1 /* 2 * linux/ipc/sem.c 3 * Copyright (C) 1992 Krishna Balasubramanian 4 * Copyright (C) 1995 Eric Schenk, Bruno Haible 5 * 6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> 7 * 8 * SMP-threaded, sysctl's added 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com> 10 * Enforced range limit on SEM_UNDO 11 * (c) 2001 Red Hat Inc 12 * Lockless wakeup 13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com> 14 * Further wakeup optimizations, documentation 15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com> 16 * 17 * support for audit of ipc object properties and permission changes 18 * Dustin Kirkland <dustin.kirkland@us.ibm.com> 19 * 20 * namespaces support 21 * OpenVZ, SWsoft Inc. 22 * Pavel Emelianov <xemul@openvz.org> 23 * 24 * Implementation notes: (May 2010) 25 * This file implements System V semaphores. 26 * 27 * User space visible behavior: 28 * - FIFO ordering for semop() operations (just FIFO, not starvation 29 * protection) 30 * - multiple semaphore operations that alter the same semaphore in 31 * one semop() are handled. 32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and 33 * SETALL calls. 34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. 35 * - undo adjustments at process exit are limited to 0..SEMVMX. 36 * - namespace are supported. 37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing 38 * to /proc/sys/kernel/sem. 39 * - statistics about the usage are reported in /proc/sysvipc/sem. 40 * 41 * Internals: 42 * - scalability: 43 * - all global variables are read-mostly. 44 * - semop() calls and semctl(RMID) are synchronized by RCU. 45 * - most operations do write operations (actually: spin_lock calls) to 46 * the per-semaphore array structure. 47 * Thus: Perfect SMP scaling between independent semaphore arrays. 48 * If multiple semaphores in one array are used, then cache line 49 * trashing on the semaphore array spinlock will limit the scaling. 50 * - semncnt and semzcnt are calculated on demand in count_semncnt() and 51 * count_semzcnt() 52 * - the task that performs a successful semop() scans the list of all 53 * sleeping tasks and completes any pending operations that can be fulfilled. 54 * Semaphores are actively given to waiting tasks (necessary for FIFO). 55 * (see update_queue()) 56 * - To improve the scalability, the actual wake-up calls are performed after 57 * dropping all locks. (see wake_up_sem_queue_prepare(), 58 * wake_up_sem_queue_do()) 59 * - All work is done by the waker, the woken up task does not have to do 60 * anything - not even acquiring a lock or dropping a refcount. 61 * - A woken up task may not even touch the semaphore array anymore, it may 62 * have been destroyed already by a semctl(RMID). 63 * - The synchronizations between wake-ups due to a timeout/signal and a 64 * wake-up due to a completed semaphore operation is achieved by using an 65 * intermediate state (IN_WAKEUP). 66 * - UNDO values are stored in an array (one per process and per 67 * semaphore array, lazily allocated). For backwards compatibility, multiple 68 * modes for the UNDO variables are supported (per process, per thread) 69 * (see copy_semundo, CLONE_SYSVSEM) 70 * - There are two lists of the pending operations: a per-array list 71 * and per-semaphore list (stored in the array). This allows to achieve FIFO 72 * ordering without always scanning all pending operations. 73 * The worst-case behavior is nevertheless O(N^2) for N wakeups. 