xref: /openbmc/linux/ipc/sem.c (revision 84764a41)
1 /*
2  * linux/ipc/sem.c
3  * Copyright (C) 1992 Krishna Balasubramanian
4  * Copyright (C) 1995 Eric Schenk, Bruno Haible
5  *
6  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7  *
8  * SMP-threaded, sysctl's added
9  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10  * Enforced range limit on SEM_UNDO
11  * (c) 2001 Red Hat Inc
12  * Lockless wakeup
13  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14  * Further wakeup optimizations, documentation
15  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
16  *
17  * support for audit of ipc object properties and permission changes
18  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
19  *
20  * namespaces support
21  * OpenVZ, SWsoft Inc.
22  * Pavel Emelianov <xemul@openvz.org>
23  *
24  * Implementation notes: (May 2010)
25  * This file implements System V semaphores.
26  *
27  * User space visible behavior:
28  * - FIFO ordering for semop() operations (just FIFO, not starvation
29  *   protection)
30  * - multiple semaphore operations that alter the same semaphore in
31  *   one semop() are handled.
32  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33  *   SETALL calls.
34  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35  * - undo adjustments at process exit are limited to 0..SEMVMX.
36  * - namespace are supported.
37  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38  *   to /proc/sys/kernel/sem.
39  * - statistics about the usage are reported in /proc/sysvipc/sem.
40  *
41  * Internals:
42  * - scalability:
43  *   - all global variables are read-mostly.
44  *   - semop() calls and semctl(RMID) are synchronized by RCU.
45  *   - most operations do write operations (actually: spin_lock calls) to
46  *     the per-semaphore array structure.
47  *   Thus: Perfect SMP scaling between independent semaphore arrays.
48  *         If multiple semaphores in one array are used, then cache line
49  *         trashing on the semaphore array spinlock will limit the scaling.
50  * - semncnt and semzcnt are calculated on demand in count_semncnt() and
51  *   count_semzcnt()
52  * - the task that performs a successful semop() scans the list of all
53  *   sleeping tasks and completes any pending operations that can be fulfilled.
54  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
55  *   (see update_queue())
56  * - To improve the scalability, the actual wake-up calls are performed after
57  *   dropping all locks. (see wake_up_sem_queue_prepare(),
58  *   wake_up_sem_queue_do())
59  * - All work is done by the waker, the woken up task does not have to do
60  *   anything - not even acquiring a lock or dropping a refcount.
61  * - A woken up task may not even touch the semaphore array anymore, it may
62  *   have been destroyed already by a semctl(RMID).
63  * - The synchronizations between wake-ups due to a timeout/signal and a
64  *   wake-up due to a completed semaphore operation is achieved by using an
65  *   intermediate state (IN_WAKEUP).
66  * - UNDO values are stored in an array (one per process and per
67  *   semaphore array, lazily allocated). For backwards compatibility, multiple
68  *   modes for the UNDO variables are supported (per process, per thread)
69  *   (see copy_semundo, CLONE_SYSVSEM)
70  * - There are two lists of the pending operations: a per-array list
71  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
72  *   ordering without always scanning all pending operations.
73  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
74  */
75 
76 #include <linux/slab.h>
77 #include <linux/spinlock.h>
78 #include <linux/init.h>
79 #include <linux/proc_fs.h>
80 #include <linux/time.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/audit.h>
84 #include <linux/capability.h>
85 #include <linux/seq_file.h>
86 #include <linux/rwsem.h>
87 #include <linux/nsproxy.h>
88 #include <linux/ipc_namespace.h>
89 
90 #include <asm/uaccess.h>
91 #include "util.h"
92 
93 /* One semaphore structure for each semaphore in the system. */
94 struct sem {
95 	int	semval;		/* current value */
96 	int	sempid;		/* pid of last operation */
97 	struct list_head sem_pending; /* pending single-sop operations */
98 };
99 
100 /* One queue for each sleeping process in the system. */
101 struct sem_queue {
102 	struct list_head	simple_list; /* queue of pending operations */
103 	struct list_head	list;	 /* queue of pending operations */
104 	struct task_struct	*sleeper; /* this process */
105 	struct sem_undo		*undo;	 /* undo structure */
106 	int			pid;	 /* process id of requesting process */
107 	int			status;	 /* completion status of operation */
108 	struct sembuf		*sops;	 /* array of pending operations */
109 	int			nsops;	 /* number of operations */
110 	int			alter;	 /* does *sops alter the array? */
111 };
112 
113 /* Each task has a list of undo requests. They are executed automatically
114  * when the process exits.
115  */
116 struct sem_undo {
117 	struct list_head	list_proc;	/* per-process list: *
118 						 * all undos from one process
119 						 * rcu protected */
120 	struct rcu_head		rcu;		/* rcu struct for sem_undo */
121 	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
122 	struct list_head	list_id;	/* per semaphore array list:
123 						 * all undos for one array */
124 	int			semid;		/* semaphore set identifier */
125 	short			*semadj;	/* array of adjustments */
126 						/* one per semaphore */
127 };
128 
129 /* sem_undo_list controls shared access to the list of sem_undo structures
130  * that may be shared among all a CLONE_SYSVSEM task group.
131  */
132 struct sem_undo_list {
133 	atomic_t		refcnt;
134 	spinlock_t		lock;
135 	struct list_head	list_proc;
136 };
137 
138 
139 #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
140 
141 #define sem_unlock(sma)		ipc_unlock(&(sma)->sem_perm)
142 #define sem_checkid(sma, semid)	ipc_checkid(&sma->sem_perm, semid)
143 
144 static int newary(struct ipc_namespace *, struct ipc_params *);
145 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
146 #ifdef CONFIG_PROC_FS
147 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
148 #endif
149 
150 #define SEMMSL_FAST	256 /* 512 bytes on stack */
151 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
152 
153 /*
154  * linked list protection:
155  *	sem_undo.id_next,
156  *	sem_array.sem_pending{,last},
157  *	sem_array.sem_undo: sem_lock() for read/write
158  *	sem_undo.proc_next: only "current" is allowed to read/write that field.
159  *
160  */
161 
162 #define sc_semmsl	sem_ctls[0]
163 #define sc_semmns	sem_ctls[1]
164 #define sc_semopm	sem_ctls[2]
165 #define sc_semmni	sem_ctls[3]
166 
167 void sem_init_ns(struct ipc_namespace *ns)
168 {
169 	ns->sc_semmsl = SEMMSL;
170 	ns->sc_semmns = SEMMNS;
171 	ns->sc_semopm = SEMOPM;
172 	ns->sc_semmni = SEMMNI;
173 	ns->used_sems = 0;
174 	ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
175 }
176 
177 #ifdef CONFIG_IPC_NS
178 void sem_exit_ns(struct ipc_namespace *ns)
179 {
180 	free_ipcs(ns, &sem_ids(ns), freeary);
181 	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
182 }
183 #endif
184 
185 void __init sem_init (void)
186 {
187 	sem_init_ns(&init_ipc_ns);
188 	ipc_init_proc_interface("sysvipc/sem",
189 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
190 				IPC_SEM_IDS, sysvipc_sem_proc_show);
191 }
192 
193 /*
194  * sem_lock_(check_) routines are called in the paths where the rw_mutex
195  * is not held.
