1 /* 2 * linux/ipc/sem.c 3 * Copyright (C) 1992 Krishna Balasubramanian 4 * Copyright (C) 1995 Eric Schenk, Bruno Haible 5 * 6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> 7 * 8 * SMP-threaded, sysctl's added 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com> 10 * Enforced range limit on SEM_UNDO 11 * (c) 2001 Red Hat Inc 12 * Lockless wakeup 13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com> 14 * Further wakeup optimizations, documentation 15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com> 16 * 17 * support for audit of ipc object properties and permission changes 18 * Dustin Kirkland <dustin.kirkland@us.ibm.com> 19 * 20 * namespaces support 21 * OpenVZ, SWsoft Inc. 22 * Pavel Emelianov <xemul@openvz.org> 23 * 24 * Implementation notes: (May 2010) 25 * This file implements System V semaphores. 26 * 27 * User space visible behavior: 28 * - FIFO ordering for semop() operations (just FIFO, not starvation 29 * protection) 30 * - multiple semaphore operations that alter the same semaphore in 31 * one semop() are handled. 32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and 33 * SETALL calls. 34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. 35 * - undo adjustments at process exit are limited to 0..SEMVMX. 36 * - namespace are supported. 37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing 38 * to /proc/sys/kernel/sem. 39 * - statistics about the usage are reported in /proc/sysvipc/sem. 40 * 41 * Internals: 42 * - scalability: 43 * - all global variables are read-mostly. 44 * - semop() calls and semctl(RMID) are synchronized by RCU. 45 * - most operations do write operations (actually: spin_lock calls) to 46 * the per-semaphore array structure. 47 * Thus: Perfect SMP scaling between independent semaphore arrays. 48 * If multiple semaphores in one array are used, then cache line 49 * trashing on the semaphore array spinlock will limit the scaling. 50 * - semncnt and semzcnt are calculated on demand in count_semcnt() 51 * - the task that performs a successful semop() scans the list of all 52 * sleeping tasks and completes any pending operations that can be fulfilled. 53 * Semaphores are actively given to waiting tasks (necessary for FIFO). 54 * (see update_queue()) 55 * - To improve the scalability, the actual wake-up calls are performed after 56 * dropping all locks. (see wake_up_sem_queue_prepare(), 57 * wake_up_sem_queue_do()) 58 * - All work is done by the waker, the woken up task does not have to do 59 * anything - not even acquiring a lock or dropping a refcount. 60 * - A woken up task may not even touch the semaphore array anymore, it may 61 * have been destroyed already by a semctl(RMID). 62 * - The synchronizations between wake-ups due to a timeout/signal and a 63 * wake-up due to a completed semaphore operation is achieved by using an 64 * intermediate state (IN_WAKEUP). 65 * - UNDO values are stored in an array (one per process and per 66 * semaphore array, lazily allocated). For backwards compatibility, multiple 67 * modes for the UNDO variables are supported (per process, per thread) 68 * (see copy_semundo, CLONE_SYSVSEM) 69 * - There are two lists of the pending operations: a per-array list 70 * and per-semaphore list (stored in the array). This allows to achieve FIFO 71 * ordering without always scanning all pending operations. 72 * The worst-case behavior is nevertheless O(N^2) for N wakeups. 73 */ 74 75 #include <linux/slab.h> 76 #include <linux/spinlock.h> 77 #include <linux/init.h> 78 #include <linux/proc_fs.h> 79 #include <linux/time.h> 80 #include <linux/security.h> 81 #include <linux/syscalls.h> 82 #include <linux/audit.h> 83 #include <linux/capability.h> 84 #include <linux/seq_file.h> 85 #include <linux/rwsem.h> 86 #include <linux/nsproxy.h> 87 #include <linux/ipc_namespace.h> 88 89 #include <linux/uaccess.h> 90 #include "util.h" 91 92 /* One semaphore structure for each semaphore in the system. */ 93 struct sem { 94 int semval; /* current value */ 95 int sempid; /* pid of last operation */ 96 spinlock_t lock; /* spinlock for fine-grained semtimedop */ 97 struct list_head pending_alter; /* pending single-sop operations */ 98 /* that alter the semaphore */ 99 struct list_head pending_const; /* pending single-sop operations */ 100 /* that do not alter the semaphore*/ 101 time_t sem_otime; /* candidate for sem_otime */ 102 } ____cacheline_aligned_in_smp; 103 104 /* One queue for each sleeping process in the system. */ 105 struct sem_queue { 106 struct list_head list; /* queue of pending operations */ 107 struct task_struct *sleeper; /* this process */ 108 struct sem_undo *undo; /* undo structure */ 109 int pid; /* process id of requesting process */ 110 int status; /* completion status of operation */ 111 struct sembuf *sops; /* array of pending operations */ 112 struct sembuf *blocking; /* the operation that blocked */ 113 int nsops; /* number of operations */ 114 int alter; /* does *sops alter the array? */ 115 }; 116 117 /* Each task has a list of undo requests. They are executed automatically 118 * when the process exits. 119 */ 120 struct sem_undo { 121 struct list_head list_proc; /* per-process list: * 122 * all undos from one process 123 * rcu protected */ 124 struct rcu_head rcu; /* rcu struct for sem_undo */ 125 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */ 126 struct list_head list_id; /* per semaphore array list: 127 * all undos for one array */ 128 int semid; /* semaphore set identifier */ 129 short *semadj; /* array of adjustments */ 130 /* one per semaphore */ 131 }; 132 133 /* sem_undo_list controls shared access to the list of sem_undo structures 134 * that may be shared among all a CLONE_SYSVSEM task group. 135 */ 136 struct sem_undo_list { 137 atomic_t refcnt; 138 spinlock_t lock; 139 struct list_head list_proc; 140 }; 141 142 143 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) 144 145 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid) 146 147 static int newary(struct ipc_namespace *, struct ipc_params *); 148 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); 149 #ifdef CONFIG_PROC_FS 150 static int sysvipc_sem_proc_show(struct seq_file *s, void *it); 151 #endif 152 153 #define SEMMSL_FAST 256 /* 512 bytes on stack */ 154 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ 155 156 /* 157 * Locking: 158 * sem_undo.id_next, 159 * sem_array.complex_count, 160 * sem_array.pending{_alter,_cont}, 161 * sem_array.sem_undo: global sem_lock() for read/write 162 * sem_undo.proc_next: only "current" is allowed to read/write that field. 163 * 164 * sem_array.sem_base[i].pending_{const,alter}: 165 * global or semaphore sem_lock() for read/write 166 */ 167 168 #define sc_semmsl sem_ctls[0] 169 #define sc_semmns sem_ctls[1] 170 #define sc_semopm sem_ctls[2] 171 #define sc_semmni sem_ctls[3] 172 173 void sem_init_ns(struct ipc_namespace *ns) 174 { 175 ns->sc_semmsl = SEMMSL; 176 ns->sc_semmns = SEMMNS; 177 ns->sc_semopm = SEMOPM; 178 ns->sc_semmni = SEMMNI; 179 ns->used_sems = 0; 180 ipc_init_ids(&ns->ids[IPC_SEM_IDS]); 181 } 182 183 #ifdef CONFIG_IPC_NS 184 void sem_exit_ns(struct ipc_namespace *ns) 185 { 186 free_ipcs(ns, &sem_ids(ns), freeary); 187 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); 188 } 189 #endif 190 191 void __init sem_init(void) 192 { 193 sem_init_ns(&init_ipc_ns); 194 ipc_init_proc_interface("sysvipc/sem", 195 " key semid perms nsems uid gid cuid cgid otime ctime\n", 196 IPC_SEM_IDS, sysvipc_sem_proc_show); 197 } 198 199 /** 200 * unmerge_queues - unmerge queues, if possible. 201 * @sma: semaphore array 202 * 203 * The function unmerges the wait queues if complex_count is 0. 