74 */ 75 76 #include <linux/slab.h> 77 #include <linux/spinlock.h> 78 #include <linux/init.h> 79 #include <linux/proc_fs.h> 80 #include <linux/time.h> 81 #include <linux/security.h> 82 #include <linux/syscalls.h> 83 #include <linux/audit.h> 84 #include <linux/capability.h> 85 #include <linux/seq_file.h> 86 #include <linux/rwsem.h> 87 #include <linux/nsproxy.h> 88 #include <linux/ipc_namespace.h> 89 90 #include <asm/uaccess.h> 91 #include "util.h" 92 93 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) 94 95 #define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm) 96 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid) 97 98 static int newary(struct ipc_namespace *, struct ipc_params *); 99 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); 100 #ifdef CONFIG_PROC_FS 101 static int sysvipc_sem_proc_show(struct seq_file *s, void *it); 102 #endif 103 104 #define SEMMSL_FAST 256 /* 512 bytes on stack */ 105 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ 106 107 /* 108 * linked list protection: 109 * sem_undo.id_next, 110 * sem_array.sem_pending{,last}, 111 * sem_array.sem_undo: sem_lock() for read/write 112 * sem_undo.proc_next: only "current" is allowed to read/write that field. 113 * 114 */ 115 116 #define sc_semmsl sem_ctls[0] 117 #define sc_semmns sem_ctls[1] 118 #define sc_semopm sem_ctls[2] 119 #define sc_semmni sem_ctls[3] 120 121 void sem_init_ns(struct ipc_namespace *ns) 122 { 123 ns->sc_semmsl = SEMMSL; 124 ns->sc_semmns = SEMMNS; 125 ns->sc_semopm = SEMOPM; 126 ns->sc_semmni = SEMMNI; 127 ns->used_sems = 0; 128 ipc_init_ids(&ns->ids[IPC_SEM_IDS]); 129 } 130 131 #ifdef CONFIG_IPC_NS 132 void sem_exit_ns(struct ipc_namespace *ns) 133 { 134 free_ipcs(ns, &sem_ids(ns), freeary); 135 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); 136 } 137 #endif 138 139 void __init sem_init (void) 140 { 141 sem_init_ns(&init_ipc_ns); 142 ipc_init_proc_interface("sysvipc/sem", 143 " key semid perms nsems uid gid cuid cgid otime ctime\n", 144 IPC_SEM_IDS, sysvipc_sem_proc_show); 145 } 146 147 /* 148 * sem_lock_(check_) routines are called in the paths where the rw_mutex 149 * is not held. 150 */ 151 static inline struct sem_array *sem_lock(struct ipc_namespace *ns, int id) 152 { 153 struct kern_ipc_perm *ipcp = ipc_lock(&sem_ids(ns), id); 154 155 if (IS_ERR(ipcp)) 156 return (struct sem_array *)ipcp; 157 158 return container_of(ipcp, struct sem_array, sem_perm); 159 } 160 161 static inline struct sem_array *sem_lock_check(struct ipc_namespace *ns, 162 int id) 163 { 164 struct kern_ipc_perm *ipcp = ipc_lock_check(&sem_ids(ns), id); 165 166 if (IS_ERR(ipcp)) 167 return (struct sem_array *)ipcp; 168 169 return container_of(ipcp, struct sem_array, sem_perm); 170 } 171 172 static inline void sem_lock_and_putref(struct sem_array *sma) 173 { 174 ipc_lock_by_ptr(&sma->sem_perm); 175 ipc_rcu_putref(sma); 176 } 177 178 static inline void sem_getref_and_unlock(struct sem_array *sma) 179 { 180 ipc_rcu_getref(sma); 181 ipc_unlock(&(sma)->sem_perm); 182 } 183 184 static inline void sem_putref(struct sem_array *sma) 185 { 186 ipc_lock_by_ptr(&sma->sem_perm); 187 ipc_rcu_putref(sma); 188 ipc_unlock(&(sma)->sem_perm); 189 } 190 191 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) 192 { 193 ipc_rmid(&sem_ids(ns), &s->sem_perm); 194 } 195 196 /* 197 * Lockless wakeup algorithm: 198 * Without the check/retry algorithm a lockless wakeup is possible: 199 * - queue.status is initialized to -EINTR before blocking. 200 * - wakeup is performed by 201 * * unlinking the queue entry from sma->sem_pending 202 * * setting queue.status to IN_WAKEUP 203 * This is the notification for the blocked thread that a 204 * result value is imminent. 205 * * call wake_up_process 206 * * set queue.status to the final value. 207 * - the previously blocked thread checks queue.status: 208 * * if it's IN_WAKEUP, then it must wait until the value changes 209 * * if it's not -EINTR, then the operation was completed by 210 * update_queue. semtimedop can return queue.status without 211 * performing any operation on the sem array. 