196  */
197 static inline struct sem_array *sem_lock(struct ipc_namespace *ns, int id)
198 {
199 	struct kern_ipc_perm *ipcp = ipc_lock(&sem_ids(ns), id);
200 
201 	if (IS_ERR(ipcp))
202 		return (struct sem_array *)ipcp;
203 
204 	return container_of(ipcp, struct sem_array, sem_perm);
205 }
206 
207 static inline struct sem_array *sem_lock_check(struct ipc_namespace *ns,
208 						int id)
209 {
210 	struct kern_ipc_perm *ipcp = ipc_lock_check(&sem_ids(ns), id);
211 
212 	if (IS_ERR(ipcp))
213 		return (struct sem_array *)ipcp;
214 
215 	return container_of(ipcp, struct sem_array, sem_perm);
216 }
217 
218 static inline void sem_lock_and_putref(struct sem_array *sma)
219 {
220 	ipc_lock_by_ptr(&sma->sem_perm);
221 	ipc_rcu_putref(sma);
222 }
223 
224 static inline void sem_getref_and_unlock(struct sem_array *sma)
225 {
226 	ipc_rcu_getref(sma);
227 	ipc_unlock(&(sma)->sem_perm);
228 }
229 
230 static inline void sem_putref(struct sem_array *sma)
231 {
232 	ipc_lock_by_ptr(&sma->sem_perm);
233 	ipc_rcu_putref(sma);
234 	ipc_unlock(&(sma)->sem_perm);
235 }
236 
237 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
238 {
239 	ipc_rmid(&sem_ids(ns), &s->sem_perm);
240 }
241 
242 /*
243  * Lockless wakeup algorithm:
244  * Without the check/retry algorithm a lockless wakeup is possible:
245  * - queue.status is initialized to -EINTR before blocking.
246  * - wakeup is performed by
247  *	* unlinking the queue entry from sma->sem_pending
248  *	* setting queue.status to IN_WAKEUP
249  *	  This is the notification for the blocked thread that a
250  *	  result value is imminent.
251  *	* call wake_up_process
252  *	* set queue.status to the final value.
253  * - the previously blocked thread checks queue.status:
254  *   	* if it's IN_WAKEUP, then it must wait until the value changes
255  *   	* if it's not -EINTR, then the operation was completed by
256  *   	  update_queue. semtimedop can return queue.status without
257  *   	  performing any operation on the sem array.
258  *   	* otherwise it must acquire the spinlock and check what's up.
259  *
260  * The two-stage algorithm is necessary to protect against the following
261  * races:
262  * - if queue.status is set after wake_up_process, then the woken up idle
263  *   thread could race forward and try (and fail) to acquire sma->lock
264  *   before update_queue had a chance to set queue.status
265  * - if queue.status is written before wake_up_process and if the
266  *   blocked process is woken up by a signal between writing
267  *   queue.status and the wake_up_process, then the woken up
268  *   process could return from semtimedop and die by calling
269  *   sys_exit before wake_up_process is called. Then wake_up_process
270  *   will oops, because the task structure is already invalid.
271  *   (yes, this happened on s390 with sysv msg).
272  *
273  */
274 #define IN_WAKEUP	1
275 
276 /**
277  * newary - Create a new semaphore set
278  * @ns: namespace
279  * @params: ptr to the structure that contains key, semflg and nsems
280  *
281  * Called with sem_ids.rw_mutex held (as a writer)
282  */
283 
284 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
285 {
286 	int id;
287 	int retval;
288 	struct sem_array *sma;
289 	int size;
290 	key_t key = params->key;
291 	int nsems = params->u.nsems;
292 	int semflg = params->flg;
293 	int i;
294 
295 	if (!nsems)
296 		return -EINVAL;
297 	if (ns->used_sems + nsems > ns->sc_semmns)
298 		return -ENOSPC;
299 
300 	size = sizeof (*sma) + nsems * sizeof (struct sem);
301 	sma = ipc_rcu_alloc(size);
302 	if (!sma) {
303 		return -ENOMEM;
304 	}
305 	memset (sma, 0, size);
306 
307 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
308 	sma->sem_perm.key = key;
309 
310 	sma->sem_perm.security = NULL;
311 	retval = security_sem_alloc(sma);
312 	if (retval) {
313 		ipc_rcu_putref(sma);
314 		return retval;
315 	}
316 
317 	id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
318 	if (id < 0) {
319 		security_sem_free(sma);
320 		ipc_rcu_putref(sma);
321 		return id;
322 	}
323 	ns->used_sems += nsems;
324 
325 	sma->sem_base = (struct sem *) &sma[1];
326 
327 	for (i = 0; i < nsems; i++)
328 		INIT_LIST_HEAD(&sma->sem_base[i].sem_pending);
329 
330 	sma->complex_count = 0;
331 	INIT_LIST_HEAD(&sma->sem_pending);
332 	INIT_LIST_HEAD(&sma->list_id);
333 	sma->sem_nsems = nsems;
334 	sma->sem_ctime = get_seconds();
335 	sem_unlock(sma);
336 
337 	return sma->sem_perm.id;
338 }
339 
340 
341 /*
342  * Called with sem_ids.rw_mutex and ipcp locked.
343  */
344 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
345 {
346 	struct sem_array *sma;
347 
348 	sma = container_of(ipcp, struct sem_array, sem_perm);
349 	return security_sem_associate(sma, semflg);
350 }
351 
352 /*
353  * Called with sem_ids.rw_mutex and ipcp locked.
354  */
355 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
356 				struct ipc_params *params)
357 {
358 	struct sem_array *sma;
359 
360 	sma = container_of(ipcp, struct sem_array, sem_perm);
361 	if (params->u.nsems > sma->sem_nsems)
362 		return -EINVAL;
363 
364 	return 0;
365 }
366 
367 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
368 {
369 	struct ipc_namespace *ns;
370 	struct ipc_ops sem_ops;
371 	struct ipc_params sem_params;
372 
373 	ns = current->nsproxy->ipc_ns;
374 
375 	if (nsems < 0 || nsems > ns->sc_semmsl)
376 		return -EINVAL;
377 
378 	sem_ops.getnew = newary;
379 	sem_ops.associate = sem_security;
380 	sem_ops.more_checks = sem_more_checks;
381 
382 	sem_params.key = key;
383 	sem_params.flg = semflg;
384 	sem_params.u.nsems = nsems;
385 
386 	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
387 }
388 
389 /*
390  * Determine whether a sequence of semaphore operations would succeed
391  * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
392  */
393 
394 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
395 			     int nsops, struct sem_undo *un, int pid)
396 {
397 	int result, sem_op;
398 	struct sembuf *sop;
399 	struct sem * curr;
400 
401 	for (sop = sops; sop < sops + nsops; sop++) {
402 		curr = sma->sem_base + sop->sem_num;
403 		sem_op = sop->sem_op;
404 		result = curr->semval;
405 
406 		if (!sem_op && result)
407 			goto would_block;
408 
409 		result += sem_op;
410 		if (result < 0)
411 			goto would_block;
412 		if (result > SEMVMX)
413 			goto out_of_range;
414 		if (sop->sem_flg & SEM_UNDO) {
415 			int undo = un->semadj[sop->sem_num] - sem_op;
416 			/*
417 	 		 *	Exceeding the undo range is an error.