204 * It must be called prior to dropping the global semaphore array lock. 205 */ 206 static void unmerge_queues(struct sem_array *sma) 207 { 208 struct sem_queue *q, *tq; 209 210 /* complex operations still around? */ 211 if (sma->complex_count) 212 return; 213 /* 214 * We will switch back to simple mode. 215 * Move all pending operation back into the per-semaphore 216 * queues. 217 */ 218 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 219 struct sem *curr; 220 curr = &sma->sem_base[q->sops[0].sem_num]; 221 222 list_add_tail(&q->list, &curr->pending_alter); 223 } 224 INIT_LIST_HEAD(&sma->pending_alter); 225 } 226 227 /** 228 * merge_queues - merge single semop queues into global queue 229 * @sma: semaphore array 230 * 231 * This function merges all per-semaphore queues into the global queue. 232 * It is necessary to achieve FIFO ordering for the pending single-sop 233 * operations when a multi-semop operation must sleep. 234 * Only the alter operations must be moved, the const operations can stay. 235 */ 236 static void merge_queues(struct sem_array *sma) 237 { 238 int i; 239 for (i = 0; i < sma->sem_nsems; i++) { 240 struct sem *sem = sma->sem_base + i; 241 242 list_splice_init(&sem->pending_alter, &sma->pending_alter); 243 } 244 } 245 246 static void sem_rcu_free(struct rcu_head *head) 247 { 248 struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu); 249 struct sem_array *sma = ipc_rcu_to_struct(p); 250 251 security_sem_free(sma); 252 ipc_rcu_free(head); 253 } 254 255 /* 256 * Wait until all currently ongoing simple ops have completed. 257 * Caller must own sem_perm.lock. 258 * New simple ops cannot start, because simple ops first check 259 * that sem_perm.lock is free. 260 * that a) sem_perm.lock is free and b) complex_count is 0. 261 */ 262 static void sem_wait_array(struct sem_array *sma) 263 { 264 int i; 265 struct sem *sem; 266 267 if (sma->complex_count) { 268 /* The thread that increased sma->complex_count waited on 269 * all sem->lock locks. Thus we don't need to wait again. 270 */ 271 return; 272 } 273 274 for (i = 0; i < sma->sem_nsems; i++) { 275 sem = sma->sem_base + i; 276 spin_unlock_wait(&sem->lock); 277 } 278 } 279 280 /* 281 * If the request contains only one semaphore operation, and there are 282 * no complex transactions pending, lock only the semaphore involved. 283 * Otherwise, lock the entire semaphore array, since we either have 284 * multiple semaphores in our own semops, or we need to look at 285 * semaphores from other pending complex operations. 286 */ 287 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, 288 int nsops) 289 { 290 struct sem *sem; 291 292 if (nsops != 1) { 293 /* Complex operation - acquire a full lock */ 294 ipc_lock_object(&sma->sem_perm); 295 296 /* And wait until all simple ops that are processed 297 * right now have dropped their locks. 298 */ 299 sem_wait_array(sma); 300 return -1; 301 } 302 303 /* 304 * Only one semaphore affected - try to optimize locking. 305 * The rules are: 306 * - optimized locking is possible if no complex operation 307 * is either enqueued or processed right now. 308 * - The test for enqueued complex ops is simple: 309 * sma->complex_count != 0 310 * - Testing for complex ops that are processed right now is 311 * a bit more difficult. Complex ops acquire the full lock 312 * and first wait that the running simple ops have completed. 313 * (see above) 314 * Thus: If we own a simple lock and the global lock is free 315 * and complex_count is now 0, then it will stay 0 and 316 * thus just locking sem->lock is sufficient. 317 */ 318 sem = sma->sem_base + sops->sem_num; 319 320 if (sma->complex_count == 0) { 321 /* 322 * It appears that no complex operation is around. 323 * Acquire the per-semaphore lock. 324 */ 325 spin_lock(&sem->lock); 326 327 /* Then check that the global lock is free */ 328 if (!spin_is_locked(&sma->sem_perm.lock)) { 329 /* 330 * The ipc object lock check must be visible on all 331 * cores before rechecking the complex count. Otherwise 332 * we can race with another thread that does: 333 * complex_count++; 334 * spin_unlock(sem_perm.lock); 335 */ 336 smp_rmb(); 337 338 /* 339 * Now repeat the test of complex_count: 340 * It can't change anymore until we drop sem->lock. 341 * Thus: if is now 0, then it will stay 0. 342 */ 343 if (sma->complex_count == 0) { 344 /* fast path successful! */ 345 return sops->sem_num; 346 } 347 } 348 spin_unlock(&sem->lock); 349 } 350 351 /* slow path: acquire the full lock */ 352 ipc_lock_object(&sma->sem_perm); 353 354 if (sma->complex_count == 0) { 355 /* False alarm: 356 * There is no complex operation, thus we can switch 357 * back to the fast path. 358 */ 359 spin_lock(&sem->lock); 360 ipc_unlock_object(&sma->sem_perm); 361 return sops->sem_num; 362 } else { 363 /* Not a false alarm, thus complete the sequence for a 364 * full lock. 365 */ 366 sem_wait_array(sma); 367 return -1; 368 } 369 } 370 371 static inline void sem_unlock(struct sem_array *sma, int locknum) 372 { 373 if (locknum == -1) { 374 unmerge_queues(sma); 375 ipc_unlock_object(&sma->sem_perm); 376 } else { 377 struct sem *sem = sma->sem_base + locknum; 378 spin_unlock(&sem->lock); 379 } 380 } 381 382 /* 383 * sem_lock_(check_) routines are called in the paths where the rwsem 384 * is not held. 385 * 386 * The caller holds the RCU read lock. 387 */ 388 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns, 389 int id, struct sembuf *sops, int nsops, int *locknum) 390 { 391 struct kern_ipc_perm *ipcp; 392 struct sem_array *sma; 393 394 ipcp = ipc_obtain_object(&sem_ids(ns), id); 395 if (IS_ERR(ipcp)) 396 return ERR_CAST(ipcp); 397 398 sma = container_of(ipcp, struct sem_array, sem_perm); 399 *locknum = sem_lock(sma, sops, nsops); 400 401 /* ipc_rmid() may have already freed the ID while sem_lock 402 * was spinning: verify that the structure is still valid 403 */ 404 if (ipc_valid_object(ipcp)) 405 return container_of(ipcp, struct sem_array, sem_perm); 406 407 sem_unlock(sma, *locknum); 408 return ERR_PTR(-EINVAL); 409 } 410 411 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id) 412 { 413 struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id); 414 415 if (IS_ERR(ipcp)) 416 return ERR_CAST(ipcp); 417 418 return container_of(ipcp, struct sem_array, sem_perm); 419 } 420 421 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, 422 int id) 423 { 424 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id); 425 426 if (IS_ERR(ipcp)) 427 return ERR_CAST(ipcp); 428 429 return container_of(ipcp, struct sem_array, sem_perm); 430 } 431 432 static inline void sem_lock_and_putref(struct sem_array *sma) 433 { 434 sem_lock(sma, NULL, -1); 435 ipc_rcu_putref(sma, ipc_rcu_free); 436 } 437 438 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) 439 { 440 ipc_rmid(&sem_ids(ns), &s->sem_perm); 441 } 442 443 /* 444 * Lockless wakeup algorithm: 445 * Without the check/retry algorithm a lockless wakeup is possible: 446 * - queue.status is initialized to -EINTR before blocking. 447 * - wakeup is performed by 448 * * unlinking the queue entry from the pending list 449 * * setting queue.status to IN_WAKEUP 450 * This is the notification for the blocked thread that a 451 * result value is imminent. 452 * * call wake_up_process 453 * * set queue.status to the final value. 454 * - the previously blocked thread checks queue.status: 455 * * if it's IN_WAKEUP, then it must wait until the value changes 456 * * if it's not -EINTR, then the operation was completed by 457 * update_queue. semtimedop can return queue.status without 458 * performing any operation on the sem array. 