xref: /openbmc/linux/ipc/sem.c (revision 483eb062)
1 /*
2  * linux/ipc/sem.c
3  * Copyright (C) 1992 Krishna Balasubramanian
4  * Copyright (C) 1995 Eric Schenk, Bruno Haible
5  *
6  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7  *
8  * SMP-threaded, sysctl's added
9  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10  * Enforced range limit on SEM_UNDO
11  * (c) 2001 Red Hat Inc
12  * Lockless wakeup
13  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14  * Further wakeup optimizations, documentation
15  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
16  *
17  * support for audit of ipc object properties and permission changes
18  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
19  *
20  * namespaces support
21  * OpenVZ, SWsoft Inc.
22  * Pavel Emelianov <xemul@openvz.org>
23  *
24  * Implementation notes: (May 2010)
25  * This file implements System V semaphores.
26  *
27  * User space visible behavior:
28  * - FIFO ordering for semop() operations (just FIFO, not starvation
29  *   protection)
30  * - multiple semaphore operations that alter the same semaphore in
31  *   one semop() are handled.
32  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33  *   SETALL calls.
34  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35  * - undo adjustments at process exit are limited to 0..SEMVMX.
36  * - namespace are supported.
37  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38  *   to /proc/sys/kernel/sem.
39  * - statistics about the usage are reported in /proc/sysvipc/sem.
40  *
41  * Internals:
42  * - scalability:
43  *   - all global variables are read-mostly.
44  *   - semop() calls and semctl(RMID) are synchronized by RCU.
45  *   - most operations do write operations (actually: spin_lock calls) to
46  *     the per-semaphore array structure.
47  *   Thus: Perfect SMP scaling between independent semaphore arrays.
48  *         If multiple semaphores in one array are used, then cache line
49  *         trashing on the semaphore array spinlock will limit the scaling.
50  * - semncnt and semzcnt are calculated on demand in count_semncnt() and
51  *   count_semzcnt()
52  * - the task that performs a successful semop() scans the list of all
53  *   sleeping tasks and completes any pending operations that can be fulfilled.
54  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
55  *   (see update_queue())
56  * - To improve the scalability, the actual wake-up calls are performed after
57  *   dropping all locks. (see wake_up_sem_queue_prepare(),
58  *   wake_up_sem_queue_do())
59  * - All work is done by the waker, the woken up task does not have to do
60  *   anything - not even acquiring a lock or dropping a refcount.
61  * - A woken up task may not even touch the semaphore array anymore, it may
62  *   have been destroyed already by a semctl(RMID).
63  * - The synchronizations between wake-ups due to a timeout/signal and a
64  *   wake-up due to a completed semaphore operation is achieved by using an
65  *   intermediate state (IN_WAKEUP).
66  * - UNDO values are stored in an array (one per process and per
67  *   semaphore array, lazily allocated). For backwards compatibility, multiple
68  *   modes for the UNDO variables are supported (per process, per thread)
69  *   (see copy_semundo, CLONE_SYSVSEM)
70  * - There are two lists of the pending operations: a per-array list
71  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
72  *   ordering without always scanning all pending operations.
73  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
74  */
75 
76 #include <linux/slab.h>
77 #include <linux/spinlock.h>
78 #include <linux/init.h>
79 #include <linux/proc_fs.h>
80 #include <linux/time.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/audit.h>
84 #include <linux/capability.h>
85 #include <linux/seq_file.h>
86 #include <linux/rwsem.h>
87 #include <linux/nsproxy.h>
88 #include <linux/ipc_namespace.h>
89 
90 #include <asm/uaccess.h>
91 #include "util.h"
92 
93 /* One semaphore structure for each semaphore in the system. */
94 struct sem {
95 	int	semval;		/* current value */
96 	int	sempid;		/* pid of last operation */
97 	spinlock_t	lock;	/* spinlock for fine-grained semtimedop */
98 	struct list_head pending_alter; /* pending single-sop operations */
99 					/* that alter the semaphore */
100 	struct list_head pending_const; /* pending single-sop operations */
101 					/* that do not alter the semaphore*/
102 	time_t	sem_otime;	/* candidate for sem_otime */
103 } ____cacheline_aligned_in_smp;
104 
105 /* One queue for each sleeping process in the system. */
106 struct sem_queue {
107 	struct list_head	list;	 /* queue of pending operations */
108 	struct task_struct	*sleeper; /* this process */
109 	struct sem_undo		*undo;	 /* undo structure */
110 	int			pid;	 /* process id of requesting process */
111 	int			status;	 /* completion status of operation */
112 	struct sembuf		*sops;	 /* array of pending operations */
113 	int			nsops;	 /* number of operations */
114 	int			alter;	 /* does *sops alter the array? */
115 };
116 
117 /* Each task has a list of undo requests. They are executed automatically
118  * when the process exits.
119  */
120 struct sem_undo {
121 	struct list_head	list_proc;	/* per-process list: *
122 						 * all undos from one process
123 						 * rcu protected */
124 	struct rcu_head		rcu;		/* rcu struct for sem_undo */
125 	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
126 	struct list_head	list_id;	/* per semaphore array list:
127 						 * all undos for one array */
128 	int			semid;		/* semaphore set identifier */
129 	short			*semadj;	/* array of adjustments */
130 						/* one per semaphore */
131 };
132 
133 /* sem_undo_list controls shared access to the list of sem_undo structures
134  * that may be shared among all a CLONE_SYSVSEM task group.
135  */
136 struct sem_undo_list {
137 	atomic_t		refcnt;
138 	spinlock_t		lock;
139 	struct list_head	list_proc;
140 };
141 
142 
143 #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
144 
145 #define sem_checkid(sma, semid)	ipc_checkid(&sma->sem_perm, semid)
146 
147 static int newary(struct ipc_namespace *, struct ipc_params *);
148 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
149 #ifdef CONFIG_PROC_FS
150 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
151 #endif
152 
153 #define SEMMSL_FAST	256 /* 512 bytes on stack */
154 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
155 
156 /*
157  * Locking:
158  *	sem_undo.id_next,
159  *	sem_array.complex_count,
160  *	sem_array.pending{_alter,_cont},
161  *	sem_array.sem_undo: global sem_lock() for read/write
162  *	sem_undo.proc_next: only "current" is allowed to read/write that field.
163  *
164  *	sem_array.sem_base[i].pending_{const,alter}:
165  *		global or semaphore sem_lock() for read/write
166  */
167 
168 #define sc_semmsl	sem_ctls[0]
169 #define sc_semmns	sem_ctls[1]
170 #define sc_semopm	sem_ctls[2]
171 #define sc_semmni	sem_ctls[3]
172 
173 void sem_init_ns(struct ipc_namespace *ns)
174 {
175 	ns->sc_semmsl = SEMMSL;
176 	ns->sc_semmns = SEMMNS;
177 	ns->sc_semopm = SEMOPM;
178 	ns->sc_semmni = SEMMNI;
179 	ns->used_sems = 0;
180 	ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
181 }
182 
183 #ifdef CONFIG_IPC_NS
184 void sem_exit_ns(struct ipc_namespace *ns)
185 {
186 	free_ipcs(ns, &sem_ids(ns), freeary);
187 	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
188 }
189 #endif
190 
191 void __init sem_init(void)
192 {
193 	sem_init_ns(&init_ipc_ns);
194 	ipc_init_proc_interface("sysvipc/sem",
195 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
196 				IPC_SEM_IDS, sysvipc_sem_proc_show);
197 }
198 
199 /**
200  * unmerge_queues - unmerge queues, if possible.
201  * @sma: semaphore array
202  *
203  * The function unmerges the wait queues if complex_count is 0.
204  * It must be called prior to dropping the global semaphore array lock.
205  */
206 static void unmerge_queues(struct sem_array *sma)
207 {
208 	struct sem_queue *q, *tq;
209 
210 	/* complex operations still around? */
211 	if (sma->complex_count)
212 		return;
213 	/*
214 	 * We will switch back to simple mode.
215 	 * Move all pending operation back into the per-semaphore
216 	 * queues.
217 	 */
218 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
219 		struct sem *curr;
220 		curr = &sma->sem_base[q->sops[0].sem_num];
221 
222 		list_add_tail(&q->list, &curr->pending_alter);
223 	}
224 	INIT_LIST_HEAD(&sma->pending_alter);
225 }
226 
227 /**
228  * merge_queues - merge single semop queues into global queue
229  * @sma: semaphore array
230  *
231  * This function merges all per-semaphore queues into the global queue.
232  * It is necessary to achieve FIFO ordering for the pending single-sop
233  * operations when a multi-semop operation must sleep.
234  * Only the alter operations must be moved, the const operations can stay.
235  */
236 static void merge_queues(struct sem_array *sma)
237 {
238 	int i;
239 	for (i = 0; i < sma->sem_nsems; i++) {
240 		struct sem *sem = sma->sem_base + i;
241 
242 		list_splice_init(&sem->pending_alter, &sma->pending_alter);
243 	}
244 }
245 
246 static void sem_rcu_free(struct rcu_head *head)
247 {
248 	struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
249 	struct sem_array *sma = ipc_rcu_to_struct(p);
250 
251 	security_sem_free(sma);
252 	ipc_rcu_free(head);
253 }
254 
255 /*
256  * Wait until all currently ongoing simple ops have completed.