212 * * otherwise it must acquire the spinlock and check what's up. 213 * 214 * The two-stage algorithm is necessary to protect against the following 215 * races: 216 * - if queue.status is set after wake_up_process, then the woken up idle 217 * thread could race forward and try (and fail) to acquire sma->lock 218 * before update_queue had a chance to set queue.status 219 * - if queue.status is written before wake_up_process and if the 220 * blocked process is woken up by a signal between writing 221 * queue.status and the wake_up_process, then the woken up 222 * process could return from semtimedop and die by calling 223 * sys_exit before wake_up_process is called. Then wake_up_process 224 * will oops, because the task structure is already invalid. 225 * (yes, this happened on s390 with sysv msg). 226 * 227 */ 228 #define IN_WAKEUP 1 229 230 /** 231 * newary - Create a new semaphore set 232 * @ns: namespace 233 * @params: ptr to the structure that contains key, semflg and nsems 234 * 235 * Called with sem_ids.rw_mutex held (as a writer) 236 */ 237 238 static int newary(struct ipc_namespace *ns, struct ipc_params *params) 239 { 240 int id; 241 int retval; 242 struct sem_array *sma; 243 int size; 244 key_t key = params->key; 245 int nsems = params->u.nsems; 246 int semflg = params->flg; 247 int i; 248 249 if (!nsems) 250 return -EINVAL; 251 if (ns->used_sems + nsems > ns->sc_semmns) 252 return -ENOSPC; 253 254 size = sizeof (*sma) + nsems * sizeof (struct sem); 255 sma = ipc_rcu_alloc(size); 256 if (!sma) { 257 return -ENOMEM; 258 } 259 memset (sma, 0, size); 260 261 sma->sem_perm.mode = (semflg & S_IRWXUGO); 262 sma->sem_perm.key = key; 263 264 sma->sem_perm.security = NULL; 265 retval = security_sem_alloc(sma); 266 if (retval) { 267 ipc_rcu_putref(sma); 268 return retval; 269 } 270 271 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); 272 if (id < 0) { 273 security_sem_free(sma); 274 ipc_rcu_putref(sma); 275 return id; 276 } 277 ns->used_sems += nsems; 278 279 sma->sem_base = (struct sem *) &sma[1]; 280 281 for (i = 0; i < nsems; i++) 282 INIT_LIST_HEAD(&sma->sem_base[i].sem_pending); 283 284 sma->complex_count = 0; 285 INIT_LIST_HEAD(&sma->sem_pending); 286 INIT_LIST_HEAD(&sma->list_id); 287 sma->sem_nsems = nsems; 288 sma->sem_ctime = get_seconds(); 289 sem_unlock(sma); 290 291 return sma->sem_perm.id; 292 } 293 294 295 /* 296 * Called with sem_ids.rw_mutex and ipcp locked. 297 */ 298 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg) 299 { 300 struct sem_array *sma; 301 302 sma = container_of(ipcp, struct sem_array, sem_perm); 303 return security_sem_associate(sma, semflg); 304 } 305 306 /* 307 * Called with sem_ids.rw_mutex and ipcp locked. 308 */ 309 static inline int sem_more_checks(struct kern_ipc_perm *ipcp, 310 struct ipc_params *params) 311 { 312 struct sem_array *sma; 313 314 sma = container_of(ipcp, struct sem_array, sem_perm); 315 if (params->u.nsems > sma->sem_nsems) 316 return -EINVAL; 317 318 return 0; 319 } 320 321 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) 322 { 323 struct ipc_namespace *ns; 324 struct ipc_ops sem_ops; 325 struct ipc_params sem_params; 326 327 ns = current->nsproxy->ipc_ns; 328 329 if (nsems < 0 || nsems > ns->sc_semmsl) 330 return -EINVAL; 331 332 sem_ops.getnew = newary; 333 sem_ops.associate = sem_security; 334 sem_ops.more_checks = sem_more_checks; 335 336 sem_params.key = key; 337 sem_params.flg = semflg; 338 sem_params.u.nsems = nsems; 339 340 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); 341 } 342 343 /* 344 * Determine whether a sequence of semaphore operations would succeed 345 * all at once. Return 0 if yes, 1 if need to sleep, else return error code. 346 */ 347 348 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops, 349 int nsops, struct sem_undo *un, int pid) 350 { 351 int result, sem_op; 352 struct sembuf *sop; 353 struct sem * curr; 354 355 for (sop = sops; sop < sops + nsops; sop++) { 356 curr = sma->sem_base + sop->sem_num; 357 sem_op = sop->sem_op; 358 result = curr->semval; 359 360 if (!sem_op && result) 361 goto would_block; 362 363 result += sem_op; 364 if (result < 0) 365 goto would_block; 366 if (result > SEMVMX) 367 goto out_of_range; 368 if (sop->sem_flg & SEM_UNDO) { 369 int undo = un->semadj[sop->sem_num] - sem_op; 370 /* 371 * Exceeding the undo range is an error. 