418 			 */
419 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
420 				goto out_of_range;
421 		}
422 		curr->semval = result;
423 	}
424 
425 	sop--;
426 	while (sop >= sops) {
427 		sma->sem_base[sop->sem_num].sempid = pid;
428 		if (sop->sem_flg & SEM_UNDO)
429 			un->semadj[sop->sem_num] -= sop->sem_op;
430 		sop--;
431 	}
432 
433 	return 0;
434 
435 out_of_range:
436 	result = -ERANGE;
437 	goto undo;
438 
439 would_block:
440 	if (sop->sem_flg & IPC_NOWAIT)
441 		result = -EAGAIN;
442 	else
443 		result = 1;
444 
445 undo:
446 	sop--;
447 	while (sop >= sops) {
448 		sma->sem_base[sop->sem_num].semval -= sop->sem_op;
449 		sop--;
450 	}
451 
452 	return result;
453 }
454 
455 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
456  * @q: queue entry that must be signaled
457  * @error: Error value for the signal
458  *
459  * Prepare the wake-up of the queue entry q.
460  */
461 static void wake_up_sem_queue_prepare(struct list_head *pt,
462 				struct sem_queue *q, int error)
463 {
464 	if (list_empty(pt)) {
465 		/*
466 		 * Hold preempt off so that we don't get preempted and have the
467 		 * wakee busy-wait until we're scheduled back on.
468 		 */
469 		preempt_disable();
470 	}
471 	q->status = IN_WAKEUP;
472 	q->pid = error;
473 
474 	list_add_tail(&q->simple_list, pt);
475 }
476 
477 /**
478  * wake_up_sem_queue_do(pt) - do the actual wake-up
479  * @pt: list of tasks to be woken up
480  *
481  * Do the actual wake-up.
482  * The function is called without any locks held, thus the semaphore array
483  * could be destroyed already and the tasks can disappear as soon as the
484  * status is set to the actual return code.
485  */
486 static void wake_up_sem_queue_do(struct list_head *pt)
487 {
488 	struct sem_queue *q, *t;
489 	int did_something;
490 
491 	did_something = !list_empty(pt);
492 	list_for_each_entry_safe(q, t, pt, simple_list) {
493 		wake_up_process(q->sleeper);
494 		/* q can disappear immediately after writing q->status. */
495 		smp_wmb();
496 		q->status = q->pid;
497 	}
498 	if (did_something)
499 		preempt_enable();
500 }
501 
502 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
503 {
504 	list_del(&q->list);
505 	if (q->nsops == 1)
506 		list_del(&q->simple_list);
507 	else
508 		sma->complex_count--;
509 }
510 
511 /** check_restart(sma, q)
512  * @sma: semaphore array
513  * @q: the operation that just completed
514  *
515  * update_queue is O(N^2) when it restarts scanning the whole queue of
516  * waiting operations. Therefore this function checks if the restart is
517  * really necessary. It is called after a previously waiting operation
518  * was completed.
519  */
520 static int check_restart(struct sem_array *sma, struct sem_queue *q)
521 {
522 	struct sem *curr;
523 	struct sem_queue *h;
524 
525 	/* if the operation didn't modify the array, then no restart */
526 	if (q->alter == 0)
527 		return 0;
528 
529 	/* pending complex operations are too difficult to analyse */
530 	if (sma->complex_count)
531 		return 1;
532 
533 	/* we were a sleeping complex operation. Too difficult */
534 	if (q->nsops > 1)
535 		return 1;
536 
537 	curr = sma->sem_base + q->sops[0].sem_num;
538 
539 	/* No-one waits on this queue */
540 	if (list_empty(&curr->sem_pending))
541 		return 0;
542 
543 	/* the new semaphore value */
544 	if (curr->semval) {
545 		/* It is impossible that someone waits for the new value:
546 		 * - q is a previously sleeping simple operation that
547 		 *   altered the array. It must be a decrement, because
548 		 *   simple increments never sleep.
549 		 * - The value is not 0, thus wait-for-zero won't proceed.
550 		 * - If there are older (higher priority) decrements
551 		 *   in the queue, then they have observed the original
552 		 *   semval value and couldn't proceed. The operation
553 		 *   decremented to value - thus they won't proceed either.
554 		 */
555 		BUG_ON(q->sops[0].sem_op >= 0);
556 		return 0;
557 	}
558 	/*
559 	 * semval is 0. Check if there are wait-for-zero semops.
560 	 * They must be the first entries in the per-semaphore simple queue
561 	 */
562 	h = list_first_entry(&curr->sem_pending, struct sem_queue, simple_list);
563 	BUG_ON(h->nsops != 1);
564 	BUG_ON(h->sops[0].sem_num != q->sops[0].sem_num);
565 
566 	/* Yes, there is a wait-for-zero semop. Restart */
567 	if (h->sops[0].sem_op == 0)
568 		return 1;
569 
570 	/* Again - no-one is waiting for the new value. */
571 	return 0;
572 }
573 
574 
575 /**
576  * update_queue(sma, semnum): Look for tasks that can be completed.
577  * @sma: semaphore array.
578  * @semnum: semaphore that was modified.
579  * @pt: list head for the tasks that must be woken up.
580  *
581  * update_queue must be called after a semaphore in a semaphore array
582  * was modified. If multiple semaphore were modified, then @semnum
583  * must be set to -1.
584  * The tasks that must be woken up are added to @pt. The return code
585  * is stored in q->pid.
586  * The function return 1 if at least one semop was completed successfully.
587  */
588 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
589 {
590 	struct sem_queue *q;
591 	struct list_head *walk;
592 	struct list_head *pending_list;
593 	int offset;
594 	int semop_completed = 0;
595 
596 	/* if there are complex operations around, then knowing the semaphore
597 	 * that was modified doesn't help us. Assume that multiple semaphores
598 	 * were modified.
599 	 */
600 	if (sma->complex_count)
601 		semnum = -1;
602 
603 	if (semnum == -1) {
604 		pending_list = &sma->sem_pending;
605 		offset = offsetof(struct sem_queue, list);
606 	} else {
607 		pending_list = &sma->sem_base[semnum].sem_pending;
608 		offset = offsetof(struct sem_queue, simple_list);
609 	}
610 
611 again:
612 	walk = pending_list->next;
613 	while (walk != pending_list) {
614 		int error, restart;
615 
616 		q = (struct sem_queue *)((char *)walk - offset);
617 		walk = walk->next;
618 
619 		/* If we are scanning the single sop, per-semaphore list of
620 		 * one semaphore and that semaphore is 0, then it is not
621 		 * necessary to scan the "alter" entries: simple increments
622 		 * that affect only one entry succeed immediately and cannot
623 		 * be in the  per semaphore pending queue, and decrements
624 		 * cannot be successful if the value is already 0.
