1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/ipc/sem.c 4 * Copyright (C) 1992 Krishna Balasubramanian 5 * Copyright (C) 1995 Eric Schenk, Bruno Haible 6 * 7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> 8 * 9 * SMP-threaded, sysctl's added 10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com> 11 * Enforced range limit on SEM_UNDO 12 * (c) 2001 Red Hat Inc 13 * Lockless wakeup 14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com> 15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net> 16 * Further wakeup optimizations, documentation 17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com> 18 * 19 * support for audit of ipc object properties and permission changes 20 * Dustin Kirkland <dustin.kirkland@us.ibm.com> 21 * 22 * namespaces support 23 * OpenVZ, SWsoft Inc. 24 * Pavel Emelianov <xemul@openvz.org> 25 * 26 * Implementation notes: (May 2010) 27 * This file implements System V semaphores. 28 * 29 * User space visible behavior: 30 * - FIFO ordering for semop() operations (just FIFO, not starvation 31 * protection) 32 * - multiple semaphore operations that alter the same semaphore in 33 * one semop() are handled. 34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and 35 * SETALL calls. 36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. 37 * - undo adjustments at process exit are limited to 0..SEMVMX. 38 * - namespace are supported. 39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing 40 * to /proc/sys/kernel/sem. 41 * - statistics about the usage are reported in /proc/sysvipc/sem. 42 * 43 * Internals: 44 * - scalability: 45 * - all global variables are read-mostly. 46 * - semop() calls and semctl(RMID) are synchronized by RCU. 47 * - most operations do write operations (actually: spin_lock calls) to 48 * the per-semaphore array structure. 49 * Thus: Perfect SMP scaling between independent semaphore arrays. 50 * If multiple semaphores in one array are used, then cache line 51 * trashing on the semaphore array spinlock will limit the scaling. 52 * - semncnt and semzcnt are calculated on demand in count_semcnt() 53 * - the task that performs a successful semop() scans the list of all 54 * sleeping tasks and completes any pending operations that can be fulfilled. 55 * Semaphores are actively given to waiting tasks (necessary for FIFO). 56 * (see update_queue()) 57 * - To improve the scalability, the actual wake-up calls are performed after 58 * dropping all locks. (see wake_up_sem_queue_prepare()) 59 * - All work is done by the waker, the woken up task does not have to do 60 * anything - not even acquiring a lock or dropping a refcount. 61 * - A woken up task may not even touch the semaphore array anymore, it may 62 * have been destroyed already by a semctl(RMID). 63 * - UNDO values are stored in an array (one per process and per 64 * semaphore array, lazily allocated). For backwards compatibility, multiple 65 * modes for the UNDO variables are supported (per process, per thread) 66 * (see copy_semundo, CLONE_SYSVSEM) 67 * - There are two lists of the pending operations: a per-array list 68 * and per-semaphore list (stored in the array). This allows to achieve FIFO 69 * ordering without always scanning all pending operations. 70 * The worst-case behavior is nevertheless O(N^2) for N wakeups. 71 */ 72 73 #include <linux/compat.h> 74 #include <linux/slab.h> 75 #include <linux/spinlock.h> 76 #include <linux/init.h> 77 #include <linux/proc_fs.h> 78 #include <linux/time.h> 79 #include <linux/security.h> 80 #include <linux/syscalls.h> 81 #include <linux/audit.h> 82 #include <linux/capability.h> 83 #include <linux/seq_file.h> 84 #include <linux/rwsem.h> 85 #include <linux/nsproxy.h> 86 #include <linux/ipc_namespace.h> 87 #include <linux/sched/wake_q.h> 88 #include <linux/nospec.h> 89 #include <linux/rhashtable.h> 90 91 #include <linux/uaccess.h> 92 #include "util.h" 93 94 /* One semaphore structure for each semaphore in the system. */ 95 struct sem { 96 int semval; /* current value */ 97 /* 98 * PID of the process that last modified the semaphore. For 99 * Linux, specifically these are: 100 * - semop 101 * - semctl, via SETVAL and SETALL. 102 * - at task exit when performing undo adjustments (see exit_sem). 103 */ 104 struct pid *sempid; 105 spinlock_t lock; /* spinlock for fine-grained semtimedop */ 106 struct list_head pending_alter; /* pending single-sop operations */ 107 /* that alter the semaphore */ 108 struct list_head pending_const; /* pending single-sop operations */ 109 /* that do not alter the semaphore*/ 110 time64_t sem_otime; /* candidate for sem_otime */ 111 } ____cacheline_aligned_in_smp; 112 113 /* One sem_array data structure for each set of semaphores in the system. */ 114 struct sem_array { 115 struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */ 116 time64_t sem_ctime; /* create/last semctl() time */ 117 struct list_head pending_alter; /* pending operations */ 118 /* that alter the array */ 119 struct list_head pending_const; /* pending complex operations */ 120 /* that do not alter semvals */ 121 struct list_head list_id; /* undo requests on this array */ 122 int sem_nsems; /* no. of semaphores in array */ 123 int complex_count; /* pending complex operations */ 124 unsigned int use_global_lock;/* >0: global lock required */ 125 126 struct sem sems[]; 127 } __randomize_layout; 128 129 /* One queue for each sleeping process in the system. */ 130 struct sem_queue { 131 struct list_head list; /* queue of pending operations */ 132 struct task_struct *sleeper; /* this process */ 133 struct sem_undo *undo; /* undo structure */ 134 struct pid *pid; /* process id of requesting process */ 135 int status; /* completion status of operation */ 136 struct sembuf *sops; /* array of pending operations */ 137 struct sembuf *blocking; /* the operation that blocked */ 138 int nsops; /* number of operations */ 139 bool alter; /* does *sops alter the array? */ 140 bool dupsop; /* sops on more than one sem_num */ 141 }; 142 143 /* Each task has a list of undo requests. They are executed automatically 144 * when the process exits. 145 */ 146 struct sem_undo { 147 struct list_head list_proc; /* per-process list: * 148 * all undos from one process 149 * rcu protected */ 150 struct rcu_head rcu; /* rcu struct for sem_undo */ 151 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */ 152 struct list_head list_id; /* per semaphore array list: 153 * all undos for one array */ 154 int semid; /* semaphore set identifier */ 155 short *semadj; /* array of adjustments */ 156 /* one per semaphore */ 157 }; 158 159 /* sem_undo_list controls shared access to the list of sem_undo structures 160 * that may be shared among all a CLONE_SYSVSEM task group. 161 */ 162 struct sem_undo_list { 163 refcount_t refcnt; 164 spinlock_t lock; 165 struct list_head list_proc; 166 }; 167 168 169 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) 170 171 static int newary(struct ipc_namespace *, struct ipc_params *); 172 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); 173 #ifdef CONFIG_PROC_FS 174 static int sysvipc_sem_proc_show(struct seq_file *s, void *it); 175 #endif 176 177 #define SEMMSL_FAST 256 /* 512 bytes on stack */ 178 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ 179 180 /* 181 * Switching from the mode suitable for simple ops 182 * to the mode for complex ops is costly. Therefore: 183 * use some hysteresis 184 */ 185 #define USE_GLOBAL_LOCK_HYSTERESIS 10 186 187 /* 188 * Locking: 189 * a) global sem_lock() for read/write 190 * sem_undo.id_next, 191 * sem_array.complex_count, 192 * sem_array.pending{_alter,_const}, 193 * sem_array.sem_undo 194 * 195 * b) global or semaphore sem_lock() for read/write: 196 * sem_array.sems[i].pending_{const,alter}: 197 * 198 * c) special: 199 * sem_undo_list.list_proc: 200 * * undo_list->lock for write 201 * * rcu for read 202 * use_global_lock: 203 * * global sem_lock() for write 204 * * either local or global sem_lock() for read. 205 * 206 * Memory ordering: 207 * Most ordering is enforced by using spin_lock() and spin_unlock(). 208 * The special case is use_global_lock: 209 * Setting it from non-zero to 0 is a RELEASE, this is ensured by 210 * using smp_store_release(). 211 * Testing if it is non-zero is an ACQUIRE, this is ensured by using 212 * smp_load_acquire(). 