372 */ 373 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 374 goto out_of_range; 375 } 376 curr->semval = result; 377 } 378 379 sop--; 380 while (sop >= sops) { 381 sma->sem_base[sop->sem_num].sempid = pid; 382 if (sop->sem_flg & SEM_UNDO) 383 un->semadj[sop->sem_num] -= sop->sem_op; 384 sop--; 385 } 386 387 return 0; 388 389 out_of_range: 390 result = -ERANGE; 391 goto undo; 392 393 would_block: 394 if (sop->sem_flg & IPC_NOWAIT) 395 result = -EAGAIN; 396 else 397 result = 1; 398 399 undo: 400 sop--; 401 while (sop >= sops) { 402 sma->sem_base[sop->sem_num].semval -= sop->sem_op; 403 sop--; 404 } 405 406 return result; 407 } 408 409 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up 410 * @q: queue entry that must be signaled 411 * @error: Error value for the signal 412 * 413 * Prepare the wake-up of the queue entry q. 414 */ 415 static void wake_up_sem_queue_prepare(struct list_head *pt, 416 struct sem_queue *q, int error) 417 { 418 if (list_empty(pt)) { 419 /* 420 * Hold preempt off so that we don't get preempted and have the 421 * wakee busy-wait until we're scheduled back on. 422 */ 423 preempt_disable(); 424 } 425 q->status = IN_WAKEUP; 426 q->pid = error; 427 428 list_add_tail(&q->simple_list, pt); 429 } 430 431 /** 432 * wake_up_sem_queue_do(pt) - do the actual wake-up 433 * @pt: list of tasks to be woken up 434 * 435 * Do the actual wake-up. 436 * The function is called without any locks held, thus the semaphore array 437 * could be destroyed already and the tasks can disappear as soon as the 438 * status is set to the actual return code. 439 */ 440 static void wake_up_sem_queue_do(struct list_head *pt) 441 { 442 struct sem_queue *q, *t; 443 int did_something; 444 445 did_something = !list_empty(pt); 446 list_for_each_entry_safe(q, t, pt, simple_list) { 447 wake_up_process(q->sleeper); 448 /* q can disappear immediately after writing q->status. */ 449 smp_wmb(); 450 q->status = q->pid; 451 } 452 if (did_something) 453 preempt_enable(); 454 } 455 456 static void unlink_queue(struct sem_array *sma, struct sem_queue *q) 457 { 458 list_del(&q->list); 459 if (q->nsops == 1) 460 list_del(&q->simple_list); 461 else 462 sma->complex_count--; 463 } 464 465 /** check_restart(sma, q) 466 * @sma: semaphore array 467 * @q: the operation that just completed 468 * 469 * update_queue is O(N^2) when it restarts scanning the whole queue of 470 * waiting operations. Therefore this function checks if the restart is 471 * really necessary. It is called after a previously waiting operation 472 * was completed. 473 */ 474 static int check_restart(struct sem_array *sma, struct sem_queue *q) 475 { 476 struct sem *curr; 477 struct sem_queue *h; 478 479 /* if the operation didn't modify the array, then no restart */ 480 if (q->alter == 0) 481 return 0; 482 483 /* pending complex operations are too difficult to analyse */ 484 if (sma->complex_count) 485 return 1; 486 487 /* we were a sleeping complex operation. Too difficult */ 488 if (q->nsops > 1) 489 return 1; 490 491 curr = sma->sem_base + q->sops[0].sem_num; 492 493 /* No-one waits on this queue */ 494 if (list_empty(&curr->sem_pending)) 495 return 0; 496 497 /* the new semaphore value */ 498 if (curr->semval) { 499 /* It is impossible that someone waits for the new value: 500 * - q is a previously sleeping simple operation that 501 * altered the array. It must be a decrement, because 502 * simple increments never sleep. 503 * - The value is not 0, thus wait-for-zero won't proceed. 504 * - If there are older (higher priority) decrements 505 * in the queue, then they have observed the original 506 * semval value and couldn't proceed. The operation 507 * decremented to value - thus they won't proceed either. 