(&undo_list); 2253 if (error) 2254 return error; 2255 refcount_inc(&undo_list->refcnt); 2256 tsk->sysvsem.undo_list = undo_list; 2257 } else 2258 tsk->sysvsem.undo_list = NULL; 2259 2260 return 0; 2261 } 2262 2263 /* 2264 * add semadj values to semaphores, free undo structures. 2265 * undo structures are not freed when semaphore arrays are destroyed 2266 * so some of them may be out of date. 2267 * IMPLEMENTATION NOTE: There is some confusion over whether the 2268 * set of adjustments that needs to be done should be done in an atomic 2269 * manner or not. That is, if we are attempting to decrement the semval 2270 * should we queue up and wait until we can do so legally? 2271 * The original implementation attempted to do this (queue and wait). 2272 * The current implementation does not do so. The POSIX standard 2273 * and SVID should be consulted to determine what behavior is mandated. 2274 */ 2275 void exit_sem(struct task_struct *tsk) 2276 { 2277 struct sem_undo_list *ulp; 2278 2279 ulp = tsk->sysvsem.undo_list; 2280 if (!ulp) 2281 return; 2282 tsk->sysvsem.undo_list = NULL; 2283 2284 if (!refcount_dec_and_test(&ulp->refcnt)) 2285 return; 2286 2287 for (;;) { 2288 struct sem_array *sma; 2289 struct sem_undo *un; 2290 int semid, i; 2291 DEFINE_WAKE_Q(wake_q); 2292 2293 cond_resched(); 2294 2295 rcu_read_lock(); 2296 un = list_entry_rcu(ulp->list_proc.next, 2297 struct sem_undo, list_proc); 2298 if (&un->list_proc == &ulp->list_proc) { 2299 /* 2300 * We must wait for freeary() before freeing this ulp, 2301 * in case we raced with last sem_undo. There is a small 2302 * possibility where we exit while freeary() didn't 2303 * finish unlocking sem_undo_list. 2304 */ 2305 spin_lock(&ulp->lock); 2306 spin_unlock(&ulp->lock); 2307 rcu_read_unlock(); 2308 break; 2309 } 2310 spin_lock(&ulp->lock); 2311 semid = un->semid; 2312 spin_unlock(&ulp->lock); 2313 2314 /* exit_sem raced with IPC_RMID, nothing to do */ 2315 if (semid == -1) { 2316 rcu_read_unlock(); 2317 continue; 2318 } 2319 2320 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid); 2321 /* exit_sem raced with IPC_RMID, nothing to do */ 2322 if (IS_ERR(sma)) { 2323 rcu_read_unlock(); 2324 continue; 2325 } 2326 2327 sem_lock(sma, NULL, -1); 2328 /* exit_sem raced with IPC_RMID, nothing to do */ 2329 if (!ipc_valid_object(&sma->sem_perm)) { 2330 sem_unlock(sma, -1); 2331 rcu_read_unlock(); 2332 continue; 2333 } 2334 un = __lookup_undo(ulp, semid); 2335 if (un == NULL) { 2336 /* exit_sem raced with IPC_RMID+semget() that created 2337 * exactly the same semid. Nothing to do. 2338 */ 2339 sem_unlock(sma, -1); 2340 rcu_read_unlock(); 2341 continue; 2342 } 2343 2344 /* remove un from the linked lists */ 2345 ipc_assert_locked_object(&sma->sem_perm); 2346 list_del(&un->list_id); 2347 2348 /* we are the last process using this ulp, acquiring ulp->lock 2349 * isn't required. Besides that, we are also protected against 2350 * IPC_RMID as we hold sma->sem_perm lock now 2351 */ 2352 list_del_rcu(&un->list_proc); 2353 2354 /* perform adjustments registered in un */ 2355 for (i = 0; i < sma->sem_nsems; i++) { 2356 struct sem *semaphore = &sma->sems[i]; 2357 if (un->semadj[i]) { 2358 semaphore->semval += un->semadj[i]; 2359 /* 2360 * Range checks of the new semaphore value, 2361 * not defined by sus: 2362 * - Some unices ignore the undo entirely 2363 * (e.g. HP UX 11i 11.22, Tru64 V5.1) 2364 * - some cap the value (e.g. FreeBSD caps 2365 * at 0, but doesn't enforce SEMVMX) 2366 * 2367 * Linux caps the semaphore value, both at 0 2368 * and at SEMVMX. 2369 * 2370 * Manfred <manfred@colorfullife.com> 2371 */ 2372 if (semaphore->semval < 0) 2373 semaphore->semval = 0; 2374 if (semaphore->semval > SEMVMX) 2375 semaphore->semval = SEMVMX; 2376 ipc_update_pid(&semaphore->sempid, task_tgid(current)); 2377 } 2378 } 2379 /* maybe some queued-up processes were waiting for this */ 2380 do_smart_update(sma, NULL, 0, 1, &wake_q); 2381 sem_unlock(sma, -1); 2382 rcu_read_unlock(); 2383 wake_up_q(&wake_q); 2384 2385 kfree_rcu(un, rcu); 2386 } 2387 kfree(ulp); 2388 } 2389 2390 #ifdef CONFIG_PROC_FS 2391 static int sysvipc_sem_proc_show(struct seq_file *s, void *it) 2392 { 2393 struct user_namespace *user_ns = seq_user_ns(s); 2394 struct kern_ipc_perm *ipcp = it; 2395 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 2396 time64_t sem_otime; 2397 2398 /* 2399 * The proc interface isn't aware of sem_lock(), it calls 2400 * ipc_lock_object() directly (in sysvipc_find_ipc). 2401 * In order to stay compatible with sem_lock(), we must 2402 * enter / leave complex_mode. 2403 */ 2404 complexmode_enter(sma); 2405 2406 sem_otime = get_semotime(sma); 2407 2408 seq_printf(s, 2409 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n", 2410 sma->sem_perm.key, 2411 sma->sem_perm.id, 2412 sma->sem_perm.mode, 2413 sma->sem_nsems, 2414 from_kuid_munged(user_ns, sma->sem_perm.uid), 2415 from_kgid_munged(user_ns, sma->sem_perm.gid), 2416 from_kuid_munged(user_ns, sma->sem_perm.cuid), 2417 from_kgid_munged(user_ns, sma->sem_perm.cgid), 2418 sem_otime, 2419 sma->sem_ctime); 2420 2421 complexmode_tryleave(sma); 2422 2423 return 0; 2424 } 2425 #endif 2426