459 * * otherwise it must acquire the spinlock and check what's up. 460 * 461 * The two-stage algorithm is necessary to protect against the following 462 * races: 463 * - if queue.status is set after wake_up_process, then the woken up idle 464 * thread could race forward and try (and fail) to acquire sma->lock 465 * before update_queue had a chance to set queue.status 466 * - if queue.status is written before wake_up_process and if the 467 * blocked process is woken up by a signal between writing 468 * queue.status and the wake_up_process, then the woken up 469 * process could return from semtimedop and die by calling 470 * sys_exit before wake_up_process is called. Then wake_up_process 471 * will oops, because the task structure is already invalid. 472 * (yes, this happened on s390 with sysv msg). 473 * 474 */ 475 #define IN_WAKEUP 1 476 477 /** 478 * newary - Create a new semaphore set 479 * @ns: namespace 480 * @params: ptr to the structure that contains key, semflg and nsems 481 * 482 * Called with sem_ids.rwsem held (as a writer) 483 */ 484 static int newary(struct ipc_namespace *ns, struct ipc_params *params) 485 { 486 int id; 487 int retval; 488 struct sem_array *sma; 489 int size; 490 key_t key = params->key; 491 int nsems = params->u.nsems; 492 int semflg = params->flg; 493 int i; 494 495 if (!nsems) 496 return -EINVAL; 497 if (ns->used_sems + nsems > ns->sc_semmns) 498 return -ENOSPC; 499 500 size = sizeof(*sma) + nsems * sizeof(struct sem); 501 sma = ipc_rcu_alloc(size); 502 if (!sma) 503 return -ENOMEM; 504 505 memset(sma, 0, size); 506 507 sma->sem_perm.mode = (semflg & S_IRWXUGO); 508 sma->sem_perm.key = key; 509 510 sma->sem_perm.security = NULL; 511 retval = security_sem_alloc(sma); 512 if (retval) { 513 ipc_rcu_putref(sma, ipc_rcu_free); 514 return retval; 515 } 516 517 sma->sem_base = (struct sem *) &sma[1]; 518 519 for (i = 0; i < nsems; i++) { 520 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter); 521 INIT_LIST_HEAD(&sma->sem_base[i].pending_const); 522 spin_lock_init(&sma->sem_base[i].lock); 523 } 524 525 sma->complex_count = 0; 526 INIT_LIST_HEAD(&sma->pending_alter); 527 INIT_LIST_HEAD(&sma->pending_const); 528 INIT_LIST_HEAD(&sma->list_id); 529 sma->sem_nsems = nsems; 530 sma->sem_ctime = get_seconds(); 531 532 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); 533 if (id < 0) { 534 ipc_rcu_putref(sma, sem_rcu_free); 535 return id; 536 } 537 ns->used_sems += nsems; 538 539 sem_unlock(sma, -1); 540 rcu_read_unlock(); 541 542 return sma->sem_perm.id; 543 } 544 545 546 /* 547 * Called with sem_ids.rwsem and ipcp locked. 548 */ 549 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg) 550 { 551 struct sem_array *sma; 552 553 sma = container_of(ipcp, struct sem_array, sem_perm); 554 return security_sem_associate(sma, semflg); 555 } 556 557 /* 558 * Called with sem_ids.rwsem and ipcp locked. 559 */ 560 static inline int sem_more_checks(struct kern_ipc_perm *ipcp, 561 struct ipc_params *params) 562 { 563 struct sem_array *sma; 564 565 sma = container_of(ipcp, struct sem_array, sem_perm); 566 if (params->u.nsems > sma->sem_nsems) 567 return -EINVAL; 568 569 return 0; 570 } 571 572 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) 573 { 574 struct ipc_namespace *ns; 575 static const struct ipc_ops sem_ops = { 576 .getnew = newary, 577 .associate = sem_security, 578 .more_checks = sem_more_checks, 579 }; 580 struct ipc_params sem_params; 581 582 ns = current->nsproxy->ipc_ns; 583 584 if (nsems < 0 || nsems > ns->sc_semmsl) 585 return -EINVAL; 586 587 sem_params.key = key; 588 sem_params.flg = semflg; 589 sem_params.u.nsems = nsems; 590 591 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); 592 } 593 594 /** 595 * perform_atomic_semop - Perform (if possible) a semaphore operation 596 * @sma: semaphore array 597 * @q: struct sem_queue that describes the operation 598 * 599 * Returns 0 if the operation was possible. 600 * Returns 1 if the operation is impossible, the caller must sleep. 601 * Negative values are error codes. 602 */ 603 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q) 604 { 605 int result, sem_op, nsops, pid; 606 struct sembuf *sop; 607 struct sem *curr; 608 struct sembuf *sops; 609 struct sem_undo *un; 610 611 sops = q->sops; 612 nsops = q->nsops; 613 un = q->undo; 614 615 for (sop = sops; sop < sops + nsops; sop++) { 616 curr = sma->sem_base + sop->sem_num; 617 sem_op = sop->sem_op; 618 result = curr->semval; 619 620 if (!sem_op && result) 621 goto would_block; 622 623 result += sem_op; 624 if (result < 0) 625 goto would_block; 626 if (result > SEMVMX) 627 goto out_of_range; 628 629 if (sop->sem_flg & SEM_UNDO) { 630 int undo = un->semadj[sop->sem_num] - sem_op; 631 /* Exceeding the undo range is an error. */ 632 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 633 goto out_of_range; 634 un->semadj[sop->sem_num] = undo; 635 } 636 637 curr->semval = result; 638 } 639 640 sop--; 641 pid = q->pid; 642 while (sop >= sops) { 643 sma->sem_base[sop->sem_num].sempid = pid; 644 sop--; 645 } 646 647 return 0; 648 649 out_of_range: 650 result = -ERANGE; 651 goto undo; 652 653 would_block: 654 q->blocking = sop; 655 656 if (sop->sem_flg & IPC_NOWAIT) 657 result = -EAGAIN; 658 else 659 result = 1; 660 661 undo: 662 sop--; 663 while (sop >= sops) { 664 sem_op = sop->sem_op; 665 sma->sem_base[sop->sem_num].semval -= sem_op; 666 if (sop->sem_flg & SEM_UNDO) 667 un->semadj[sop->sem_num] += sem_op; 668 sop--; 669 } 670 671 return result; 672 } 673 674 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up 675 * @q: queue entry that must be signaled 676 * @error: Error value for the signal 677 * 678 * Prepare the wake-up of the queue entry q. 679 */ 680 static void wake_up_sem_queue_prepare(struct list_head *pt, 681 struct sem_queue *q, int error) 682 { 683 if (list_empty(pt)) { 684 /* 685 * Hold preempt off so that we don't get preempted and have the 686 * wakee busy-wait until we're scheduled back on. 687 */ 688 preempt_disable(); 689 } 690 q->status = IN_WAKEUP; 691 q->pid = error; 692 693 list_add_tail(&q->list, pt); 694 } 695 696 /** 697 * wake_up_sem_queue_do - do the actual wake-up 698 * @pt: list of tasks to be woken up 699 * 700 * Do the actual wake-up. 701 * The function is called without any locks held, thus the semaphore array 702 * could be destroyed already and the tasks can disappear as soon as the 703 * status is set to the actual return code. 704 */ 705 static void wake_up_sem_queue_do(struct list_head *pt) 706 { 707 struct sem_queue *q, *t; 708 int did_something; 709 710 did_something = !list_empty(pt); 711 list_for_each_entry_safe(q, t, pt, list) { 712 wake_up_process(q->sleeper); 713 /* q can disappear immediately after writing q->status. */ 714 smp_wmb(); 715 q->status = q->pid; 716 } 717 if (did_something) 718 preempt_enable(); 719 } 720 721 static void unlink_queue(struct sem_array *sma, struct sem_queue *q) 722 { 723 list_del(&q->list); 724 if (q->nsops > 1) 725 sma->complex_count--; 726 } 727 728 /** check_restart(sma, q) 729 * @sma: semaphore array 730 * @q: the operation that just completed 731 * 732 * update_queue is O(N^2) when it restarts scanning the whole queue of 733 * waiting operations. Therefore this function checks if the restart is 734 * really necessary. It is called after a previously waiting operation 735 * modified the array. 736 * Note that wait-for-zero operations are handled without restart. 737 */ 738 static int check_restart(struct sem_array *sma, struct sem_queue *q) 739 { 740 /* pending complex alter operations are too difficult to analyse */ 741 if (!list_empty(&sma->pending_alter)) 742 return 1; 743 744 /* we were a sleeping complex operation. Too difficult */ 745 if (q->nsops > 1) 746 return 1; 747 748 /* It is impossible that someone waits for the new value: 749 * - complex operations always restart. 750 * - wait-for-zero are handled seperately. 751 * - q is a previously sleeping simple operation that 752 * altered the array. It must be a decrement, because 753 * simple increments never sleep. 