1 /* 2 * linux/ipc/sem.c 3 * Copyright (C) 1992 Krishna Balasubramanian 4 * Copyright (C) 1995 Eric Schenk, Bruno Haible 5 * 6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> 7 * 8 * SMP-threaded, sysctl's added 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com> 10 * Enforced range limit on SEM_UNDO 11 * (c) 2001 Red Hat Inc 12 * Lockless wakeup 13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com> 14 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net> 15 * Further wakeup optimizations, documentation 16 * (c) 2010 Manfred Spraul <manfred@colorfullife.com> 17 * 18 * support for audit of ipc object properties and permission changes 19 * Dustin Kirkland <dustin.kirkland@us.ibm.com> 20 * 21 * namespaces support 22 * OpenVZ, SWsoft Inc. 23 * Pavel Emelianov <xemul@openvz.org> 24 * 25 * Implementation notes: (May 2010) 26 * This file implements System V semaphores. 27 * 28 * User space visible behavior: 29 * - FIFO ordering for semop() operations (just FIFO, not starvation 30 * protection) 31 * - multiple semaphore operations that alter the same semaphore in 32 * one semop() are handled. 33 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and 34 * SETALL calls. 35 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. 36 * - undo adjustments at process exit are limited to 0..SEMVMX. 37 * - namespace are supported. 38 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing 39 * to /proc/sys/kernel/sem. 40 * - statistics about the usage are reported in /proc/sysvipc/sem. 41 * 42 * Internals: 43 * - scalability: 44 * - all global variables are read-mostly. 45 * - semop() calls and semctl(RMID) are synchronized by RCU. 46 * - most operations do write operations (actually: spin_lock calls) to 47 * the per-semaphore array structure. 48 * Thus: Perfect SMP scaling between independent semaphore arrays. 49 * If multiple semaphores in one array are used, then cache line 50 * trashing on the semaphore array spinlock will limit the scaling. 51 * - semncnt and semzcnt are calculated on demand in count_semcnt() 52 * - the task that performs a successful semop() scans the list of all 53 * sleeping tasks and completes any pending operations that can be fulfilled. 54 * Semaphores are actively given to waiting tasks (necessary for FIFO). 55 * (see update_queue()) 56 * - To improve the scalability, the actual wake-up calls are performed after 57 * dropping all locks. (see wake_up_sem_queue_prepare()) 58 * - All work is done by the waker, the woken up task does not have to do 59 * anything - not even acquiring a lock or dropping a refcount. 60 * - A woken up task may not even touch the semaphore array anymore, it may 61 * have been destroyed already by a semctl(RMID). 62 * - UNDO values are stored in an array (one per process and per 63 * semaphore array, lazily allocated). For backwards compatibility, multiple 64 * modes for the UNDO variables are supported (per process, per thread) 65 * (see copy_semundo, CLONE_SYSVSEM) 66 * - There are two lists of the pending operations: a per-array list 67 * and per-semaphore list (stored in the array). This allows to achieve FIFO 68 * ordering without always scanning all pending operations. 69 * The worst-case behavior is nevertheless O(N^2) for N wakeups. 70 */ 71 72 #include <linux/slab.h> 73 #include <linux/spinlock.h> 74 #include <linux/init.h> 75 #include <linux/proc_fs.h> 76 #include <linux/time.h> 77 #include <linux/security.h> 78 #include <linux/syscalls.h> 79 #include <linux/audit.h> 80 #include <linux/capability.h> 81 #include <linux/seq_file.h> 82 #include <linux/rwsem.h> 83 #include <linux/nsproxy.h> 84 #include <linux/ipc_namespace.h> 85 #include <linux/sched/wake_q.h> 86 87 #include <linux/uaccess.h> 88 #include "util.h" 89 90 91 /* One queue for each sleeping process in the system. */ 92 struct sem_queue { 93 struct list_head list; /* queue of pending operations */ 94 struct task_struct *sleeper; /* this process */ 95 struct sem_undo *undo; /* undo structure */ 96 int pid; /* process id of requesting process */ 97 int status; /* completion status of operation */ 98 struct sembuf *sops; /* array of pending operations */ 99 struct sembuf *blocking; /* the operation that blocked */ 100 int nsops; /* number of operations */ 101 bool alter; /* does *sops alter the array? */ 102 bool dupsop; /* sops on more than one sem_num */ 103 }; 104 105 /* Each task has a list of undo requests. They are executed automatically 106 * when the process exits. 107 */ 108 struct sem_undo { 109 struct list_head list_proc; /* per-process list: * 110 * all undos from one process 111 * rcu protected */ 112 struct rcu_head rcu; /* rcu struct for sem_undo */ 113 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */ 114 struct list_head list_id; /* per semaphore array list: 115 * all undos for one array */ 116 int semid; /* semaphore set identifier */ 117 short *semadj; /* array of adjustments */ 118 /* one per semaphore */ 119 }; 120 121 /* sem_undo_list controls shared access to the list of sem_undo structures 122 * that may be shared among all a CLONE_SYSVSEM task group. 123 */ 124 struct sem_undo_list { 125 refcount_t refcnt; 126 spinlock_t lock; 127 struct list_head list_proc; 128 }; 129 130 131 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) 132 133 static int newary(struct ipc_namespace *, struct ipc_params *); 134 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); 135 #ifdef CONFIG_PROC_FS 136 static int sysvipc_sem_proc_show(struct seq_file *s, void *it); 137 #endif 138 139 #define SEMMSL_FAST 256 /* 512 bytes on stack */ 140 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ 141 142 /* 143 * Switching from the mode suitable for simple ops 144 * to the mode for complex ops is costly. Therefore: 145 * use some hysteresis 146 */ 147 #define USE_GLOBAL_LOCK_HYSTERESIS 10 148 149 /* 150 * Locking: 151 * a) global sem_lock() for read/write 152 * sem_undo.id_next, 153 * sem_array.complex_count, 154 * sem_array.pending{_alter,_const}, 155 * sem_array.sem_undo 156 * 157 * b) global or semaphore sem_lock() for read/write: 158 * sem_array.sems[i].pending_{const,alter}: 159 * 160 * c) special: 161 * sem_undo_list.list_proc: 162 * * undo_list->lock for write 163 * * rcu for read 164 * use_global_lock: 165 * * global sem_lock() for write 166 * * either local or global sem_lock() for read. 167 * 168 * Memory ordering: 169 * Most ordering is enforced by using spin_lock() and spin_unlock(). 170 * The special case is use_global_lock: 171 * Setting it from non-zero to 0 is a RELEASE, this is ensured by 172 * using smp_store_release(). 173 * Testing if it is non-zero is an ACQUIRE, this is ensured by using 174 * smp_load_acquire(). 175 * Setting it from 0 to non-zero must be ordered with regards to 176 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire() 177 * is inside a spin_lock() and after a write from 0 to non-zero a 178 * spin_lock()+spin_unlock() is done. 179 */ 180 181 #define sc_semmsl sem_ctls[0] 182 #define sc_semmns sem_ctls[1] 183 #define sc_semopm sem_ctls[2] 184 #define sc_semmni sem_ctls[3] 185 186 int sem_init_ns(struct ipc_namespace *ns) 187 { 188 ns->sc_semmsl = SEMMSL; 189 ns->sc_semmns = SEMMNS; 190 ns->sc_semopm = SEMOPM; 191 ns->sc_semmni = SEMMNI; 192 ns->used_sems = 0; 193 return ipc_init_ids(&ns->ids[IPC_SEM_IDS]); 194 } 195 196 #ifdef CONFIG_IPC_NS 197 void sem_exit_ns(struct ipc_namespace *ns) 198 { 199 free_ipcs(ns, &sem_ids(ns), freeary); 200 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); 201 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht); 202 } 203 #endif 204 205 int __init sem_init(void) 206 { 207 const int err = sem_init_ns(&init_ipc_ns); 208 209 ipc_init_proc_interface("sysvipc/sem", 210 " key semid perms nsems uid gid cuid cgid otime ctime\n", 211 IPC_SEM_IDS, sysvipc_sem_proc_show); 212 return err; 213 } 214 215 /** 216 * unmerge_queues - unmerge queues, if possible. 217 * @sma: semaphore array 218 * 219 * The function unmerges the wait queues if complex_count is 0. 