213 * Setting it from 0 to non-zero must be ordered with regards to 214 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire() 215 * is inside a spin_lock() and after a write from 0 to non-zero a 216 * spin_lock()+spin_unlock() is done. 217 */ 218 219 #define sc_semmsl sem_ctls[0] 220 #define sc_semmns sem_ctls[1] 221 #define sc_semopm sem_ctls[2] 222 #define sc_semmni sem_ctls[3] 223 224 void sem_init_ns(struct ipc_namespace *ns) 225 { 226 ns->sc_semmsl = SEMMSL; 227 ns->sc_semmns = SEMMNS; 228 ns->sc_semopm = SEMOPM; 229 ns->sc_semmni = SEMMNI; 230 ns->used_sems = 0; 231 ipc_init_ids(&ns->ids[IPC_SEM_IDS]); 232 } 233 234 #ifdef CONFIG_IPC_NS 235 void sem_exit_ns(struct ipc_namespace *ns) 236 { 237 free_ipcs(ns, &sem_ids(ns), freeary); 238 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); 239 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht); 240 } 241 #endif 242 243 void __init sem_init(void) 244 { 245 sem_init_ns(&init_ipc_ns); 246 ipc_init_proc_interface("sysvipc/sem", 247 " key semid perms nsems uid gid cuid cgid otime ctime\n", 248 IPC_SEM_IDS, sysvipc_sem_proc_show); 249 } 250 251 /** 252 * unmerge_queues - unmerge queues, if possible. 253 * @sma: semaphore array 254 * 255 * The function unmerges the wait queues if complex_count is 0. 256 * It must be called prior to dropping the global semaphore array lock. 257 */ 258 static void unmerge_queues(struct sem_array *sma) 259 { 260 struct sem_queue *q, *tq; 261 262 /* complex operations still around? */ 263 if (sma->complex_count) 264 return; 265 /* 266 * We will switch back to simple mode. 267 * Move all pending operation back into the per-semaphore 268 * queues. 269 */ 270 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 271 struct sem *curr; 272 curr = &sma->sems[q->sops[0].sem_num]; 273 274 list_add_tail(&q->list, &curr->pending_alter); 275 } 276 INIT_LIST_HEAD(&sma->pending_alter); 277 } 278 279 /** 280 * merge_queues - merge single semop queues into global queue 281 * @sma: semaphore array 282 * 283 * This function merges all per-semaphore queues into the global queue. 284 * It is necessary to achieve FIFO ordering for the pending single-sop 285 * operations when a multi-semop operation must sleep. 286 * Only the alter operations must be moved, the const operations can stay. 287 */ 288 static void merge_queues(struct sem_array *sma) 289 { 290 int i; 291 for (i = 0; i < sma->sem_nsems; i++) { 292 struct sem *sem = &sma->sems[i]; 293 294 list_splice_init(&sem->pending_alter, &sma->pending_alter); 295 } 296 } 297 298 static void sem_rcu_free(struct rcu_head *head) 299 { 300 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu); 301 struct sem_array *sma = container_of(p, struct sem_array, sem_perm); 302 303 security_sem_free(&sma->sem_perm); 304 kvfree(sma); 305 } 306 307 /* 308 * Enter the mode suitable for non-simple operations: 309 * Caller must own sem_perm.lock. 310 */ 311 static void complexmode_enter(struct sem_array *sma) 312 { 313 int i; 314 struct sem *sem; 315 316 if (sma->use_global_lock > 0) { 317 /* 318 * We are already in global lock mode. 319 * Nothing to do, just reset the 320 * counter until we return to simple mode. 321 */ 322 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; 323 return; 324 } 325 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; 326 327 for (i = 0; i < sma->sem_nsems; i++) { 328 sem = &sma->sems[i]; 329 spin_lock(&sem->lock); 330 spin_unlock(&sem->lock); 331 } 332 } 333 334 /* 335 * Try to leave the mode that disallows simple operations: 336 * Caller must own sem_perm.lock. 337 */ 338 static void complexmode_tryleave(struct sem_array *sma) 339 { 340 if (sma->complex_count) { 341 /* Complex ops are sleeping. 342 * We must stay in complex mode 343 */ 344 return; 345 } 346 if (sma->use_global_lock == 1) { 347 /* 348 * Immediately after setting use_global_lock to 0, 349 * a simple op can start. Thus: all memory writes 350 * performed by the current operation must be visible 351 * before we set use_global_lock to 0. 352 */ 353 smp_store_release(&sma->use_global_lock, 0); 354 } else { 355 sma->use_global_lock--; 356 } 357 } 358 359 #define SEM_GLOBAL_LOCK (-1) 360 /* 361 * If the request contains only one semaphore operation, and there are 362 * no complex transactions pending, lock only the semaphore involved. 363 * Otherwise, lock the entire semaphore array, since we either have 364 * multiple semaphores in our own semops, or we need to look at 365 * semaphores from other pending complex operations. 366 */ 367 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, 368 int nsops) 369 { 370 struct sem *sem; 371 int idx; 372 373 if (nsops != 1) { 374 /* Complex operation - acquire a full lock */ 375 ipc_lock_object(&sma->sem_perm); 376 377 /* Prevent parallel simple ops */ 378 complexmode_enter(sma); 379 return SEM_GLOBAL_LOCK; 380 } 381 382 /* 383 * Only one semaphore affected - try to optimize locking. 384 * Optimized locking is possible if no complex operation 385 * is either enqueued or processed right now. 386 * 387 * Both facts are tracked by use_global_mode. 388 */ 389 idx = array_index_nospec(sops->sem_num, sma->sem_nsems); 390 sem = &sma->sems[idx]; 391 392 /* 393 * Initial check for use_global_lock. Just an optimization, 394 * no locking, no memory barrier. 395 */ 396 if (!sma->use_global_lock) { 397 /* 398 * It appears that no complex operation is around. 399 * Acquire the per-semaphore lock. 400 */ 401 spin_lock(&sem->lock); 402 403 /* pairs with smp_store_release() */ 404 if (!smp_load_acquire(&sma->use_global_lock)) { 405 /* fast path successful! */ 406 return sops->sem_num; 407 } 408 spin_unlock(&sem->lock); 409 } 410 411 /* slow path: acquire the full lock */ 412 ipc_lock_object(&sma->sem_perm); 413 414 if (sma->use_global_lock == 0) { 415 /* 416 * The use_global_lock mode ended while we waited for 417 * sma->sem_perm.lock. Thus we must switch to locking 418 * with sem->lock. 419 * Unlike in the fast path, there is no need to recheck 420 * sma->use_global_lock after we have acquired sem->lock: 421 * We own sma->sem_perm.lock, thus use_global_lock cannot 422 * change. 423 */ 424 spin_lock(&sem->lock); 425 426 ipc_unlock_object(&sma->sem_perm); 427 return sops->sem_num; 428 } else { 429 /* 430 * Not a false alarm, thus continue to use the global lock 431 * mode. No need for complexmode_enter(), this was done by 432 * the caller that has set use_global_mode to non-zero. 433 */ 434 return SEM_GLOBAL_LOCK; 435 } 436 } 437 438 static inline void sem_unlock(struct sem_array *sma, int locknum) 439 { 440 if (locknum == SEM_GLOBAL_LOCK) { 441 unmerge_queues(sma); 442 complexmode_tryleave(sma); 443 ipc_unlock_object(&sma->sem_perm); 444 } else { 445 struct sem *sem = &sma->sems[locknum]; 446 spin_unlock(&sem->lock); 447 } 448 } 449 450 /* 451 * sem_lock_(check_) routines are called in the paths where the rwsem 452 * is not held. 453 * 454 * The caller holds the RCU read lock. 455 */ 456 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id) 457 { 458 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); 459 460 if (IS_ERR(ipcp)) 461 return ERR_CAST(ipcp); 462 463 return container_of(ipcp, struct sem_array, sem_perm); 464 } 465 466 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, 467 int id) 468 { 469 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id); 470 471 if (IS_ERR(ipcp)) 472 return ERR_CAST(ipcp); 473 474 return container_of(ipcp, struct sem_array, sem_perm); 475 } 476 477 static inline void sem_lock_and_putref(struct sem_array *sma) 478 { 479 sem_lock(sma, NULL, -1); 480 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 481 } 482 483 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) 484 { 485 ipc_rmid(&sem_ids(ns), &s->sem_perm); 486 } 487 488 static struct sem_array *sem_alloc(size_t nsems) 489 { 490 struct sem_array *sma; 491 492 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0])) 493 return NULL; 494 495 sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL); 496 if (unlikely(!sma)) 497 return NULL; 498 499 return sma; 500 } 501 502 /** 503 * newary - Create a new semaphore set 504 * @ns: namespace 505 * @params: ptr to the structure that contains key, semflg and nsems 506 * 507 * Called with sem_ids.rwsem held (as a writer) 508 */ 509 static int newary(struct ipc_namespace *ns, struct ipc_params *params) 510 { 511 int retval; 512 struct sem_array *sma; 513 key_t key = params->key; 514 int nsems = params->u.nsems; 515 int semflg = params->flg; 516 int i; 517 518 if (!nsems) 519 return -EINVAL; 520 if (ns->used_sems + nsems > ns->sc_semmns) 521 return -ENOSPC; 522 523 sma = sem_alloc(nsems); 524 if (!sma) 525 return -ENOMEM; 526 527 sma->sem_perm.mode = (semflg & S_IRWXUGO); 528 sma->sem_perm.key = key; 529 530 sma->sem_perm.security = NULL; 531 retval = security_sem_alloc(&sma->sem_perm); 532 if (retval) { 533 kvfree(sma); 534 return retval; 535 } 536 537 for (i = 0; i < nsems; i++) { 538 INIT_LIST_HEAD(&sma->sems[i].pending_alter); 539 INIT_LIST_HEAD(&sma->sems[i].pending_const); 540 spin_lock_init(&sma->sems[i].lock); 541 } 542 543 sma->complex_count = 0; 544 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; 545 INIT_LIST_HEAD(&sma->pending_alter); 546 INIT_LIST_HEAD(&sma->pending_const); 547 INIT_LIST_HEAD(&sma->list_id); 548 sma->sem_nsems = nsems; 549 sma->sem_ctime = ktime_get_real_seconds(); 550 551 /* ipc_addid() locks sma upon success. */ 552 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); 553 if (retval < 0) { 554 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 555 return retval; 556 } 557 ns->used_sems += nsems; 558 559 sem_unlock(sma, -1); 560 rcu_read_unlock(); 561 562 return sma->sem_perm.id; 563 } 564 565 566 /* 567 * Called with sem_ids.rwsem and ipcp locked. 