754 * - If there are older (higher priority) decrements 755 * in the queue, then they have observed the original 756 * semval value and couldn't proceed. The operation 757 * decremented to value - thus they won't proceed either. 758 */ 759 return 0; 760 } 761 762 /** 763 * wake_const_ops - wake up non-alter tasks 764 * @sma: semaphore array. 765 * @semnum: semaphore that was modified. 766 * @pt: list head for the tasks that must be woken up. 767 * 768 * wake_const_ops must be called after a semaphore in a semaphore array 769 * was set to 0. If complex const operations are pending, wake_const_ops must 770 * be called with semnum = -1, as well as with the number of each modified 771 * semaphore. 772 * The tasks that must be woken up are added to @pt. The return code 773 * is stored in q->pid. 774 * The function returns 1 if at least one operation was completed successfully. 775 */ 776 static int wake_const_ops(struct sem_array *sma, int semnum, 777 struct list_head *pt) 778 { 779 struct sem_queue *q; 780 struct list_head *walk; 781 struct list_head *pending_list; 782 int semop_completed = 0; 783 784 if (semnum == -1) 785 pending_list = &sma->pending_const; 786 else 787 pending_list = &sma->sem_base[semnum].pending_const; 788 789 walk = pending_list->next; 790 while (walk != pending_list) { 791 int error; 792 793 q = container_of(walk, struct sem_queue, list); 794 walk = walk->next; 795 796 error = perform_atomic_semop(sma, q); 797 798 if (error <= 0) { 799 /* operation completed, remove from queue & wakeup */ 800 801 unlink_queue(sma, q); 802 803 wake_up_sem_queue_prepare(pt, q, error); 804 if (error == 0) 805 semop_completed = 1; 806 } 807 } 808 return semop_completed; 809 } 810 811 /** 812 * do_smart_wakeup_zero - wakeup all wait for zero tasks 813 * @sma: semaphore array 814 * @sops: operations that were performed 815 * @nsops: number of operations 816 * @pt: list head of the tasks that must be woken up. 817 * 818 * Checks all required queue for wait-for-zero operations, based 819 * on the actual changes that were performed on the semaphore array. 820 * The function returns 1 if at least one operation was completed successfully. 821 */ 822 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops, 823 int nsops, struct list_head *pt) 824 { 825 int i; 826 int semop_completed = 0; 827 int got_zero = 0; 828 829 /* first: the per-semaphore queues, if known */ 830 if (sops) { 831 for (i = 0; i < nsops; i++) { 832 int num = sops[i].sem_num; 833 834 if (sma->sem_base[num].semval == 0) { 835 got_zero = 1; 836 semop_completed |= wake_const_ops(sma, num, pt); 837 } 838 } 839 } else { 840 /* 841 * No sops means modified semaphores not known. 842 * Assume all were changed. 843 */ 844 for (i = 0; i < sma->sem_nsems; i++) { 845 if (sma->sem_base[i].semval == 0) { 846 got_zero = 1; 847 semop_completed |= wake_const_ops(sma, i, pt); 848 } 849 } 850 } 851 /* 852 * If one of the modified semaphores got 0, 853 * then check the global queue, too. 854 */ 855 if (got_zero) 856 semop_completed |= wake_const_ops(sma, -1, pt); 857 858 return semop_completed; 859 } 860 861 862 /** 863 * update_queue - look for tasks that can be completed. 864 * @sma: semaphore array. 865 * @semnum: semaphore that was modified. 866 * @pt: list head for the tasks that must be woken up. 867 * 868 * update_queue must be called after a semaphore in a semaphore array 869 * was modified. If multiple semaphores were modified, update_queue must 870 * be called with semnum = -1, as well as with the number of each modified 871 * semaphore. 872 * The tasks that must be woken up are added to @pt. The return code 873 * is stored in q->pid. 874 * The function internally checks if const operations can now succeed. 875 * 876 * The function return 1 if at least one semop was completed successfully. 877 */ 878 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt) 879 { 880 struct sem_queue *q; 881 struct list_head *walk; 882 struct list_head *pending_list; 883 int semop_completed = 0; 884 885 if (semnum == -1) 886 pending_list = &sma->pending_alter; 887 else 888 pending_list = &sma->sem_base[semnum].pending_alter; 889 890 again: 891 walk = pending_list->next; 892 while (walk != pending_list) { 893 int error, restart; 894 895 q = container_of(walk, struct sem_queue, list); 896 walk = walk->next; 897 898 /* If we are scanning the single sop, per-semaphore list of 899 * one semaphore and that semaphore is 0, then it is not 900 * necessary to scan further: simple increments 901 * that affect only one entry succeed immediately and cannot 902 * be in the per semaphore pending queue, and decrements 903 * cannot be successful if the value is already 0. 904 */ 905 if (semnum != -1 && sma->sem_base[semnum].semval == 0) 906 break; 907 908 error = perform_atomic_semop(sma, q); 909 910 /* Does q->sleeper still need to sleep? */ 911 if (error > 0) 912 continue; 913 914 unlink_queue(sma, q); 915 916 if (error) { 917 restart = 0; 918 } else { 919 semop_completed = 1; 920 do_smart_wakeup_zero(sma, q->sops, q->nsops, pt); 921 restart = check_restart(sma, q); 922 } 923 924 wake_up_sem_queue_prepare(pt, q, error); 925 if (restart) 926 goto again; 927 } 928 return semop_completed; 929 } 930 931 /** 932 * set_semotime - set sem_otime 933 * @sma: semaphore array 934 * @sops: operations that modified the array, may be NULL 935 * 936 * sem_otime is replicated to avoid cache line trashing. 937 * This function sets one instance to the current time. 938 */ 939 static void set_semotime(struct sem_array *sma, struct sembuf *sops) 940 { 941 if (sops == NULL) { 942 sma->sem_base[0].sem_otime = get_seconds(); 943 } else { 944 sma->sem_base[sops[0].sem_num].sem_otime = 945 get_seconds(); 946 } 947 } 948 949 /** 950 * do_smart_update - optimized update_queue 951 * @sma: semaphore array 952 * @sops: operations that were performed 953 * @nsops: number of operations 954 * @otime: force setting otime 955 * @pt: list head of the tasks that must be woken up. 956 * 957 * do_smart_update() does the required calls to update_queue and wakeup_zero, 958 * based on the actual changes that were performed on the semaphore array. 959 * Note that the function does not do the actual wake-up: the caller is 960 * responsible for calling wake_up_sem_queue_do(@pt). 961 * It is safe to perform this call after dropping all locks. 962 */ 963 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, 964 int otime, struct list_head *pt) 965 { 966 int i; 967 968 otime |= do_smart_wakeup_zero(sma, sops, nsops, pt); 969 970 if (!list_empty(&sma->pending_alter)) { 971 /* semaphore array uses the global queue - just process it. */ 972 otime |= update_queue(sma, -1, pt); 973 } else { 974 if (!sops) { 975 /* 976 * No sops, thus the modified semaphores are not 977 * known. Check all. 978 */ 979 for (i = 0; i < sma->sem_nsems; i++) 980 otime |= update_queue(sma, i, pt); 981 } else { 982 /* 983 * Check the semaphores that were increased: 984 * - No complex ops, thus all sleeping ops are 985 * decrease. 986 * - if we decreased the value, then any sleeping 987 * semaphore ops wont be able to run: If the 988 * previous value was too small, then the new 989 * value will be too small, too. 990 */ 991 for (i = 0; i < nsops; i++) { 992 if (sops[i].sem_op > 0) { 993 otime |= update_queue(sma, 994 sops[i].sem_num, pt); 995 } 996 } 997 } 998 } 999 if (otime) 1000 set_semotime(sma, sops); 1001 } 1002 1003 /* 1004 * check_qop: Test if a queued operation sleeps on the semaphore semnum 1005 */ 1006 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q, 1007 bool count_zero) 1008 { 1009 struct sembuf *sop = q->blocking; 1010 1011 /* 1012 * Linux always (since 0.99.10) reported a task as sleeping on all 1013 * semaphores. This violates SUS, therefore it was changed to the 1014 * standard compliant behavior. 