625 		 */
626 		if (semnum != -1 && sma->sem_base[semnum].semval == 0 &&
627 				q->alter)
628 			break;
629 
630 		error = try_atomic_semop(sma, q->sops, q->nsops,
631 					 q->undo, q->pid);
632 
633 		/* Does q->sleeper still need to sleep? */
634 		if (error > 0)
635 			continue;
636 
637 		unlink_queue(sma, q);
638 
639 		if (error) {
640 			restart = 0;
641 		} else {
642 			semop_completed = 1;
643 			restart = check_restart(sma, q);
644 		}
645 
646 		wake_up_sem_queue_prepare(pt, q, error);
647 		if (restart)
648 			goto again;
649 	}
650 	return semop_completed;
651 }
652 
653 /**
654  * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
655  * @sma: semaphore array
656  * @sops: operations that were performed
657  * @nsops: number of operations
658  * @otime: force setting otime
659  * @pt: list head of the tasks that must be woken up.
660  *
661  * do_smart_update() does the required called to update_queue, based on the
662  * actual changes that were performed on the semaphore array.
663  * Note that the function does not do the actual wake-up: the caller is
664  * responsible for calling wake_up_sem_queue_do(@pt).
665  * It is safe to perform this call after dropping all locks.
666  */
667 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
668 			int otime, struct list_head *pt)
669 {
670 	int i;
671 
672 	if (sma->complex_count || sops == NULL) {
673 		if (update_queue(sma, -1, pt))
674 			otime = 1;
675 		goto done;
676 	}
677 
678 	for (i = 0; i < nsops; i++) {
679 		if (sops[i].sem_op > 0 ||
680 			(sops[i].sem_op < 0 &&
681 				sma->sem_base[sops[i].sem_num].semval == 0))
682 			if (update_queue(sma, sops[i].sem_num, pt))
683 				otime = 1;
684 	}
685 done:
686 	if (otime)
687 		sma->sem_otime = get_seconds();
688 }
689 
690 
691 /* The following counts are associated to each semaphore:
692  *   semncnt        number of tasks waiting on semval being nonzero
693  *   semzcnt        number of tasks waiting on semval being zero
694  * This model assumes that a task waits on exactly one semaphore.
695  * Since semaphore operations are to be performed atomically, tasks actually
696  * wait on a whole sequence of semaphores simultaneously.
697  * The counts we return here are a rough approximation, but still
698  * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
699  */
700 static int count_semncnt (struct sem_array * sma, ushort semnum)
701 {
702 	int semncnt;
703 	struct sem_queue * q;
704 
705 	semncnt = 0;
706 	list_for_each_entry(q, &sma->sem_pending, list) {
707 		struct sembuf * sops = q->sops;
708 		int nsops = q->nsops;
709 		int i;
710 		for (i = 0; i < nsops; i++)
711 			if (sops[i].sem_num == semnum
712 			    && (sops[i].sem_op < 0)
713 			    && !(sops[i].sem_flg & IPC_NOWAIT))
714 				semncnt++;
715 	}
716 	return semncnt;
717 }
718 
719 static int count_semzcnt (struct sem_array * sma, ushort semnum)
720 {
721 	int semzcnt;
722 	struct sem_queue * q;
723 
724 	semzcnt = 0;
725 	list_for_each_entry(q, &sma->sem_pending, list) {
726 		struct sembuf * sops = q->sops;
727 		int nsops = q->nsops;
728 		int i;
729 		for (i = 0; i < nsops; i++)
730 			if (sops[i].sem_num == semnum
731 			    && (sops[i].sem_op == 0)
732 			    && !(sops[i].sem_flg & IPC_NOWAIT))
733 				semzcnt++;
734 	}
735 	return semzcnt;
736 }
737 
738 /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
739  * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
740  * remains locked on exit.
741  */
742 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
743 {
744 	struct sem_undo *un, *tu;
745 	struct sem_queue *q, *tq;
746 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
747 	struct list_head tasks;
748 
749 	/* Free the existing undo structures for this semaphore set.  */
750 	assert_spin_locked(&sma->sem_perm.lock);
751 	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
752 		list_del(&un->list_id);
753 		spin_lock(&un->ulp->lock);
754 		un->semid = -1;
755 		list_del_rcu(&un->list_proc);
756 		spin_unlock(&un->ulp->lock);
757 		kfree_rcu(un, rcu);
758 	}
759 
760 	/* Wake up all pending processes and let them fail with EIDRM. */
761 	INIT_LIST_HEAD(&tasks);
762 	list_for_each_entry_safe(q, tq, &sma->sem_pending, list) {
763 		unlink_queue(sma, q);
764 		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
765 	}
766 
767 	/* Remove the semaphore set from the IDR */
768 	sem_rmid(ns, sma);
769 	sem_unlock(sma);
770 
771 	wake_up_sem_queue_do(&tasks);
772 	ns->used_sems -= sma->sem_nsems;
773 	security_sem_free(sma);
774 	ipc_rcu_putref(sma);
775 }
776 
777 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
778 {
779 	switch(version) {
780 	case IPC_64:
781 		return copy_to_user(buf, in, sizeof(*in));
782 	case IPC_OLD:
783 	    {
784 		struct semid_ds out;
785 
786 		memset(&out, 0, sizeof(out));
787 
788 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
789 
790 		out.sem_otime	= in->sem_otime;
791 		out.sem_ctime	= in->sem_ctime;
792 		out.sem_nsems	= in->sem_nsems;
793 
794 		return copy_to_user(buf, &out, sizeof(out));
795 	    }
796 	default:
797 		return -EINVAL;
798 	}
799 }
800 
801 static int semctl_nolock(struct ipc_namespace *ns, int semid,
802 			 int cmd, int version, union semun arg)
803 {
804 	int err;
805 	struct sem_array *sma;
806 
807 	switch(cmd) {
808 	case IPC_INFO:
809 	case SEM_INFO:
810 	{
811 		struct seminfo seminfo;
812 		int max_id;
813 
814 		err = security_sem_semctl(NULL, cmd);
815 		if (err)
816 			return err;
817 
818 		memset(&seminfo,0,sizeof(seminfo));
819 		seminfo.semmni = ns->sc_semmni;
820 		seminfo.semmns = ns->sc_semmns;
821 		seminfo.semmsl = ns->sc_semmsl;
822 		seminfo.semopm = ns->sc_semopm;
823 		seminfo.semvmx = SEMVMX;
824 		seminfo.semmnu = SEMMNU;
825 		seminfo.semmap = SEMMAP;
826 		seminfo.semume = SEMUME;
827 		down_read(&sem_ids(ns).rw_mutex);
828 		if (cmd == SEM_INFO) {
829 			seminfo.semusz = sem_ids(ns).in_use;
830 			seminfo.semaem = ns->used_sems;
831 		} else {
832 			seminfo.semusz = SEMUSZ;
833 			seminfo.semaem = SEMAEM;