257  * Caller must own sem_perm.lock.
258  * New simple ops cannot start, because simple ops first check
259  * that sem_perm.lock is free.
260  * that a) sem_perm.lock is free and b) complex_count is 0.
261  */
262 static void sem_wait_array(struct sem_array *sma)
263 {
264 	int i;
265 	struct sem *sem;
266 
267 	if (sma->complex_count)  {
268 		/* The thread that increased sma->complex_count waited on
269 		 * all sem->lock locks. Thus we don't need to wait again.
270 		 */
271 		return;
272 	}
273 
274 	for (i = 0; i < sma->sem_nsems; i++) {
275 		sem = sma->sem_base + i;
276 		spin_unlock_wait(&sem->lock);
277 	}
278 }
279 
280 /*
281  * If the request contains only one semaphore operation, and there are
282  * no complex transactions pending, lock only the semaphore involved.
283  * Otherwise, lock the entire semaphore array, since we either have
284  * multiple semaphores in our own semops, or we need to look at
285  * semaphores from other pending complex operations.
286  */
287 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
288 			      int nsops)
289 {
290 	struct sem *sem;
291 
292 	if (nsops != 1) {
293 		/* Complex operation - acquire a full lock */
294 		ipc_lock_object(&sma->sem_perm);
295 
296 		/* And wait until all simple ops that are processed
297 		 * right now have dropped their locks.
298 		 */
299 		sem_wait_array(sma);
300 		return -1;
301 	}
302 
303 	/*
304 	 * Only one semaphore affected - try to optimize locking.
305 	 * The rules are:
306 	 * - optimized locking is possible if no complex operation
307 	 *   is either enqueued or processed right now.
308 	 * - The test for enqueued complex ops is simple:
309 	 *      sma->complex_count != 0
310 	 * - Testing for complex ops that are processed right now is
311 	 *   a bit more difficult. Complex ops acquire the full lock
312 	 *   and first wait that the running simple ops have completed.
313 	 *   (see above)
314 	 *   Thus: If we own a simple lock and the global lock is free
315 	 *	and complex_count is now 0, then it will stay 0 and
316 	 *	thus just locking sem->lock is sufficient.
317 	 */
318 	sem = sma->sem_base + sops->sem_num;
319 
320 	if (sma->complex_count == 0) {
321 		/*
322 		 * It appears that no complex operation is around.
323 		 * Acquire the per-semaphore lock.
324 		 */
325 		spin_lock(&sem->lock);
326 
327 		/* Then check that the global lock is free */
328 		if (!spin_is_locked(&sma->sem_perm.lock)) {
329 			/* spin_is_locked() is not a memory barrier */
330 			smp_mb();
331 
332 			/* Now repeat the test of complex_count:
333 			 * It can't change anymore until we drop sem->lock.
334 			 * Thus: if is now 0, then it will stay 0.
335 			 */
336 			if (sma->complex_count == 0) {
337 				/* fast path successful! */
338 				return sops->sem_num;
339 			}
340 		}
341 		spin_unlock(&sem->lock);
342 	}
343 
344 	/* slow path: acquire the full lock */
345 	ipc_lock_object(&sma->sem_perm);
346 
347 	if (sma->complex_count == 0) {
348 		/* False alarm:
349 		 * There is no complex operation, thus we can switch
350 		 * back to the fast path.
351 		 */
352 		spin_lock(&sem->lock);
353 		ipc_unlock_object(&sma->sem_perm);
354 		return sops->sem_num;
355 	} else {
356 		/* Not a false alarm, thus complete the sequence for a
357 		 * full lock.
358 		 */
359 		sem_wait_array(sma);
360 		return -1;
361 	}
362 }
363 
364 static inline void sem_unlock(struct sem_array *sma, int locknum)
365 {
366 	if (locknum == -1) {
367 		unmerge_queues(sma);
368 		ipc_unlock_object(&sma->sem_perm);
369 	} else {
370 		struct sem *sem = sma->sem_base + locknum;
371 		spin_unlock(&sem->lock);
372 	}
373 }
374 
375 /*
376  * sem_lock_(check_) routines are called in the paths where the rwsem
377  * is not held.
378  *
379  * The caller holds the RCU read lock.
380  */
381 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
382 			int id, struct sembuf *sops, int nsops, int *locknum)
383 {
384 	struct kern_ipc_perm *ipcp;
385 	struct sem_array *sma;
386 
387 	ipcp = ipc_obtain_object(&sem_ids(ns), id);
388 	if (IS_ERR(ipcp))
389 		return ERR_CAST(ipcp);
390 
391 	sma = container_of(ipcp, struct sem_array, sem_perm);
392 	*locknum = sem_lock(sma, sops, nsops);
393 
394 	/* ipc_rmid() may have already freed the ID while sem_lock
395 	 * was spinning: verify that the structure is still valid
396 	 */
397 	if (ipc_valid_object(ipcp))
398 		return container_of(ipcp, struct sem_array, sem_perm);
399 
400 	sem_unlock(sma, *locknum);
401 	return ERR_PTR(-EINVAL);
402 }
403 
404 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
405 {
406 	struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
407 
408 	if (IS_ERR(ipcp))
409 		return ERR_CAST(ipcp);
410 
411 	return container_of(ipcp, struct sem_array, sem_perm);
412 }
413 
414 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
415 							int id)
416 {
417 	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
418 
419 	if (IS_ERR(ipcp))
420 		return ERR_CAST(ipcp);
421 
422 	return container_of(ipcp, struct sem_array, sem_perm);
423 }
424 
425 static inline void sem_lock_and_putref(struct sem_array *sma)
426 {
427 	sem_lock(sma, NULL, -1);
428 	ipc_rcu_putref(sma, ipc_rcu_free);
429 }
430 
431 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
432 {
433 	ipc_rmid(&sem_ids(ns), &s->sem_perm);
434 }
435 
436 /*
437  * Lockless wakeup algorithm:
438  * Without the check/retry algorithm a lockless wakeup is possible:
439  * - queue.status is initialized to -EINTR before blocking.
440  * - wakeup is performed by
441  *	* unlinking the queue entry from the pending list
442  *	* setting queue.status to IN_WAKEUP
443  *	  This is the notification for the blocked thread that a
444  *	  result value is imminent.
445  *	* call wake_up_process
446  *	* set queue.status to the final value.
447  * - the previously blocked thread checks queue.status:
448  *	* if it's IN_WAKEUP, then it must wait until the value changes
449  *	* if it's not -EINTR, then the operation was completed by
450  *	  update_queue. semtimedop can return queue.status without
451  *	  performing any operation on the sem array.
452  *	* otherwise it must acquire the spinlock and check what's up.
453  *
454  * The two-stage algorithm is necessary to protect against the following
455  * races:
456  * - if queue.status is set after wake_up_process, then the woken up idle
457  *   thread could race forward and try (and fail) to acquire sma->lock
458  *   before update_queue had a chance to set queue.status
459  * - if queue.status is written before wake_up_process and if the
460  *   blocked process is woken up by a signal between writing
461  *   queue.status and the wake_up_process, then the woken up
462  *   process could return from semtimedop and die by calling
463  *   sys_exit before wake_up_process is called. Then wake_up_process
464  *   will oops, because the task structure is already invalid.
465  *   (yes, this happened on s390 with sysv msg).
466  *
467  */
468 #define IN_WAKEUP	1
469 
470 /**
471  * newary - Create a new semaphore set
472  * @ns: namespace
473  * @params: ptr to the structure that contains key, semflg and nsems
474  *
475  * Called with sem_ids.rwsem held (as a writer)
476  */
477 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
478 {
479 	int id;
480 	int retval;
481 	struct sem_array *sma;
482 	int size;
483 	key_t key = params->key;
484 	int nsems = params->u.nsems;
485 	int semflg = params->flg;
486 	int i;
487 
488 	if (!nsems)
489 		return -EINVAL;
490 	if (ns->used_sems + nsems > ns->sc_semmns)
491 		return -ENOSPC;
492 
493 	size = sizeof(*sma) + nsems * sizeof(struct sem);
494 	sma = ipc_rcu_alloc(size);
495 	if (!sma)
496 		return -ENOMEM;
497 
498 	memset(sma, 0, size);
499 
500 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
501 	sma->sem_perm.key = key;
502 
503 	sma->sem_perm.security = NULL;
504 	retval = security_sem_alloc(sma);
505 	if (retval) {
506 		ipc_rcu_putref(sma, ipc_rcu_free);
507 		return retval;
508 	}
509 
510 	id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
511 	if (id < 0) {
512 		ipc_rcu_putref(sma, sem_rcu_free);
513 		return id;
514 	}
515 	ns->used_sems += nsems;
516 
517 	sma->sem_base = (struct sem *) &sma[1];
518 
519 	for (i = 0; i < nsems; i++) {
520 		INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
521 		INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
522 		spin_lock_init(&sma->sem_base[i].lock);
523 	}
524 
525 	sma->complex_count = 0;
526 	INIT_LIST_HEAD(&sma->pending_alter);
527 	INIT_LIST_HEAD(&sma->pending_const);
528 	INIT_LIST_HEAD(&sma->list_id);
529 	sma->sem_nsems = nsems;
530 	sma->sem_ctime = get_seconds();
531 	sem_unlock(sma, -1);
532 	rcu_read_unlock();
533 
534 	return sma->sem_perm.id;
535 }
536 
537 
538 /*
539  * Called with sem_ids.rwsem and ipcp locked.