568 */ 569 static inline int sem_more_checks(struct kern_ipc_perm *ipcp, 570 struct ipc_params *params) 571 { 572 struct sem_array *sma; 573 574 sma = container_of(ipcp, struct sem_array, sem_perm); 575 if (params->u.nsems > sma->sem_nsems) 576 return -EINVAL; 577 578 return 0; 579 } 580 581 long ksys_semget(key_t key, int nsems, int semflg) 582 { 583 struct ipc_namespace *ns; 584 static const struct ipc_ops sem_ops = { 585 .getnew = newary, 586 .associate = security_sem_associate, 587 .more_checks = sem_more_checks, 588 }; 589 struct ipc_params sem_params; 590 591 ns = current->nsproxy->ipc_ns; 592 593 if (nsems < 0 || nsems > ns->sc_semmsl) 594 return -EINVAL; 595 596 sem_params.key = key; 597 sem_params.flg = semflg; 598 sem_params.u.nsems = nsems; 599 600 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); 601 } 602 603 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) 604 { 605 return ksys_semget(key, nsems, semflg); 606 } 607 608 /** 609 * perform_atomic_semop[_slow] - Attempt to perform semaphore 610 * operations on a given array. 611 * @sma: semaphore array 612 * @q: struct sem_queue that describes the operation 613 * 614 * Caller blocking are as follows, based the value 615 * indicated by the semaphore operation (sem_op): 616 * 617 * (1) >0 never blocks. 618 * (2) 0 (wait-for-zero operation): semval is non-zero. 619 * (3) <0 attempting to decrement semval to a value smaller than zero. 620 * 621 * Returns 0 if the operation was possible. 622 * Returns 1 if the operation is impossible, the caller must sleep. 623 * Returns <0 for error codes. 624 */ 625 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q) 626 { 627 int result, sem_op, nsops; 628 struct pid *pid; 629 struct sembuf *sop; 630 struct sem *curr; 631 struct sembuf *sops; 632 struct sem_undo *un; 633 634 sops = q->sops; 635 nsops = q->nsops; 636 un = q->undo; 637 638 for (sop = sops; sop < sops + nsops; sop++) { 639 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems); 640 curr = &sma->sems[idx]; 641 sem_op = sop->sem_op; 642 result = curr->semval; 643 644 if (!sem_op && result) 645 goto would_block; 646 647 result += sem_op; 648 if (result < 0) 649 goto would_block; 650 if (result > SEMVMX) 651 goto out_of_range; 652 653 if (sop->sem_flg & SEM_UNDO) { 654 int undo = un->semadj[sop->sem_num] - sem_op; 655 /* Exceeding the undo range is an error. */ 656 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 657 goto out_of_range; 658 un->semadj[sop->sem_num] = undo; 659 } 660 661 curr->semval = result; 662 } 663 664 sop--; 665 pid = q->pid; 666 while (sop >= sops) { 667 ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid); 668 sop--; 669 } 670 671 return 0; 672 673 out_of_range: 674 result = -ERANGE; 675 goto undo; 676 677 would_block: 678 q->blocking = sop; 679 680 if (sop->sem_flg & IPC_NOWAIT) 681 result = -EAGAIN; 682 else 683 result = 1; 684 685 undo: 686 sop--; 687 while (sop >= sops) { 688 sem_op = sop->sem_op; 689 sma->sems[sop->sem_num].semval -= sem_op; 690 if (sop->sem_flg & SEM_UNDO) 691 un->semadj[sop->sem_num] += sem_op; 692 sop--; 693 } 694 695 return result; 696 } 697 698 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q) 699 { 700 int result, sem_op, nsops; 701 struct sembuf *sop; 702 struct sem *curr; 703 struct sembuf *sops; 704 struct sem_undo *un; 705 706 sops = q->sops; 707 nsops = q->nsops; 708 un = q->undo; 709 710 if (unlikely(q->dupsop)) 711 return perform_atomic_semop_slow(sma, q); 712 713 /* 714 * We scan the semaphore set twice, first to ensure that the entire 715 * operation can succeed, therefore avoiding any pointless writes 716 * to shared memory and having to undo such changes in order to block 717 * until the operations can go through. 718 */ 719 for (sop = sops; sop < sops + nsops; sop++) { 720 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems); 721 722 curr = &sma->sems[idx]; 723 sem_op = sop->sem_op; 724 result = curr->semval; 725 726 if (!sem_op && result) 727 goto would_block; /* wait-for-zero */ 728 729 result += sem_op; 730 if (result < 0) 731 goto would_block; 732 733 if (result > SEMVMX) 734 return -ERANGE; 735 736 if (sop->sem_flg & SEM_UNDO) { 737 int undo = un->semadj[sop->sem_num] - sem_op; 738 739 /* Exceeding the undo range is an error. */ 740 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 741 return -ERANGE; 742 } 743 } 744 745 for (sop = sops; sop < sops + nsops; sop++) { 746 curr = &sma->sems[sop->sem_num]; 747 sem_op = sop->sem_op; 748 result = curr->semval; 749 750 if (sop->sem_flg & SEM_UNDO) { 751 int undo = un->semadj[sop->sem_num] - sem_op; 752 753 un->semadj[sop->sem_num] = undo; 754 } 755 curr->semval += sem_op; 756 ipc_update_pid(&curr->sempid, q->pid); 757 } 758 759 return 0; 760 761 would_block: 762 q->blocking = sop; 763 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1; 764 } 765 766 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error, 767 struct wake_q_head *wake_q) 768 { 769 wake_q_add(wake_q, q->sleeper); 770 /* 771 * Rely on the above implicit barrier, such that we can 772 * ensure that we hold reference to the task before setting 773 * q->status. Otherwise we could race with do_exit if the 774 * task is awoken by an external event before calling 775 * wake_up_process(). 776 */ 777 WRITE_ONCE(q->status, error); 778 } 779 780 static void unlink_queue(struct sem_array *sma, struct sem_queue *q) 781 { 782 list_del(&q->list); 783 if (q->nsops > 1) 784 sma->complex_count--; 785 } 786 787 /** check_restart(sma, q) 788 * @sma: semaphore array 789 * @q: the operation that just completed 790 * 791 * update_queue is O(N^2) when it restarts scanning the whole queue of 792 * waiting operations. Therefore this function checks if the restart is 793 * really necessary. It is called after a previously waiting operation 794 * modified the array. 795 * Note that wait-for-zero operations are handled without restart. 796 */ 797 static inline int check_restart(struct sem_array *sma, struct sem_queue *q) 798 { 799 /* pending complex alter operations are too difficult to analyse */ 800 if (!list_empty(&sma->pending_alter)) 801 return 1; 802 803 /* we were a sleeping complex operation. Too difficult */ 804 if (q->nsops > 1) 805 return 1; 806 807 /* It is impossible that someone waits for the new value: 808 * - complex operations always restart. 809 * - wait-for-zero are handled seperately. 810 * - q is a previously sleeping simple operation that 811 * altered the array. It must be a decrement, because 812 * simple increments never sleep. 813 * - If there are older (higher priority) decrements 814 * in the queue, then they have observed the original 815 * semval value and couldn't proceed. The operation 816 * decremented to value - thus they won't proceed either. 817 */ 818 return 0; 819 } 820 821 /** 822 * wake_const_ops - wake up non-alter tasks 823 * @sma: semaphore array. 824 * @semnum: semaphore that was modified. 825 * @wake_q: lockless wake-queue head. 826 * 827 * wake_const_ops must be called after a semaphore in a semaphore array 828 * was set to 0. If complex const operations are pending, wake_const_ops must 829 * be called with semnum = -1, as well as with the number of each modified 830 * semaphore. 831 * The tasks that must be woken up are added to @wake_q. The return code 832 * is stored in q->pid. 833 * The function returns 1 if at least one operation was completed successfully. 834 */ 835 static int wake_const_ops(struct sem_array *sma, int semnum, 836 struct wake_q_head *wake_q) 837 { 838 struct sem_queue *q, *tmp; 839 struct list_head *pending_list; 840 int semop_completed = 0; 841 842 if (semnum == -1) 843 pending_list = &sma->pending_const; 844 else 845 pending_list = &sma->sems[semnum].pending_const; 846 847 list_for_each_entry_safe(q, tmp, pending_list, list) { 848 int error = perform_atomic_semop(sma, q); 849 850 if (error > 0) 851 continue; 852 /* operation completed, remove from queue & wakeup */ 853 unlink_queue(sma, q); 854 855 wake_up_sem_queue_prepare(q, error, wake_q); 856 if (error == 0) 857 semop_completed = 1; 858 } 859 860 return semop_completed; 861 } 862 863 /** 864 * do_smart_wakeup_zero - wakeup all wait for zero tasks 865 * @sma: semaphore array 866 * @sops: operations that were performed 867 * @nsops: number of operations 868 * @wake_q: lockless wake-queue head 869 * 870 * Checks all required queue for wait-for-zero operations, based 871 * on the actual changes that were performed on the semaphore array. 