1015 * Give the administrators a chance to notice that an application 1016 * might misbehave because it relies on the Linux behavior. 1017 */ 1018 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n" 1019 "The task %s (%d) triggered the difference, watch for misbehavior.\n", 1020 current->comm, task_pid_nr(current)); 1021 1022 if (sop->sem_num != semnum) 1023 return 0; 1024 1025 if (count_zero && sop->sem_op == 0) 1026 return 1; 1027 if (!count_zero && sop->sem_op < 0) 1028 return 1; 1029 1030 return 0; 1031 } 1032 1033 /* The following counts are associated to each semaphore: 1034 * semncnt number of tasks waiting on semval being nonzero 1035 * semzcnt number of tasks waiting on semval being zero 1036 * 1037 * Per definition, a task waits only on the semaphore of the first semop 1038 * that cannot proceed, even if additional operation would block, too. 1039 */ 1040 static int count_semcnt(struct sem_array *sma, ushort semnum, 1041 bool count_zero) 1042 { 1043 struct list_head *l; 1044 struct sem_queue *q; 1045 int semcnt; 1046 1047 semcnt = 0; 1048 /* First: check the simple operations. They are easy to evaluate */ 1049 if (count_zero) 1050 l = &sma->sem_base[semnum].pending_const; 1051 else 1052 l = &sma->sem_base[semnum].pending_alter; 1053 1054 list_for_each_entry(q, l, list) { 1055 /* all task on a per-semaphore list sleep on exactly 1056 * that semaphore 1057 */ 1058 semcnt++; 1059 } 1060 1061 /* Then: check the complex operations. */ 1062 list_for_each_entry(q, &sma->pending_alter, list) { 1063 semcnt += check_qop(sma, semnum, q, count_zero); 1064 } 1065 if (count_zero) { 1066 list_for_each_entry(q, &sma->pending_const, list) { 1067 semcnt += check_qop(sma, semnum, q, count_zero); 1068 } 1069 } 1070 return semcnt; 1071 } 1072 1073 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked 1074 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem 1075 * remains locked on exit. 1076 */ 1077 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) 1078 { 1079 struct sem_undo *un, *tu; 1080 struct sem_queue *q, *tq; 1081 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 1082 struct list_head tasks; 1083 int i; 1084 1085 /* Free the existing undo structures for this semaphore set. */ 1086 ipc_assert_locked_object(&sma->sem_perm); 1087 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { 1088 list_del(&un->list_id); 1089 spin_lock(&un->ulp->lock); 1090 un->semid = -1; 1091 list_del_rcu(&un->list_proc); 1092 spin_unlock(&un->ulp->lock); 1093 kfree_rcu(un, rcu); 1094 } 1095 1096 /* Wake up all pending processes and let them fail with EIDRM. */ 1097 INIT_LIST_HEAD(&tasks); 1098 list_for_each_entry_safe(q, tq, &sma->pending_const, list) { 1099 unlink_queue(sma, q); 1100 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1101 } 1102 1103 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 1104 unlink_queue(sma, q); 1105 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1106 } 1107 for (i = 0; i < sma->sem_nsems; i++) { 1108 struct sem *sem = sma->sem_base + i; 1109 list_for_each_entry_safe(q, tq, &sem->pending_const, list) { 1110 unlink_queue(sma, q); 1111 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1112 } 1113 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) { 1114 unlink_queue(sma, q); 1115 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 1116 } 1117 } 1118 1119 /* Remove the semaphore set from the IDR */ 1120 sem_rmid(ns, sma); 1121 sem_unlock(sma, -1); 1122 rcu_read_unlock(); 1123 1124 wake_up_sem_queue_do(&tasks); 1125 ns->used_sems -= sma->sem_nsems; 1126 ipc_rcu_putref(sma, sem_rcu_free); 1127 } 1128 1129 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) 1130 { 1131 switch (version) { 1132 case IPC_64: 1133 return copy_to_user(buf, in, sizeof(*in)); 1134 case IPC_OLD: 1135 { 1136 struct semid_ds out; 1137 1138 memset(&out, 0, sizeof(out)); 1139 1140 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); 1141 1142 out.sem_otime = in->sem_otime; 1143 out.sem_ctime = in->sem_ctime; 1144 out.sem_nsems = in->sem_nsems; 1145 1146 return copy_to_user(buf, &out, sizeof(out)); 1147 } 1148 default: 1149 return -EINVAL; 1150 } 1151 } 1152 1153 static time_t get_semotime(struct sem_array *sma) 1154 { 1155 int i; 1156 time_t res; 1157 1158 res = sma->sem_base[0].sem_otime; 1159 for (i = 1; i < sma->sem_nsems; i++) { 1160 time_t to = sma->sem_base[i].sem_otime; 1161 1162 if (to > res) 1163 res = to; 1164 } 1165 return res; 1166 } 1167 1168 static int semctl_nolock(struct ipc_namespace *ns, int semid, 1169 int cmd, int version, void __user *p) 1170 { 1171 int err; 1172 struct sem_array *sma; 1173 1174 switch (cmd) { 1175 case IPC_INFO: 1176 case SEM_INFO: 1177 { 1178 struct seminfo seminfo; 1179 int max_id; 1180 1181 err = security_sem_semctl(NULL, cmd); 1182 if (err) 1183 return err; 1184 1185 memset(&seminfo, 0, sizeof(seminfo)); 1186 seminfo.semmni = ns->sc_semmni; 1187 seminfo.semmns = ns->sc_semmns; 1188 seminfo.semmsl = ns->sc_semmsl; 1189 seminfo.semopm = ns->sc_semopm; 1190 seminfo.semvmx = SEMVMX; 1191 seminfo.semmnu = SEMMNU; 1192 seminfo.semmap = SEMMAP; 1193 seminfo.semume = SEMUME; 1194 down_read(&sem_ids(ns).rwsem); 1195 if (cmd == SEM_INFO) { 1196 seminfo.semusz = sem_ids(ns).in_use; 1197 seminfo.semaem = ns->used_sems; 1198 } else { 1199 seminfo.semusz = SEMUSZ; 1200 seminfo.semaem = SEMAEM; 1201 } 1202 max_id = ipc_get_maxid(&sem_ids(ns)); 1203 up_read(&sem_ids(ns).rwsem); 1204 if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) 1205 return -EFAULT; 1206 return (max_id < 0) ? 0 : max_id; 1207 } 1208 case IPC_STAT: 1209 case SEM_STAT: 1210 { 1211 struct semid64_ds tbuf; 1212 int id = 0; 1213 1214 memset(&tbuf, 0, sizeof(tbuf)); 1215 1216 rcu_read_lock(); 1217 if (cmd == SEM_STAT) { 1218 sma = sem_obtain_object(ns, semid); 1219 if (IS_ERR(sma)) { 1220 err = PTR_ERR(sma); 1221 goto out_unlock; 1222 } 1223 id = sma->sem_perm.id; 1224 } else { 1225 sma = sem_obtain_object_check(ns, semid); 1226 if (IS_ERR(sma)) { 1227 err = PTR_ERR(sma); 1228 goto out_unlock; 1229 } 1230 } 1231 1232 err = -EACCES; 1233 if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) 1234 goto out_unlock; 1235 1236 err = security_sem_semctl(sma, cmd); 1237 if (err) 1238 goto out_unlock; 1239 1240 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); 1241 tbuf.sem_otime = get_semotime(sma); 1242 tbuf.sem_ctime = sma->sem_ctime; 1243 tbuf.sem_nsems = sma->sem_nsems; 1244 rcu_read_unlock(); 1245 if (copy_semid_to_user(p, &tbuf, version)) 1246 return -EFAULT; 1247 return id; 1248 } 1249 default: 1250 return -EINVAL; 1251 } 1252 out_unlock: 1253 rcu_read_unlock(); 1254 return err; 1255 } 1256 1257 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, 1258 unsigned long arg) 1259 { 1260 struct sem_undo *un; 1261 struct sem_array *sma; 1262 struct sem *curr; 1263 int err; 1264 struct list_head tasks; 1265 int val; 1266 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) 1267 /* big-endian 64bit */ 1268 val = arg >> 32; 1269 #else 1270 /* 32bit or little-endian 64bit */ 1271 val = arg; 1272 #endif 1273 1274 if (val > SEMVMX || val < 0) 1275 return -ERANGE; 1276 1277 INIT_LIST_HEAD(&tasks); 1278 1279 rcu_read_lock(); 1280 sma = sem_obtain_object_check(ns, semid); 1281 if (IS_ERR(sma)) { 1282 rcu_read_unlock(); 1283 return PTR_ERR(sma); 1284 } 1285 1286 if (semnum < 0 || semnum >= sma->sem_nsems) { 1287 rcu_read_unlock(); 1288 return -EINVAL; 1289 } 1290 1291 1292 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) { 1293 rcu_read_unlock(); 1294 return -EACCES; 1295 } 1296 1297 err = security_sem_semctl(sma, SETVAL); 1298 if (err) { 1299 rcu_read_unlock(); 1300 return -EACCES; 1301 } 1302 1303 sem_lock(sma, NULL, -1); 1304 1305 if (!ipc_valid_object(&sma->sem_perm)) { 1306 sem_unlock(sma, -1); 1307 rcu_read_unlock(); 1308 return -EIDRM; 1309 } 1310 1311 