220 * It must be called prior to dropping the global semaphore array lock. 221 */ 222 static void unmerge_queues(struct sem_array *sma) 223 { 224 struct sem_queue *q, *tq; 225 226 /* complex operations still around? */ 227 if (sma->complex_count) 228 return; 229 /* 230 * We will switch back to simple mode. 231 * Move all pending operation back into the per-semaphore 232 * queues. 233 */ 234 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 235 struct sem *curr; 236 curr = &sma->sems[q->sops[0].sem_num]; 237 238 list_add_tail(&q->list, &curr->pending_alter); 239 } 240 INIT_LIST_HEAD(&sma->pending_alter); 241 } 242 243 /** 244 * merge_queues - merge single semop queues into global queue 245 * @sma: semaphore array 246 * 247 * This function merges all per-semaphore queues into the global queue. 248 * It is necessary to achieve FIFO ordering for the pending single-sop 249 * operations when a multi-semop operation must sleep. 250 * Only the alter operations must be moved, the const operations can stay. 251 */ 252 static void merge_queues(struct sem_array *sma) 253 { 254 int i; 255 for (i = 0; i < sma->sem_nsems; i++) { 256 struct sem *sem = &sma->sems[i]; 257 258 list_splice_init(&sem->pending_alter, &sma->pending_alter); 259 } 260 } 261 262 static void sem_rcu_free(struct rcu_head *head) 263 { 264 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu); 265 struct sem_array *sma = container_of(p, struct sem_array, sem_perm); 266 267 security_sem_free(sma); 268 kvfree(sma); 269 } 270 271 /* 272 * Enter the mode suitable for non-simple operations: 273 * Caller must own sem_perm.lock. 274 */ 275 static void complexmode_enter(struct sem_array *sma) 276 { 277 int i; 278 struct sem *sem; 279 280 if (sma->use_global_lock > 0) { 281 /* 282 * We are already in global lock mode. 283 * Nothing to do, just reset the 284 * counter until we return to simple mode. 285 */ 286 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; 287 return; 288 } 289 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; 290 291 for (i = 0; i < sma->sem_nsems; i++) { 292 sem = &sma->sems[i]; 293 spin_lock(&sem->lock); 294 spin_unlock(&sem->lock); 295 } 296 } 297 298 /* 299 * Try to leave the mode that disallows simple operations: 300 * Caller must own sem_perm.lock. 301 */ 302 static void complexmode_tryleave(struct sem_array *sma) 303 { 304 if (sma->complex_count) { 305 /* Complex ops are sleeping. 306 * We must stay in complex mode 307 */ 308 return; 309 } 310 if (sma->use_global_lock == 1) { 311 /* 312 * Immediately after setting use_global_lock to 0, 313 * a simple op can start. Thus: all memory writes 314 * performed by the current operation must be visible 315 * before we set use_global_lock to 0. 316 */ 317 smp_store_release(&sma->use_global_lock, 0); 318 } else { 319 sma->use_global_lock--; 320 } 321 } 322 323 #define SEM_GLOBAL_LOCK (-1) 324 /* 325 * If the request contains only one semaphore operation, and there are 326 * no complex transactions pending, lock only the semaphore involved. 327 * Otherwise, lock the entire semaphore array, since we either have 328 * multiple semaphores in our own semops, or we need to look at 329 * semaphores from other pending complex operations. 330 */ 331 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, 332 int nsops) 333 { 334 struct sem *sem; 335 336 if (nsops != 1) { 337 /* Complex operation - acquire a full lock */ 338 ipc_lock_object(&sma->sem_perm); 339 340 /* Prevent parallel simple ops */ 341 complexmode_enter(sma); 342 return SEM_GLOBAL_LOCK; 343 } 344 345 /* 346 * Only one semaphore affected - try to optimize locking. 347 * Optimized locking is possible if no complex operation 348 * is either enqueued or processed right now. 349 * 350 * Both facts are tracked by use_global_mode. 351 */ 352 sem = &sma->sems[sops->sem_num]; 353 354 /* 355 * Initial check for use_global_lock. Just an optimization, 356 * no locking, no memory barrier. 357 */ 358 if (!sma->use_global_lock) { 359 /* 360 * It appears that no complex operation is around. 361 * Acquire the per-semaphore lock. 362 */ 363 spin_lock(&sem->lock); 364 365 /* pairs with smp_store_release() */ 366 if (!smp_load_acquire(&sma->use_global_lock)) { 367 /* fast path successful! */ 368 return sops->sem_num; 369 } 370 spin_unlock(&sem->lock); 371 } 372 373 /* slow path: acquire the full lock */ 374 ipc_lock_object(&sma->sem_perm); 375 376 if (sma->use_global_lock == 0) { 377 /* 378 * The use_global_lock mode ended while we waited for 379 * sma->sem_perm.lock. Thus we must switch to locking 380 * with sem->lock. 381 * Unlike in the fast path, there is no need to recheck 382 * sma->use_global_lock after we have acquired sem->lock: 383 * We own sma->sem_perm.lock, thus use_global_lock cannot 384 * change. 385 */ 386 spin_lock(&sem->lock); 387 388 ipc_unlock_object(&sma->sem_perm); 389 return sops->sem_num; 390 } else { 391 /* 392 * Not a false alarm, thus continue to use the global lock 393 * mode. No need for complexmode_enter(), this was done by 394 * the caller that has set use_global_mode to non-zero. 395 */ 396 return SEM_GLOBAL_LOCK; 397 } 398 } 399 400 static inline void sem_unlock(struct sem_array *sma, int locknum) 401 { 402 if (locknum == SEM_GLOBAL_LOCK) { 403 unmerge_queues(sma); 404 complexmode_tryleave(sma); 405 ipc_unlock_object(&sma->sem_perm); 406 } else { 407 struct sem *sem = &sma->sems[locknum]; 408 spin_unlock(&sem->lock); 409 } 410 } 411 412 /* 413 * sem_lock_(check_) routines are called in the paths where the rwsem 414 * is not held. 415 * 416 * The caller holds the RCU read lock. 417 */ 418 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id) 419 { 420 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); 421 422 if (IS_ERR(ipcp)) 423 return ERR_CAST(ipcp); 424 425 return container_of(ipcp, struct sem_array, sem_perm); 426 } 427 428 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, 429 int id) 430 { 431 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id); 432 433 if (IS_ERR(ipcp)) 434 return ERR_CAST(ipcp); 435 436 return container_of(ipcp, struct sem_array, sem_perm); 437 } 438 439 static inline void sem_lock_and_putref(struct sem_array *sma) 440 { 441 sem_lock(sma, NULL, -1); 442 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 443 } 444 445 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) 446 { 447 ipc_rmid(&sem_ids(ns), &s->sem_perm); 448 } 449 450 static struct sem_array *sem_alloc(size_t nsems) 451 { 452 struct sem_array *sma; 453 size_t size; 454 455 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0])) 456 return NULL; 457 458 size = sizeof(*sma) + nsems * sizeof(sma->sems[0]); 459 sma = kvmalloc(size, GFP_KERNEL); 460 if (unlikely(!sma)) 461 return NULL; 462 463 memset(sma, 0, size); 464 465 return sma; 466 } 467 468 /** 469 * newary - Create a new semaphore set 470 * @ns: namespace 471 * @params: ptr to the structure that contains key, semflg and nsems 472 * 473 * Called with sem_ids.rwsem held (as a writer) 474 */ 475 static int newary(struct ipc_namespace *ns, struct ipc_params *params) 476 { 477 int retval; 478 struct sem_array *sma; 479 key_t key = params->key; 480 int nsems = params->u.nsems; 481 int semflg = params->flg; 482 int i; 483 484 if (!nsems) 485 return -EINVAL; 486 if (ns->used_sems + nsems > ns->sc_semmns) 487 return -ENOSPC; 488 489 sma = sem_alloc(nsems); 490 if (!sma) 491 return -ENOMEM; 492 493 sma->sem_perm.mode = (semflg & S_IRWXUGO); 494 sma->sem_perm.key = key; 495 496 sma->sem_perm.security = NULL; 497 retval = security_sem_alloc(sma); 498 if (retval) { 499 kvfree(sma); 500 return retval; 501 } 502 503 for (i = 0; i < nsems; i++) { 504 INIT_LIST_HEAD(&sma->sems[i].pending_alter); 505 INIT_LIST_HEAD(&sma->sems[i].pending_const); 506 spin_lock_init(&sma->sems[i].lock); 507 } 508 509 sma->complex_count = 0; 510 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; 511 INIT_LIST_HEAD(&sma->pending_alter); 512 INIT_LIST_HEAD(&sma->pending_const); 513 INIT_LIST_HEAD(&sma->list_id); 514 sma->sem_nsems = nsems; 515 sma->sem_ctime = ktime_get_real_seconds(); 516 517 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); 518 if (retval < 0) { 519 call_rcu(&sma->sem_perm.rcu, sem_rcu_free); 520 return retval; 521 } 522 ns->used_sems += nsems; 523 524 sem_unlock(sma, -1); 525 rcu_read_unlock(); 526 527 return sma->sem_perm.id; 528 } 529 530 531 /* 532 * Called with sem_ids.rwsem and ipcp locked. 