872 * The function returns 1 if at least one operation was completed successfully. 873 */ 874 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops, 875 int nsops, struct wake_q_head *wake_q) 876 { 877 int i; 878 int semop_completed = 0; 879 int got_zero = 0; 880 881 /* first: the per-semaphore queues, if known */ 882 if (sops) { 883 for (i = 0; i < nsops; i++) { 884 int num = sops[i].sem_num; 885 886 if (sma->sems[num].semval == 0) { 887 got_zero = 1; 888 semop_completed |= wake_const_ops(sma, num, wake_q); 889 } 890 } 891 } else { 892 /* 893 * No sops means modified semaphores not known. 894 * Assume all were changed. 895 */ 896 for (i = 0; i < sma->sem_nsems; i++) { 897 if (sma->sems[i].semval == 0) { 898 got_zero = 1; 899 semop_completed |= wake_const_ops(sma, i, wake_q); 900 } 901 } 902 } 903 /* 904 * If one of the modified semaphores got 0, 905 * then check the global queue, too. 906 */ 907 if (got_zero) 908 semop_completed |= wake_const_ops(sma, -1, wake_q); 909 910 return semop_completed; 911 } 912 913 914 /** 915 * update_queue - look for tasks that can be completed. 916 * @sma: semaphore array. 917 * @semnum: semaphore that was modified. 918 * @wake_q: lockless wake-queue head. 919 * 920 * update_queue must be called after a semaphore in a semaphore array 921 * was modified. If multiple semaphores were modified, update_queue must 922 * be called with semnum = -1, as well as with the number of each modified 923 * semaphore. 924 * The tasks that must be woken up are added to @wake_q. The return code 925 * is stored in q->pid. 926 * The function internally checks if const operations can now succeed. 927 * 928 * The function return 1 if at least one semop was completed successfully. 929 */ 930 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q) 931 { 932 struct sem_queue *q, *tmp; 933 struct list_head *pending_list; 934 int semop_completed = 0; 935 936 if (semnum == -1) 937 pending_list = &sma->pending_alter; 938 else 939 pending_list = &sma->sems[semnum].pending_alter; 940 941 again: 942 list_for_each_entry_safe(q, tmp, pending_list, list) { 943 int error, restart; 944 945 /* If we are scanning the single sop, per-semaphore list of 946 * one semaphore and that semaphore is 0, then it is not 947 * necessary to scan further: simple increments 948 * that affect only one entry succeed immediately and cannot 949 * be in the per semaphore pending queue, and decrements 950 * cannot be successful if the value is already 0. 951 */ 952 if (semnum != -1 && sma->sems[semnum].semval == 0) 953 break; 954 955 error = perform_atomic_semop(sma, q); 956 957 /* Does q->sleeper still need to sleep? */ 958 if (error > 0) 959 continue; 960 961 unlink_queue(sma, q); 962 963 if (error) { 964 restart = 0; 965 } else { 966 semop_completed = 1; 967 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q); 968 restart = check_restart(sma, q); 969 } 970 971 wake_up_sem_queue_prepare(q, error, wake_q); 972 if (restart) 973 goto again; 974 } 975 return semop_completed; 976 } 977 978 /** 979 * set_semotime - set sem_otime 980 * @sma: semaphore array 981 * @sops: operations that modified the array, may be NULL 982 * 983 * sem_otime is replicated to avoid cache line trashing. 984 * This function sets one instance to the current time. 985 */ 986 static void set_semotime(struct sem_array *sma, struct sembuf *sops) 987 { 988 if (sops == NULL) { 989 sma->sems[0].sem_otime = ktime_get_real_seconds(); 990 } else { 991 sma->sems[sops[0].sem_num].sem_otime = 992 ktime_get_real_seconds(); 993 } 994 } 995 996 /** 997 * do_smart_update - optimized update_queue 998 * @sma: semaphore array 999 * @sops: operations that were performed 1000 * @nsops: number of operations 1001 * @otime: force setting otime 1002 * @wake_q: lockless wake-queue head 1003 * 1004 * do_smart_update() does the required calls to update_queue and wakeup_zero, 1005 * based on the actual changes that were performed on the semaphore array. 1006 * Note that the function does not do the actual wake-up: the caller is 1007 * responsible for calling wake_up_q(). 1008 * It is safe to perform this call after dropping all locks. 1009 */ 1010 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, 1011 int otime, struct wake_q_head *wake_q) 1012 { 1013 int i; 1014 1015 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q); 1016 1017 if (!list_empty(&sma->pending_alter)) { 1018 /* semaphore array uses the global queue - just process it. */ 1019 otime |= update_queue(sma, -1, wake_q); 1020 } else { 1021 if (!sops) { 1022 /* 1023 * No sops, thus the modified semaphores are not 1024 * known. Check all. 1025 */ 1026 for (i = 0; i < sma->sem_nsems; i++) 1027 otime |= update_queue(sma, i, wake_q); 1028 } else { 1029 /* 1030 * Check the semaphores that were increased: 1031 * - No complex ops, thus all sleeping ops are 1032 * decrease. 1033 * - if we decreased the value, then any sleeping 1034 * semaphore ops wont be able to run: If the 1035 * previous value was too small, then the new 1036 * value will be too small, too. 1037 */ 1038 for (i = 0; i < nsops; i++) { 1039 if (sops[i].sem_op > 0) { 1040 otime |= update_queue(sma, 1041 sops[i].sem_num, wake_q); 1042 } 1043 } 1044 } 1045 } 1046 if (otime) 1047 set_semotime(sma, sops); 1048 } 1049 1050 /* 1051 * check_qop: Test if a queued operation sleeps on the semaphore semnum 1052 */ 1053 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q, 1054 bool count_zero) 1055 { 1056 struct sembuf *sop = q->blocking; 1057 1058 /* 1059 * Linux always (since 0.99.10) reported a task as sleeping on all 1060 * semaphores. This violates SUS, therefore it was changed to the 1061 * standard compliant behavior. 1062 * Give the administrators a chance to notice that an application 1063 * might misbehave because it relies on the Linux behavior. 1064 */ 1065 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n" 1066 "The task %s (%d) triggered the difference, watch for misbehavior.\n", 1067 current->comm, task_pid_nr(current)); 1068 1069 if (sop->sem_num != semnum) 1070 return 0; 1071 1072 if (count_zero && sop->sem_op == 0) 1073 return 1; 1074 if (!count_zero && sop->sem_op < 0) 1075 return 1; 1076 1077 return 0; 1078 } 1079 1080 /* The following counts are associated to each semaphore: 1081 * semncnt number of tasks waiting on semval being nonzero 1082 * semzcnt number of tasks waiting on semval being zero 1083 * 1084 * Per definition, a task waits only on the semaphore of the first semop 1085 * that cannot proceed, even if additional operation would block, too. 1086 */ 1087 static int count_semcnt(struct sem_array *sma, ushort semnum, 1088 bool count_zero) 1089 { 1090 struct list_head *l; 1091 struct sem_queue *q; 1092 int semcnt; 1093 1094 semcnt = 0; 1095 /* First: check the simple operations. They are easy to evaluate */ 1096 if (count_zero) 1097 l = &sma->sems[semnum].pending_const; 1098 else 1099 l = &sma->sems[semnum].pending_alter; 1100 1101 list_for_each_entry(q, l, list) { 1102 /* all task on a per-semaphore list sleep on exactly 1103 * that semaphore 1104 */ 1105 semcnt++; 1106 } 1107 1108 /* Then: check the complex operations. */ 1109 list_for_each_entry(q, &sma->pending_alter, list) { 1110 semcnt += check_qop(sma, semnum, q, count_zero); 1111 } 1112 if (count_zero) { 1113 list_for_each_entry(q, &sma->pending_const, list) { 1114 semcnt += check_qop(sma, semnum, q, count_zero); 1115 } 1116 } 1117 return semcnt; 1118 } 1119 1120 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked 1121 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem 1122 * remains locked on exit. 1123 */ 1124 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) 1125 { 1126 struct sem_undo *un, *tu; 1127 struct sem_queue *q, *tq; 1128 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 1129 int i; 1130 DEFINE_WAKE_Q(wake_q); 1131 1132 /* Free the existing undo structures for this semaphore set. */ 1133 ipc_assert_locked_object(&sma->sem_perm); 1134 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { 1135 list_del(&un->list_id); 1136 spin_lock(&un->ulp->lock); 1137 un->semid = -1; 1138 list_del_rcu(&un->list_proc); 1139 spin_unlock(&un->ulp->lock); 1140 kfree_rcu(un, rcu); 1141 } 1142 1143 /* Wake up all pending processes and let them fail with EIDRM. */ 1144 list_for_each_entry_safe(q, tq, &sma->pending_const, list) { 1145 unlink_queue(sma, q); 1146 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1147 } 1148 1149 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 1150 unlink_queue(sma, q); 1151 