curr = &sma->sem_base[semnum]; 1312 1313 ipc_assert_locked_object(&sma->sem_perm); 1314 list_for_each_entry(un, &sma->list_id, list_id) 1315 un->semadj[semnum] = 0; 1316 1317 curr->semval = val; 1318 curr->sempid = task_tgid_vnr(current); 1319 sma->sem_ctime = get_seconds(); 1320 /* maybe some queued-up processes were waiting for this */ 1321 do_smart_update(sma, NULL, 0, 0, &tasks); 1322 sem_unlock(sma, -1); 1323 rcu_read_unlock(); 1324 wake_up_sem_queue_do(&tasks); 1325 return 0; 1326 } 1327 1328 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, 1329 int cmd, void __user *p) 1330 { 1331 struct sem_array *sma; 1332 struct sem *curr; 1333 int err, nsems; 1334 ushort fast_sem_io[SEMMSL_FAST]; 1335 ushort *sem_io = fast_sem_io; 1336 struct list_head tasks; 1337 1338 INIT_LIST_HEAD(&tasks); 1339 1340 rcu_read_lock(); 1341 sma = sem_obtain_object_check(ns, semid); 1342 if (IS_ERR(sma)) { 1343 rcu_read_unlock(); 1344 return PTR_ERR(sma); 1345 } 1346 1347 nsems = sma->sem_nsems; 1348 1349 err = -EACCES; 1350 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO)) 1351 goto out_rcu_wakeup; 1352 1353 err = security_sem_semctl(sma, cmd); 1354 if (err) 1355 goto out_rcu_wakeup; 1356 1357 err = -EACCES; 1358 switch (cmd) { 1359 case GETALL: 1360 { 1361 ushort __user *array = p; 1362 int i; 1363 1364 sem_lock(sma, NULL, -1); 1365 if (!ipc_valid_object(&sma->sem_perm)) { 1366 err = -EIDRM; 1367 goto out_unlock; 1368 } 1369 if (nsems > SEMMSL_FAST) { 1370 if (!ipc_rcu_getref(sma)) { 1371 err = -EIDRM; 1372 goto out_unlock; 1373 } 1374 sem_unlock(sma, -1); 1375 rcu_read_unlock(); 1376 sem_io = ipc_alloc(sizeof(ushort)*nsems); 1377 if (sem_io == NULL) { 1378 ipc_rcu_putref(sma, ipc_rcu_free); 1379 return -ENOMEM; 1380 } 1381 1382 rcu_read_lock(); 1383 sem_lock_and_putref(sma); 1384 if (!ipc_valid_object(&sma->sem_perm)) { 1385 err = -EIDRM; 1386 goto out_unlock; 1387 } 1388 } 1389 for (i = 0; i < sma->sem_nsems; i++) 1390 sem_io[i] = sma->sem_base[i].semval; 1391 sem_unlock(sma, -1); 1392 rcu_read_unlock(); 1393 err = 0; 1394 if (copy_to_user(array, sem_io, nsems*sizeof(ushort))) 1395 err = -EFAULT; 1396 goto out_free; 1397 } 1398 case SETALL: 1399 { 1400 int i; 1401 struct sem_undo *un; 1402 1403 if (!ipc_rcu_getref(sma)) { 1404 err = -EIDRM; 1405 goto out_rcu_wakeup; 1406 } 1407 rcu_read_unlock(); 1408 1409 if (nsems > SEMMSL_FAST) { 1410 sem_io = ipc_alloc(sizeof(ushort)*nsems); 1411 if (sem_io == NULL) { 1412 ipc_rcu_putref(sma, ipc_rcu_free); 1413 return -ENOMEM; 1414 } 1415 } 1416 1417 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) { 1418 ipc_rcu_putref(sma, ipc_rcu_free); 1419 err = -EFAULT; 1420 goto out_free; 1421 } 1422 1423 for (i = 0; i < nsems; i++) { 1424 if (sem_io[i] > SEMVMX) { 1425 ipc_rcu_putref(sma, ipc_rcu_free); 1426 err = -ERANGE; 1427 goto out_free; 1428 } 1429 } 1430 rcu_read_lock(); 1431 sem_lock_and_putref(sma); 1432 if (!ipc_valid_object(&sma->sem_perm)) { 1433 err = -EIDRM; 1434 goto out_unlock; 1435 } 1436 1437 for (i = 0; i < nsems; i++) 1438 sma->sem_base[i].semval = sem_io[i]; 1439 1440 ipc_assert_locked_object(&sma->sem_perm); 1441 list_for_each_entry(un, &sma->list_id, list_id) { 1442 for (i = 0; i < nsems; i++) 1443 un->semadj[i] = 0; 1444 } 1445 sma->sem_ctime = get_seconds(); 1446 /* maybe some queued-up processes were waiting for this */ 1447 do_smart_update(sma, NULL, 0, 0, &tasks); 1448 err = 0; 1449 goto out_unlock; 1450 } 1451 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */ 1452 } 1453 err = -EINVAL; 1454 if (semnum < 0 || semnum >= nsems) 1455 goto out_rcu_wakeup; 1456 1457 sem_lock(sma, NULL, -1); 1458 if (!ipc_valid_object(&sma->sem_perm)) { 1459 err = -EIDRM; 1460 goto out_unlock; 1461 } 1462 curr = &sma->sem_base[semnum]; 1463 1464 switch (cmd) { 1465 case GETVAL: 1466 err = curr->semval; 1467 goto out_unlock; 1468 case GETPID: 1469 err = curr->sempid; 1470 goto out_unlock; 1471 case GETNCNT: 1472 err = count_semcnt(sma, semnum, 0); 1473 goto out_unlock; 1474 case GETZCNT: 1475 err = count_semcnt(sma, semnum, 1); 1476 goto out_unlock; 1477 } 1478 1479 out_unlock: 1480 sem_unlock(sma, -1); 1481 out_rcu_wakeup: 1482 rcu_read_unlock(); 1483 wake_up_sem_queue_do(&tasks); 1484 out_free: 1485 if (sem_io != fast_sem_io) 1486 ipc_free(sem_io, sizeof(ushort)*nsems); 1487 return err; 1488 } 1489 1490 static inline unsigned long 1491 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) 1492 { 1493 switch (version) { 1494 case IPC_64: 1495 if (copy_from_user(out, buf, sizeof(*out))) 1496 return -EFAULT; 1497 return 0; 1498 case IPC_OLD: 1499 { 1500 struct semid_ds tbuf_old; 1501 1502 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) 1503 return -EFAULT; 1504 1505 out->sem_perm.uid = tbuf_old.sem_perm.uid; 1506 out->sem_perm.gid = tbuf_old.sem_perm.gid; 1507 out->sem_perm.mode = tbuf_old.sem_perm.mode; 1508 1509 return 0; 1510 } 1511 default: 1512 return -EINVAL; 1513 } 1514 } 1515 1516 /* 1517 * This function handles some semctl commands which require the rwsem 1518 * to be held in write mode. 1519 * NOTE: no locks must be held, the rwsem is taken inside this function. 1520 */ 1521 static int semctl_down(struct ipc_namespace *ns, int semid, 1522 int cmd, int version, void __user *p) 1523 { 1524 struct sem_array *sma; 1525 int err; 1526 struct semid64_ds semid64; 1527 struct kern_ipc_perm *ipcp; 1528 1529 if (cmd == IPC_SET) { 1530 if (copy_semid_from_user(&semid64, p, version)) 1531 return -EFAULT; 1532 } 1533 1534 down_write(&sem_ids(ns).rwsem); 1535 rcu_read_lock(); 1536 1537 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd, 1538 &semid64.sem_perm, 0); 1539 if (IS_ERR(ipcp)) { 1540 err = PTR_ERR(ipcp); 1541 goto out_unlock1; 1542 } 1543 1544 sma = container_of(ipcp, struct sem_array, sem_perm); 1545 1546 err = security_sem_semctl(sma, cmd); 1547 if (err) 1548 goto out_unlock1; 1549 1550 switch (cmd) { 1551 case IPC_RMID: 1552 sem_lock(sma, NULL, -1); 1553 /* freeary unlocks the ipc object and rcu */ 1554 freeary(ns, ipcp); 1555 goto out_up; 1556 case IPC_SET: 1557 sem_lock(sma, NULL, -1); 1558 err = ipc_update_perm(&semid64.sem_perm, ipcp); 1559 if (err) 1560 goto out_unlock0; 1561 sma->sem_ctime = get_seconds(); 1562 break; 1563 default: 1564 err = -EINVAL; 1565 goto out_unlock1; 1566 } 1567 1568 out_unlock0: 1569 sem_unlock(sma, -1); 1570 out_unlock1: 1571 rcu_read_unlock(); 1572 out_up: 1573 up_write(&sem_ids(ns).rwsem); 1574 return err; 1575 } 1576 1577 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) 1578 { 1579 int version; 1580 struct ipc_namespace *ns; 1581 void __user *p = (void __user *)arg; 1582 1583 if (semid < 0) 1584 return -EINVAL; 1585 1586 version = ipc_parse_version(&cmd); 1587 ns = current->nsproxy->ipc_ns; 1588 1589 switch (cmd) { 1590 case IPC_INFO: 1591 case SEM_INFO: 1592 case IPC_STAT: 1593 case SEM_STAT: 1594 return semctl_nolock(ns, semid, cmd, version, p); 1595 case GETALL: 1596 case GETVAL: 1597 case GETPID: 1598 case GETNCNT: 1599 case GETZCNT: 1600 case SETALL: 1601 return semctl_main(ns, semid, semnum, cmd, p); 1602 case SETVAL: 1603 return semctl_setval(ns, semid, semnum, arg); 1604 case IPC_RMID: 1605 case IPC_SET: 1606 return semctl_down(ns, semid, cmd, version, p); 1607 default: 1608 return -EINVAL; 1609 } 1610 } 1611 1612 /* If the task doesn't already have a undo_list, then allocate one 1613 * here. We guarantee there is only one thread using this undo list, 1614 * and current is THE ONE 1615 * 1616 * If this allocation and assignment succeeds, but later 1617 * portions of this code fail, there is no need to free the sem_undo_list. 1618 * Just let it stay associated with the task, and it'll be freed later 1619 * at exit time. 1620 * 1621 * This can block, so callers must hold no locks. 