533 */ 534 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg) 535 { 536 struct sem_array *sma; 537 538 sma = container_of(ipcp, struct sem_array, sem_perm); 539 return security_sem_associate(sma, semflg); 540 } 541 542 /* 543 * Called with sem_ids.rwsem and ipcp locked. 544 */ 545 static inline int sem_more_checks(struct kern_ipc_perm *ipcp, 546 struct ipc_params *params) 547 { 548 struct sem_array *sma; 549 550 sma = container_of(ipcp, struct sem_array, sem_perm); 551 if (params->u.nsems > sma->sem_nsems) 552 return -EINVAL; 553 554 return 0; 555 } 556 557 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) 558 { 559 struct ipc_namespace *ns; 560 static const struct ipc_ops sem_ops = { 561 .getnew = newary, 562 .associate = sem_security, 563 .more_checks = sem_more_checks, 564 }; 565 struct ipc_params sem_params; 566 567 ns = current->nsproxy->ipc_ns; 568 569 if (nsems < 0 || nsems > ns->sc_semmsl) 570 return -EINVAL; 571 572 sem_params.key = key; 573 sem_params.flg = semflg; 574 sem_params.u.nsems = nsems; 575 576 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); 577 } 578 579 /** 580 * perform_atomic_semop[_slow] - Attempt to perform semaphore 581 * operations on a given array. 582 * @sma: semaphore array 583 * @q: struct sem_queue that describes the operation 584 * 585 * Caller blocking are as follows, based the value 586 * indicated by the semaphore operation (sem_op): 587 * 588 * (1) >0 never blocks. 589 * (2) 0 (wait-for-zero operation): semval is non-zero. 590 * (3) <0 attempting to decrement semval to a value smaller than zero. 591 * 592 * Returns 0 if the operation was possible. 593 * Returns 1 if the operation is impossible, the caller must sleep. 594 * Returns <0 for error codes. 595 */ 596 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q) 597 { 598 int result, sem_op, nsops, pid; 599 struct sembuf *sop; 600 struct sem *curr; 601 struct sembuf *sops; 602 struct sem_undo *un; 603 604 sops = q->sops; 605 nsops = q->nsops; 606 un = q->undo; 607 608 for (sop = sops; sop < sops + nsops; sop++) { 609 curr = &sma->sems[sop->sem_num]; 610 sem_op = sop->sem_op; 611 result = curr->semval; 612 613 if (!sem_op && result) 614 goto would_block; 615 616 result += sem_op; 617 if (result < 0) 618 goto would_block; 619 if (result > SEMVMX) 620 goto out_of_range; 621 622 if (sop->sem_flg & SEM_UNDO) { 623 int undo = un->semadj[sop->sem_num] - sem_op; 624 /* Exceeding the undo range is an error. */ 625 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 626 goto out_of_range; 627 un->semadj[sop->sem_num] = undo; 628 } 629 630 curr->semval = result; 631 } 632 633 sop--; 634 pid = q->pid; 635 while (sop >= sops) { 636 sma->sems[sop->sem_num].sempid = pid; 637 sop--; 638 } 639 640 return 0; 641 642 out_of_range: 643 result = -ERANGE; 644 goto undo; 645 646 would_block: 647 q->blocking = sop; 648 649 if (sop->sem_flg & IPC_NOWAIT) 650 result = -EAGAIN; 651 else 652 result = 1; 653 654 undo: 655 sop--; 656 while (sop >= sops) { 657 sem_op = sop->sem_op; 658 sma->sems[sop->sem_num].semval -= sem_op; 659 if (sop->sem_flg & SEM_UNDO) 660 un->semadj[sop->sem_num] += sem_op; 661 sop--; 662 } 663 664 return result; 665 } 666 667 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q) 668 { 669 int result, sem_op, nsops; 670 struct sembuf *sop; 671 struct sem *curr; 672 struct sembuf *sops; 673 struct sem_undo *un; 674 675 sops = q->sops; 676 nsops = q->nsops; 677 un = q->undo; 678 679 if (unlikely(q->dupsop)) 680 return perform_atomic_semop_slow(sma, q); 681 682 /* 683 * We scan the semaphore set twice, first to ensure that the entire 684 * operation can succeed, therefore avoiding any pointless writes 685 * to shared memory and having to undo such changes in order to block 686 * until the operations can go through. 687 */ 688 for (sop = sops; sop < sops + nsops; sop++) { 689 curr = &sma->sems[sop->sem_num]; 690 sem_op = sop->sem_op; 691 result = curr->semval; 692 693 if (!sem_op && result) 694 goto would_block; /* wait-for-zero */ 695 696 result += sem_op; 697 if (result < 0) 698 goto would_block; 699 700 if (result > SEMVMX) 701 return -ERANGE; 702 703 if (sop->sem_flg & SEM_UNDO) { 704 int undo = un->semadj[sop->sem_num] - sem_op; 705 706 /* Exceeding the undo range is an error. */ 707 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 708 return -ERANGE; 709 } 710 } 711 712 for (sop = sops; sop < sops + nsops; sop++) { 713 curr = &sma->sems[sop->sem_num]; 714 sem_op = sop->sem_op; 715 result = curr->semval; 716 717 if (sop->sem_flg & SEM_UNDO) { 718 int undo = un->semadj[sop->sem_num] - sem_op; 719 720 un->semadj[sop->sem_num] = undo; 721 } 722 curr->semval += sem_op; 723 curr->sempid = q->pid; 724 } 725 726 return 0; 727 728 would_block: 729 q->blocking = sop; 730 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1; 731 } 732 733 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error, 734 struct wake_q_head *wake_q) 735 { 736 wake_q_add(wake_q, q->sleeper); 737 /* 738 * Rely on the above implicit barrier, such that we can 739 * ensure that we hold reference to the task before setting 740 * q->status. Otherwise we could race with do_exit if the 741 * task is awoken by an external event before calling 742 * wake_up_process(). 743 */ 744 WRITE_ONCE(q->status, error); 745 } 746 747 static void unlink_queue(struct sem_array *sma, struct sem_queue *q) 748 { 749 list_del(&q->list); 750 if (q->nsops > 1) 751 sma->complex_count--; 752 } 753 754 /** check_restart(sma, q) 755 * @sma: semaphore array 756 * @q: the operation that just completed 757 * 758 * update_queue is O(N^2) when it restarts scanning the whole queue of 759 * waiting operations. Therefore this function checks if the restart is 760 * really necessary. It is called after a previously waiting operation 761 * modified the array. 762 * Note that wait-for-zero operations are handled without restart. 763 */ 764 static inline int check_restart(struct sem_array *sma, struct sem_queue *q) 765 { 766 /* pending complex alter operations are too difficult to analyse */ 767 if (!list_empty(&sma->pending_alter)) 768 return 1; 769 770 /* we were a sleeping complex operation. Too difficult */ 771 if (q->nsops > 1) 772 return 1; 773 774 /* It is impossible that someone waits for the new value: 775 * - complex operations always restart. 776 * - wait-for-zero are handled seperately. 777 * - q is a previously sleeping simple operation that 778 * altered the array. It must be a decrement, because 779 * simple increments never sleep. 780 * - If there are older (higher priority) decrements 781 * in the queue, then they have observed the original 782 * semval value and couldn't proceed. The operation 783 * decremented to value - thus they won't proceed either. 784 */ 785 return 0; 786 } 787 788 /** 789 * wake_const_ops - wake up non-alter tasks 790 * @sma: semaphore array. 791 * @semnum: semaphore that was modified. 792 * @wake_q: lockless wake-queue head. 793 * 794 * wake_const_ops must be called after a semaphore in a semaphore array 795 * was set to 0. If complex const operations are pending, wake_const_ops must 796 * be called with semnum = -1, as well as with the number of each modified 797 * semaphore. 798 * The tasks that must be woken up are added to @wake_q. The return code 799 * is stored in q->pid. 800 * The function returns 1 if at least one operation was completed successfully. 801 */ 802 static int wake_const_ops(struct sem_array *sma, int semnum, 803 struct wake_q_head *wake_q) 804 { 805 struct sem_queue *q, *tmp; 806 struct list_head *pending_list; 807 int semop_completed = 0; 808 809 if (semnum == -1) 810 pending_list = &sma->pending_const; 811 else 812 pending_list = &sma->sems[semnum].pending_const; 813 814 list_for_each_entry_safe(q, tmp, pending_list, list) { 815 int error = perform_atomic_semop(sma, q); 816 817 if (error > 0) 818 continue; 819 /* operation completed, remove from queue & wakeup */ 820 unlink_queue(sma, q); 821 822 wake_up_sem_queue_prepare(q, error, wake_q); 823 if (error == 0) 824 semop_completed = 1; 825 } 826 827 return semop_completed; 828 } 829 830 /** 831 * do_smart_wakeup_zero - wakeup all wait for zero tasks 832 * @sma: semaphore array 833 * @sops: operations that were performed 834 * @nsops: number of operations 835 * @wake_q: lockless wake-queue head 836 * 837 * Checks all required queue for wait-for-zero operations, based 838 * on the actual changes that were performed on the semaphore array. 