834 		}
835 		max_id = ipc_get_maxid(&sem_ids(ns));
836 		up_read(&sem_ids(ns).rw_mutex);
837 		if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo)))
838 			return -EFAULT;
839 		return (max_id < 0) ? 0: max_id;
840 	}
841 	case IPC_STAT:
842 	case SEM_STAT:
843 	{
844 		struct semid64_ds tbuf;
845 		int id;
846 
847 		if (cmd == SEM_STAT) {
848 			sma = sem_lock(ns, semid);
849 			if (IS_ERR(sma))
850 				return PTR_ERR(sma);
851 			id = sma->sem_perm.id;
852 		} else {
853 			sma = sem_lock_check(ns, semid);
854 			if (IS_ERR(sma))
855 				return PTR_ERR(sma);
856 			id = 0;
857 		}
858 
859 		err = -EACCES;
860 		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
861 			goto out_unlock;
862 
863 		err = security_sem_semctl(sma, cmd);
864 		if (err)
865 			goto out_unlock;
866 
867 		memset(&tbuf, 0, sizeof(tbuf));
868 
869 		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
870 		tbuf.sem_otime  = sma->sem_otime;
871 		tbuf.sem_ctime  = sma->sem_ctime;
872 		tbuf.sem_nsems  = sma->sem_nsems;
873 		sem_unlock(sma);
874 		if (copy_semid_to_user (arg.buf, &tbuf, version))
875 			return -EFAULT;
876 		return id;
877 	}
878 	default:
879 		return -EINVAL;
880 	}
881 out_unlock:
882 	sem_unlock(sma);
883 	return err;
884 }
885 
886 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
887 		int cmd, int version, union semun arg)
888 {
889 	struct sem_array *sma;
890 	struct sem* curr;
891 	int err;
892 	ushort fast_sem_io[SEMMSL_FAST];
893 	ushort* sem_io = fast_sem_io;
894 	int nsems;
895 	struct list_head tasks;
896 
897 	sma = sem_lock_check(ns, semid);
898 	if (IS_ERR(sma))
899 		return PTR_ERR(sma);
900 
901 	INIT_LIST_HEAD(&tasks);
902 	nsems = sma->sem_nsems;
903 
904 	err = -EACCES;
905 	if (ipcperms(ns, &sma->sem_perm,
906 			(cmd == SETVAL || cmd == SETALL) ? S_IWUGO : S_IRUGO))
907 		goto out_unlock;
908 
909 	err = security_sem_semctl(sma, cmd);
910 	if (err)
911 		goto out_unlock;
912 
913 	err = -EACCES;
914 	switch (cmd) {
915 	case GETALL:
916 	{
917 		ushort __user *array = arg.array;
918 		int i;
919 
920 		if(nsems > SEMMSL_FAST) {
921 			sem_getref_and_unlock(sma);
922 
923 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
924 			if(sem_io == NULL) {
925 				sem_putref(sma);
926 				return -ENOMEM;
927 			}
928 
929 			sem_lock_and_putref(sma);
930 			if (sma->sem_perm.deleted) {
931 				sem_unlock(sma);
932 				err = -EIDRM;
933 				goto out_free;
934 			}
935 		}
936 
937 		for (i = 0; i < sma->sem_nsems; i++)
938 			sem_io[i] = sma->sem_base[i].semval;
939 		sem_unlock(sma);
940 		err = 0;
941 		if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
942 			err = -EFAULT;
943 		goto out_free;
944 	}
945 	case SETALL:
946 	{
947 		int i;
948 		struct sem_undo *un;
949 
950 		sem_getref_and_unlock(sma);
951 
952 		if(nsems > SEMMSL_FAST) {
953 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
954 			if(sem_io == NULL) {
955 				sem_putref(sma);
956 				return -ENOMEM;
957 			}
958 		}
959 
960 		if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
961 			sem_putref(sma);
962 			err = -EFAULT;
963 			goto out_free;
964 		}
965 
966 		for (i = 0; i < nsems; i++) {
967 			if (sem_io[i] > SEMVMX) {
968 				sem_putref(sma);
969 				err = -ERANGE;
970 				goto out_free;
971 			}
972 		}
973 		sem_lock_and_putref(sma);
974 		if (sma->sem_perm.deleted) {
975 			sem_unlock(sma);
976 			err = -EIDRM;
977 			goto out_free;
978 		}
979 
980 		for (i = 0; i < nsems; i++)
981 			sma->sem_base[i].semval = sem_io[i];
982 
983 		assert_spin_locked(&sma->sem_perm.lock);
984 		list_for_each_entry(un, &sma->list_id, list_id) {
985 			for (i = 0; i < nsems; i++)
986 				un->semadj[i] = 0;
987 		}
988 		sma->sem_ctime = get_seconds();
989 		/* maybe some queued-up processes were waiting for this */
990 		do_smart_update(sma, NULL, 0, 0, &tasks);
991 		err = 0;
992 		goto out_unlock;
993 	}
994 	/* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
995 	}
996 	err = -EINVAL;
997 	if(semnum < 0 || semnum >= nsems)
998 		goto out_unlock;
999 
1000 	curr = &sma->sem_base[semnum];
1001 
1002 	switch (cmd) {
1003 	case GETVAL:
1004 		err = curr->semval;
1005 		goto out_unlock;
1006 	case GETPID:
1007 		err = curr->sempid;
1008 		goto out_unlock;
1009 	case GETNCNT:
1010 		err = count_semncnt(sma,semnum);
1011 		goto out_unlock;
1012 	case GETZCNT:
1013 		err = count_semzcnt(sma,semnum);
1014 		goto out_unlock;
1015 	case SETVAL:
1016 	{
1017 		int val = arg.val;
1018 		struct sem_undo *un;
1019 
1020 		err = -ERANGE;
1021 		if (val > SEMVMX || val < 0)
1022 			goto out_unlock;
1023 
1024 		assert_spin_locked(&sma->sem_perm.lock);
1025 		list_for_each_entry(un, &sma->list_id, list_id)
1026 			un->semadj[semnum] = 0;
1027 
1028 		curr->semval = val;
1029 		curr->sempid = task_tgid_vnr(current);
1030 		sma->sem_ctime = get_seconds();
1031 		/* maybe some queued-up processes were waiting for this */
1032 		do_smart_update(sma, NULL, 0, 0, &tasks);
1033 		err = 0;
1034 		goto out_unlock;
1035 	}
1036 	}
1037 out_unlock:
1038 	sem_unlock(sma);
1039 	wake_up_sem_queue_do(&tasks);
1040 
1041 out_free:
1042 	if(sem_io != fast_sem_io)
1043 		ipc_free(sem_io, sizeof(ushort)*nsems);
1044 	return err;
1045 }
1046 
1047 static inline unsigned long
1048 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1049 {
1050 	switch(version) {
1051 	case IPC_64:
1052 		if (copy_from_user(out, buf, sizeof(*out)))
1053 			return -EFAULT;
1054 		return 0;
1055 	case IPC_OLD:
1056 	    {
1057 		struct semid_ds tbuf_old;
1058 
1059 		if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1060 			return -EFAULT;
1061 
1062 		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1063 		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1064 		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1065 
1066 		return 0;
1067 	    }
1068 	default:
1069 		return -EINVAL;
1070 	}
1071 }
1072 
1073 /*
1074  * This function handles some semctl commands which require the rw_mutex
1075  * to be held in write mode.