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1152 } 1153 for (i = 0; i < sma->sem_nsems; i++) { 1154 struct sem *sem = &sma->sems[i]; 1155 list_for_each_entry_safe(q, tq, &sem->pending_const, list) { 1156 unlink_queue(sma, q); 1157 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1158 } 1159 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) { 1160 unlink_queue(sma, q); 1161 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1162 } 1163 ipc_update_pid(&sem->sempid, NULL); 1164 } 1165 1166 /* Remove the semaphore set from the IDR */ 1167 sem_rmid(ns, sma); 1168 sem_unlock(sma, -1); 1169 rcu_read_unlock(); 1170 1171 wake_up_q(&wake_q); 1172 ns->used_sems -= sma->sem_nsems; 1173 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1174 } 1175 1176 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) 1177 { 1178 switch (version) { 1179 case IPC_64: 1180 return copy_to_user(buf, in, sizeof(*in)); 1181 case IPC_OLD: 1182 { 1183 struct semid_ds out; 1184 1185 memset(&out, 0, sizeof(out)); 1186 1187 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); 1188 1189 out.sem_otime = in->sem_otime; 1190 out.sem_ctime = in->sem_ctime; 1191 out.sem_nsems = in->sem_nsems; 1192 1193 return copy_to_user(buf, &out, sizeof(out)); 1194 } 1195 default: 1196 return -EINVAL; 1197 } 1198 } 1199 1200 static time64_t get_semotime(struct sem_array *sma) 1201 { 1202 int i; 1203 time64_t res; 1204 1205 res = sma->sems[0].sem_otime; 1206 for (i = 1; i < sma->sem_nsems; i++) { 1207 time64_t to = sma->sems[i].sem_otime; 1208 1209 if (to > res) 1210 res = to; 1211 } 1212 return res; 1213 } 1214 1215 static int semctl_stat(struct ipc_namespace *ns, int semid, 1216 int cmd, struct semid64_ds *semid64) 1217 { 1218 struct sem_array *sma; 1219 time64_t semotime; 1220 int err; 1221 1222 memset(semid64, 0, sizeof(*semid64)); 1223 1224 rcu_read_lock(); 1225 if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) { 1226 sma = sem_obtain_object(ns, semid); 1227 if (IS_ERR(sma)) { 1228 err = PTR_ERR(sma); 1229 goto out_unlock; 1230 } 1231 } else { /* IPC_STAT */ 1232 sma = sem_obtain_object_check(ns, semid); 1233 if (IS_ERR(sma)) { 1234 err = PTR_ERR(sma); 1235 goto out_unlock; 1236 } 1237 } 1238 1239 /* see comment for SHM_STAT_ANY */ 1240 if (cmd == SEM_STAT_ANY) 1241 audit_ipc_obj(&sma->sem_perm); 1242 else { 1243 err = -EACCES; 1244 if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) 1245 goto out_unlock; 1246 } 1247 1248 err = security_sem_semctl(&sma->sem_perm, cmd); 1249 if (err) 1250 goto out_unlock; 1251 1252 ipc_lock_object(&sma->sem_perm); 1253 1254 if (!ipc_valid_object(&sma->sem_perm)) { 1255 ipc_unlock_object(&sma->sem_perm); 1256 err = -EIDRM; 1257 goto out_unlock; 1258 } 1259 1260 kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm); 1261 semotime = get_semotime(sma); 1262 semid64->sem_otime = semotime; 1263 semid64->sem_ctime = sma->sem_ctime; 1264 #ifndef CONFIG_64BIT 1265 semid64->sem_otime_high = semotime >> 32; 1266 semid64->sem_ctime_high = sma->sem_ctime >> 32; 1267 #endif 1268 semid64->sem_nsems = sma->sem_nsems; 1269 1270 if (cmd == IPC_STAT) { 1271 /* 1272 * As defined in SUS: 1273 * Return 0 on success 1274 */ 1275 err = 0; 1276 } else { 1277 /* 1278 * SEM_STAT and SEM_STAT_ANY (both Linux specific) 1279 * Return the full id, including the sequence number 1280 */ 1281 err = sma->sem_perm.id; 1282 } 1283 ipc_unlock_object(&sma->sem_perm); 1284 out_unlock: 1285 rcu_read_unlock(); 1286 return err; 1287 } 1288 1289 static int semctl_info(struct ipc_namespace *ns, int semid, 1290 int cmd, void __user *p) 1291 { 1292 struct seminfo seminfo; 1293 int max_idx; 1294 int err; 1295 1296 err = security_sem_semctl(NULL, cmd); 1297 if (err) 1298 return err; 1299 1300 memset(&seminfo, 0, sizeof(seminfo)); 1301 seminfo.semmni = ns->sc_semmni; 1302 seminfo.semmns = ns->sc_semmns; 1303 seminfo.semmsl = ns->sc_semmsl; 1304 seminfo.semopm = ns->sc_semopm; 1305 seminfo.semvmx = SEMVMX; 1306 seminfo.semmnu = SEMMNU; 1307 seminfo.semmap = SEMMAP; 1308 seminfo.semume = SEMUME; 1309 down_read(&sem_ids(ns).rwsem); 1310 if (cmd == SEM_INFO) { 1311 seminfo.semusz = sem_ids(ns).in_use; 1312 seminfo.semaem = ns->used_sems; 1313 } else { 1314 seminfo.semusz = SEMUSZ; 1315 seminfo.semaem = SEMAEM; 1316 } 1317 max_idx = ipc_get_maxidx(&sem_ids(ns)); 1318 up_read(&sem_ids(ns).rwsem); 1319 if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) 1320 return -EFAULT; 1321 return (max_idx < 0) ? 0 : max_idx; 1322 } 1323 1324 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, 1325 int val) 1326 { 1327 struct sem_undo *un; 1328 struct sem_array *sma; 1329 struct sem *curr; 1330 int err; 1331 DEFINE_WAKE_Q(wake_q); 1332 1333 if (val > SEMVMX || val < 0) 1334 return -ERANGE; 1335 1336 rcu_read_lock(); 1337 sma = sem_obtain_object_check(ns, semid); 1338 if (IS_ERR(sma)) { 1339 rcu_read_unlock(); 1340 return PTR_ERR(sma); 1341 } 1342 1343 if (semnum < 0 || semnum >= sma->sem_nsems) { 1344 rcu_read_unlock(); 1345 return -EINVAL; 1346 } 1347 1348 1349 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) { 1350 rcu_read_unlock(); 1351 return -EACCES; 1352 } 1353 1354 err = security_sem_semctl(&sma->sem_perm, SETVAL); 1355 if (err) { 1356 rcu_read_unlock(); 1357 return -EACCES; 1358 } 1359 1360 sem_lock(sma, NULL, -1); 1361 1362 if (!ipc_valid_object(&sma->sem_perm)) { 1363 sem_unlock(sma, -1); 1364 rcu_read_unlock(); 1365 return -EIDRM; 1366 } 1367 1368 semnum = array_index_nospec(semnum, sma->sem_nsems); 1369 curr = &sma->sems[semnum]; 1370 1371 ipc_assert_locked_object(&sma->sem_perm); 1372 list_for_each_entry(un, &sma->list_id, list_id) 1373 un->semadj[semnum] = 0; 1374 1375 curr->semval = val; 1376 ipc_update_pid(&curr->sempid, task_tgid(current)); 1377 sma->sem_ctime = ktime_get_real_seconds(); 1378 /* maybe some queued-up processes were waiting for this */ 1379 do_smart_update(sma, NULL, 0, 0, &wake_q); 1380 sem_unlock(sma, -1); 1381 rcu_read_unlock(); 1382 wake_up_q(&wake_q); 1383 return 0; 1384 } 1385 1386 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, 1387 int cmd, void __user *p) 1388 { 1389 struct sem_array *sma; 1390 struct sem *curr; 1391 int err, nsems; 1392 ushort fast_sem_io[SEMMSL_FAST]; 1393 ushort *sem_io = fast_sem_io; 1394 DEFINE_WAKE_Q(wake_q); 1395 1396 rcu_read_lock(); 1397 sma = sem_obtain_object_check(ns, semid); 1398 if (IS_ERR(sma)) { 1399 rcu_read_unlock(); 1400 return PTR_ERR(sma); 1401 } 1402 1403 nsems = sma->sem_nsems; 1404 1405 err = -EACCES; 1406 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO)) 1407 goto out_rcu_wakeup; 1408 1409 err = security_sem_semctl(&sma->sem_perm, cmd); 1410 if (err) 1411 goto out_rcu_wakeup; 1412 1413 err = -EACCES; 1414 switch (cmd) { 1415 case GETALL: 1416 { 1417 ushort __user *array = p; 1418 int i; 1419 1420 sem_lock(sma, NULL, -1); 1421 if (!ipc_valid_object(&sma->sem_perm)) { 1422 err = -EIDRM; 1423 goto out_unlock; 1424 } 1425 if (nsems > SEMMSL_FAST) { 1426 if (!ipc_rcu_getref(&sma->sem_perm)) { 1427 err = -EIDRM; 1428 goto out_unlock; 1429 } 1430 sem_unlock(sma, -1); 1431 rcu_read_unlock(); 1432 sem_io = kvmalloc_array(nsems, sizeof(ushort), 1433 GFP_KERNEL); 1434 if (sem_io == NULL) { 1435 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1436 return -ENOMEM; 1437 } 1438 1439 rcu_read_lock(); 1440 sem_lock_and_putref(sma); 1441 if (!ipc_valid_object(&sma->sem_perm)) { 1442 err = -EIDRM; 1443 goto out_unlock; 1444 } 1445 } 1446 for (i = 0; i < sma->sem_nsems; i++) 1447 sem_io[i] = sma->sems[i].semval; 1448 sem_unlock(sma, -1); 1449 rcu_read_unlock(); 1450 err = 0; 1451 if (copy_to_user(array, sem_io, nsems*sizeof(ushort))) 1452 err = -EFAULT; 1453 goto out_free; 1454 } 1455 case SETALL: 1456 { 1457 int i; 1458 struct sem_undo *un; 1459 1460 if (!ipc_rcu_getref(&sma->sem_perm)) { 1461 err = -EIDRM; 1462 goto out_rcu_wakeup; 1463 } 1464 rcu_read_unlock(); 1465 1466 if (nsems > SEMMSL_FAST) { 1467 sem_io = kvmalloc_array(nsems, sizeof(ushort), 1468 GFP_KERNEL); 1469 if (sem_io == NULL) { 1470 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1471 return -ENOMEM; 1472 } 1473 } 1474 1475 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) { 1476 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1477 err = -EFAULT; 1478 goto out_free; 1479 } 1480 1481 for (i = 0; i < nsems; i++) { 1482 if (sem_io[i] > SEMVMX) { 1483 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1484 err = -ERANGE; 1485 goto out_free; 1486 } 1487 } 1488 rcu_read_lock(); 1489 sem_lock_and_putref(sma); 1490 if (!ipc_valid_object(&sma->sem_perm)) { 1491 err = -EIDRM; 1492 goto out_unlock; 1493 } 1494 1495 for (i = 0; i < nsems; i++) { 1496 sma->sems[i].semval = sem_io[i]; 1497 ipc_update_pid(&sma->sems[i].sempid, task_tgid(current)); 1498 } 1499 1500 ipc_assert_locked_object(&sma->sem_perm); 