839 * The function returns 1 if at least one operation was completed successfully. 840 */ 841 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops, 842 int nsops, struct wake_q_head *wake_q) 843 { 844 int i; 845 int semop_completed = 0; 846 int got_zero = 0; 847 848 /* first: the per-semaphore queues, if known */ 849 if (sops) { 850 for (i = 0; i < nsops; i++) { 851 int num = sops[i].sem_num; 852 853 if (sma->sems[num].semval == 0) { 854 got_zero = 1; 855 semop_completed |= wake_const_ops(sma, num, wake_q); 856 } 857 } 858 } else { 859 /* 860 * No sops means modified semaphores not known. 861 * Assume all were changed. 862 */ 863 for (i = 0; i < sma->sem_nsems; i++) { 864 if (sma->sems[i].semval == 0) { 865 got_zero = 1; 866 semop_completed |= wake_const_ops(sma, i, wake_q); 867 } 868 } 869 } 870 /* 871 * If one of the modified semaphores got 0, 872 * then check the global queue, too. 873 */ 874 if (got_zero) 875 semop_completed |= wake_const_ops(sma, -1, wake_q); 876 877 return semop_completed; 878 } 879 880 881 /** 882 * update_queue - look for tasks that can be completed. 883 * @sma: semaphore array. 884 * @semnum: semaphore that was modified. 885 * @wake_q: lockless wake-queue head. 886 * 887 * update_queue must be called after a semaphore in a semaphore array 888 * was modified. If multiple semaphores were modified, update_queue must 889 * be called with semnum = -1, as well as with the number of each modified 890 * semaphore. 891 * The tasks that must be woken up are added to @wake_q. The return code 892 * is stored in q->pid. 893 * The function internally checks if const operations can now succeed. 894 * 895 * The function return 1 if at least one semop was completed successfully. 896 */ 897 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q) 898 { 899 struct sem_queue *q, *tmp; 900 struct list_head *pending_list; 901 int semop_completed = 0; 902 903 if (semnum == -1) 904 pending_list = &sma->pending_alter; 905 else 906 pending_list = &sma->sems[semnum].pending_alter; 907 908 again: 909 list_for_each_entry_safe(q, tmp, pending_list, list) { 910 int error, restart; 911 912 /* If we are scanning the single sop, per-semaphore list of 913 * one semaphore and that semaphore is 0, then it is not 914 * necessary to scan further: simple increments 915 * that affect only one entry succeed immediately and cannot 916 * be in the per semaphore pending queue, and decrements 917 * cannot be successful if the value is already 0. 918 */ 919 if (semnum != -1 && sma->sems[semnum].semval == 0) 920 break; 921 922 error = perform_atomic_semop(sma, q); 923 924 /* Does q->sleeper still need to sleep? */ 925 if (error > 0) 926 continue; 927 928 unlink_queue(sma, q); 929 930 if (error) { 931 restart = 0; 932 } else { 933 semop_completed = 1; 934 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q); 935 restart = check_restart(sma, q); 936 } 937 938 wake_up_sem_queue_prepare(q, error, wake_q); 939 if (restart) 940 goto again; 941 } 942 return semop_completed; 943 } 944 945 /** 946 * set_semotime - set sem_otime 947 * @sma: semaphore array 948 * @sops: operations that modified the array, may be NULL 949 * 950 * sem_otime is replicated to avoid cache line trashing. 951 * This function sets one instance to the current time. 952 */ 953 static void set_semotime(struct sem_array *sma, struct sembuf *sops) 954 { 955 if (sops == NULL) { 956 sma->sems[0].sem_otime = get_seconds(); 957 } else { 958 sma->sems[sops[0].sem_num].sem_otime = 959 get_seconds(); 960 } 961 } 962 963 /** 964 * do_smart_update - optimized update_queue 965 * @sma: semaphore array 966 * @sops: operations that were performed 967 * @nsops: number of operations 968 * @otime: force setting otime 969 * @wake_q: lockless wake-queue head 970 * 971 * do_smart_update() does the required calls to update_queue and wakeup_zero, 972 * based on the actual changes that were performed on the semaphore array. 973 * Note that the function does not do the actual wake-up: the caller is 974 * responsible for calling wake_up_q(). 975 * It is safe to perform this call after dropping all locks. 976 */ 977 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, 978 int otime, struct wake_q_head *wake_q) 979 { 980 int i; 981 982 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q); 983 984 if (!list_empty(&sma->pending_alter)) { 985 /* semaphore array uses the global queue - just process it. */ 986 otime |= update_queue(sma, -1, wake_q); 987 } else { 988 if (!sops) { 989 /* 990 * No sops, thus the modified semaphores are not 991 * known. Check all. 992 */ 993 for (i = 0; i < sma->sem_nsems; i++) 994 otime |= update_queue(sma, i, wake_q); 995 } else { 996 /* 997 * Check the semaphores that were increased: 998 * - No complex ops, thus all sleeping ops are 999 * decrease. 1000 * - if we decreased the value, then any sleeping 1001 * semaphore ops wont be able to run: If the 1002 * previous value was too small, then the new 1003 * value will be too small, too. 1004 */ 1005 for (i = 0; i < nsops; i++) { 1006 if (sops[i].sem_op > 0) { 1007 otime |= update_queue(sma, 1008 sops[i].sem_num, wake_q); 1009 } 1010 } 1011 } 1012 } 1013 if (otime) 1014 set_semotime(sma, sops); 1015 } 1016 1017 /* 1018 * check_qop: Test if a queued operation sleeps on the semaphore semnum 1019 */ 1020 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q, 1021 bool count_zero) 1022 { 1023 struct sembuf *sop = q->blocking; 1024 1025 /* 1026 * Linux always (since 0.99.10) reported a task as sleeping on all 1027 * semaphores. This violates SUS, therefore it was changed to the 1028 * standard compliant behavior. 1029 * Give the administrators a chance to notice that an application 1030 * might misbehave because it relies on the Linux behavior. 1031 */ 1032 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n" 1033 "The task %s (%d) triggered the difference, watch for misbehavior.\n", 1034 current->comm, task_pid_nr(current)); 1035 1036 if (sop->sem_num != semnum) 1037 return 0; 1038 1039 if (count_zero && sop->sem_op == 0) 1040 return 1; 1041 if (!count_zero && sop->sem_op < 0) 1042 return 1; 1043 1044 return 0; 1045 } 1046 1047 /* The following counts are associated to each semaphore: 1048 * semncnt number of tasks waiting on semval being nonzero 1049 * semzcnt number of tasks waiting on semval being zero 1050 * 1051 * Per definition, a task waits only on the semaphore of the first semop 1052 * that cannot proceed, even if additional operation would block, too. 1053 */ 1054 static int count_semcnt(struct sem_array *sma, ushort semnum, 1055 bool count_zero) 1056 { 1057 struct list_head *l; 1058 struct sem_queue *q; 1059 int semcnt; 1060 1061 semcnt = 0; 1062 /* First: check the simple operations. They are easy to evaluate */ 1063 if (count_zero) 1064 l = &sma->sems[semnum].pending_const; 1065 else 1066 l = &sma->sems[semnum].pending_alter; 1067 1068 list_for_each_entry(q, l, list) { 1069 /* all task on a per-semaphore list sleep on exactly 1070 * that semaphore 1071 */ 1072 semcnt++; 1073 } 1074 1075 /* Then: check the complex operations. */ 1076 list_for_each_entry(q, &sma->pending_alter, list) { 1077 semcnt += check_qop(sma, semnum, q, count_zero); 1078 } 1079 if (count_zero) { 1080 list_for_each_entry(q, &sma->pending_const, list) { 1081 semcnt += check_qop(sma, semnum, q, count_zero); 1082 } 1083 } 1084 return semcnt; 1085 } 1086 1087 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked 1088 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem 1089 * remains locked on exit. 1090 */ 1091 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) 1092 { 1093 struct sem_undo *un, *tu; 1094 struct sem_queue *q, *tq; 1095 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 1096 int i; 1097 DEFINE_WAKE_Q(wake_q); 1098 1099 /* Free the existing undo structures for this semaphore set. */ 1100 ipc_assert_locked_object(&sma->sem_perm); 1101 