508 */ 509 BUG_ON(q->sops[0].sem_op >= 0); 510 return 0; 511 } 512 /* 513 * semval is 0. Check if there are wait-for-zero semops. 514 * They must be the first entries in the per-semaphore simple queue 515 */ 516 h = list_first_entry(&curr->sem_pending, struct sem_queue, simple_list); 517 BUG_ON(h->nsops != 1); 518 BUG_ON(h->sops[0].sem_num != q->sops[0].sem_num); 519 520 /* Yes, there is a wait-for-zero semop. Restart */ 521 if (h->sops[0].sem_op == 0) 522 return 1; 523 524 /* Again - no-one is waiting for the new value. */ 525 return 0; 526 } 527 528 529 /** 530 * update_queue(sma, semnum): Look for tasks that can be completed. 531 * @sma: semaphore array. 532 * @semnum: semaphore that was modified. 533 * @pt: list head for the tasks that must be woken up. 534 * 535 * update_queue must be called after a semaphore in a semaphore array 536 * was modified. If multiple semaphore were modified, then @semnum 537 * must be set to -1. 538 * The tasks that must be woken up are added to @pt. The return code 539 * is stored in q->pid. 540 * The function return 1 if at least one semop was completed successfully. 541 */ 542 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt) 543 { 544 struct sem_queue *q; 545 struct list_head *walk; 546 struct list_head *pending_list; 547 int offset; 548 int semop_completed = 0; 549 550 /* if there are complex operations around, then knowing the semaphore 551 * that was modified doesn't help us. Assume that multiple semaphores 552 * were modified. 553 */ 554 if (sma->complex_count) 555 semnum = -1; 556 557 if (semnum == -1) { 558 pending_list = &sma->sem_pending; 559 offset = offsetof(struct sem_queue, list); 560 } else { 561 pending_list = &sma->sem_base[semnum].sem_pending; 562 offset = offsetof(struct sem_queue, simple_list); 563 } 564 565 again: 566 walk = pending_list->next; 567 while (walk != pending_list) { 568 int error, restart; 569 570 q = (struct sem_queue *)((char *)walk - offset); 571 walk = walk->next; 572 573 /* If we are scanning the single sop, per-semaphore list of 574 * one semaphore and that semaphore is 0, then it is not 575 * necessary to scan the "alter" entries: simple increments 576 * that affect only one entry succeed immediately and cannot 577 * be in the per semaphore pending queue, and decrements 578 * cannot be successful if the value is already 0. 579 */ 580 if (semnum != -1 && sma->sem_base[semnum].semval == 0 && 581 q->alter) 582 break; 583 584 error = try_atomic_semop(sma, q->sops, q->nsops, 585 q->undo, q->pid); 586 587 /* Does q->sleeper still need to sleep? */ 588 if (error > 0) 589 continue; 590 591 unlink_queue(sma, q); 592 593 if (error) { 594 restart = 0; 595 } else { 596 semop_completed = 1; 597 restart = check_restart(sma, q); 598 } 599 600 wake_up_sem_queue_prepare(pt, q, error); 601 if (restart) 602 goto again; 603 } 604 return semop_completed; 605 } 606 607 /** 608 * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue 609 * @sma: semaphore array 610 * @sops: operations that were performed 611 * @nsops: number of operations 612 * @otime: force setting otime 613 * @pt: list head of the tasks that must be woken up. 614 * 615 * do_smart_update() does the required called to update_queue, based on the 616 * actual changes that were performed on the semaphore array. 617 * Note that the function does not do the actual wake-up: the caller is 618 * responsible for calling wake_up_sem_queue_do(@pt). 619 * It is safe to perform this call after dropping all locks. 