1622 */ 1623 static inline int get_undo_list(struct sem_undo_list **undo_listp) 1624 { 1625 struct sem_undo_list *undo_list; 1626 1627 undo_list = current->sysvsem.undo_list; 1628 if (!undo_list) { 1629 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); 1630 if (undo_list == NULL) 1631 return -ENOMEM; 1632 spin_lock_init(&undo_list->lock); 1633 atomic_set(&undo_list->refcnt, 1); 1634 INIT_LIST_HEAD(&undo_list->list_proc); 1635 1636 current->sysvsem.undo_list = undo_list; 1637 } 1638 *undo_listp = undo_list; 1639 return 0; 1640 } 1641 1642 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) 1643 { 1644 struct sem_undo *un; 1645 1646 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) { 1647 if (un->semid == semid) 1648 return un; 1649 } 1650 return NULL; 1651 } 1652 1653 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) 1654 { 1655 struct sem_undo *un; 1656 1657 assert_spin_locked(&ulp->lock); 1658 1659 un = __lookup_undo(ulp, semid); 1660 if (un) { 1661 list_del_rcu(&un->list_proc); 1662 list_add_rcu(&un->list_proc, &ulp->list_proc); 1663 } 1664 return un; 1665 } 1666 1667 /** 1668 * find_alloc_undo - lookup (and if not present create) undo array 1669 * @ns: namespace 1670 * @semid: semaphore array id 1671 * 1672 * The function looks up (and if not present creates) the undo structure. 1673 * The size of the undo structure depends on the size of the semaphore 1674 * array, thus the alloc path is not that straightforward. 1675 * Lifetime-rules: sem_undo is rcu-protected, on success, the function 1676 * performs a rcu_read_lock(). 1677 */ 1678 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) 1679 { 1680 struct sem_array *sma; 1681 struct sem_undo_list *ulp; 1682 struct sem_undo *un, *new; 1683 int nsems, error; 1684 1685 error = get_undo_list(&ulp); 1686 if (error) 1687 return ERR_PTR(error); 1688 1689 rcu_read_lock(); 1690 spin_lock(&ulp->lock); 1691 un = lookup_undo(ulp, semid); 1692 spin_unlock(&ulp->lock); 1693 if (likely(un != NULL)) 1694 goto out; 1695 1696 /* no undo structure around - allocate one. */ 1697 /* step 1: figure out the size of the semaphore array */ 1698 sma = sem_obtain_object_check(ns, semid); 1699 if (IS_ERR(sma)) { 1700 rcu_read_unlock(); 1701 return ERR_CAST(sma); 1702 } 1703 1704 nsems = sma->sem_nsems; 1705 if (!ipc_rcu_getref(sma)) { 1706 rcu_read_unlock(); 1707 un = ERR_PTR(-EIDRM); 1708 goto out; 1709 } 1710 rcu_read_unlock(); 1711 1712 /* step 2: allocate new undo structure */ 1713 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); 1714 if (!new) { 1715 ipc_rcu_putref(sma, ipc_rcu_free); 1716 return ERR_PTR(-ENOMEM); 1717 } 1718 1719 /* step 3: Acquire the lock on semaphore array */ 1720 rcu_read_lock(); 1721 sem_lock_and_putref(sma); 1722 if (!ipc_valid_object(&sma->sem_perm)) { 1723 sem_unlock(sma, -1); 1724 rcu_read_unlock(); 1725 kfree(new); 1726 un = ERR_PTR(-EIDRM); 1727 goto out; 1728 } 1729 spin_lock(&ulp->lock); 1730 1731 /* 1732 * step 4: check for races: did someone else allocate the undo struct? 1733 */ 1734 un = lookup_undo(ulp, semid); 1735 if (un) { 1736 kfree(new); 1737 goto success; 1738 } 1739 /* step 5: initialize & link new undo structure */ 1740 new->semadj = (short *) &new[1]; 1741 new->ulp = ulp; 1742 new->semid = semid; 1743 assert_spin_locked(&ulp->lock); 1744 list_add_rcu(&new->list_proc, &ulp->list_proc); 1745 ipc_assert_locked_object(&sma->sem_perm); 1746 list_add(&new->list_id, &sma->list_id); 1747 un = new; 1748 1749 success: 1750 spin_unlock(&ulp->lock); 1751 sem_unlock(sma, -1); 1752 out: 1753 return un; 1754 } 1755 1756 1757 /** 1758 * get_queue_result - retrieve the result code from sem_queue 1759 * @q: Pointer to queue structure 1760 * 1761 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in 1762 * q->status, then we must loop until the value is replaced with the final 1763 * value: This may happen if a task is woken up by an unrelated event (e.g. 1764 * signal) and in parallel the task is woken up by another task because it got 1765 * the requested semaphores. 1766 * 1767 * The function can be called with or without holding the semaphore spinlock. 1768 */ 1769 static int get_queue_result(struct sem_queue *q) 1770 { 1771 int error; 1772 1773 error = q->status; 1774 while (unlikely(error == IN_WAKEUP)) { 1775 cpu_relax(); 1776 error = q->status; 1777 } 1778 1779 return error; 1780 } 1781 1782 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, 1783 unsigned, nsops, const struct timespec __user *, timeout) 1784 { 1785 int error = -EINVAL; 1786 struct sem_array *sma; 1787 struct sembuf fast_sops[SEMOPM_FAST]; 1788 struct sembuf *sops = fast_sops, *sop; 1789 struct sem_undo *un; 1790 int undos = 0, alter = 0, max, locknum; 1791 struct sem_queue queue; 1792 unsigned long jiffies_left = 0; 1793 struct ipc_namespace *ns; 1794 struct list_head tasks; 1795 1796 ns = current->nsproxy->ipc_ns; 1797 1798 if (nsops < 1 || semid < 0) 1799 return -EINVAL; 1800 if (nsops > ns->sc_semopm) 1801 return -E2BIG; 1802 if (nsops > SEMOPM_FAST) { 1803 sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL); 1804 if (sops == NULL) 1805 return -ENOMEM; 1806 } 1807 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) { 1808 error = -EFAULT; 1809 goto out_free; 1810 } 1811 if (timeout) { 1812 struct timespec _timeout; 1813 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) { 1814 error = -EFAULT; 1815 goto out_free; 1816 } 1817 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 || 1818 _timeout.tv_nsec >= 1000000000L) { 1819 error = -EINVAL; 1820 goto out_free; 1821 } 1822 jiffies_left = timespec_to_jiffies(&_timeout); 1823 } 1824 max = 0; 1825 for (sop = sops; sop < sops + nsops; sop++) { 1826 if (sop->sem_num >= max) 1827 max = sop->sem_num; 1828 if (sop->sem_flg & SEM_UNDO) 1829 undos = 1; 1830 if (sop->sem_op != 0) 1831 alter = 1; 1832 } 1833 1834 INIT_LIST_HEAD(&tasks); 1835 1836 if (undos) { 1837 /* On success, find_alloc_undo takes the rcu_read_lock */ 1838 un = find_alloc_undo(ns, semid); 1839 if (IS_ERR(un)) { 1840 error = PTR_ERR(un); 1841 goto out_free; 1842 } 1843 } else { 1844 un = NULL; 1845 rcu_read_lock(); 1846 } 1847 1848 sma = sem_obtain_object_check(ns, semid); 1849 if (IS_ERR(sma)) { 1850 rcu_read_unlock(); 1851 error = PTR_ERR(sma); 1852 goto out_free; 1853 } 1854 1855 error = -EFBIG; 1856 if (max >= sma->sem_nsems) 1857 goto out_rcu_wakeup; 1858 1859 error = -EACCES; 1860 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) 1861 goto out_rcu_wakeup; 1862 1863 error = security_sem_semop(sma, sops, nsops, alter); 1864 if (error) 1865 goto out_rcu_wakeup; 1866 1867 error = -EIDRM; 1868 locknum = sem_lock(sma, sops, nsops); 1869 /* 1870 * We eventually might perform the following check in a lockless 1871 * fashion, considering ipc_valid_object() locking constraints. 1872 * If nsops == 1 and there is no contention for sem_perm.lock, then 1873 * only a per-semaphore lock is held and it's OK to proceed with the 1874 * check below. More details on the fine grained locking scheme 1875 * entangled here and why it's RMID race safe on comments at sem_lock() 1876 */ 1877 if (!ipc_valid_object(&sma->sem_perm)) 1878 goto out_unlock_free; 1879 /* 1880 * semid identifiers are not unique - find_alloc_undo may have 1881 * allocated an undo structure, it was invalidated by an RMID 1882 * and now a new array with received the same id. Check and fail. 1883 * This case can be detected checking un->semid. The existence of 1884 * "un" itself is guaranteed by rcu. 1885 */ 1886 if (un && un->semid == -1) 1887 goto out_unlock_free; 1888 1889 queue.sops = sops; 1890 queue.nsops = nsops; 1891 queue.undo = un; 1892 queue.pid = task_tgid_vnr(current); 1893 queue.alter = alter; 1894 1895 error = perform_atomic_semop(sma, &queue); 1896 if (error == 0) { 1897 /* If the operation was successful, then do 1898 * the required updates. 