1501 list_for_each_entry(un, &sma->list_id, list_id) { 1502 for (i = 0; i < nsems; i++) 1503 un->semadj[i] = 0; 1504 } 1505 sma->sem_ctime = ktime_get_real_seconds(); 1506 /* maybe some queued-up processes were waiting for this */ 1507 do_smart_update(sma, NULL, 0, 0, &wake_q); 1508 err = 0; 1509 goto out_unlock; 1510 } 1511 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */ 1512 } 1513 err = -EINVAL; 1514 if (semnum < 0 || semnum >= nsems) 1515 goto out_rcu_wakeup; 1516 1517 sem_lock(sma, NULL, -1); 1518 if (!ipc_valid_object(&sma->sem_perm)) { 1519 err = -EIDRM; 1520 goto out_unlock; 1521 } 1522 1523 semnum = array_index_nospec(semnum, nsems); 1524 curr = &sma->sems[semnum]; 1525 1526 switch (cmd) { 1527 case GETVAL: 1528 err = curr->semval; 1529 goto out_unlock; 1530 case GETPID: 1531 err = pid_vnr(curr->sempid); 1532 goto out_unlock; 1533 case GETNCNT: 1534 err = count_semcnt(sma, semnum, 0); 1535 goto out_unlock; 1536 case GETZCNT: 1537 err = count_semcnt(sma, semnum, 1); 1538 goto out_unlock; 1539 } 1540 1541 out_unlock: 1542 sem_unlock(sma, -1); 1543 out_rcu_wakeup: 1544 rcu_read_unlock(); 1545 wake_up_q(&wake_q); 1546 out_free: 1547 if (sem_io != fast_sem_io) 1548 kvfree(sem_io); 1549 return err; 1550 } 1551 1552 static inline unsigned long 1553 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) 1554 { 1555 switch (version) { 1556 case IPC_64: 1557 if (copy_from_user(out, buf, sizeof(*out))) 1558 return -EFAULT; 1559 return 0; 1560 case IPC_OLD: 1561 { 1562 struct semid_ds tbuf_old; 1563 1564 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) 1565 return -EFAULT; 1566 1567 out->sem_perm.uid = tbuf_old.sem_perm.uid; 1568 out->sem_perm.gid = tbuf_old.sem_perm.gid; 1569 out->sem_perm.mode = tbuf_old.sem_perm.mode; 1570 1571 return 0; 1572 } 1573 default: 1574 return -EINVAL; 1575 } 1576 } 1577 1578 /* 1579 * This function handles some semctl commands which require the rwsem 1580 * to be held in write mode. 1581 * NOTE: no locks must be held, the rwsem is taken inside this function. 1582 */ 1583 static int semctl_down(struct ipc_namespace *ns, int semid, 1584 int cmd, struct semid64_ds *semid64) 1585 { 1586 struct sem_array *sma; 1587 int err; 1588 struct kern_ipc_perm *ipcp; 1589 1590 down_write(&sem_ids(ns).rwsem); 1591 rcu_read_lock(); 1592 1593 ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd, 1594 &semid64->sem_perm, 0); 1595 if (IS_ERR(ipcp)) { 1596 err = PTR_ERR(ipcp); 1597 goto out_unlock1; 1598 } 1599 1600 sma = container_of(ipcp, struct sem_array, sem_perm); 1601 1602 err = security_sem_semctl(&sma->sem_perm, cmd); 1603 if (err) 1604 goto out_unlock1; 1605 1606 switch (cmd) { 1607 case IPC_RMID: 1608 sem_lock(sma, NULL, -1); 1609 /* freeary unlocks the ipc object and rcu */ 1610 freeary(ns, ipcp); 1611 goto out_up; 1612 case IPC_SET: 1613 sem_lock(sma, NULL, -1); 1614 err = ipc_update_perm(&semid64->sem_perm, ipcp); 1615 if (err) 1616 goto out_unlock0; 1617 sma->sem_ctime = ktime_get_real_seconds(); 1618 break; 1619 default: 1620 err = -EINVAL; 1621 goto out_unlock1; 1622 } 1623 1624 out_unlock0: 1625 sem_unlock(sma, -1); 1626 out_unlock1: 1627 rcu_read_unlock(); 1628 out_up: 1629 up_write(&sem_ids(ns).rwsem); 1630 return err; 1631 } 1632 1633 static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version) 1634 { 1635 struct ipc_namespace *ns; 1636 void __user *p = (void __user *)arg; 1637 struct semid64_ds semid64; 1638 int err; 1639 1640 if (semid < 0) 1641 return -EINVAL; 1642 1643 ns = current->nsproxy->ipc_ns; 1644 1645 switch (cmd) { 1646 case IPC_INFO: 1647 case SEM_INFO: 1648 return semctl_info(ns, semid, cmd, p); 1649 case IPC_STAT: 1650 case SEM_STAT: 1651 case SEM_STAT_ANY: 1652 err = semctl_stat(ns, semid, cmd, &semid64); 1653 if (err < 0) 1654 return err; 1655 if (copy_semid_to_user(p, &semid64, version)) 1656 err = -EFAULT; 1657 return err; 1658 case GETALL: 1659 case GETVAL: 1660 case GETPID: 1661 case GETNCNT: 1662 case GETZCNT: 1663 case SETALL: 1664 return semctl_main(ns, semid, semnum, cmd, p); 1665 case SETVAL: { 1666 int val; 1667 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) 1668 /* big-endian 64bit */ 1669 val = arg >> 32; 1670 #else 1671 /* 32bit or little-endian 64bit */ 1672 val = arg; 1673 #endif 1674 return semctl_setval(ns, semid, semnum, val); 1675 } 1676 case IPC_SET: 1677 if (copy_semid_from_user(&semid64, p, version)) 1678 return -EFAULT; 1679 /* fall through */ 1680 case IPC_RMID: 1681 return semctl_down(ns, semid, cmd, &semid64); 1682 default: 1683 return -EINVAL; 1684 } 1685 } 1686 1687 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) 1688 { 1689 return ksys_semctl(semid, semnum, cmd, arg, IPC_64); 1690 } 1691 1692 #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION 1693 long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg) 1694 { 1695 int version = ipc_parse_version(&cmd); 1696 1697 return ksys_semctl(semid, semnum, cmd, arg, version); 1698 } 1699 1700 SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) 1701 { 1702 return ksys_old_semctl(semid, semnum, cmd, arg); 1703 } 1704 #endif 1705 1706 #ifdef CONFIG_COMPAT 1707 1708 struct compat_semid_ds { 1709 struct compat_ipc_perm sem_perm; 1710 old_time32_t sem_otime; 1711 old_time32_t sem_ctime; 1712 compat_uptr_t sem_base; 1713 compat_uptr_t sem_pending; 1714 compat_uptr_t sem_pending_last; 1715 compat_uptr_t undo; 1716 unsigned short sem_nsems; 1717 }; 1718 1719 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf, 1720 int version) 1721 { 1722 memset(out, 0, sizeof(*out)); 1723 if (version == IPC_64) { 1724 struct compat_semid64_ds __user *p = buf; 1725 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm); 1726 } else { 1727 struct compat_semid_ds __user *p = buf; 1728 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm); 1729 } 1730 } 1731 1732 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in, 1733 int version) 1734 { 1735 if (version == IPC_64) { 1736 struct compat_semid64_ds v; 1737 memset(&v, 0, sizeof(v)); 1738 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm); 1739 v.sem_otime = lower_32_bits(in->sem_otime); 1740 v.sem_otime_high = upper_32_bits(in->sem_otime); 1741 v.sem_ctime = lower_32_bits(in->sem_ctime); 1742 v.sem_ctime_high = upper_32_bits(in->sem_ctime); 1743 v.sem_nsems = in->sem_nsems; 1744 return copy_to_user(buf, &v, sizeof(v)); 1745 } else { 1746 struct compat_semid_ds v; 1747 memset(&v, 0, sizeof(v)); 1748 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm); 1749 v.sem_otime = in->sem_otime; 1750 v.sem_ctime = in->sem_ctime; 1751 v.sem_nsems = in->sem_nsems; 1752 return copy_to_user(buf, &v, sizeof(v)); 1753 } 1754 } 1755 1756 static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version) 1757 { 1758 void __user *p = compat_ptr(arg); 1759 struct ipc_namespace *ns; 1760 struct semid64_ds semid64; 1761 int err; 1762 1763 ns = current->nsproxy->ipc_ns; 1764 1765 if (semid < 0) 1766 return -EINVAL; 1767 1768 switch (cmd & (~IPC_64)) { 1769 case IPC_INFO: 1770 case SEM_INFO: 1771 return semctl_info(ns, semid, cmd, p); 1772 case IPC_STAT: 1773 case SEM_STAT: 1774 case SEM_STAT_ANY: 1775 err = semctl_stat(ns, semid, cmd, &semid64); 1776 if (err < 0) 1777 return err; 1778 if (copy_compat_semid_to_user(p, &semid64, version)) 1779 err = -EFAULT; 1780 return err; 1781 case GETVAL: 1782 case GETPID: 1783 case GETNCNT: 1784 case GETZCNT: 1785 case GETALL: 1786 case SETALL: 1787 return semctl_main(ns, semid, semnum, cmd, p); 1788 case SETVAL: 1789 return semctl_setval(ns, semid, semnum, arg); 1790 case IPC_SET: 1791 if (copy_compat_semid_from_user(&semid64, p, version)) 1792 return -EFAULT; 1793 /* fallthru */ 1794 case IPC_RMID: 1795 return semctl_down(ns, semid, cmd, &semid64); 1796 default: 1797 return -EINVAL; 1798 } 1799 } 1800 1801 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg) 1802 { 1803 return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64); 1804 } 1805 1806 #ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION 1807 long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg) 1808 { 1809 int version = compat_ipc_parse_version(&cmd); 1810 1811 return compat_ksys_semctl(semid, semnum, cmd, arg, version); 1812 } 1813 1814 COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg) 1815 { 1816 return compat_ksys_old_semctl(semid, semnum, cmd, arg); 1817 } 1818 #endif 1819 #endif 1820 1821 /* If the task doesn't already have a undo_list, then allocate one 1822 * here. We guarantee there is only one thread using this undo list, 1823 * and current is THE ONE 1824 * 1825 * If this allocation and assignment succeeds, but later 1826 * portions of this code fail, there is no need to free the sem_undo_list. 1827 * Just let it stay associated with the task, and it'll be freed later 1828 * at exit time. 1829 * 1830 * This can block, so callers must hold no locks. 