1076  * NOTE: no locks must be held, the rw_mutex is taken inside this function.
1077  */
1078 static int semctl_down(struct ipc_namespace *ns, int semid,
1079 		       int cmd, int version, union semun arg)
1080 {
1081 	struct sem_array *sma;
1082 	int err;
1083 	struct semid64_ds semid64;
1084 	struct kern_ipc_perm *ipcp;
1085 
1086 	if(cmd == IPC_SET) {
1087 		if (copy_semid_from_user(&semid64, arg.buf, version))
1088 			return -EFAULT;
1089 	}
1090 
1091 	ipcp = ipcctl_pre_down(ns, &sem_ids(ns), semid, cmd,
1092 			       &semid64.sem_perm, 0);
1093 	if (IS_ERR(ipcp))
1094 		return PTR_ERR(ipcp);
1095 
1096 	sma = container_of(ipcp, struct sem_array, sem_perm);
1097 
1098 	err = security_sem_semctl(sma, cmd);
1099 	if (err)
1100 		goto out_unlock;
1101 
1102 	switch(cmd){
1103 	case IPC_RMID:
1104 		freeary(ns, ipcp);
1105 		goto out_up;
1106 	case IPC_SET:
1107 		err = ipc_update_perm(&semid64.sem_perm, ipcp);
1108 		if (err)
1109 			goto out_unlock;
1110 		sma->sem_ctime = get_seconds();
1111 		break;
1112 	default:
1113 		err = -EINVAL;
1114 	}
1115 
1116 out_unlock:
1117 	sem_unlock(sma);
1118 out_up:
1119 	up_write(&sem_ids(ns).rw_mutex);
1120 	return err;
1121 }
1122 
1123 SYSCALL_DEFINE(semctl)(int semid, int semnum, int cmd, union semun arg)
1124 {
1125 	int err = -EINVAL;
1126 	int version;
1127 	struct ipc_namespace *ns;
1128 
1129 	if (semid < 0)
1130 		return -EINVAL;
1131 
1132 	version = ipc_parse_version(&cmd);
1133 	ns = current->nsproxy->ipc_ns;
1134 
1135 	switch(cmd) {
1136 	case IPC_INFO:
1137 	case SEM_INFO:
1138 	case IPC_STAT:
1139 	case SEM_STAT:
1140 		err = semctl_nolock(ns, semid, cmd, version, arg);
1141 		return err;
1142 	case GETALL:
1143 	case GETVAL:
1144 	case GETPID:
1145 	case GETNCNT:
1146 	case GETZCNT:
1147 	case SETVAL:
1148 	case SETALL:
1149 		err = semctl_main(ns,semid,semnum,cmd,version,arg);
1150 		return err;
1151 	case IPC_RMID:
1152 	case IPC_SET:
1153 		err = semctl_down(ns, semid, cmd, version, arg);
1154 		return err;
1155 	default:
1156 		return -EINVAL;
1157 	}
1158 }
1159 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1160 asmlinkage long SyS_semctl(int semid, int semnum, int cmd, union semun arg)
1161 {
1162 	return SYSC_semctl((int) semid, (int) semnum, (int) cmd, arg);
1163 }
1164 SYSCALL_ALIAS(sys_semctl, SyS_semctl);
1165 #endif
1166 
1167 /* If the task doesn't already have a undo_list, then allocate one
1168  * here.  We guarantee there is only one thread using this undo list,
1169  * and current is THE ONE
1170  *
1171  * If this allocation and assignment succeeds, but later
1172  * portions of this code fail, there is no need to free the sem_undo_list.
1173  * Just let it stay associated with the task, and it'll be freed later
1174  * at exit time.
1175  *
1176  * This can block, so callers must hold no locks.
1177  */
1178 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1179 {
1180 	struct sem_undo_list *undo_list;
1181 
1182 	undo_list = current->sysvsem.undo_list;
1183 	if (!undo_list) {
1184 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1185 		if (undo_list == NULL)
1186 			return -ENOMEM;
1187 		spin_lock_init(&undo_list->lock);
1188 		atomic_set(&undo_list->refcnt, 1);
1189 		INIT_LIST_HEAD(&undo_list->list_proc);
1190 
1191 		current->sysvsem.undo_list = undo_list;
1192 	}
1193 	*undo_listp = undo_list;
1194 	return 0;
1195 }
1196 
1197 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1198 {
1199 	struct sem_undo *un;
1200 
1201 	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1202 		if (un->semid == semid)
1203 			return un;
1204 	}
1205 	return NULL;
1206 }
1207 
1208 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1209 {
1210 	struct sem_undo *un;
1211 
1212   	assert_spin_locked(&ulp->lock);
1213 
1214 	un = __lookup_undo(ulp, semid);
1215 	if (un) {
1216 		list_del_rcu(&un->list_proc);
1217 		list_add_rcu(&un->list_proc, &ulp->list_proc);
1218 	}
1219 	return un;
1220 }
1221 
1222 /**
1223  * find_alloc_undo - Lookup (and if not present create) undo array
1224  * @ns: namespace
1225  * @semid: semaphore array id
1226  *
1227  * The function looks up (and if not present creates) the undo structure.
1228  * The size of the undo structure depends on the size of the semaphore
1229  * array, thus the alloc path is not that straightforward.
1230  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1231  * performs a rcu_read_lock().
1232  */
1233 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1234 {
1235 	struct sem_array *sma;
1236 	struct sem_undo_list *ulp;
1237 	struct sem_undo *un, *new;
1238 	int nsems;
1239 	int error;
1240 
1241 	error = get_undo_list(&ulp);
1242 	if (error)
1243 		return ERR_PTR(error);
1244 
1245 	rcu_read_lock();
1246 	spin_lock(&ulp->lock);
1247 	un = lookup_undo(ulp, semid);
1248 	spin_unlock(&ulp->lock);
1249 	if (likely(un!=NULL))
1250 		goto out;
1251 	rcu_read_unlock();
1252 
1253 	/* no undo structure around - allocate one. */
1254 	/* step 1: figure out the size of the semaphore array */
1255 	sma = sem_lock_check(ns, semid);
1256 	if (IS_ERR(sma))
1257 		return ERR_CAST(sma);
1258 
1259 	nsems = sma->sem_nsems;
1260 	sem_getref_and_unlock(sma);
1261 
1262 	/* step 2: allocate new undo structure */
1263 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1264 	if (!new) {
1265 		sem_putref(sma);
1266 		return ERR_PTR(-ENOMEM);
1267 	}
1268 
1269 	/* step 3: Acquire the lock on semaphore array */
1270 	sem_lock_and_putref(sma);
1271 	if (sma->sem_perm.deleted) {
1272 		sem_unlock(sma);
1273 		kfree(new);
1274 		un = ERR_PTR(-EIDRM);
1275 		goto out;
1276 	}
1277 	spin_lock(&ulp->lock);
1278 
1279 	/*
1280 	 * step 4: check for races: did someone else allocate the undo struct?