1899 */ 1900 if (alter) 1901 do_smart_update(sma, sops, nsops, 1, &tasks); 1902 else 1903 set_semotime(sma, sops); 1904 } 1905 if (error <= 0) 1906 goto out_unlock_free; 1907 1908 /* We need to sleep on this operation, so we put the current 1909 * task into the pending queue and go to sleep. 1910 */ 1911 1912 if (nsops == 1) { 1913 struct sem *curr; 1914 curr = &sma->sem_base[sops->sem_num]; 1915 1916 if (alter) { 1917 if (sma->complex_count) { 1918 list_add_tail(&queue.list, 1919 &sma->pending_alter); 1920 } else { 1921 1922 list_add_tail(&queue.list, 1923 &curr->pending_alter); 1924 } 1925 } else { 1926 list_add_tail(&queue.list, &curr->pending_const); 1927 } 1928 } else { 1929 if (!sma->complex_count) 1930 merge_queues(sma); 1931 1932 if (alter) 1933 list_add_tail(&queue.list, &sma->pending_alter); 1934 else 1935 list_add_tail(&queue.list, &sma->pending_const); 1936 1937 sma->complex_count++; 1938 } 1939 1940 queue.status = -EINTR; 1941 queue.sleeper = current; 1942 1943 sleep_again: 1944 __set_current_state(TASK_INTERRUPTIBLE); 1945 sem_unlock(sma, locknum); 1946 rcu_read_unlock(); 1947 1948 if (timeout) 1949 jiffies_left = schedule_timeout(jiffies_left); 1950 else 1951 schedule(); 1952 1953 error = get_queue_result(&queue); 1954 1955 if (error != -EINTR) { 1956 /* fast path: update_queue already obtained all requested 1957 * resources. 1958 * Perform a smp_mb(): User space could assume that semop() 1959 * is a memory barrier: Without the mb(), the cpu could 1960 * speculatively read in user space stale data that was 1961 * overwritten by the previous owner of the semaphore. 1962 */ 1963 smp_mb(); 1964 1965 goto out_free; 1966 } 1967 1968 rcu_read_lock(); 1969 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum); 1970 1971 /* 1972 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing. 1973 */ 1974 error = get_queue_result(&queue); 1975 1976 /* 1977 * Array removed? If yes, leave without sem_unlock(). 1978 */ 1979 if (IS_ERR(sma)) { 1980 rcu_read_unlock(); 1981 goto out_free; 1982 } 1983 1984 1985 /* 1986 * If queue.status != -EINTR we are woken up by another process. 1987 * Leave without unlink_queue(), but with sem_unlock(). 1988 */ 1989 if (error != -EINTR) 1990 goto out_unlock_free; 1991 1992 /* 1993 * If an interrupt occurred we have to clean up the queue 1994 */ 1995 if (timeout && jiffies_left == 0) 1996 error = -EAGAIN; 1997 1998 /* 1999 * If the wakeup was spurious, just retry 2000 */ 2001 if (error == -EINTR && !signal_pending(current)) 2002 goto sleep_again; 2003 2004 unlink_queue(sma, &queue); 2005 2006 out_unlock_free: 2007 sem_unlock(sma, locknum); 2008 out_rcu_wakeup: 2009 rcu_read_unlock(); 2010 wake_up_sem_queue_do(&tasks); 2011 out_free: 2012 if (sops != fast_sops) 2013 kfree(sops); 2014 return error; 2015 } 2016 2017 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, 2018 unsigned, nsops) 2019 { 2020 return sys_semtimedop(semid, tsops, nsops, NULL); 2021 } 2022 2023 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between 2024 * parent and child tasks. 2025 */ 2026 2027 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) 2028 { 2029 struct sem_undo_list *undo_list; 2030 int error; 2031 2032 if (clone_flags & CLONE_SYSVSEM) { 2033 error = get_undo_list(&undo_list); 2034 if (error) 2035 return error; 2036 atomic_inc(&undo_list->refcnt); 2037 tsk->sysvsem.undo_list = undo_list; 2038 } else 2039 tsk->sysvsem.undo_list = NULL; 2040 2041 return 0; 2042 } 2043 2044 /* 2045 * add semadj values to semaphores, free undo structures. 2046 * undo structures are not freed when semaphore arrays are destroyed 2047 * so some of them may be out of date. 2048 * IMPLEMENTATION NOTE: There is some confusion over whether the 2049 * set of adjustments that needs to be done should be done in an atomic 2050 * manner or not. That is, if we are attempting to decrement the semval 2051 * should we queue up and wait until we can do so legally? 2052 * The original implementation attempted to do this (queue and wait). 2053 * The current implementation does not do so. The POSIX standard 2054 * and SVID should be consulted to determine what behavior is mandated. 2055 */ 2056 void exit_sem(struct task_struct *tsk) 2057 { 2058 struct sem_undo_list *ulp; 2059 2060 ulp = tsk->sysvsem.undo_list; 2061 if (!ulp) 2062 return; 2063 tsk->sysvsem.undo_list = NULL; 2064 2065 if (!atomic_dec_and_test(&ulp->refcnt)) 2066 return; 2067 2068 for (;;) { 2069 struct sem_array *sma; 2070 struct sem_undo *un; 2071 struct list_head tasks; 2072 int semid, i; 2073 2074 rcu_read_lock(); 2075 un = list_entry_rcu(ulp->list_proc.next, 2076 struct sem_undo, list_proc); 2077 if (&un->list_proc == &ulp->list_proc) 2078 semid = -1; 2079 else 2080 semid = un->semid; 2081 2082 if (semid == -1) { 2083 rcu_read_unlock(); 2084 break; 2085 } 2086 2087 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid); 2088 /* exit_sem raced with IPC_RMID, nothing to do */ 2089 if (IS_ERR(sma)) { 2090 rcu_read_unlock(); 2091 continue; 2092 } 2093 2094 sem_lock(sma, NULL, -1); 2095 /* exit_sem raced with IPC_RMID, nothing to do */ 2096 if (!ipc_valid_object(&sma->sem_perm)) { 2097 sem_unlock(sma, -1); 2098 rcu_read_unlock(); 2099 continue; 2100 } 2101 un = __lookup_undo(ulp, semid); 2102 if (un == NULL) { 2103 /* exit_sem raced with IPC_RMID+semget() that created 2104 * exactly the same semid. Nothing to do. 2105 */ 2106 sem_unlock(sma, -1); 2107 rcu_read_unlock(); 2108 continue; 2109 } 2110 2111 /* remove un from the linked lists */ 2112 ipc_assert_locked_object(&sma->sem_perm); 2113 list_del(&un->list_id); 2114 2115 spin_lock(&ulp->lock); 2116 list_del_rcu(&un->list_proc); 2117 spin_unlock(&ulp->lock); 2118 2119 /* perform adjustments registered in un */ 2120 for (i = 0; i < sma->sem_nsems; i++) { 2121 struct sem *semaphore = &sma->sem_base[i]; 2122 if (un->semadj[i]) { 2123 semaphore->semval += un->semadj[i]; 2124 /* 2125 * Range checks of the new semaphore value, 2126 * not defined by sus: 2127 * - Some unices ignore the undo entirely 2128 * (e.g. HP UX 11i 11.22, Tru64 V5.1) 2129 * - some cap the value (e.g. FreeBSD caps 2130 * at 0, but doesn't enforce SEMVMX) 2131 * 2132 * Linux caps the semaphore value, both at 0 2133 * and at SEMVMX. 2134 * 2135 * Manfred <manfred@colorfullife.com> 2136 */ 2137 if (semaphore->semval < 0) 2138 semaphore->semval = 0; 2139 if (semaphore->semval > SEMVMX) 2140 semaphore->semval = SEMVMX; 2141 semaphore->sempid = task_tgid_vnr(current); 2142 } 2143 } 2144 /* maybe some queued-up processes were waiting for this */ 2145 INIT_LIST_HEAD(&tasks); 2146 do_smart_update(sma, NULL, 0, 1, &tasks); 2147 sem_unlock(sma, -1); 2148 rcu_read_unlock(); 2149 wake_up_sem_queue_do(&tasks); 2150 2151 kfree_rcu(un, rcu); 2152 } 2153 kfree(ulp); 2154 } 2155 2156 #ifdef CONFIG_PROC_FS 2157 static int sysvipc_sem_proc_show(struct seq_file *s, void *it) 2158 { 2159 struct user_namespace *user_ns = seq_user_ns(s); 2160 struct sem_array *sma = it; 2161 time_t sem_otime; 2162 2163 /* 2164 * The proc interface isn't aware of sem_lock(), it calls 2165 * ipc_lock_object() directly (in sysvipc_find_ipc). 2166 * In order to stay compatible with sem_lock(), we must wait until 2167 * all simple semop() calls have left their critical regions. 2168 */ 2169 sem_wait_array(sma); 2170 2171 sem_otime = get_semotime(sma); 2172 2173 seq_printf(s, 2174 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n", 2175 sma->sem_perm.key, 2176 sma->sem_perm.id, 2177 sma->sem_perm.mode, 2178 sma->sem_nsems, 2179 from_kuid_munged(user_ns, sma->sem_perm.uid), 2180 from_kgid_munged(user_ns, sma->sem_perm.gid), 2181 from_kuid_munged(user_ns, sma->sem_perm.cuid), 2182 from_kgid_munged(user_ns, sma->sem_perm.cgid), 2183 sem_otime, 2184 sma->sem_ctime); 2185 2186 return 0; 2187 } 2188 #endif 2189