1831 */ 1832 static inline int get_undo_list(struct sem_undo_list **undo_listp) 1833 { 1834 struct sem_undo_list *undo_list; 1835 1836 undo_list = current->sysvsem.undo_list; 1837 if (!undo_list) { 1838 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); 1839 if (undo_list == NULL) 1840 return -ENOMEM; 1841 spin_lock_init(&undo_list->lock); 1842 refcount_set(&undo_list->refcnt, 1); 1843 INIT_LIST_HEAD(&undo_list->list_proc); 1844 1845 current->sysvsem.undo_list = undo_list; 1846 } 1847 *undo_listp = undo_list; 1848 return 0; 1849 } 1850 1851 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) 1852 { 1853 struct sem_undo *un; 1854 1855 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) { 1856 if (un->semid == semid) 1857 return un; 1858 } 1859 return NULL; 1860 } 1861 1862 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) 1863 { 1864 struct sem_undo *un; 1865 1866 assert_spin_locked(&ulp->lock); 1867 1868 un = __lookup_undo(ulp, semid); 1869 if (un) { 1870 list_del_rcu(&un->list_proc); 1871 list_add_rcu(&un->list_proc, &ulp->list_proc); 1872 } 1873 return un; 1874 } 1875 1876 /** 1877 * find_alloc_undo - lookup (and if not present create) undo array 1878 * @ns: namespace 1879 * @semid: semaphore array id 1880 * 1881 * The function looks up (and if not present creates) the undo structure. 1882 * The size of the undo structure depends on the size of the semaphore 1883 * array, thus the alloc path is not that straightforward. 1884 * Lifetime-rules: sem_undo is rcu-protected, on success, the function 1885 * performs a rcu_read_lock(). 1886 */ 1887 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) 1888 { 1889 struct sem_array *sma; 1890 struct sem_undo_list *ulp; 1891 struct sem_undo *un, *new; 1892 int nsems, error; 1893 1894 error = get_undo_list(&ulp); 1895 if (error) 1896 return ERR_PTR(error); 1897 1898 rcu_read_lock(); 1899 spin_lock(&ulp->lock); 1900 un = lookup_undo(ulp, semid); 1901 spin_unlock(&ulp->lock); 1902 if (likely(un != NULL)) 1903 goto out; 1904 1905 /* no undo structure around - allocate one. */ 1906 /* step 1: figure out the size of the semaphore array */ 1907 sma = sem_obtain_object_check(ns, semid); 1908 if (IS_ERR(sma)) { 1909 rcu_read_unlock(); 1910 return ERR_CAST(sma); 1911 } 1912 1913 nsems = sma->sem_nsems; 1914 if (!ipc_rcu_getref(&sma->sem_perm)) { 1915 rcu_read_unlock(); 1916 un = ERR_PTR(-EIDRM); 1917 goto out; 1918 } 1919 rcu_read_unlock(); 1920 1921 /* step 2: allocate new undo structure */ 1922 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); 1923 if (!new) { 1924 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1925 return ERR_PTR(-ENOMEM); 1926 } 1927 1928 /* step 3: Acquire the lock on semaphore array */ 1929 rcu_read_lock(); 1930 sem_lock_and_putref(sma); 1931 if (!ipc_valid_object(&sma->sem_perm)) { 1932 sem_unlock(sma, -1); 1933 rcu_read_unlock(); 1934 kfree(new); 1935 un = ERR_PTR(-EIDRM); 1936 goto out; 1937 } 1938 spin_lock(&ulp->lock); 1939 1940 /* 1941 * step 4: check for races: did someone else allocate the undo struct? 1942 */ 1943 un = lookup_undo(ulp, semid); 1944 if (un) { 1945 kfree(new); 1946 goto success; 1947 } 1948 /* step 5: initialize & link new undo structure */ 1949 new->semadj = (short *) &new[1]; 1950 new->ulp = ulp; 1951 new->semid = semid; 1952 assert_spin_locked(&ulp->lock); 1953 list_add_rcu(&new->list_proc, &ulp->list_proc); 1954 ipc_assert_locked_object(&sma->sem_perm); 1955 list_add(&new->list_id, &sma->list_id); 1956 un = new; 1957 1958 success: 1959 spin_unlock(&ulp->lock); 1960 sem_unlock(sma, -1); 1961 out: 1962 return un; 1963 } 1964 1965 static long do_semtimedop(int semid, struct sembuf __user *tsops, 1966 unsigned nsops, const struct timespec64 *timeout) 1967 { 1968 int error = -EINVAL; 1969 struct sem_array *sma; 1970 struct sembuf fast_sops[SEMOPM_FAST]; 1971 struct sembuf *sops = fast_sops, *sop; 1972 struct sem_undo *un; 1973 int max, locknum; 1974 bool undos = false, alter = false, dupsop = false; 1975 struct sem_queue queue; 1976 unsigned long dup = 0, jiffies_left = 0; 1977 struct ipc_namespace *ns; 1978 1979 ns = current->nsproxy->ipc_ns; 1980 1981 if (nsops < 1 || semid < 0) 1982 return -EINVAL; 1983 if (nsops > ns->sc_semopm) 1984 return -E2BIG; 1985 if (nsops > SEMOPM_FAST) { 1986 sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL); 1987 if (sops == NULL) 1988 return -ENOMEM; 1989 } 1990 1991 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) { 1992 error = -EFAULT; 1993 goto out_free; 1994 } 1995 1996 if (timeout) { 1997 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 || 1998 timeout->tv_nsec >= 1000000000L) { 1999 error = -EINVAL; 2000 goto out_free; 2001 } 2002 jiffies_left = timespec64_to_jiffies(timeout); 2003 } 2004 2005 max = 0; 2006 for (sop = sops; sop < sops + nsops; sop++) { 2007 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG); 2008 2009 if (sop->sem_num >= max) 2010 max = sop->sem_num; 2011 if (sop->sem_flg & SEM_UNDO) 2012 undos = true; 2013 if (dup & mask) { 2014 /* 2015 * There was a previous alter access that appears 2016 * to have accessed the same semaphore, thus use 2017 * the dupsop logic. "appears", because the detection 2018 * can only check % BITS_PER_LONG. 2019 */ 2020 dupsop = true; 2021 } 2022 if (sop->sem_op != 0) { 2023 alter = true; 2024 dup |= mask; 2025 } 2026 } 2027 2028 if (undos) { 2029 /* On success, find_alloc_undo takes the rcu_read_lock */ 2030 un = find_alloc_undo(ns, semid); 2031 if (IS_ERR(un)) { 2032 error = PTR_ERR(un); 2033 goto out_free; 2034 } 2035 } else { 2036 un = NULL; 2037 rcu_read_lock(); 2038 } 2039 2040 sma = sem_obtain_object_check(ns, semid); 2041 if (IS_ERR(sma)) { 2042 rcu_read_unlock(); 2043 error = PTR_ERR(sma); 2044 goto out_free; 2045 } 2046 2047 error = -EFBIG; 2048 if (max >= sma->sem_nsems) { 2049 rcu_read_unlock(); 2050 goto out_free; 2051 } 2052 2053 error = -EACCES; 2054 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) { 2055 rcu_read_unlock(); 2056 goto out_free; 2057 } 2058 2059 error = security_sem_semop(&sma->sem_perm, sops, nsops, alter); 2060 if (error) { 2061 rcu_read_unlock(); 2062 goto out_free; 2063 } 2064 2065 error = -EIDRM; 2066 locknum = sem_lock(sma, sops, nsops); 2067 /* 2068 * We eventually might perform the following check in a lockless 2069 * fashion, considering ipc_valid_object() locking constraints. 2070 * If nsops == 1 and there is no contention for sem_perm.lock, then 2071 * only a per-semaphore lock is held and it's OK to proceed with the 2072 * check below. More details on the fine grained locking scheme 2073 * entangled here and why it's RMID race safe on comments at sem_lock() 2074 */ 2075 if (!ipc_valid_object(&sma->sem_perm)) 2076 goto out_unlock_free; 2077 /* 2078 * semid identifiers are not unique - find_alloc_undo may have 2079 * allocated an undo structure, it was invalidated by an RMID 2080 * and now a new array with received the same id. Check and fail. 2081 * This case can be detected checking un->semid. The existence of 2082 * "un" itself is guaranteed by rcu. 2083 */ 2084 if (un && un->semid == -1) 2085 goto out_unlock_free; 2086 2087 queue.sops = sops; 2088 queue.nsops = nsops; 2089 queue.undo = un; 2090 queue.pid = task_tgid(current); 2091 queue.alter = alter; 2092 queue.dupsop = dupsop; 2093 2094 error = perform_atomic_semop(sma, &queue); 2095 if (error == 0) { /* non-blocking succesfull path */ 2096 DEFINE_WAKE_Q(wake_q); 2097 2098 /* 2099 * If the operation was successful, then do 2100 * the required updates. 2101 */ 2102 if (alter) 2103 do_smart_update(sma, sops, nsops, 1, &wake_q); 2104 else 2105 set_semotime(sma, sops); 2106 2107 sem_unlock(sma, locknum); 2108 rcu_read_unlock(); 2109 wake_up_q(&wake_q); 2110 2111 goto out_free; 2112 } 2113 if (error < 0) /* non-blocking error path */ 2114 goto out_unlock_free; 2115 2116 /* 2117 * We need to sleep on this operation, so we put the current 2118 * task into the pending queue and go to sleep. 2119 */ 2120 if (nsops == 1) { 2121 struct sem *curr; 2122 int idx = array_index_nospec(sops->sem_num, sma->sem_nsems); 2123 curr = &sma->sems[idx]; 2124 2125 if (alter) { 2126 if (sma->complex_count) { 2127 list_add_tail(&queue.list, 2128 &sma->pending_alter); 2129 } else { 2130 2131 list_add_tail(&queue.list, 2132 &curr->pending_alter); 2133 } 2134 } else { 2135 list_add_tail(&queue.list, &curr->pending_const); 2136 } 2137 } else { 2138 if (!sma->complex_count) 2139 merge_queues(sma); 2140 2141 if (alter) 2142 list_add_tail(&queue.list, &sma->pending_alter); 2143 else 2144 list_add_tail(&queue.list, &sma->pending_const); 2145 2146 sma->complex_count++; 2147 } 2148 2149 do { 2150 WRITE_ONCE(queue.status, -EINTR); 2151 queue.sleeper = current; 2152 2153 __set_current_state(TASK_INTERRUPTIBLE); 2154 sem_unlock(sma, locknum); 2155 rcu_read_unlock(); 2156 2157 if (timeout) 2158 jiffies_left = schedule_timeout(jiffies_left); 2159 else 2160 schedule(); 2161 2162 /* 2163 * fastpath: the semop has completed, either successfully or 2164 * not, from the syscall pov, is quite irrelevant to us at this 2165 * point; we're done. 2166 * 2167 * We _do_ care, nonetheless, about being awoken by a signal or 2168 * spuriously. The queue.status is checked again in the 2169 * slowpath (aka after taking sem_lock), such that we can detect 2170 * scenarios where we were awakened externally, during the 2171 * window between wake_q_add() and wake_up_q(). 