540  */
541 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
542 {
543 	struct sem_array *sma;
544 
545 	sma = container_of(ipcp, struct sem_array, sem_perm);
546 	return security_sem_associate(sma, semflg);
547 }
548 
549 /*
550  * Called with sem_ids.rwsem and ipcp locked.
551  */
552 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
553 				struct ipc_params *params)
554 {
555 	struct sem_array *sma;
556 
557 	sma = container_of(ipcp, struct sem_array, sem_perm);
558 	if (params->u.nsems > sma->sem_nsems)
559 		return -EINVAL;
560 
561 	return 0;
562 }
563 
564 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
565 {
566 	struct ipc_namespace *ns;
567 	struct ipc_ops sem_ops;
568 	struct ipc_params sem_params;
569 
570 	ns = current->nsproxy->ipc_ns;
571 
572 	if (nsems < 0 || nsems > ns->sc_semmsl)
573 		return -EINVAL;
574 
575 	sem_ops.getnew = newary;
576 	sem_ops.associate = sem_security;
577 	sem_ops.more_checks = sem_more_checks;
578 
579 	sem_params.key = key;
580 	sem_params.flg = semflg;
581 	sem_params.u.nsems = nsems;
582 
583 	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
584 }
585 
586 /**
587  * perform_atomic_semop - Perform (if possible) a semaphore operation
588  * @sma: semaphore array
589  * @sops: array with operations that should be checked
590  * @nsops: number of operations
591  * @un: undo array
592  * @pid: pid that did the change
593  *
594  * Returns 0 if the operation was possible.
595  * Returns 1 if the operation is impossible, the caller must sleep.
596  * Negative values are error codes.
597  */
598 static int perform_atomic_semop(struct sem_array *sma, struct sembuf *sops,
599 			     int nsops, struct sem_undo *un, int pid)
600 {
601 	int result, sem_op;
602 	struct sembuf *sop;
603 	struct sem *curr;
604 
605 	for (sop = sops; sop < sops + nsops; sop++) {
606 		curr = sma->sem_base + sop->sem_num;
607 		sem_op = sop->sem_op;
608 		result = curr->semval;
609 
610 		if (!sem_op && result)
611 			goto would_block;
612 
613 		result += sem_op;
614 		if (result < 0)
615 			goto would_block;
616 		if (result > SEMVMX)
617 			goto out_of_range;
618 
619 		if (sop->sem_flg & SEM_UNDO) {
620 			int undo = un->semadj[sop->sem_num] - sem_op;
621 			/* Exceeding the undo range is an error. */
622 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
623 				goto out_of_range;
624 			un->semadj[sop->sem_num] = undo;
625 		}
626 
627 		curr->semval = result;
628 	}
629 
630 	sop--;
631 	while (sop >= sops) {
632 		sma->sem_base[sop->sem_num].sempid = pid;
633 		sop--;
634 	}
635 
636 	return 0;
637 
638 out_of_range:
639 	result = -ERANGE;
640 	goto undo;
641 
642 would_block:
643 	if (sop->sem_flg & IPC_NOWAIT)
644 		result = -EAGAIN;
645 	else
646 		result = 1;
647 
648 undo:
649 	sop--;
650 	while (sop >= sops) {
651 		sem_op = sop->sem_op;
652 		sma->sem_base[sop->sem_num].semval -= sem_op;
653 		if (sop->sem_flg & SEM_UNDO)
654 			un->semadj[sop->sem_num] += sem_op;
655 		sop--;
656 	}
657 
658 	return result;
659 }
660 
661 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
662  * @q: queue entry that must be signaled
663  * @error: Error value for the signal
664  *
665  * Prepare the wake-up of the queue entry q.
666  */
667 static void wake_up_sem_queue_prepare(struct list_head *pt,
668 				struct sem_queue *q, int error)
669 {
670 	if (list_empty(pt)) {
671 		/*
672 		 * Hold preempt off so that we don't get preempted and have the
673 		 * wakee busy-wait until we're scheduled back on.
674 		 */
675 		preempt_disable();
676 	}
677 	q->status = IN_WAKEUP;
678 	q->pid = error;
679 
680 	list_add_tail(&q->list, pt);
681 }
682 
683 /**
684  * wake_up_sem_queue_do - do the actual wake-up
685  * @pt: list of tasks to be woken up
686  *
687  * Do the actual wake-up.
688  * The function is called without any locks held, thus the semaphore array
689  * could be destroyed already and the tasks can disappear as soon as the
690  * status is set to the actual return code.
691  */
692 static void wake_up_sem_queue_do(struct list_head *pt)
693 {
694 	struct sem_queue *q, *t;
695 	int did_something;
696 
697 	did_something = !list_empty(pt);
698 	list_for_each_entry_safe(q, t, pt, list) {
699 		wake_up_process(q->sleeper);
700 		/* q can disappear immediately after writing q->status. */
701 		smp_wmb();
702 		q->status = q->pid;
703 	}
704 	if (did_something)
705 		preempt_enable();
706 }
707 
708 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
709 {
710 	list_del(&q->list);
711 	if (q->nsops > 1)
712 		sma->complex_count--;
713 }
714 
715 /** check_restart(sma, q)
716  * @sma: semaphore array
717  * @q: the operation that just completed
718  *
719  * update_queue is O(N^2) when it restarts scanning the whole queue of
720  * waiting operations. Therefore this function checks if the restart is
721  * really necessary. It is called after a previously waiting operation
722  * modified the array.
723  * Note that wait-for-zero operations are handled without restart.
724  */
725 static int check_restart(struct sem_array *sma, struct sem_queue *q)
726 {
727 	/* pending complex alter operations are too difficult to analyse */
728 	if (!list_empty(&sma->pending_alter))
729 		return 1;
730 
731 	/* we were a sleeping complex operation. Too difficult */
732 	if (q->nsops > 1)
733 		return 1;
734 
735 	/* It is impossible that someone waits for the new value:
736 	 * - complex operations always restart.
737 	 * - wait-for-zero are handled seperately.
738 	 * - q is a previously sleeping simple operation that
739 	 *   altered the array. It must be a decrement, because
740 	 *   simple increments never sleep.
741 	 * - If there are older (higher priority) decrements
742 	 *   in the queue, then they have observed the original
743 	 *   semval value and couldn't proceed. The operation
744 	 *   decremented to value - thus they won't proceed either.
745 	 */
746 	return 0;
747 }
748 
749 /**
750  * wake_const_ops - wake up non-alter tasks
751  * @sma: semaphore array.
752  * @semnum: semaphore that was modified.
753  * @pt: list head for the tasks that must be woken up.
754  *
755  * wake_const_ops must be called after a semaphore in a semaphore array
756  * was set to 0. If complex const operations are pending, wake_const_ops must
757  * be called with semnum = -1, as well as with the number of each modified
758  * semaphore.
759  * The tasks that must be woken up are added to @pt. The return code
760  * is stored in q->pid.
761  * The function returns 1 if at least one operation was completed successfully.
762  */
763 static int wake_const_ops(struct sem_array *sma, int semnum,
764 				struct list_head *pt)
765 {
766 	struct sem_queue *q;
767 	struct list_head *walk;
768 	struct list_head *pending_list;
769 	int semop_completed = 0;
770 
771 	if (semnum == -1)
772 		pending_list = &sma->pending_const;
773 	else
774 		pending_list = &sma->sem_base[semnum].pending_const;
775 
776 	walk = pending_list->next;
777 	while (walk != pending_list) {
778 		int error;
779 
780 		q = container_of(walk, struct sem_queue, list);
781 		walk = walk->next;
782 
783 		error = perform_atomic_semop(sma, q->sops, q->nsops,
784 						 q->undo, q->pid);
785 
786 		if (error <= 0) {
787 			/* operation completed, remove from queue & wakeup */
788 
789 			unlink_queue(sma, q);
790 
791 			wake_up_sem_queue_prepare(pt, q, error);
792 			if (error == 0)
793 				semop_completed = 1;
794 		}
795 	}
796 	return semop_completed;
797 }
798 
799 /**
800  * do_smart_wakeup_zero - wakeup all wait for zero tasks
801  * @sma: semaphore array
802  * @sops: operations that were performed
803  * @nsops: number of operations
804  * @pt: list head of the tasks that must be woken up.
805  *
806  * Checks all required queue for wait-for-zero operations, based
807  * on the actual changes that were performed on the semaphore array.
808  * The function returns 1 if at least one operation was completed successfully.