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { 1102 list_del(&un->list_id); 1103 spin_lock(&un->ulp->lock); 1104 un->semid = -1; 1105 list_del_rcu(&un->list_proc); 1106 spin_unlock(&un->ulp->lock); 1107 kfree_rcu(un, rcu); 1108 } 1109 1110 /* Wake up all pending processes and let them fail with EIDRM. */ 1111 list_for_each_entry_safe(q, tq, &sma->pending_const, list) { 1112 unlink_queue(sma, q); 1113 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1114 } 1115 1116 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 1117 unlink_queue(sma, q); 1118 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1119 } 1120 for (i = 0; i < sma->sem_nsems; i++) { 1121 struct sem *sem = &sma->sems[i]; 1122 list_for_each_entry_safe(q, tq, &sem->pending_const, list) { 1123 unlink_queue(sma, q); 1124 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1125 } 1126 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) { 1127 unlink_queue(sma, q); 1128 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1129 } 1130 } 1131 1132 /* Remove the semaphore set from the IDR */ 1133 sem_rmid(ns, sma); 1134 sem_unlock(sma, -1); 1135 rcu_read_unlock(); 1136 1137 wake_up_q(&wake_q); 1138 ns->used_sems -= sma->sem_nsems; 1139 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1140 } 1141 1142 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) 1143 { 1144 switch (version) { 1145 case IPC_64: 1146 return copy_to_user(buf, in, sizeof(*in)); 1147 case IPC_OLD: 1148 { 1149 struct semid_ds out; 1150 1151 memset(&out, 0, sizeof(out)); 1152 1153 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); 1154 1155 out.sem_otime = in->sem_otime; 1156 out.sem_ctime = in->sem_ctime; 1157 out.sem_nsems = in->sem_nsems; 1158 1159 return copy_to_user(buf, &out, sizeof(out)); 1160 } 1161 default: 1162 return -EINVAL; 1163 } 1164 } 1165 1166 static time64_t get_semotime(struct sem_array *sma) 1167 { 1168 int i; 1169 time64_t res; 1170 1171 res = sma->sems[0].sem_otime; 1172 for (i = 1; i < sma->sem_nsems; i++) { 1173 time64_t to = sma->sems[i].sem_otime; 1174 1175 if (to > res) 1176 res = to; 1177 } 1178 return res; 1179 } 1180 1181 static int semctl_stat(struct ipc_namespace *ns, int semid, 1182 int cmd, struct semid64_ds *semid64) 1183 { 1184 struct sem_array *sma; 1185 int id = 0; 1186 int err; 1187 1188 memset(semid64, 0, sizeof(*semid64)); 1189 1190 rcu_read_lock(); 1191 if (cmd == SEM_STAT) { 1192 sma = sem_obtain_object(ns, semid); 1193 if (IS_ERR(sma)) { 1194 err = PTR_ERR(sma); 1195 goto out_unlock; 1196 } 1197 id = sma->sem_perm.id; 1198 } else { 1199 sma = sem_obtain_object_check(ns, semid); 1200 if (IS_ERR(sma)) { 1201 err = PTR_ERR(sma); 1202 goto out_unlock; 1203 } 1204 } 1205 1206 err = -EACCES; 1207 if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) 1208 goto out_unlock; 1209 1210 err = security_sem_semctl(sma, cmd); 1211 if (err) 1212 goto out_unlock; 1213 1214 kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm); 1215 semid64->sem_otime = get_semotime(sma); 1216 semid64->sem_ctime = sma->sem_ctime; 1217 semid64->sem_nsems = sma->sem_nsems; 1218 rcu_read_unlock(); 1219 return id; 1220 1221 out_unlock: 1222 rcu_read_unlock(); 1223 return err; 1224 } 1225 1226 static int semctl_info(struct ipc_namespace *ns, int semid, 1227 int cmd, void __user *p) 1228 { 1229 struct seminfo seminfo; 1230 int max_id; 1231 int err; 1232 1233 err = security_sem_semctl(NULL, cmd); 1234 if (err) 1235 return err; 1236 1237 memset(&seminfo, 0, sizeof(seminfo)); 1238 seminfo.semmni = ns->sc_semmni; 1239 seminfo.semmns = ns->sc_semmns; 1240 seminfo.semmsl = ns->sc_semmsl; 1241 seminfo.semopm = ns->sc_semopm; 1242 seminfo.semvmx = SEMVMX; 1243 seminfo.semmnu = SEMMNU; 1244 seminfo.semmap = SEMMAP; 1245 seminfo.semume = SEMUME; 1246 down_read(&sem_ids(ns).rwsem); 1247 if (cmd == SEM_INFO) { 1248 seminfo.semusz = sem_ids(ns).in_use; 1249 seminfo.semaem = ns->used_sems; 1250 } else { 1251 seminfo.semusz = SEMUSZ; 1252 seminfo.semaem = SEMAEM; 1253 } 1254 max_id = ipc_get_maxid(&sem_ids(ns)); 1255 up_read(&sem_ids(ns).rwsem); 1256 if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) 1257 return -EFAULT; 1258 return (max_id < 0) ? 0 : max_id; 1259 } 1260 1261 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, 1262 int val) 1263 { 1264 struct sem_undo *un; 1265 struct sem_array *sma; 1266 struct sem *curr; 1267 int err; 1268 DEFINE_WAKE_Q(wake_q); 1269 1270 if (val > SEMVMX || val < 0) 1271 return -ERANGE; 1272 1273 rcu_read_lock(); 1274 sma = sem_obtain_object_check(ns, semid); 1275 if (IS_ERR(sma)) { 1276 rcu_read_unlock(); 1277 return PTR_ERR(sma); 1278 } 1279 1280 if (semnum < 0 || semnum >= sma->sem_nsems) { 1281 rcu_read_unlock(); 1282 return -EINVAL; 1283 } 1284 1285 1286 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) { 1287 rcu_read_unlock(); 1288 return -EACCES; 1289 } 1290 1291 err = security_sem_semctl(sma, SETVAL); 1292 if (err) { 1293 rcu_read_unlock(); 1294 return -EACCES; 1295 } 1296 1297 sem_lock(sma, NULL, -1); 1298 1299 if (!ipc_valid_object(&sma->sem_perm)) { 1300 sem_unlock(sma, -1); 1301 rcu_read_unlock(); 1302 return -EIDRM; 1303 } 1304 1305 curr = &sma->sems[semnum]; 1306 1307 ipc_assert_locked_object(&sma->sem_perm); 1308 list_for_each_entry(un, &sma->list_id, list_id) 1309 un->semadj[semnum] = 0; 1310 1311 curr->semval = val; 1312 curr->sempid = task_tgid_vnr(current); 1313 sma->sem_ctime = ktime_get_real_seconds(); 1314 /* maybe some queued-up processes were waiting for this */ 1315 do_smart_update(sma, NULL, 0, 0, &wake_q); 1316 sem_unlock(sma, -1); 1317 rcu_read_unlock(); 1318 wake_up_q(&wake_q); 1319 return 0; 1320 } 1321 1322 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, 1323 int cmd, void __user *p) 1324 { 1325 struct sem_array *sma; 1326 struct sem *curr; 1327 int err, nsems; 1328 ushort fast_sem_io[SEMMSL_FAST]; 1329 ushort *sem_io = fast_sem_io; 1330 DEFINE_WAKE_Q(wake_q); 1331 1332 rcu_read_lock(); 1333 sma = sem_obtain_object_check(ns, semid); 1334 if (IS_ERR(sma)) { 1335 rcu_read_unlock(); 1336 return PTR_ERR(sma); 1337 } 1338 1339 nsems = sma->sem_nsems; 1340 1341 err = -EACCES; 1342 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO)) 1343 goto out_rcu_wakeup; 1344 1345 err = security_sem_semctl(sma, cmd); 1346 if (err) 1347 goto out_rcu_wakeup; 1348 1349 err = -EACCES; 1350 switch (cmd) { 1351 case GETALL: 1352 { 1353 ushort __user *array = p; 1354 int i; 1355 1356 sem_lock(sma, NULL, -1); 1357 if (!ipc_valid_object(&sma->sem_perm)) { 1358 err = -EIDRM; 1359 goto out_unlock; 1360 } 1361 if (nsems > SEMMSL_FAST) { 1362 if (!ipc_rcu_getref(&sma->sem_perm)) { 1363 err = -EIDRM; 1364 goto out_unlock; 1365 } 1366 sem_unlock(sma, -1); 1367 rcu_read_unlock(); 1368 sem_io = kvmalloc_array(nsems, sizeof(ushort), 1369 GFP_KERNEL); 1370 if (sem_io == NULL) { 1371 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1372 return -ENOMEM; 1373 } 1374 1375 rcu_read_lock(); 1376 sem_lock_and_putref(sma); 1377 if (!ipc_valid_object(&sma->sem_perm)) { 1378 err = -EIDRM; 1379 goto out_unlock; 1380 } 1381 } 1382 for (i = 0; i < sma->sem_nsems; i++) 1383 sem_io[i] = sma->sems[i].semval; 1384 sem_unlock(sma, -1); 1385 rcu_read_unlock(); 1386 err = 0; 1387 if (copy_to_user(array, sem_io, nsems*sizeof(ushort))) 1388 err = -EFAULT; 1389 goto out_free; 1390 } 1391 case SETALL: 1392 { 1393 int i; 1394 struct sem_undo *un; 1395 1396 if (!ipc_rcu_getref(&sma->sem_perm)) { 1397 err = -EIDRM; 1398 goto out_rcu_wakeup; 1399 } 1400 rcu_read_unlock(); 1401 1402 if (nsems > SEMMSL_FAST) { 1403 sem_io = kvmalloc_array(nsems, sizeof(ushort), 1404 GFP_KERNEL); 1405 if (sem_io == NULL) { 1406 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1407 return -ENOMEM; 1408 } 1409 } 1410 1411 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) { 1412 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1413 err = -EFAULT; 1414 goto out_free; 1415 } 1416 1417 for (i = 0; i < nsems; i++) { 1418 if (sem_io[i] > SEMVMX) { 1419 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1420 err = -ERANGE; 1421 goto out_free; 1422 } 1423 } 1424 rcu_read_lock(); 1425 sem_lock_and_putref(sma); 1426 if (!ipc_valid_object(&sma->sem_perm)) { 1427 err = -EIDRM; 1428 goto out_unlock; 1429 } 1430 1431 for (i = 0; i < nsems; i++) { 1432 sma->sems[i].semval = sem_io[i]; 1433 sma->sems[i].sempid = task_tgid_vnr(current); 1434 } 1435 1436 ipc_assert_locked_object(&sma->sem_perm); 1437 list_for_each_entry(un, &sma->list_id, list_id) { 1438 for (i = 0; i < nsems; i++) 1439 un->semadj[i] = 0; 1440 } 1441 sma->sem_ctime = ktime_get_real_seconds(); 1442 /* maybe some queued-up processes were waiting for this */ 1443 do_smart_update(sma, NULL, 0, 0, &wake_q); 1444 err = 0; 1445 goto out_unlock; 1446 } 1447 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */ 1448 } 1449 err = -EINVAL; 1450 if (semnum < 0 || semnum >= nsems) 1451 goto out_rcu_wakeup; 1452 1453 sem_lock(sma, NULL, -1); 1454 if (!ipc_valid_object(&sma->sem_perm)) { 1455 err = -EIDRM; 1456 goto out_unlock; 1457 } 1458 curr = &sma->sems[semnum]; 1459 1460 switch (cmd) { 1461 case GETVAL: 1462 err = curr->semval; 1463 goto out_unlock; 1464 case GETPID: 1465 err = curr->sempid; 1466 goto out_unlock; 1467 case GETNCNT: 1468 err = count_semcnt(sma, semnum, 0); 1469 goto out_unlock; 1470 case GETZCNT: 1471 err = count_semcnt(sma, semnum, 1); 1472 goto out_unlock; 1473 } 1474 1475 out_unlock: 1476 sem_unlock(sma, -1); 1477 out_rcu_wakeup: 1478 rcu_read_unlock(); 1479 wake_up_q(&wake_q); 1480 out_free: 1481 if (sem_io != fast_sem_io) 1482 kvfree(sem_io); 1483 return err; 1484 } 1485 1486 static inline unsigned long 1487 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) 1488 { 1489 switch (version) { 1490 case IPC_64: 1491 if (copy_from_user(out, buf, sizeof(*out))) 1492 return -EFAULT; 1493 return 0; 1494 case IPC_OLD: 1495 { 1496 struct semid_ds tbuf_old; 1497 1498 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) 1499 return -EFAULT; 1500 1501 out->sem_perm.uid = tbuf_old.sem_perm.uid; 1502 out->sem_perm.gid = tbuf_old.sem_perm.gid; 1503 out->sem_perm.mode = tbuf_old.sem_perm.mode; 1504 1505 return 0; 1506 } 1507 default: 1508 return -EINVAL; 1509 } 1510 } 1511 1512 /* 1513 * This function handles some semctl commands which require the rwsem 1514 * to be held in write mode. 1515 * NOTE: no locks must be held, the rwsem is taken inside this function. 1516 */ 1517 static int semctl_down(struct ipc_namespace *ns, int semid, 1518 int cmd, struct semid64_ds *semid64) 1519 { 1520 struct sem_array *sma; 1521 int err; 1522 struct kern_ipc_perm *ipcp; 1523 1524 down_write(&sem_ids(ns).rwsem); 1525 rcu_read_lock(); 1526 1527 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd, 1528 &semid64->sem_perm, 0); 1529 if (IS_ERR(ipcp)) { 1530 err = PTR_ERR(ipcp); 1531 goto out_unlock1; 1532 } 1533 1534 sma = container_of(ipcp, struct sem_array, sem_perm); 1535 1536 err = security_sem_semctl(sma, cmd); 1537 if (err) 1538 goto out_unlock1; 1539 1540 switch (cmd) { 1541 case IPC_RMID: 1542 sem_lock(sma, NULL, -1); 1543 /* freeary unlocks the ipc object and rcu */ 1544 freeary(ns, ipcp); 1545 goto out_up; 1546 case IPC_SET: 1547 sem_lock(sma, NULL, -1); 1548 err = ipc_update_perm(&semid64->sem_perm, ipcp); 1549 if (err) 1550 goto out_unlock0; 1551 sma->sem_ctime = ktime_get_real_seconds(); 1552 break; 1553 default: 1554 err = -EINVAL; 1555 goto out_unlock1; 1556 } 1557 1558 out_unlock0: 1559 sem_unlock(sma, -1); 1560 out_unlock1: 1561 rcu_read_unlock(); 1562 out_up: 1563 up_write(&sem_ids(ns).rwsem); 1564 return err; 1565 } 1566 1567 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) 1568 { 1569 int version; 1570 struct ipc_namespace *ns; 1571 void __user *p = (void __user *)arg; 1572 struct semid64_ds semid64; 1573 int err; 1574 1575 if (semid < 0) 1576 return -EINVAL; 1577 1578 version = ipc_parse_version(&cmd); 1579 ns = current->nsproxy->ipc_ns; 1580 1581 switch (cmd) { 1582 case IPC_INFO: 1583 case SEM_INFO: 1584 return semctl_info(ns, semid, cmd, p); 1585 case IPC_STAT: 1586 case SEM_STAT: 1587 err = semctl_stat(ns, semid, cmd, &semid64); 1588 if (err < 0) 1589 return err; 1590 if (copy_semid_to_user(p, &semid64, version)) 1591 err = -EFAULT; 1592 return err; 1593 case GETALL: 1594 case GETVAL: 1595 case GETPID: 1596 case GETNCNT: 1597 case GETZCNT: 1598 case SETALL: 1599 return semctl_main(ns, semid, semnum, cmd, p); 1600 case SETVAL: { 1601 int val; 1602 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) 1603 /* big-endian 64bit */ 1604 val = arg >> 32; 1605 #else 1606 /* 32bit or little-endian 64bit */ 1607 val = arg; 1608 #endif 1609 return semctl_setval(ns, semid, semnum, val); 1610 } 1611 case IPC_SET: 1612 if (copy_semid_from_user(&semid64, p, version)) 1613 return -EFAULT; 1614 case IPC_RMID: 1615 return semctl_down(ns, semid, cmd, &semid64); 1616 default: 1617 return -EINVAL; 1618 } 1619 } 1620 1621 #ifdef CONFIG_COMPAT 1622 1623 struct compat_semid_ds { 1624 struct compat_ipc_perm sem_perm; 1625 compat_time_t sem_otime; 1626 compat_time_t sem_ctime; 1627 compat_uptr_t sem_base; 1628 compat_uptr_t sem_pending; 1629 compat_uptr_t sem_pending_last; 1630 compat_uptr_t undo; 1631 unsigned short sem_nsems; 1632 }; 1633 1634 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf, 1635 int version) 1636 { 1637 memset(out, 0, sizeof(*out)); 1638 if (version == IPC_64) { 1639 struct compat_semid64_ds *p = buf; 1640 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm); 1641 } else { 1642 struct compat_semid_ds *p = buf; 1643 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm); 1644 } 1645 } 1646 1647 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in, 1648 int version) 1649 { 1650 if (version == IPC_64) { 1651 struct compat_semid64_ds v; 1652 memset(&v, 0, sizeof(v)); 1653 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm); 1654 v.sem_otime = in->sem_otime; 1655 v.sem_ctime = in->sem_ctime; 1656 v.sem_nsems = in->sem_nsems; 1657 return copy_to_user(buf, &v, sizeof(v)); 1658 } else { 1659 struct compat_semid_ds v; 1660 memset(&v, 0, sizeof(v)); 1661 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm); 1662 v.sem_otime = in->sem_otime; 1663 v.sem_ctime = in->sem_ctime; 1664 v.sem_nsems = in->sem_nsems; 1665 return copy_to_user(buf, &v, sizeof(v)); 1666 } 1667 } 1668 1669 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg) 1670 { 1671 void __user *p = compat_ptr(arg); 1672 struct ipc_namespace *ns; 1673 struct semid64_ds semid64; 1674 int version = compat_ipc_parse_version(&cmd); 1675 int err; 1676 1677 ns = current->nsproxy->ipc_ns; 1678 1679 if (semid < 0) 1680 return -EINVAL; 1681 1682 switch (cmd & (~IPC_64)) { 1683 case IPC_INFO: 1684 case SEM_INFO: 1685 return semctl_info(ns, semid, cmd, p); 1686 case IPC_STAT: 1687 case SEM_STAT: 1688 err = semctl_stat(ns, semid, cmd, &semid64); 1689 if (err < 0) 1690 return err; 1691 if (copy_compat_semid_to_user(p, &semid64, version)) 1692 err = -EFAULT; 1693 return err; 1694 case GETVAL: 1695 case GETPID: 1696 case GETNCNT: 1697 case GETZCNT: 1698 case GETALL: 1699 case SETALL: 1700 return semctl_main(ns, semid, semnum, cmd, p); 1701 case SETVAL: 1702 return semctl_setval(ns, semid, semnum, arg); 1703 case IPC_SET: 1704 if (copy_compat_semid_from_user(&semid64, p, version)) 1705 return -EFAULT; 1706 /* fallthru */ 1707 case IPC_RMID: 1708 return semctl_down(ns, semid, cmd, &semid64); 1709 default: 1710 return -EINVAL; 1711 } 1712 } 1713 #endif 1714 1715 /* If the task doesn't already have a undo_list, then allocate one 1716 * here. We guarantee there is only one thread using this undo list, 1717 * and current is THE ONE 1718 * 1719 * If this allocation and assignment succeeds, but later 1720 * portions of this code fail, there is no need to free the sem_undo_list. 1721 * Just let it stay associated with the task, and it'll be freed later 1722 * at exit time. 1723 * 1724 * This can block, so callers must hold no locks. 