1281 	 */
1282 	un = lookup_undo(ulp, semid);
1283 	if (un) {
1284 		kfree(new);
1285 		goto success;
1286 	}
1287 	/* step 5: initialize & link new undo structure */
1288 	new->semadj = (short *) &new[1];
1289 	new->ulp = ulp;
1290 	new->semid = semid;
1291 	assert_spin_locked(&ulp->lock);
1292 	list_add_rcu(&new->list_proc, &ulp->list_proc);
1293 	assert_spin_locked(&sma->sem_perm.lock);
1294 	list_add(&new->list_id, &sma->list_id);
1295 	un = new;
1296 
1297 success:
1298 	spin_unlock(&ulp->lock);
1299 	rcu_read_lock();
1300 	sem_unlock(sma);
1301 out:
1302 	return un;
1303 }
1304 
1305 
1306 /**
1307  * get_queue_result - Retrieve the result code from sem_queue
1308  * @q: Pointer to queue structure
1309  *
1310  * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1311  * q->status, then we must loop until the value is replaced with the final
1312  * value: This may happen if a task is woken up by an unrelated event (e.g.
1313  * signal) and in parallel the task is woken up by another task because it got
1314  * the requested semaphores.
1315  *
1316  * The function can be called with or without holding the semaphore spinlock.
1317  */
1318 static int get_queue_result(struct sem_queue *q)
1319 {
1320 	int error;
1321 
1322 	error = q->status;
1323 	while (unlikely(error == IN_WAKEUP)) {
1324 		cpu_relax();
1325 		error = q->status;
1326 	}
1327 
1328 	return error;
1329 }
1330 
1331 
1332 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1333 		unsigned, nsops, const struct timespec __user *, timeout)
1334 {
1335 	int error = -EINVAL;
1336 	struct sem_array *sma;
1337 	struct sembuf fast_sops[SEMOPM_FAST];
1338 	struct sembuf* sops = fast_sops, *sop;
1339 	struct sem_undo *un;
1340 	int undos = 0, alter = 0, max;
1341 	struct sem_queue queue;
1342 	unsigned long jiffies_left = 0;
1343 	struct ipc_namespace *ns;
1344 	struct list_head tasks;
1345 
1346 	ns = current->nsproxy->ipc_ns;
1347 
1348 	if (nsops < 1 || semid < 0)
1349 		return -EINVAL;
1350 	if (nsops > ns->sc_semopm)
1351 		return -E2BIG;
1352 	if(nsops > SEMOPM_FAST) {
1353 		sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1354 		if(sops==NULL)
1355 			return -ENOMEM;
1356 	}
1357 	if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1358 		error=-EFAULT;
1359 		goto out_free;
1360 	}
1361 	if (timeout) {
1362 		struct timespec _timeout;
1363 		if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1364 			error = -EFAULT;
1365 			goto out_free;
1366 		}
1367 		if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1368 			_timeout.tv_nsec >= 1000000000L) {
1369 			error = -EINVAL;
1370 			goto out_free;
1371 		}
1372 		jiffies_left = timespec_to_jiffies(&_timeout);
1373 	}
1374 	max = 0;
1375 	for (sop = sops; sop < sops + nsops; sop++) {
1376 		if (sop->sem_num >= max)
1377 			max = sop->sem_num;
1378 		if (sop->sem_flg & SEM_UNDO)
1379 			undos = 1;
1380 		if (sop->sem_op != 0)
1381 			alter = 1;
1382 	}
1383 
1384 	if (undos) {
1385 		un = find_alloc_undo(ns, semid);
1386 		if (IS_ERR(un)) {
1387 			error = PTR_ERR(un);
1388 			goto out_free;
1389 		}
1390 	} else
1391 		un = NULL;
1392 
1393 	INIT_LIST_HEAD(&tasks);
1394 
1395 	sma = sem_lock_check(ns, semid);
1396 	if (IS_ERR(sma)) {
1397 		if (un)
1398 			rcu_read_unlock();
1399 		error = PTR_ERR(sma);
1400 		goto out_free;
1401 	}
1402 
1403 	/*
1404 	 * semid identifiers are not unique - find_alloc_undo may have
1405 	 * allocated an undo structure, it was invalidated by an RMID
1406 	 * and now a new array with received the same id. Check and fail.
1407 	 * This case can be detected checking un->semid. The existence of
1408 	 * "un" itself is guaranteed by rcu.
1409 	 */
1410 	error = -EIDRM;
1411 	if (un) {
1412 		if (un->semid == -1) {
1413 			rcu_read_unlock();
1414 			goto out_unlock_free;
1415 		} else {
1416 			/*
1417 			 * rcu lock can be released, "un" cannot disappear:
1418 			 * - sem_lock is acquired, thus IPC_RMID is
1419 			 *   impossible.
1420 			 * - exit_sem is impossible, it always operates on
1421 			 *   current (or a dead task).
1422 			 */
1423 
1424 			rcu_read_unlock();
1425 		}
1426 	}
1427 
1428 	error = -EFBIG;
1429 	if (max >= sma->sem_nsems)
1430 		goto out_unlock_free;
1431 
1432 	error = -EACCES;
1433 	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1434 		goto out_unlock_free;
1435 
1436 	error = security_sem_semop(sma, sops, nsops, alter);
1437 	if (error)
1438 		goto out_unlock_free;
1439 
1440 	error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current));
1441 	if (error <= 0) {
1442 		if (alter && error == 0)
1443 			do_smart_update(sma, sops, nsops, 1, &tasks);
1444 
1445 		goto out_unlock_free;
1446 	}
1447 
1448 	/* We need to sleep on this operation, so we put the current
1449 	 * task into the pending queue and go to sleep.
1450 	 */
1451 
1452 	queue.sops = sops;
1453 	queue.nsops = nsops;
1454 	queue.undo = un;
1455 	queue.pid = task_tgid_vnr(current);
1456 	queue.alter = alter;
1457 	if (alter)
1458 		list_add_tail(&queue.list, &sma->sem_pending);
1459 	else
1460 		list_add(&queue.list, &sma->sem_pending);
1461 
1462 	if (nsops == 1) {
1463 		struct sem *curr;
1464 		curr = &sma->sem_base[sops->sem_num];
1465 
1466 		if (alter)
1467 			list_add_tail(&queue.simple_list, &curr->sem_pending);
1468 		else
1469 			list_add(&queue.simple_list, &curr->sem_pending);
1470 	} else {
1471 		INIT_LIST_HEAD(&queue.simple_list);
1472 		sma->complex_count++;
1473 	}
1474 
1475 	queue.status = -EINTR;
1476 	queue.sleeper = current;
1477 
1478 sleep_again:
1479 	current->state = TASK_INTERRUPTIBLE;
1480 	sem_unlock(sma);
1481 
1482 	if (timeout)
1483 		jiffies_left = schedule_timeout(jiffies_left);
1484 	else
1485 		schedule();
1486 
1487 	error = get_queue_result(&queue);
1488 
1489 	if (error != -EINTR) {
1490 		/* fast path: update_queue already obtained all requested
1491 		 * resources.
1492 		 * Perform a smp_mb(): User space could assume that semop()
1493 		 * is a memory barrier: Without the mb(), the cpu could
1494 		 * speculatively read in user space stale data that was
1495 		 * overwritten by the previous owner of the semaphore.