809  */
810 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
811 					int nsops, struct list_head *pt)
812 {
813 	int i;
814 	int semop_completed = 0;
815 	int got_zero = 0;
816 
817 	/* first: the per-semaphore queues, if known */
818 	if (sops) {
819 		for (i = 0; i < nsops; i++) {
820 			int num = sops[i].sem_num;
821 
822 			if (sma->sem_base[num].semval == 0) {
823 				got_zero = 1;
824 				semop_completed |= wake_const_ops(sma, num, pt);
825 			}
826 		}
827 	} else {
828 		/*
829 		 * No sops means modified semaphores not known.
830 		 * Assume all were changed.
831 		 */
832 		for (i = 0; i < sma->sem_nsems; i++) {
833 			if (sma->sem_base[i].semval == 0) {
834 				got_zero = 1;
835 				semop_completed |= wake_const_ops(sma, i, pt);
836 			}
837 		}
838 	}
839 	/*
840 	 * If one of the modified semaphores got 0,
841 	 * then check the global queue, too.
842 	 */
843 	if (got_zero)
844 		semop_completed |= wake_const_ops(sma, -1, pt);
845 
846 	return semop_completed;
847 }
848 
849 
850 /**
851  * update_queue - look for tasks that can be completed.
852  * @sma: semaphore array.
853  * @semnum: semaphore that was modified.
854  * @pt: list head for the tasks that must be woken up.
855  *
856  * update_queue must be called after a semaphore in a semaphore array
857  * was modified. If multiple semaphores were modified, update_queue must
858  * be called with semnum = -1, as well as with the number of each modified
859  * semaphore.
860  * The tasks that must be woken up are added to @pt. The return code
861  * is stored in q->pid.
862  * The function internally checks if const operations can now succeed.
863  *
864  * The function return 1 if at least one semop was completed successfully.
865  */
866 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
867 {
868 	struct sem_queue *q;
869 	struct list_head *walk;
870 	struct list_head *pending_list;
871 	int semop_completed = 0;
872 
873 	if (semnum == -1)
874 		pending_list = &sma->pending_alter;
875 	else
876 		pending_list = &sma->sem_base[semnum].pending_alter;
877 
878 again:
879 	walk = pending_list->next;
880 	while (walk != pending_list) {
881 		int error, restart;
882 
883 		q = container_of(walk, struct sem_queue, list);
884 		walk = walk->next;
885 
886 		/* If we are scanning the single sop, per-semaphore list of
887 		 * one semaphore and that semaphore is 0, then it is not
888 		 * necessary to scan further: simple increments
889 		 * that affect only one entry succeed immediately and cannot
890 		 * be in the  per semaphore pending queue, and decrements
891 		 * cannot be successful if the value is already 0.
892 		 */
893 		if (semnum != -1 && sma->sem_base[semnum].semval == 0)
894 			break;
895 
896 		error = perform_atomic_semop(sma, q->sops, q->nsops,
897 					 q->undo, q->pid);
898 
899 		/* Does q->sleeper still need to sleep? */
900 		if (error > 0)
901 			continue;
902 
903 		unlink_queue(sma, q);
904 
905 		if (error) {
906 			restart = 0;
907 		} else {
908 			semop_completed = 1;
909 			do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
910 			restart = check_restart(sma, q);
911 		}
912 
913 		wake_up_sem_queue_prepare(pt, q, error);
914 		if (restart)
915 			goto again;
916 	}
917 	return semop_completed;
918 }
919 
920 /**
921  * set_semotime - set sem_otime
922  * @sma: semaphore array
923  * @sops: operations that modified the array, may be NULL
924  *
925  * sem_otime is replicated to avoid cache line trashing.
926  * This function sets one instance to the current time.
927  */
928 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
929 {
930 	if (sops == NULL) {
931 		sma->sem_base[0].sem_otime = get_seconds();
932 	} else {
933 		sma->sem_base[sops[0].sem_num].sem_otime =
934 							get_seconds();
935 	}
936 }
937 
938 /**
939  * do_smart_update - optimized update_queue
940  * @sma: semaphore array
941  * @sops: operations that were performed
942  * @nsops: number of operations
943  * @otime: force setting otime
944  * @pt: list head of the tasks that must be woken up.
945  *
946  * do_smart_update() does the required calls to update_queue and wakeup_zero,
947  * based on the actual changes that were performed on the semaphore array.
948  * Note that the function does not do the actual wake-up: the caller is
949  * responsible for calling wake_up_sem_queue_do(@pt).
950  * It is safe to perform this call after dropping all locks.
951  */
952 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
953 			int otime, struct list_head *pt)
954 {
955 	int i;
956 
957 	otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
958 
959 	if (!list_empty(&sma->pending_alter)) {
960 		/* semaphore array uses the global queue - just process it. */
961 		otime |= update_queue(sma, -1, pt);
962 	} else {
963 		if (!sops) {
964 			/*
965 			 * No sops, thus the modified semaphores are not
966 			 * known. Check all.
967 			 */
968 			for (i = 0; i < sma->sem_nsems; i++)
969 				otime |= update_queue(sma, i, pt);
970 		} else {
971 			/*
972 			 * Check the semaphores that were increased:
973 			 * - No complex ops, thus all sleeping ops are
974 			 *   decrease.
975 			 * - if we decreased the value, then any sleeping
976 			 *   semaphore ops wont be able to run: If the
977 			 *   previous value was too small, then the new
978 			 *   value will be too small, too.
979 			 */
980 			for (i = 0; i < nsops; i++) {
981 				if (sops[i].sem_op > 0) {
982 					otime |= update_queue(sma,
983 							sops[i].sem_num, pt);
984 				}
985 			}
986 		}
987 	}
988 	if (otime)
989 		set_semotime(sma, sops);
990 }
991 
992 /* The following counts are associated to each semaphore:
993  *   semncnt        number of tasks waiting on semval being nonzero
994  *   semzcnt        number of tasks waiting on semval being zero
995  * This model assumes that a task waits on exactly one semaphore.
996  * Since semaphore operations are to be performed atomically, tasks actually
997  * wait on a whole sequence of semaphores simultaneously.
998  * The counts we return here are a rough approximation, but still
999  * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
1000  */
1001 static int count_semncnt(struct sem_array *sma, ushort semnum)
1002 {
1003 	int semncnt;
1004 	struct sem_queue *q;
1005 
1006 	semncnt = 0;
1007 	list_for_each_entry(q, &sma->sem_base[semnum].pending_alter, list) {
1008 		struct sembuf *sops = q->sops;
1009 		BUG_ON(sops->sem_num != semnum);
1010 		if ((sops->sem_op < 0) && !(sops->sem_flg & IPC_NOWAIT))
1011 			semncnt++;
1012 	}
1013 
1014 	list_for_each_entry(q, &sma->pending_alter, list) {
1015 		struct sembuf *sops = q->sops;
1016 		int nsops = q->nsops;
1017 		int i;
1018 		for (i = 0; i < nsops; i++)
1019 			if (sops[i].sem_num == semnum
1020 			    && (sops[i].sem_op < 0)
1021 			    && !(sops[i].sem_flg & IPC_NOWAIT))
1022 				semncnt++;
1023 	}
1024 	return semncnt;
1025 }
1026 
1027 static int count_semzcnt(struct sem_array *sma, ushort semnum)
1028 {
1029 	int semzcnt;
1030 	struct sem_queue *q;
1031 
1032 	semzcnt = 0;
1033 	list_for_each_entry(q, &sma->sem_base[semnum].pending_const, list) {
1034 		struct sembuf *sops = q->sops;
1035 		BUG_ON(sops->sem_num != semnum);
1036 		if ((sops->sem_op == 0) && !(sops->sem_flg & IPC_NOWAIT))
1037 			semzcnt++;
1038 	}
1039 
1040 	list_for_each_entry(q, &sma->pending_const, list) {
1041 		struct sembuf *sops = q->sops;
1042 		int nsops = q->nsops;
1043 		int i;
1044 		for (i = 0; i < nsops; i++)
1045 			if (sops[i].sem_num == semnum
1046 			    && (sops[i].sem_op == 0)
1047 			    && !(sops[i].sem_flg & IPC_NOWAIT))
1048 				semzcnt++;
1049 	}
1050 	return semzcnt;
1051 }
1052 
1053 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1054  * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1055  * remains locked on exit.