1725 */ 1726 static inline int get_undo_list(struct sem_undo_list **undo_listp) 1727 { 1728 struct sem_undo_list *undo_list; 1729 1730 undo_list = current->sysvsem.undo_list; 1731 if (!undo_list) { 1732 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); 1733 if (undo_list == NULL) 1734 return -ENOMEM; 1735 spin_lock_init(&undo_list->lock); 1736 refcount_set(&undo_list->refcnt, 1); 1737 INIT_LIST_HEAD(&undo_list->list_proc); 1738 1739 current->sysvsem.undo_list = undo_list; 1740 } 1741 *undo_listp = undo_list; 1742 return 0; 1743 } 1744 1745 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) 1746 { 1747 struct sem_undo *un; 1748 1749 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) { 1750 if (un->semid == semid) 1751 return un; 1752 } 1753 return NULL; 1754 } 1755 1756 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) 1757 { 1758 struct sem_undo *un; 1759 1760 assert_spin_locked(&ulp->lock); 1761 1762 un = __lookup_undo(ulp, semid); 1763 if (un) { 1764 list_del_rcu(&un->list_proc); 1765 list_add_rcu(&un->list_proc, &ulp->list_proc); 1766 } 1767 return un; 1768 } 1769 1770 /** 1771 * find_alloc_undo - lookup (and if not present create) undo array 1772 * @ns: namespace 1773 * @semid: semaphore array id 1774 * 1775 * The function looks up (and if not present creates) the undo structure. 1776 * The size of the undo structure depends on the size of the semaphore 1777 * array, thus the alloc path is not that straightforward. 1778 * Lifetime-rules: sem_undo is rcu-protected, on success, the function 1779 * performs a rcu_read_lock(). 1780 */ 1781 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) 1782 { 1783 struct sem_array *sma; 1784 struct sem_undo_list *ulp; 1785 struct sem_undo *un, *new; 1786 int nsems, error; 1787 1788 error = get_undo_list(&ulp); 1789 if (error) 1790 return ERR_PTR(error); 1791 1792 rcu_read_lock(); 1793 spin_lock(&ulp->lock); 1794 un = lookup_undo(ulp, semid); 1795 spin_unlock(&ulp->lock); 1796 if (likely(un != NULL)) 1797 goto out; 1798 1799 /* no undo structure around - allocate one. */ 1800 /* step 1: figure out the size of the semaphore array */ 1801 sma = sem_obtain_object_check(ns, semid); 1802 if (IS_ERR(sma)) { 1803 rcu_read_unlock(); 1804 return ERR_CAST(sma); 1805 } 1806 1807 nsems = sma->sem_nsems; 1808 if (!ipc_rcu_getref(&sma->sem_perm)) { 1809 rcu_read_unlock(); 1810 un = ERR_PTR(-EIDRM); 1811 goto out; 1812 } 1813 rcu_read_unlock(); 1814 1815 /* step 2: allocate new undo structure */ 1816 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); 1817 if (!new) { 1818 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1819 return ERR_PTR(-ENOMEM); 1820 } 1821 1822 /* step 3: Acquire the lock on semaphore array */ 1823 rcu_read_lock(); 1824 sem_lock_and_putref(sma); 1825 if (!ipc_valid_object(&sma->sem_perm)) { 1826 sem_unlock(sma, -1); 1827 rcu_read_unlock(); 1828 kfree(new); 1829 un = ERR_PTR(-EIDRM); 1830 goto out; 1831 } 1832 spin_lock(&ulp->lock); 1833 1834 /* 1835 * step 4: check for races: did someone else allocate the undo struct? 1836 */ 1837 un = lookup_undo(ulp, semid); 1838 if (un) { 1839 kfree(new); 1840 goto success; 1841 } 1842 /* step 5: initialize & link new undo structure */ 1843 new->semadj = (short *) &new[1]; 1844 new->ulp = ulp; 1845 new->semid = semid; 1846 assert_spin_locked(&ulp->lock); 1847 list_add_rcu(&new->list_proc, &ulp->list_proc); 1848 ipc_assert_locked_object(&sma->sem_perm); 1849 list_add(&new->list_id, &sma->list_id); 1850 un = new; 1851 1852 success: 1853 spin_unlock(&ulp->lock); 1854 sem_unlock(sma, -1); 1855 out: 1856 return un; 1857 } 1858 1859 static long do_semtimedop(int semid, struct sembuf __user *tsops, 1860 unsigned nsops, const struct timespec64 *timeout) 1861 { 1862 int error = -EINVAL; 1863 struct sem_array *sma; 1864 struct sembuf fast_sops[SEMOPM_FAST]; 1865 struct sembuf *sops = fast_sops, *sop; 1866 struct sem_undo *un; 1867 int max, locknum; 1868 bool undos = false, alter = false, dupsop = false; 1869 struct sem_queue queue; 1870 unsigned long dup = 0, jiffies_left = 0; 1871 struct ipc_namespace *ns; 1872 1873 ns = current->nsproxy->ipc_ns; 1874 1875 if (nsops < 1 || semid < 0) 1876 return -EINVAL; 1877 if (nsops > ns->sc_semopm) 1878 return -E2BIG; 1879 if (nsops > SEMOPM_FAST) { 1880 sops = kvmalloc(sizeof(*sops)*nsops, GFP_KERNEL); 1881 if (sops == NULL) 1882 return -ENOMEM; 1883 } 1884 1885 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) { 1886 error = -EFAULT; 1887 goto out_free; 1888 } 1889 1890 if (timeout) { 1891 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 || 1892 timeout->tv_nsec >= 1000000000L) { 1893 error = -EINVAL; 1894 goto out_free; 1895 } 1896 jiffies_left = timespec64_to_jiffies(timeout); 1897 } 1898 1899 max = 0; 1900 for (sop = sops; sop < sops + nsops; sop++) { 1901 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG); 1902 1903 if (sop->sem_num >= max) 1904 max = sop->sem_num; 1905 if (sop->sem_flg & SEM_UNDO) 1906 undos = true; 1907 if (dup & mask) { 1908 /* 1909 * There was a previous alter access that appears 1910 * to have accessed the same semaphore, thus use 1911 * the dupsop logic. "appears", because the detection 1912 * can only check % BITS_PER_LONG. 1913 */ 1914 dupsop = true; 1915 } 1916 if (sop->sem_op != 0) { 1917 alter = true; 1918 dup |= mask; 1919 } 1920 } 1921 1922 if (undos) { 1923 /* On success, find_alloc_undo takes the rcu_read_lock */ 1924 un = find_alloc_undo(ns, semid); 1925 if (IS_ERR(un)) { 1926 error = PTR_ERR(un); 1927 goto out_free; 1928 } 1929 } else { 1930 un = NULL; 1931 rcu_read_lock(); 1932 } 1933 1934 sma = sem_obtain_object_check(ns, semid); 1935 if (IS_ERR(sma)) { 1936 rcu_read_unlock(); 1937 error = PTR_ERR(sma); 1938 goto out_free; 1939 } 1940 1941 error = -EFBIG; 1942 if (max >= sma->sem_nsems) { 1943 rcu_read_unlock(); 1944 goto out_free; 1945 } 1946 1947 error = -EACCES; 1948 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) { 1949 rcu_read_unlock(); 1950 goto out_free; 1951 } 1952 1953 error = security_sem_semop(sma, sops, nsops, alter); 1954 if (error) { 1955 rcu_read_unlock(); 1956 goto out_free; 1957 } 1958 1959 error = -EIDRM; 1960 locknum = sem_lock(sma, sops, nsops); 1961 /* 1962 * We eventually might perform the following check in a lockless 1963 * fashion, considering ipc_valid_object() locking constraints. 1964 * If nsops == 1 and there is no contention for sem_perm.lock, then 1965 * only a per-semaphore lock is held and it's OK to proceed with the 1966 * check below. More details on the fine grained locking scheme 1967 * entangled here and why it's RMID race safe on comments at sem_lock() 1968 */ 1969 if (!ipc_valid_object(&sma->sem_perm)) 1970 goto out_unlock_free; 1971 /* 1972 * semid identifiers are not unique - find_alloc_undo may have 1973 * allocated an undo structure, it was invalidated by an RMID 1974 * and now a new array with received the same id. Check and fail. 1975 * This case can be detected checking un->semid. The existence of 1976 * "un" itself is guaranteed by rcu. 1977 */ 1978 if (un && un->semid == -1) 1979 goto out_unlock_free; 1980 1981 queue.sops = sops; 1982 queue.nsops = nsops; 1983 queue.undo = un; 1984 queue.pid = task_tgid_vnr(current); 1985 queue.alter = alter; 1986 queue.dupsop = dupsop; 1987 1988 error = perform_atomic_semop(sma, &queue); 1989 if (error == 0) { /* non-blocking succesfull path */ 1990 DEFINE_WAKE_Q(wake_q); 1991 1992 /* 1993 * If the operation was successful, then do 1994 * the required updates. 1995 */ 1996 if (alter) 1997 do_smart_update(sma, sops, nsops, 1, &wake_q); 1998 else 1999 set_semotime(sma, sops); 2000 2001 sem_unlock(sma, locknum); 2002 rcu_read_unlock(); 2003 wake_up_q(&wake_q); 2004 2005 goto out_free; 2006 } 2007 if (error < 0) /* non-blocking error path */ 2008 goto out_unlock_free; 2009 2010 /* 2011 * We need to sleep on this operation, so we put the current 2012 * task into the pending queue and go to sleep. 2013 */ 2014 if (nsops == 1) { 2015 struct sem *curr; 2016 curr = &sma->sems[sops->sem_num]; 2017 2018 if (alter) { 2019 if (sma->complex_count) { 2020 list_add_tail(&queue.list, 2021 &sma->pending_alter); 2022 } else { 2023 2024 list_add_tail(&queue.list, 2025 &curr->pending_alter); 2026 } 2027 } else { 2028 list_add_tail(&queue.list, &curr->pending_const); 2029 } 2030 } else { 2031 if (!sma->complex_count) 2032 merge_queues(sma); 2033 2034 if (alter) 2035 list_add_tail(&queue.list, &sma->pending_alter); 2036 else 2037 list_add_tail(&queue.list, &sma->pending_const); 2038 2039 sma->complex_count++; 2040 } 2041 2042 do { 2043 queue.status = -EINTR; 2044 queue.sleeper = current; 2045 2046 __set_current_state(TASK_INTERRUPTIBLE); 2047 sem_unlock(sma, locknum); 2048 rcu_read_unlock(); 2049 2050 if (timeout) 2051 jiffies_left = schedule_timeout(jiffies_left); 2052 else 2053 schedule(); 2054 2055 /* 2056 * fastpath: the semop has completed, either successfully or 2057 * not, from the syscall pov, is quite irrelevant to us at this 2058 * point; we're done. 2059 * 2060 * We _do_ care, nonetheless, about being awoken by a signal or 2061 * spuriously. The queue.status is checked again in the 2062 * slowpath (aka after taking sem_lock), such that we can detect 2063 * scenarios where we were awakened externally, during the 2064 * window between wake_q_add() and wake_up_q(). 