1496 		 */
1497 		smp_mb();
1498 
1499 		goto out_free;
1500 	}
1501 
1502 	sma = sem_lock(ns, semid);
1503 
1504 	/*
1505 	 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1506 	 */
1507 	error = get_queue_result(&queue);
1508 
1509 	/*
1510 	 * Array removed? If yes, leave without sem_unlock().
1511 	 */
1512 	if (IS_ERR(sma)) {
1513 		goto out_free;
1514 	}
1515 
1516 
1517 	/*
1518 	 * If queue.status != -EINTR we are woken up by another process.
1519 	 * Leave without unlink_queue(), but with sem_unlock().
1520 	 */
1521 
1522 	if (error != -EINTR) {
1523 		goto out_unlock_free;
1524 	}
1525 
1526 	/*
1527 	 * If an interrupt occurred we have to clean up the queue
1528 	 */
1529 	if (timeout && jiffies_left == 0)
1530 		error = -EAGAIN;
1531 
1532 	/*
1533 	 * If the wakeup was spurious, just retry
1534 	 */
1535 	if (error == -EINTR && !signal_pending(current))
1536 		goto sleep_again;
1537 
1538 	unlink_queue(sma, &queue);
1539 
1540 out_unlock_free:
1541 	sem_unlock(sma);
1542 
1543 	wake_up_sem_queue_do(&tasks);
1544 out_free:
1545 	if(sops != fast_sops)
1546 		kfree(sops);
1547 	return error;
1548 }
1549 
1550 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1551 		unsigned, nsops)
1552 {
1553 	return sys_semtimedop(semid, tsops, nsops, NULL);
1554 }
1555 
1556 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1557  * parent and child tasks.
1558  */
1559 
1560 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1561 {
1562 	struct sem_undo_list *undo_list;
1563 	int error;
1564 
1565 	if (clone_flags & CLONE_SYSVSEM) {
1566 		error = get_undo_list(&undo_list);
1567 		if (error)
1568 			return error;
1569 		atomic_inc(&undo_list->refcnt);
1570 		tsk->sysvsem.undo_list = undo_list;
1571 	} else
1572 		tsk->sysvsem.undo_list = NULL;
1573 
1574 	return 0;
1575 }
1576 
1577 /*
1578  * add semadj values to semaphores, free undo structures.
1579  * undo structures are not freed when semaphore arrays are destroyed
1580  * so some of them may be out of date.
1581  * IMPLEMENTATION NOTE: There is some confusion over whether the
1582  * set of adjustments that needs to be done should be done in an atomic
1583  * manner or not. That is, if we are attempting to decrement the semval
1584  * should we queue up and wait until we can do so legally?
1585  * The original implementation attempted to do this (queue and wait).
1586  * The current implementation does not do so. The POSIX standard
1587  * and SVID should be consulted to determine what behavior is mandated.
1588  */
1589 void exit_sem(struct task_struct *tsk)
1590 {
1591 	struct sem_undo_list *ulp;
1592 
1593 	ulp = tsk->sysvsem.undo_list;
1594 	if (!ulp)
1595 		return;
1596 	tsk->sysvsem.undo_list = NULL;
1597 
1598 	if (!atomic_dec_and_test(&ulp->refcnt))
1599 		return;
1600 
1601 	for (;;) {
1602 		struct sem_array *sma;
1603 		struct sem_undo *un;
1604 		struct list_head tasks;
1605 		int semid;
1606 		int i;
1607 
1608 		rcu_read_lock();
1609 		un = list_entry_rcu(ulp->list_proc.next,
1610 				    struct sem_undo, list_proc);
1611 		if (&un->list_proc == &ulp->list_proc)
1612 			semid = -1;
1613 		 else
1614 			semid = un->semid;
1615 		rcu_read_unlock();
1616 
1617 		if (semid == -1)
1618 			break;
1619 
1620 		sma = sem_lock_check(tsk->nsproxy->ipc_ns, un->semid);
1621 
1622 		/* exit_sem raced with IPC_RMID, nothing to do */
1623 		if (IS_ERR(sma))
1624 			continue;
1625 
1626 		un = __lookup_undo(ulp, semid);
1627 		if (un == NULL) {
1628 			/* exit_sem raced with IPC_RMID+semget() that created
1629 			 * exactly the same semid. Nothing to do.
1630 			 */
1631 			sem_unlock(sma);
1632 			continue;
1633 		}
1634 
1635 		/* remove un from the linked lists */
1636 		assert_spin_locked(&sma->sem_perm.lock);
1637 		list_del(&un->list_id);
1638 
1639 		spin_lock(&ulp->lock);
1640 		list_del_rcu(&un->list_proc);
1641 		spin_unlock(&ulp->lock);
1642 
1643 		/* perform adjustments registered in un */
1644 		for (i = 0; i < sma->sem_nsems; i++) {
1645 			struct sem * semaphore = &sma->sem_base[i];
1646 			if (un->semadj[i]) {
1647 				semaphore->semval += un->semadj[i];
1648 				/*
1649 				 * Range checks of the new semaphore value,
1650 				 * not defined by sus:
1651 				 * - Some unices ignore the undo entirely
1652 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
1653 				 * - some cap the value (e.g. FreeBSD caps
1654 				 *   at 0, but doesn't enforce SEMVMX)
1655 				 *
1656 				 * Linux caps the semaphore value, both at 0
1657 				 * and at SEMVMX.
1658 				 *
1659 				 * 	Manfred <manfred@colorfullife.com>
1660 				 */
1661 				if (semaphore->semval < 0)
1662 					semaphore->semval = 0;
1663 				if (semaphore->semval > SEMVMX)
1664 					semaphore->semval = SEMVMX;
1665 				semaphore->sempid = task_tgid_vnr(current);
1666 			}
1667 		}
1668 		/* maybe some queued-up processes were waiting for this */
1669 		INIT_LIST_HEAD(&tasks);
1670 		do_smart_update(sma, NULL, 0, 1, &tasks);
1671 		sem_unlock(sma);
1672 		wake_up_sem_queue_do(&tasks);
1673 
1674 		kfree_rcu(un, rcu);
1675 	}
1676 	kfree(ulp);
1677 }
1678 
1679 #ifdef CONFIG_PROC_FS
1680 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1681 {
1682 	struct user_namespace *user_ns = seq_user_ns(s);
1683 	struct sem_array *sma = it;
1684 
1685 	return seq_printf(s,
1686 			  "%10d %10d  %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
1687 			  sma->sem_perm.key,
1688 			  sma->sem_perm.id,
1689 			  sma->sem_perm.mode,
1690 			  sma->sem_nsems,
1691 			  from_kuid_munged(user_ns, sma->sem_perm.uid),
1692 			  from_kgid_munged(user_ns, sma->sem_perm.gid),
1693 			  from_kuid_munged(user_ns, sma->sem_perm.cuid),
1694 			  from_kgid_munged(user_ns, sma->sem_perm.cgid),
1695 			  sma->sem_otime,
1696 			  sma->sem_ctime);
1697 }
1698 #endif
1699