1056  */
1057 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1058 {
1059 	struct sem_undo *un, *tu;
1060 	struct sem_queue *q, *tq;
1061 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1062 	struct list_head tasks;
1063 	int i;
1064 
1065 	/* Free the existing undo structures for this semaphore set.  */
1066 	ipc_assert_locked_object(&sma->sem_perm);
1067 	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1068 		list_del(&un->list_id);
1069 		spin_lock(&un->ulp->lock);
1070 		un->semid = -1;
1071 		list_del_rcu(&un->list_proc);
1072 		spin_unlock(&un->ulp->lock);
1073 		kfree_rcu(un, rcu);
1074 	}
1075 
1076 	/* Wake up all pending processes and let them fail with EIDRM. */
1077 	INIT_LIST_HEAD(&tasks);
1078 	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1079 		unlink_queue(sma, q);
1080 		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1081 	}
1082 
1083 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1084 		unlink_queue(sma, q);
1085 		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1086 	}
1087 	for (i = 0; i < sma->sem_nsems; i++) {
1088 		struct sem *sem = sma->sem_base + i;
1089 		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1090 			unlink_queue(sma, q);
1091 			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1092 		}
1093 		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1094 			unlink_queue(sma, q);
1095 			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1096 		}
1097 	}
1098 
1099 	/* Remove the semaphore set from the IDR */
1100 	sem_rmid(ns, sma);
1101 	sem_unlock(sma, -1);
1102 	rcu_read_unlock();
1103 
1104 	wake_up_sem_queue_do(&tasks);
1105 	ns->used_sems -= sma->sem_nsems;
1106 	ipc_rcu_putref(sma, sem_rcu_free);
1107 }
1108 
1109 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1110 {
1111 	switch (version) {
1112 	case IPC_64:
1113 		return copy_to_user(buf, in, sizeof(*in));
1114 	case IPC_OLD:
1115 	    {
1116 		struct semid_ds out;
1117 
1118 		memset(&out, 0, sizeof(out));
1119 
1120 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1121 
1122 		out.sem_otime	= in->sem_otime;
1123 		out.sem_ctime	= in->sem_ctime;
1124 		out.sem_nsems	= in->sem_nsems;
1125 
1126 		return copy_to_user(buf, &out, sizeof(out));
1127 	    }
1128 	default:
1129 		return -EINVAL;
1130 	}
1131 }
1132 
1133 static time_t get_semotime(struct sem_array *sma)
1134 {
1135 	int i;
1136 	time_t res;
1137 
1138 	res = sma->sem_base[0].sem_otime;
1139 	for (i = 1; i < sma->sem_nsems; i++) {
1140 		time_t to = sma->sem_base[i].sem_otime;
1141 
1142 		if (to > res)
1143 			res = to;
1144 	}
1145 	return res;
1146 }
1147 
1148 static int semctl_nolock(struct ipc_namespace *ns, int semid,
1149 			 int cmd, int version, void __user *p)
1150 {
1151 	int err;
1152 	struct sem_array *sma;
1153 
1154 	switch (cmd) {
1155 	case IPC_INFO:
1156 	case SEM_INFO:
1157 	{
1158 		struct seminfo seminfo;
1159 		int max_id;
1160 
1161 		err = security_sem_semctl(NULL, cmd);
1162 		if (err)
1163 			return err;
1164 
1165 		memset(&seminfo, 0, sizeof(seminfo));
1166 		seminfo.semmni = ns->sc_semmni;
1167 		seminfo.semmns = ns->sc_semmns;
1168 		seminfo.semmsl = ns->sc_semmsl;
1169 		seminfo.semopm = ns->sc_semopm;
1170 		seminfo.semvmx = SEMVMX;
1171 		seminfo.semmnu = SEMMNU;
1172 		seminfo.semmap = SEMMAP;
1173 		seminfo.semume = SEMUME;
1174 		down_read(&sem_ids(ns).rwsem);
1175 		if (cmd == SEM_INFO) {
1176 			seminfo.semusz = sem_ids(ns).in_use;
1177 			seminfo.semaem = ns->used_sems;
1178 		} else {
1179 			seminfo.semusz = SEMUSZ;
1180 			seminfo.semaem = SEMAEM;
1181 		}
1182 		max_id = ipc_get_maxid(&sem_ids(ns));
1183 		up_read(&sem_ids(ns).rwsem);
1184 		if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1185 			return -EFAULT;
1186 		return (max_id < 0) ? 0 : max_id;
1187 	}
1188 	case IPC_STAT:
1189 	case SEM_STAT:
1190 	{
1191 		struct semid64_ds tbuf;
1192 		int id = 0;
1193 
1194 		memset(&tbuf, 0, sizeof(tbuf));
1195 
1196 		rcu_read_lock();
1197 		if (cmd == SEM_STAT) {
1198 			sma = sem_obtain_object(ns, semid);
1199 			if (IS_ERR(sma)) {
1200 				err = PTR_ERR(sma);
1201 				goto out_unlock;
1202 			}
1203 			id = sma->sem_perm.id;
1204 		} else {
1205 			sma = sem_obtain_object_check(ns, semid);
1206 			if (IS_ERR(sma)) {
1207 				err = PTR_ERR(sma);
1208 				goto out_unlock;
1209 			}
1210 		}
1211 
1212 		err = -EACCES;
1213 		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1214 			goto out_unlock;
1215 
1216 		err = security_sem_semctl(sma, cmd);
1217 		if (err)
1218 			goto out_unlock;
1219 
1220 		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1221 		tbuf.sem_otime = get_semotime(sma);
1222 		tbuf.sem_ctime = sma->sem_ctime;
1223 		tbuf.sem_nsems = sma->sem_nsems;
1224 		rcu_read_unlock();
1225 		if (copy_semid_to_user(p, &tbuf, version))
1226 			return -EFAULT;
1227 		return id;
1228 	}
1229 	default:
1230 		return -EINVAL;
1231 	}
1232 out_unlock:
1233 	rcu_read_unlock();
1234 	return err;
1235 }
1236 
1237 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1238 		unsigned long arg)
1239 {
1240 	struct sem_undo *un;
1241 	struct sem_array *sma;
1242 	struct sem *curr;
1243 	int err;
1244 	struct list_head tasks;
1245 	int val;
1246 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1247 	/* big-endian 64bit */
1248 	val = arg >> 32;
1249 #else
1250 	/* 32bit or little-endian 64bit */
1251 	val = arg;
1252 #endif
1253 
1254 	if (val > SEMVMX || val < 0)
1255 		return -ERANGE;
1256 
1257 	INIT_LIST_HEAD(&tasks);
1258 
1259 	rcu_read_lock();
1260 	sma = sem_obtain_object_check(ns, semid);
1261 	if (IS_ERR(sma)) {
1262 		rcu_read_unlock();
1263 		return PTR_ERR(sma);
1264 	}
1265 
1266 	if (semnum < 0 || semnum >= sma->sem_nsems) {
1267 		rcu_read_unlock();
1268 		return -EINVAL;
1269 	}
1270 
1271 
1272 	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1273 		rcu_read_unlock();
1274 		return -EACCES;
1275 	}
1276 
1277 	err = security_sem_semctl(sma, SETVAL);
1278 	if (err) {
1279 		rcu_read_unlock();
1280 		return -EACCES;
1281 	}
1282 
1283 	sem_lock(sma, NULL, -1);
1284 
1285 	if (!ipc_valid_object(&sma->sem_perm)) {
1286 		sem_unlock(sma, -1);
1287 		rcu_read_unlock();
1288 		return -EIDRM;
1289 	}
1290 
1291 	curr = &sma->sem_base[semnum];
1292 
1293 	ipc_assert_locked_object(&sma->sem_perm);
1294 	list_for_each_entry(un, &sma->list_id, list_id)
1295 		un->semadj[semnum] = 0;
1296 
1297 	curr->semval = val;
1298 	curr->sempid = task_tgid_vnr(current);
1299 	sma->sem_ctime = get_seconds();
1300 	/* maybe some queued-up processes were waiting for this */
1301 	do_smart_update(sma, NULL, 0, 0, &tasks);
1302 	sem_unlock(sma, -1);
1303 	rcu_read_unlock();
1304 	wake_up_sem_queue_do(&tasks);
1305 	return 0;
1306 }
1307 
1308 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1309 		int cmd, void __user *p)
1310 {
1311 	struct sem_array *sma;
1312 	struct sem *curr;
1313 	int err, nsems;
1314 	ushort fast_sem_io[SEMMSL_FAST];
1315 	ushort *sem_io = fast_sem_io;
1316 	struct list_head tasks;
1317 
1318 	INIT_LIST_HEAD(&tasks);
1319 
1320 	rcu_read_lock();
1321 	sma = sem_obtain_object_check(ns, semid);
1322 	if (IS_ERR(sma)) {
1323 		rcu_read_unlock();
1324 		return PTR_ERR(sma);
1325 	}
1326 
1327 	nsems = sma->sem_nsems;
1328 
1329 	err = -EACCES;
1330 	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1331 		goto out_rcu_wakeup;
1332 
1333 	err = security_sem_semctl(sma, cmd);
1334 	if (err)
1335 		goto out_rcu_wakeup;
1336 
1337 	err = -EACCES;
1338 	switch (cmd) {
1339 	case GETALL:
1340 	{
1341 		ushort __user *array = p;
1342 		int i;
1343 
1344 		sem_lock(sma, NULL, -1);
1345 		if (!ipc_valid_object(&sma->sem_perm)) {
1346 			err = -EIDRM;
1347 			goto out_unlock;
1348 		}
1349 		if (nsems > SEMMSL_FAST) {
1350 			if (!ipc_rcu_getref(sma)) {
1351 				err = -EIDRM;
1352 				goto out_unlock;
1353 			}
1354 			sem_unlock(sma, -1);
1355 			rcu_read_unlock();