2172 */ 2173 error = READ_ONCE(queue.status); 2174 if (error != -EINTR) { 2175 /* 2176 * User space could assume that semop() is a memory 2177 * barrier: Without the mb(), the cpu could 2178 * speculatively read in userspace stale data that was 2179 * overwritten by the previous owner of the semaphore. 2180 */ 2181 smp_mb(); 2182 goto out_free; 2183 } 2184 2185 rcu_read_lock(); 2186 locknum = sem_lock(sma, sops, nsops); 2187 2188 if (!ipc_valid_object(&sma->sem_perm)) 2189 goto out_unlock_free; 2190 2191 error = READ_ONCE(queue.status); 2192 2193 /* 2194 * If queue.status != -EINTR we are woken up by another process. 2195 * Leave without unlink_queue(), but with sem_unlock(). 2196 */ 2197 if (error != -EINTR) 2198 goto out_unlock_free; 2199 2200 /* 2201 * If an interrupt occurred we have to clean up the queue. 2202 */ 2203 if (timeout && jiffies_left == 0) 2204 error = -EAGAIN; 2205 } while (error == -EINTR && !signal_pending(current)); /* spurious */ 2206 2207 unlink_queue(sma, &queue); 2208 2209 out_unlock_free: 2210 sem_unlock(sma, locknum); 2211 rcu_read_unlock(); 2212 out_free: 2213 if (sops != fast_sops) 2214 kvfree(sops); 2215 return error; 2216 } 2217 2218 long ksys_semtimedop(int semid, struct sembuf __user *tsops, 2219 unsigned int nsops, const struct __kernel_timespec __user *timeout) 2220 { 2221 if (timeout) { 2222 struct timespec64 ts; 2223 if (get_timespec64(&ts, timeout)) 2224 return -EFAULT; 2225 return do_semtimedop(semid, tsops, nsops, &ts); 2226 } 2227 return do_semtimedop(semid, tsops, nsops, NULL); 2228 } 2229 2230 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, 2231 unsigned int, nsops, const struct __kernel_timespec __user *, timeout) 2232 { 2233 return ksys_semtimedop(semid, tsops, nsops, timeout); 2234 } 2235 2236 #ifdef CONFIG_COMPAT_32BIT_TIME 2237 long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems, 2238 unsigned int nsops, 2239 const struct old_timespec32 __user *timeout) 2240 { 2241 if (timeout) { 2242 struct timespec64 ts; 2243 if (get_old_timespec32(&ts, timeout)) 2244 return -EFAULT; 2245 return do_semtimedop(semid, tsems, nsops, &ts); 2246 } 2247 return do_semtimedop(semid, tsems, nsops, NULL); 2248 } 2249 2250 SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems, 2251 unsigned int, nsops, 2252 const struct old_timespec32 __user *, timeout) 2253 { 2254 return compat_ksys_semtimedop(semid, tsems, nsops, timeout); 2255 } 2256 #endif 2257 2258 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, 2259 unsigned, nsops) 2260 { 2261 return do_semtimedop(semid, tsops, nsops, NULL); 2262 } 2263 2264 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between 2265 * parent and child tasks. 2266 */ 2267 2268 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) 2269 { 2270 struct sem_undo_list *undo_list; 2271 int error; 2272 2273 if (clone_flags & CLONE_SYSVSEM) { 2274 error = get_undo_list(&undo_list); 2275 if (error) 2276 return error; 2277 refcount_inc(&undo_list->refcnt); 2278 tsk->sysvsem.undo_list = undo_list; 2279 } else 2280 tsk->sysvsem.undo_list = NULL; 2281 2282 return 0; 2283 } 2284 2285 /* 2286 * add semadj values to semaphores, free undo structures. 2287 * undo structures are not freed when semaphore arrays are destroyed 2288 * so some of them may be out of date. 2289 * IMPLEMENTATION NOTE: There is some confusion over whether the 2290 * set of adjustments that needs to be done should be done in an atomic 2291 * manner or not. That is, if we are attempting to decrement the semval 2292 * should we queue up and wait until we can do so legally? 2293 * The original implementation attempted to do this (queue and wait). 2294 * The current implementation does not do so. The POSIX standard 2295 * and SVID should be consulted to determine what behavior is mandated. 2296 */ 2297 void exit_sem(struct task_struct *tsk) 2298 { 2299 struct sem_undo_list *ulp; 2300 2301 ulp = tsk->sysvsem.undo_list; 2302 if (!ulp) 2303 return; 2304 tsk->sysvsem.undo_list = NULL; 2305 2306 if (!refcount_dec_and_test(&ulp->refcnt)) 2307 return; 2308 2309 for (;;) { 2310 struct sem_array *sma; 2311 struct sem_undo *un; 2312 int semid, i; 2313 DEFINE_WAKE_Q(wake_q); 2314 2315 cond_resched(); 2316 2317 rcu_read_lock(); 2318 un = list_entry_rcu(ulp->list_proc.next, 2319 struct sem_undo, list_proc); 2320 if (&un->list_proc == &ulp->list_proc) { 2321 /* 2322 * We must wait for freeary() before freeing this ulp, 2323 * in case we raced with last sem_undo. There is a small 2324 * possibility where we exit while freeary() didn't 2325 * finish unlocking sem_undo_list. 2326 */ 2327 spin_lock(&ulp->lock); 2328 spin_unlock(&ulp->lock); 2329 rcu_read_unlock(); 2330 break; 2331 } 2332 spin_lock(&ulp->lock); 2333 semid = un->semid; 2334 spin_unlock(&ulp->lock); 2335 2336 /* exit_sem raced with IPC_RMID, nothing to do */ 2337 if (semid == -1) { 2338 rcu_read_unlock(); 2339 continue; 2340 } 2341 2342 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid); 2343 /* exit_sem raced with IPC_RMID, nothing to do */ 2344 if (IS_ERR(sma)) { 2345 rcu_read_unlock(); 2346 continue; 2347 } 2348 2349 sem_lock(sma, NULL, -1); 2350 /* exit_sem raced with IPC_RMID, nothing to do */ 2351 if (!ipc_valid_object(&sma->sem_perm)) { 2352 sem_unlock(sma, -1); 2353 rcu_read_unlock(); 2354 continue; 2355 } 2356 un = __lookup_undo(ulp, semid); 2357 if (un == NULL) { 2358 /* exit_sem raced with IPC_RMID+semget() that created 2359 * exactly the same semid. Nothing to do. 2360 */ 2361 sem_unlock(sma, -1); 2362 rcu_read_unlock(); 2363 continue; 2364 } 2365 2366 /* remove un from the linked lists */ 2367 ipc_assert_locked_object(&sma->sem_perm); 2368 list_del(&un->list_id); 2369 2370 /* we are the last process using this ulp, acquiring ulp->lock 2371 * isn't required. Besides that, we are also protected against 2372 * IPC_RMID as we hold sma->sem_perm lock now 2373 */ 2374 list_del_rcu(&un->list_proc); 2375 2376 /* perform adjustments registered in un */ 2377 for (i = 0; i < sma->sem_nsems; i++) { 2378 struct sem *semaphore = &sma->sems[i]; 2379 if (un->semadj[i]) { 2380 semaphore->semval += un->semadj[i]; 2381 /* 2382 * Range checks of the new semaphore value, 2383 * not defined by sus: 2384 * - Some unices ignore the undo entirely 2385 * (e.g. HP UX 11i 11.22, Tru64 V5.1) 2386 * - some cap the value (e.g. FreeBSD caps 2387 * at 0, but doesn't enforce SEMVMX) 2388 * 2389 * Linux caps the semaphore value, both at 0 2390 * and at SEMVMX. 2391 * 2392 * Manfred <manfred@colorfullife.com> 2393 */ 2394 if (semaphore->semval < 0) 2395 semaphore->semval = 0; 2396 if (semaphore->semval > SEMVMX) 2397 semaphore->semval = SEMVMX; 2398 ipc_update_pid(&semaphore->sempid, task_tgid(current)); 2399 } 2400 } 2401 /* maybe some queued-up processes were waiting for this */ 2402 do_smart_update(sma, NULL, 0, 1, &wake_q); 2403 sem_unlock(sma, -1); 2404 rcu_read_unlock(); 2405 wake_up_q(&wake_q); 2406 2407 kfree_rcu(un, rcu); 2408 } 2409 kfree(ulp); 2410 } 2411 2412 #ifdef CONFIG_PROC_FS 2413 static int sysvipc_sem_proc_show(struct seq_file *s, void *it) 2414 { 2415 struct user_namespace *user_ns = seq_user_ns(s); 2416 struct kern_ipc_perm *ipcp = it; 2417 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 2418 time64_t sem_otime; 2419 2420 /* 2421 * The proc interface isn't aware of sem_lock(), it calls 2422 * ipc_lock_object() directly (in sysvipc_find_ipc). 2423 * In order to stay compatible with sem_lock(), we must 2424 * enter / leave complex_mode. 2425 */ 2426 complexmode_enter(sma); 2427 2428 sem_otime = get_semotime(sma); 2429 2430 seq_printf(s, 2431 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n", 2432 sma->sem_perm.key, 2433 sma->sem_perm.id, 2434 sma->sem_perm.mode, 2435 sma->sem_nsems, 2436 from_kuid_munged(user_ns, sma->sem_perm.uid), 2437 from_kgid_munged(user_ns, sma->sem_perm.gid), 2438 from_kuid_munged(user_ns, sma->sem_perm.cuid), 2439 from_kgid_munged(user_ns, sma->sem_perm.cgid), 2440 sem_otime, 2441 sma->sem_ctime); 2442 2443 complexmode_tryleave(sma); 2444 2445 return 0; 2446 } 2447 #endif 2448