2065 */ 2066 error = READ_ONCE(queue.status); 2067 if (error != -EINTR) { 2068 /* 2069 * User space could assume that semop() is a memory 2070 * barrier: Without the mb(), the cpu could 2071 * speculatively read in userspace stale data that was 2072 * overwritten by the previous owner of the semaphore. 2073 */ 2074 smp_mb(); 2075 goto out_free; 2076 } 2077 2078 rcu_read_lock(); 2079 locknum = sem_lock(sma, sops, nsops); 2080 2081 if (!ipc_valid_object(&sma->sem_perm)) 2082 goto out_unlock_free; 2083 2084 error = READ_ONCE(queue.status); 2085 2086 /* 2087 * If queue.status != -EINTR we are woken up by another process. 2088 * Leave without unlink_queue(), but with sem_unlock(). 2089 */ 2090 if (error != -EINTR) 2091 goto out_unlock_free; 2092 2093 /* 2094 * If an interrupt occurred we have to clean up the queue. 2095 */ 2096 if (timeout && jiffies_left == 0) 2097 error = -EAGAIN; 2098 } while (error == -EINTR && !signal_pending(current)); /* spurious */ 2099 2100 unlink_queue(sma, &queue); 2101 2102 out_unlock_free: 2103 sem_unlock(sma, locknum); 2104 rcu_read_unlock(); 2105 out_free: 2106 if (sops != fast_sops) 2107 kvfree(sops); 2108 return error; 2109 } 2110 2111 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, 2112 unsigned, nsops, const struct timespec __user *, timeout) 2113 { 2114 if (timeout) { 2115 struct timespec64 ts; 2116 if (get_timespec64(&ts, timeout)) 2117 return -EFAULT; 2118 return do_semtimedop(semid, tsops, nsops, &ts); 2119 } 2120 return do_semtimedop(semid, tsops, nsops, NULL); 2121 } 2122 2123 #ifdef CONFIG_COMPAT 2124 COMPAT_SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsems, 2125 unsigned, nsops, 2126 const struct compat_timespec __user *, timeout) 2127 { 2128 if (timeout) { 2129 struct timespec64 ts; 2130 if (compat_get_timespec64(&ts, timeout)) 2131 return -EFAULT; 2132 return do_semtimedop(semid, tsems, nsops, &ts); 2133 } 2134 return do_semtimedop(semid, tsems, nsops, NULL); 2135 } 2136 #endif 2137 2138 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, 2139 unsigned, nsops) 2140 { 2141 return do_semtimedop(semid, tsops, nsops, NULL); 2142 } 2143 2144 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between 2145 * parent and child tasks. 2146 */ 2147 2148 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) 2149 { 2150 struct sem_undo_list *undo_list; 2151 int error; 2152 2153 if (clone_flags & CLONE_SYSVSEM) { 2154 error = get_undo_list(&undo_list); 2155 if (error) 2156 return error; 2157 refcount_inc(&undo_list->refcnt); 2158 tsk->sysvsem.undo_list = undo_list; 2159 } else 2160 tsk->sysvsem.undo_list = NULL; 2161 2162 return 0; 2163 } 2164 2165 /* 2166 * add semadj values to semaphores, free undo structures. 2167 * undo structures are not freed when semaphore arrays are destroyed 2168 * so some of them may be out of date. 2169 * IMPLEMENTATION NOTE: There is some confusion over whether the 2170 * set of adjustments that needs to be done should be done in an atomic 2171 * manner or not. That is, if we are attempting to decrement the semval 2172 * should we queue up and wait until we can do so legally? 2173 * The original implementation attempted to do this (queue and wait). 2174 * The current implementation does not do so. The POSIX standard 2175 * and SVID should be consulted to determine what behavior is mandated. 2176 */ 2177 void exit_sem(struct task_struct *tsk) 2178 { 2179 struct sem_undo_list *ulp; 2180 2181 ulp = tsk->sysvsem.undo_list; 2182 if (!ulp) 2183 return; 2184 tsk->sysvsem.undo_list = NULL; 2185 2186 if (!refcount_dec_and_test(&ulp->refcnt)) 2187 return; 2188 2189 for (;;) { 2190 struct sem_array *sma; 2191 struct sem_undo *un; 2192 int semid, i; 2193 DEFINE_WAKE_Q(wake_q); 2194 2195 cond_resched(); 2196 2197 rcu_read_lock(); 2198 un = list_entry_rcu(ulp->list_proc.next, 2199 struct sem_undo, list_proc); 2200 if (&un->list_proc == &ulp->list_proc) { 2201 /* 2202 * We must wait for freeary() before freeing this ulp, 2203 * in case we raced with last sem_undo. There is a small 2204 * possibility where we exit while freeary() didn't 2205 * finish unlocking sem_undo_list. 2206 */ 2207 spin_lock(&ulp->lock); 2208 spin_unlock(&ulp->lock); 2209 rcu_read_unlock(); 2210 break; 2211 } 2212 spin_lock(&ulp->lock); 2213 semid = un->semid; 2214 spin_unlock(&ulp->lock); 2215 2216 /* exit_sem raced with IPC_RMID, nothing to do */ 2217 if (semid == -1) { 2218 rcu_read_unlock(); 2219 continue; 2220 } 2221 2222 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid); 2223 /* exit_sem raced with IPC_RMID, nothing to do */ 2224 if (IS_ERR(sma)) { 2225 rcu_read_unlock(); 2226 continue; 2227 } 2228 2229 sem_lock(sma, NULL, -1); 2230 /* exit_sem raced with IPC_RMID, nothing to do */ 2231 if (!ipc_valid_object(&sma->sem_perm)) { 2232 sem_unlock(sma, -1); 2233 rcu_read_unlock(); 2234 continue; 2235 } 2236 un = __lookup_undo(ulp, semid); 2237 if (un == NULL) { 2238 /* exit_sem raced with IPC_RMID+semget() that created 2239 * exactly the same semid. Nothing to do. 2240 */ 2241 sem_unlock(sma, -1); 2242 rcu_read_unlock(); 2243 continue; 2244 } 2245 2246 /* remove un from the linked lists */ 2247 ipc_assert_locked_object(&sma->sem_perm); 2248 list_del(&un->list_id); 2249 2250 /* we are the last process using this ulp, acquiring ulp->lock 2251 * isn't required. Besides that, we are also protected against 2252 * IPC_RMID as we hold sma->sem_perm lock now 2253 */ 2254 list_del_rcu(&un->list_proc); 2255 2256 /* perform adjustments registered in un */ 2257 for (i = 0; i < sma->sem_nsems; i++) { 2258 struct sem *semaphore = &sma->sems[i]; 2259 if (un->semadj[i]) { 2260 semaphore->semval += un->semadj[i]; 2261 /* 2262 * Range checks of the new semaphore value, 2263 * not defined by sus: 2264 * - Some unices ignore the undo entirely 2265 * (e.g. HP UX 11i 11.22, Tru64 V5.1) 2266 * - some cap the value (e.g. FreeBSD caps 2267 * at 0, but doesn't enforce SEMVMX) 2268 * 2269 * Linux caps the semaphore value, both at 0 2270 * and at SEMVMX. 2271 * 2272 * Manfred <manfred@colorfullife.com> 2273 */ 2274 if (semaphore->semval < 0) 2275 semaphore->semval = 0; 2276 if (semaphore->semval > SEMVMX) 2277 semaphore->semval = SEMVMX; 2278 semaphore->sempid = task_tgid_vnr(current); 2279 } 2280 } 2281 /* maybe some queued-up processes were waiting for this */ 2282 do_smart_update(sma, NULL, 0, 1, &wake_q); 2283 sem_unlock(sma, -1); 2284 rcu_read_unlock(); 2285 wake_up_q(&wake_q); 2286 2287 kfree_rcu(un, rcu); 2288 } 2289 kfree(ulp); 2290 } 2291 2292 #ifdef CONFIG_PROC_FS 2293 static int sysvipc_sem_proc_show(struct seq_file *s, void *it) 2294 { 2295 struct user_namespace *user_ns = seq_user_ns(s); 2296 struct kern_ipc_perm *ipcp = it; 2297 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 2298 time64_t sem_otime; 2299 2300 /* 2301 * The proc interface isn't aware of sem_lock(), it calls 2302 * ipc_lock_object() directly (in sysvipc_find_ipc). 2303 * In order to stay compatible with sem_lock(), we must 2304 * enter / leave complex_mode. 2305 */ 2306 complexmode_enter(sma); 2307 2308 sem_otime = get_semotime(sma); 2309 2310 seq_printf(s, 2311 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n", 2312 sma->sem_perm.key, 2313 sma->sem_perm.id, 2314 sma->sem_perm.mode, 2315 sma->sem_nsems, 2316 from_kuid_munged(user_ns, sma->sem_perm.uid), 2317 from_kgid_munged(user_ns, sma->sem_perm.gid), 2318 from_kuid_munged(user_ns, sma->sem_perm.cuid), 2319 from_kgid_munged(user_ns, sma->sem_perm.cgid), 2320 sem_otime, 2321 sma->sem_ctime); 2322 2323 complexmode_tryleave(sma); 2324 2325 return 0; 2326 } 2327 #endif 2328