1356 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1357 			if (sem_io == NULL) {
1358 				ipc_rcu_putref(sma, ipc_rcu_free);
1359 				return -ENOMEM;
1360 			}
1361 
1362 			rcu_read_lock();
1363 			sem_lock_and_putref(sma);
1364 			if (!ipc_valid_object(&sma->sem_perm)) {
1365 				err = -EIDRM;
1366 				goto out_unlock;
1367 			}
1368 		}
1369 		for (i = 0; i < sma->sem_nsems; i++)
1370 			sem_io[i] = sma->sem_base[i].semval;
1371 		sem_unlock(sma, -1);
1372 		rcu_read_unlock();
1373 		err = 0;
1374 		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1375 			err = -EFAULT;
1376 		goto out_free;
1377 	}
1378 	case SETALL:
1379 	{
1380 		int i;
1381 		struct sem_undo *un;
1382 
1383 		if (!ipc_rcu_getref(sma)) {
1384 			err = -EIDRM;
1385 			goto out_rcu_wakeup;
1386 		}
1387 		rcu_read_unlock();
1388 
1389 		if (nsems > SEMMSL_FAST) {
1390 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1391 			if (sem_io == NULL) {
1392 				ipc_rcu_putref(sma, ipc_rcu_free);
1393 				return -ENOMEM;
1394 			}
1395 		}
1396 
1397 		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1398 			ipc_rcu_putref(sma, ipc_rcu_free);
1399 			err = -EFAULT;
1400 			goto out_free;
1401 		}
1402 
1403 		for (i = 0; i < nsems; i++) {
1404 			if (sem_io[i] > SEMVMX) {
1405 				ipc_rcu_putref(sma, ipc_rcu_free);
1406 				err = -ERANGE;
1407 				goto out_free;
1408 			}
1409 		}
1410 		rcu_read_lock();
1411 		sem_lock_and_putref(sma);
1412 		if (!ipc_valid_object(&sma->sem_perm)) {
1413 			err = -EIDRM;
1414 			goto out_unlock;
1415 		}
1416 
1417 		for (i = 0; i < nsems; i++)
1418 			sma->sem_base[i].semval = sem_io[i];
1419 
1420 		ipc_assert_locked_object(&sma->sem_perm);
1421 		list_for_each_entry(un, &sma->list_id, list_id) {
1422 			for (i = 0; i < nsems; i++)
1423 				un->semadj[i] = 0;
1424 		}
1425 		sma->sem_ctime = get_seconds();
1426 		/* maybe some queued-up processes were waiting for this */
1427 		do_smart_update(sma, NULL, 0, 0, &tasks);
1428 		err = 0;
1429 		goto out_unlock;
1430 	}
1431 	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1432 	}
1433 	err = -EINVAL;
1434 	if (semnum < 0 || semnum >= nsems)
1435 		goto out_rcu_wakeup;
1436 
1437 	sem_lock(sma, NULL, -1);
1438 	if (!ipc_valid_object(&sma->sem_perm)) {
1439 		err = -EIDRM;
1440 		goto out_unlock;
1441 	}
1442 	curr = &sma->sem_base[semnum];
1443 
1444 	switch (cmd) {
1445 	case GETVAL:
1446 		err = curr->semval;
1447 		goto out_unlock;
1448 	case GETPID:
1449 		err = curr->sempid;
1450 		goto out_unlock;
1451 	case GETNCNT:
1452 		err = count_semncnt(sma, semnum);
1453 		goto out_unlock;
1454 	case GETZCNT:
1455 		err = count_semzcnt(sma, semnum);
1456 		goto out_unlock;
1457 	}
1458 
1459 out_unlock:
1460 	sem_unlock(sma, -1);
1461 out_rcu_wakeup:
1462 	rcu_read_unlock();
1463 	wake_up_sem_queue_do(&tasks);
1464 out_free:
1465 	if (sem_io != fast_sem_io)
1466 		ipc_free(sem_io, sizeof(ushort)*nsems);
1467 	return err;
1468 }
1469 
1470 static inline unsigned long
1471 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1472 {
1473 	switch (version) {
1474 	case IPC_64:
1475 		if (copy_from_user(out, buf, sizeof(*out)))
1476 			return -EFAULT;
1477 		return 0;
1478 	case IPC_OLD:
1479 	    {
1480 		struct semid_ds tbuf_old;
1481 
1482 		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1483 			return -EFAULT;
1484 
1485 		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1486 		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1487 		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1488 
1489 		return 0;
1490 	    }
1491 	default:
1492 		return -EINVAL;
1493 	}
1494 }
1495 
1496 /*
1497  * This function handles some semctl commands which require the rwsem
1498  * to be held in write mode.
1499  * NOTE: no locks must be held, the rwsem is taken inside this function.
1500  */
1501 static int semctl_down(struct ipc_namespace *ns, int semid,
1502 		       int cmd, int version, void __user *p)
1503 {
1504 	struct sem_array *sma;
1505 	int err;
1506 	struct semid64_ds semid64;
1507 	struct kern_ipc_perm *ipcp;
1508 
1509 	if (cmd == IPC_SET) {
1510 		if (copy_semid_from_user(&semid64, p, version))
1511 			return -EFAULT;
1512 	}
1513 
1514 	down_write(&sem_ids(ns).rwsem);
1515 	rcu_read_lock();
1516 
1517 	ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1518 				      &semid64.sem_perm, 0);
1519 	if (IS_ERR(ipcp)) {
1520 		err = PTR_ERR(ipcp);
1521 		goto out_unlock1;
1522 	}
1523 
1524 	sma = container_of(ipcp, struct sem_array, sem_perm);
1525 
1526 	err = security_sem_semctl(sma, cmd);
1527 	if (err)
1528 		goto out_unlock1;
1529 
1530 	switch (cmd) {
1531 	case IPC_RMID:
1532 		sem_lock(sma, NULL, -1);
1533 		/* freeary unlocks the ipc object and rcu */
1534 		freeary(ns, ipcp);
1535 		goto out_up;
1536 	case IPC_SET:
1537 		sem_lock(sma, NULL, -1);
1538 		err = ipc_update_perm(&semid64.sem_perm, ipcp);
1539 		if (err)
1540 			goto out_unlock0;
1541 		sma->sem_ctime = get_seconds();
1542 		break;
1543 	default:
1544 		err = -EINVAL;
1545 		goto out_unlock1;
1546 	}
1547 
1548 out_unlock0:
1549 	sem_unlock(sma, -1);
1550 out_unlock1:
1551 	rcu_read_unlock();
1552 out_up:
1553 	up_write(&sem_ids(ns).rwsem);
1554 	return err;
1555 }
1556 
1557 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1558 {
1559 	int version;
1560 	struct ipc_namespace *ns;
1561 	void __user *p = (void __user *)arg;
1562 
1563 	if (semid < 0)
1564 		return -EINVAL;
1565 
1566 	version = ipc_parse_version(&cmd);
1567 	ns = current->nsproxy->ipc_ns;
1568 
1569 	switch (cmd) {
1570 	case IPC_INFO:
1571 	case SEM_INFO:
1572 	case IPC_STAT:
1573 	case SEM_STAT:
1574 		return semctl_nolock(ns, semid, cmd, version, p);
1575 	case GETALL:
1576 	case GETVAL:
1577 	case GETPID:
1578 	case GETNCNT:
1579 	case GETZCNT:
1580 	case SETALL:
1581 		return semctl_main(ns, semid, semnum, cmd, p);
1582 	case SETVAL:
1583 		return semctl_setval(ns, semid, semnum, arg);
1584 	case IPC_RMID:
1585 	case IPC_SET:
1586 		return semctl_down(ns, semid, cmd, version, p);
1587 	default:
1588 		return -EINVAL;
1589 	}
1590 }
1591 
1592 /* If the task doesn't already have a undo_list, then allocate one
1593  * here.  We guarantee there is only one thread using this undo list,
1594  * and current is THE ONE
1595  *
1596  * If this allocation and assignment succeeds, but later
1597  * portions of this code fail, there is no need to free the sem_undo_list.
1598  * Just let it stay associated with the task, and it'll be freed later
1599  * at exit time.
1600  *
1601  * This can block, so callers must hold no locks.
1602  */
1603 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1604 {
1605 	struct sem_undo_list *undo_list;
1606 
1607 	undo_list = current->sysvsem.undo_list;
1608 	if (!undo_list) {
1609 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1610 		if (undo_list == NULL)
1611 			return -ENOMEM;
1612 		spin_lock_init(&undo_list->lock);
1613 		atomic_set(&undo_list->refcnt, 1);
1614 		INIT_LIST_HEAD(&undo_list->list_proc);
1615 
1616 		current->sysvsem.undo_list = undo_list;
1617 	}
1618 	*undo_listp = undo_list;
1619 	return 0;
1620 }
1621 
1622 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1623 {
1624 	struct sem_undo *un;
1625 
1626 	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1627 		if (un->semid == semid)
1628 			return un;
1629 	}
1630 	return NULL;
1631 }
1632 
1633 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1634 {
1635 	struct sem_undo *un;
1636 
1637 	assert_spin_locked(&ulp->lock);
1638 
1639 	un = __lookup_undo(ulp, semid);
1640 	if (un) {
1641 		list_del_rcu(&un->list_proc);
1642 		list_add_rcu(&un->list_proc, &ulp->list_proc);
1643 	}
1644 	return un;
1645 }
1646 
1647 /**
1648  * find_alloc_undo - lookup (and if not present create) undo array
1649  * @ns: namespace
1650  * @semid: semaphore array id
1651  *
1652  * The function looks up (and if not present creates) the undo structure.
1653  * The size of the undo structure depends on the size of the semaphore
1654  * array, thus the alloc path is not that straightforward.
1655  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1656  * performs a rcu_read_lock().
1657  */
1658 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1659 {
1660 	struct sem_array *sma;
1661 	struct sem_undo_list *ulp;
1662 	struct sem_undo *un, *new;
1663 	int nsems, error;
1664 
1665 	error = get_undo_list(&ulp);
1666 	if (error)
1667 		return ERR_PTR(error);
1668 
1669 	rcu_read_lock();
1670 	spin_lock(&ulp->lock);
1671 	un = lookup_undo(ulp, semid);
1672 	spin_unlock(&ulp->lock);
1673 	if (likely(un != NULL))
1674 		goto out;
1675 
1676 	/* no undo structure around - allocate one. */
1677 	/* step 1: figure out the size of the semaphore array */
1678 	sma = sem_obtain_object_check(ns, semid);
1679 	if (IS_ERR(sma)) {
1680 		rcu_read_unlock();
1681 		return ERR_CAST(sma);
1682 	}
1683 
1684 	nsems = sma->sem_nsems;
1685 	if (!ipc_rcu_getref(sma)) {
1686 		rcu_read_unlock();
1687 		un = ERR_PTR(-EIDRM);
1688 		goto out;
1689 	}
1690 	rcu_read_unlock();
1691 
1692 	/* step 2: allocate new undo structure */
1693 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1694 	if (!new) {
1695 		ipc_rcu_putref(sma, ipc_rcu_free);
1696 		return ERR_PTR(-ENOMEM);
1697 	}
1698 
1699 	/* step 3: Acquire the lock on semaphore array */
1700 	rcu_read_lock();
1701 	sem_lock_and_putref(sma);
1702 	if (!ipc_valid_object(&sma->sem_perm)) {
1703 		sem_unlock(sma, -1);
1704 		rcu_read_unlock();
1705 		kfree(new);
1706 		un = ERR_PTR(-EIDRM);
1707 		goto out;
1708 	}
1709 	spin_lock(&ulp->lock);
1710 
1711 	/*
1712 	 * step 4: check for races: did someone else allocate the undo struct?
1713 	 */
1714 	un = lookup_undo(ulp, semid);
1715 	if (un) {
1716 		kfree(new);
1717 		goto success;
1718 	}
1719 	/* step 5: initialize & link new undo structure */
1720 	new->semadj = (short *) &new[1];
1721 	new->ulp = ulp;
1722 	new->semid = semid;
1723 	assert_spin_locked(&ulp->lock);
1724 	list_add_rcu(&new->list_proc, &ulp->list_proc);
1725 	ipc_assert_locked_object(&sma->sem_perm);
1726 	list_add(&new->list_id, &sma->list_id);
1727 	un = new;
1728 
1729 success:
1730 	spin_unlock(&ulp->lock);
1731 	sem_unlock(sma, -1);
1732 out:
1733 	return un;
1734 }
1735 
1736 
1737 /**
1738  * get_queue_result - retrieve the result code from sem_queue
1739  * @q: Pointer to queue structure
1740  *
1741  * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1742  * q->status, then we must loop until the value is replaced with the final
1743  * value: This may happen if a task is woken up by an unrelated event (e.g.
1744  * signal) and in parallel the task is woken up by another task because it got
1745  * the requested semaphores.
1746  *
1747  * The function can be called with or without holding the semaphore spinlock.
1748  */
1749 static int get_queue_result(struct sem_queue *q)
1750 {
1751 	int error;
1752 
1753 	error = q->status;
1754 	while (unlikely(error == IN_WAKEUP)) {
1755 		cpu_relax();
1756 		error = q->status;
1757 	}
1758 
1759 	return error;
1760 }
1761 
1762 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1763 		unsigned, nsops, const struct timespec __user *, timeout)
1764 {
1765 	int error = -EINVAL;
1766 	struct sem_array *sma;
1767 	struct sembuf fast_sops[SEMOPM_FAST];
1768 	struct sembuf *sops = fast_sops, *sop;
1769 	struct sem_undo *un;
1770 	int undos = 0, alter = 0, max, locknum;
1771 	struct sem_queue queue;
1772 	unsigned long jiffies_left = 0;
1773 	struct ipc_namespace *ns;
1774 	struct list_head tasks;
1775 
1776 	ns = current->nsproxy->ipc_ns;
1777 
1778 	if (nsops < 1 || semid < 0)
1779 		return -EINVAL;
1780 	if (nsops > ns->sc_semopm)
1781 		return -E2BIG;
1782 	if (nsops > SEMOPM_FAST) {
1783 		sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1784 		if (sops == NULL)
1785 			return -ENOMEM;
1786 	}
1787 	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1788 		error =  -EFAULT;
1789 		goto out_free;
1790 	}
1791 	if (timeout) {
1792 		struct timespec _timeout;
1793 		if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1794 			error = -EFAULT;
1795 			goto out_free;
1796 		}
1797 		if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1798 			_timeout.tv_nsec >= 1000000000L) {
1799 			error = -EINVAL;
1800 			goto out_free;
1801 		}
1802 		jiffies_left = timespec_to_jiffies(&_timeout);
1803 	}
1804 	max = 0;
1805 	for (sop = sops; sop < sops + nsops; sop++) {
1806 		if (sop->sem_num >= max)
1807 			max = sop->sem_num;
1808 		if (sop->sem_flg & SEM_UNDO)
1809 			undos = 1;
1810 		if (sop->sem_op != 0)
1811 			alter = 1;
1812 	}
1813 
1814 	INIT_LIST_HEAD(&tasks);
1815 
1816 	if (undos) {
1817 		/* On success, find_alloc_undo takes the rcu_read_lock */
1818 		un = find_alloc_undo(ns, semid);
1819 		if (IS_ERR(un)) {
1820 			error = PTR_ERR(un);
1821 			goto out_free;
1822 		}
1823 	} else {
1824 		un = NULL;
1825 		rcu_read_lock();
1826 	}
1827 
1828 	sma = sem_obtain_object_check(ns, semid);
1829 	if (IS_ERR(sma)) {
1830 		rcu_read_unlock();
1831 		error = PTR_ERR(sma);
1832 		goto out_free;
1833 	}
1834 
1835 	error = -EFBIG;
1836 	if (max >= sma->sem_nsems)
1837 		goto out_rcu_wakeup;
1838 
1839 	error = -EACCES;
1840 	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1841 		goto out_rcu_wakeup;
1842 
1843 	error = security_sem_semop(sma, sops, nsops, alter);
1844 	if (error)
1845 		goto out_rcu_wakeup;
1846 
1847 	error = -EIDRM;
1848 	locknum = sem_lock(sma, sops, nsops);
1849 	/*
1850 	 * We eventually might perform the following check in a lockless
1851 	 * fashion, considering ipc_valid_object() locking constraints.
1852 	 * If nsops == 1 and there is no contention for sem_perm.lock, then
1853 	 * only a per-semaphore lock is held and it's OK to proceed with the
1854 	 * check below. More details on the fine grained locking scheme
1855 	 * entangled here and why it's RMID race safe on comments at sem_lock()
1856 	 */
1857 	if (!ipc_valid_object(&sma->sem_perm))
1858 		goto out_unlock_free;
1859 	/*
1860 	 * semid identifiers are not unique - find_alloc_undo may have
1861 	 * allocated an undo structure, it was invalidated by an RMID
1862 	 * and now a new array with received the same id. Check and fail.
1863 	 * This case can be detected checking un->semid. The existence of
1864 	 * "un" itself is guaranteed by rcu.
1865 	 */
1866 	if (un && un->semid == -1)
1867 		goto out_unlock_free;
1868 
1869 	error = perform_atomic_semop(sma, sops, nsops, un,
1870 					task_tgid_vnr(current));
1871 	if (error == 0) {
1872 		/* If the operation was successful, then do
1873 		 * the required updates.
1874 		 */
1875 		if (alter)
1876 			do_smart_update(sma, sops, nsops, 1, &tasks);
1877 		else
1878 			set_semotime(sma, sops);
1879 	}
1880 	if (error <= 0)
1881 		goto out_unlock_free;
1882 
1883 	/* We need to sleep on this operation, so we put the current
1884 	 * task into the pending queue and go to sleep.
1885 	 */
1886 
1887 	queue.sops = sops;
1888 	queue.nsops = nsops;
1889 	queue.undo = un;
1890 	queue.pid = task_tgid_vnr(current);
1891 	queue.alter = alter;
1892 
1893 	if (nsops == 1) {
1894 		struct sem *curr;
1895 		curr = &sma->sem_base[sops->sem_num];
1896 
1897 		if (alter) {
1898 			if (sma->complex_count) {
1899 				list_add_tail(&queue.list,
1900 						&sma->pending_alter);
1901 			} else {
1902 
1903 				list_add_tail(&queue.list,
1904 						&curr->pending_alter);
1905 			}
1906 		} else {
1907 			list_add_tail(&queue.list, &curr->pending_const);
1908 		}
1909 	} else {
1910 		if (!sma->complex_count)
1911 			merge_queues(sma);
1912 
1913 		if (alter)
1914 			list_add_tail(&queue.list, &sma->pending_alter);
1915 		else
1916 			list_add_tail(&queue.list, &sma->pending_const);
1917 
1918 		sma->complex_count++;
1919 	}
1920 
1921 	queue.status = -EINTR;
1922 	queue.sleeper = current;
1923 
1924 sleep_again:
1925 	current->state = TASK_INTERRUPTIBLE;
1926 	sem_unlock(sma, locknum);
1927 	rcu_read_unlock();
1928 
1929 	if (timeout)
1930 		jiffies_left = schedule_timeout(jiffies_left);
1931 	else
1932 		schedule();
1933 
1934 	error = get_queue_result(&queue);
1935 
1936 	if (error != -EINTR) {
1937 		/* fast path: update_queue already obtained all requested
1938 		 * resources.
1939 		 * Perform a smp_mb(): User space could assume that semop()
1940 		 * is a memory barrier: Without the mb(), the cpu could
1941 		 * speculatively read in user space stale data that was
1942 		 * overwritten by the previous owner of the semaphore.
1943 		 */
1944 		smp_mb();
1945 
1946 		goto out_free;
1947 	}
1948 
1949 	rcu_read_lock();
1950 	sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
1951 
1952 	/*
1953 	 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1954 	 */
1955 	error = get_queue_result(&queue);
1956 
1957 	/*
1958 	 * Array removed? If yes, leave without sem_unlock().
1959 	 */
1960 	if (IS_ERR(sma)) {
1961 		rcu_read_unlock();
1962 		goto out_free;
1963 	}
1964 
1965 
1966 	/*
1967 	 * If queue.status != -EINTR we are woken up by another process.
1968 	 * Leave without unlink_queue(), but with sem_unlock().
1969 	 */
1970 	if (error != -EINTR)
1971 		goto out_unlock_free;
1972 
1973 	/*
1974 	 * If an interrupt occurred we have to clean up the queue
1975 	 */
1976 	if (timeout && jiffies_left == 0)
1977 		error = -EAGAIN;
1978 
1979 	/*
1980 	 * If the wakeup was spurious, just retry
1981 	 */
1982 	if (error == -EINTR && !signal_pending(current))
1983 		goto sleep_again;
1984 
1985 	unlink_queue(sma, &queue);
1986 
1987 out_unlock_free:
1988 	sem_unlock(sma, locknum);
1989 out_rcu_wakeup:
1990 	rcu_read_unlock();
1991 	wake_up_sem_queue_do(&tasks);
1992 out_free:
1993 	if (sops != fast_sops)
1994 		kfree(sops);
1995 	return error;
1996 }
1997 
1998 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1999 		unsigned, nsops)
2000 {
2001 	return sys_semtimedop(semid, tsops, nsops, NULL);
2002 }
2003 
2004 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2005  * parent and child tasks.
2006  */
2007 
2008 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2009 {
2010 	struct sem_undo_list *undo_list;
2011 	int error;
2012 
2013 	if (clone_flags & CLONE_SYSVSEM) {
2014 		error = get_undo_list(&undo_list);
2015 		if (error)
2016 			return error;
2017 		atomic_inc(&undo_list->refcnt);
2018 		tsk->sysvsem.undo_list = undo_list;
2019 	} else
2020 		tsk->sysvsem.undo_list = NULL;
2021 
2022 	return 0;
2023 }
2024 
2025 /*
2026  * add semadj values to semaphores, free undo structures.
2027  * undo structures are not freed when semaphore arrays are destroyed
2028  * so some of them may be out of date.
2029  * IMPLEMENTATION NOTE: There is some confusion over whether the
2030  * set of adjustments that needs to be done should be done in an atomic
2031  * manner or not. That is, if we are attempting to decrement the semval
2032  * should we queue up and wait until we can do so legally?
2033  * The original implementation attempted to do this (queue and wait).
2034  * The current implementation does not do so. The POSIX standard
2035  * and SVID should be consulted to determine what behavior is mandated.
2036  */
2037 void exit_sem(struct task_struct *tsk)
2038 {
2039 	struct sem_undo_list *ulp;
2040 
2041 	ulp = tsk->sysvsem.undo_list;
2042 	if (!ulp)
2043 		return;
2044 	tsk->sysvsem.undo_list = NULL;
2045 
2046 	if (!atomic_dec_and_test(&ulp->refcnt))
2047 		return;
2048 
2049 	for (;;) {
2050 		struct sem_array *sma;
2051 		struct sem_undo *un;
2052 		struct list_head tasks;
2053 		int semid, i;
2054 
2055 		rcu_read_lock();
2056 		un = list_entry_rcu(ulp->list_proc.next,
2057 				    struct sem_undo, list_proc);
2058 		if (&un->list_proc == &ulp->list_proc)
2059 			semid = -1;
2060 		 else
2061 			semid = un->semid;
2062 
2063 		if (semid == -1) {
2064 			rcu_read_unlock();
2065 			break;
2066 		}
2067 
2068 		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid);
2069 		/* exit_sem raced with IPC_RMID, nothing to do */
2070 		if (IS_ERR(sma)) {
2071 			rcu_read_unlock();
2072 			continue;
2073 		}
2074 
2075 		sem_lock(sma, NULL, -1);
2076 		/* exit_sem raced with IPC_RMID, nothing to do */
2077 		if (!ipc_valid_object(&sma->sem_perm)) {
2078 			sem_unlock(sma, -1);
2079 			rcu_read_unlock();
2080 			continue;
2081 		}
2082 		un = __lookup_undo(ulp, semid);
2083 		if (un == NULL) {
2084 			/* exit_sem raced with IPC_RMID+semget() that created
2085 			 * exactly the same semid. Nothing to do.
2086 			 */
2087 			sem_unlock(sma, -1);
2088 			rcu_read_unlock();
2089 			continue;
2090 		}
2091 
2092 		/* remove un from the linked lists */
2093 		ipc_assert_locked_object(&sma->sem_perm);
2094 		list_del(&un->list_id);
2095 
2096 		spin_lock(&ulp->lock);
2097 		list_del_rcu(&un->list_proc);
2098 		spin_unlock(&ulp->lock);
2099 
2100 		/* perform adjustments registered in un */
2101 		for (i = 0; i < sma->sem_nsems; i++) {
2102 			struct sem *semaphore = &sma->sem_base[i];
2103 			if (un->semadj[i]) {
2104 				semaphore->semval += un->semadj[i];
2105 				/*
2106 				 * Range checks of the new semaphore value,
2107 				 * not defined by sus:
2108 				 * - Some unices ignore the undo entirely
2109 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2110 				 * - some cap the value (e.g. FreeBSD caps
2111 				 *   at 0, but doesn't enforce SEMVMX)
2112 				 *
2113 				 * Linux caps the semaphore value, both at 0
2114 				 * and at SEMVMX.
2115 				 *
2116 				 *	Manfred <manfred@colorfullife.com>
2117 				 */
2118 				if (semaphore->semval < 0)
2119 					semaphore->semval = 0;
2120 				if (semaphore->semval > SEMVMX)
2121 					semaphore->semval = SEMVMX;
2122 				semaphore->sempid = task_tgid_vnr(current);
2123 			}
2124 		}
2125 		/* maybe some queued-up processes were waiting for this */
2126 		INIT_LIST_HEAD(&tasks);
2127 		do_smart_update(sma, NULL, 0, 1, &tasks);
2128 		sem_unlock(sma, -1);
2129 		rcu_read_unlock();
2130 		wake_up_sem_queue_do(&tasks);
2131 
2132 		kfree_rcu(un, rcu);
2133 	}
2134 	kfree(ulp);
2135 }
2136 
2137 #ifdef CONFIG_PROC_FS
2138 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2139 {
2140 	struct user_namespace *user_ns = seq_user_ns(s);
2141 	struct sem_array *sma = it;
2142 	time_t sem_otime;
2143 
2144 	/*
2145 	 * The proc interface isn't aware of sem_lock(), it calls
2146 	 * ipc_lock_object() directly (in sysvipc_find_ipc).
2147 	 * In order to stay compatible with sem_lock(), we must wait until
2148 	 * all simple semop() calls have left their critical regions.
2149 	 */
2150 	sem_wait_array(sma);
2151 
2152 	sem_otime = get_semotime(sma);
2153 
2154 	return seq_printf(s,
2155 			  "%10d %10d  %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2156 			  sma->sem_perm.key,
2157 			  sma->sem_perm.id,
2158 			  sma->sem_perm.mode,
2159 			  sma->sem_nsems,
2160 			  from_kuid_munged(user_ns, sma->sem_perm.uid),
2161 			  from_kgid_munged(user_ns, sma->sem_perm.gid),
2162 			  from_kuid_munged(user_ns, sma->sem_perm.cuid),
2163 			  from_kgid_munged(user_ns, sma->sem_perm.cgid),
2164 			  sem_otime,
2165 			  sma->sem_ctime);
2166 }
2167 #endif
2168