620 */ 621 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, 622 int otime, struct list_head *pt) 623 { 624 int i; 625 626 if (sma->complex_count || sops == NULL) { 627 if (update_queue(sma, -1, pt)) 628 otime = 1; 629 goto done; 630 } 631 632 for (i = 0; i < nsops; i++) { 633 if (sops[i].sem_op > 0 || 634 (sops[i].sem_op < 0 && 635 sma->sem_base[sops[i].sem_num].semval == 0)) 636 if (update_queue(sma, sops[i].sem_num, pt)) 637 otime = 1; 638 } 639 done: 640 if (otime) 641 sma->sem_otime = get_seconds(); 642 } 643 644 645 /* The following counts are associated to each semaphore: 646 * semncnt number of tasks waiting on semval being nonzero 647 * semzcnt number of tasks waiting on semval being zero 648 * This model assumes that a task waits on exactly one semaphore. 649 * Since semaphore operations are to be performed atomically, tasks actually 650 * wait on a whole sequence of semaphores simultaneously. 651 * The counts we return here are a rough approximation, but still 652 * warrant that semncnt+semzcnt>0 if the task is on the pending queue. 653 */ 654 static int count_semncnt (struct sem_array * sma, ushort semnum) 655 { 656 int semncnt; 657 struct sem_queue * q; 658 659 semncnt = 0; 660 list_for_each_entry(q, &sma->sem_pending, list) { 661 struct sembuf * sops = q->sops; 662 int nsops = q->nsops; 663 int i; 664 for (i = 0; i < nsops; i++) 665 if (sops[i].sem_num == semnum 666 && (sops[i].sem_op < 0) 667 && !(sops[i].sem_flg & IPC_NOWAIT)) 668 semncnt++; 669 } 670 return semncnt; 671 } 672 673 static int count_semzcnt (struct sem_array * sma, ushort semnum) 674 { 675 int semzcnt; 676 struct sem_queue * q; 677 678 semzcnt = 0; 679 list_for_each_entry(q, &sma->sem_pending, list) { 680 struct sembuf * sops = q->sops; 681 int nsops = q->nsops; 682 int i; 683 for (i = 0; i < nsops; i++) 684 if (sops[i].sem_num == semnum 685 && (sops[i].sem_op == 0) 686 && !(sops[i].sem_flg & IPC_NOWAIT)) 687 semzcnt++; 688 } 689 return semzcnt; 690 } 691 692 static void free_un(struct rcu_head *head) 693 { 694 struct sem_undo *un = container_of(head, struct sem_undo, rcu); 695 kfree(un); 696 } 697 698 /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked 699 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex 700 * remains locked on exit. 701 */ 702 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) 703 { 704 struct sem_undo *un, *tu; 705 struct sem_queue *q, *tq; 706 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 707 struct list_head tasks; 708 709 /* Free the existing undo structures for this semaphore set. */ 710 assert_spin_locked(&sma->sem_perm.lock); 711 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { 712 list_del(&un->list_id); 713 spin_lock(&un->ulp->lock); 714 un->semid = -1; 715 list_del_rcu(&un->list_proc); 716 spin_unlock(&un->ulp->lock); 717 call_rcu(&un->rcu, free_un); 718 } 719 720 /* Wake up all pending processes and let them fail with EIDRM. */ 721 INIT_LIST_HEAD(&tasks); 722 list_for_each_entry_safe(q, tq, &sma->sem_pending, list) { 723 unlink_queue(sma, q); 724 wake_up_sem_queue_prepare(&tasks, q, -EIDRM); 725 } 726 727 /* Remove the semaphore set from the IDR */ 728 sem_rmid(ns, sma); 729 sem_unlock(sma); 730 731 wake_up_sem_queue_do(&tasks); 732 ns->used_sems -= sma->sem_nsems; 733 security_sem_free(sma); 734 ipc_rcu_putref(sma); 735 } 736 737 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) 738 { 739 switch(version) { 740 case IPC_64: 741 return copy_to_user(buf, in, sizeof(*in)); 742 case IPC_OLD: 743 { 744 struct semid_ds out; 745 746 memset(&out, 0, sizeof(out)); 747 748 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); 749 750 out.sem_otime = in->sem_otime; 751 out.sem_ctime = in->sem_ctime; 752 out.sem_nsems = in->sem_nsems; 753 754 return copy_to_user(buf, &out, sizeof(out)); 755 } 756 default: 757 return -EINVAL; 758 } 759 } 760 761 static int semctl_nolock(struct ipc_namespace *ns, int semid, 762 int cmd, int version, union semun arg) 763 { 764 int err; 765 struct sem_array *sma; 766 767 switch(cmd) { 768 case IPC_INFO: 769 case SEM_INFO: 770 { 771 struct seminfo seminfo; 772 int max_id; 773 774 err = security_sem_semctl(NULL, cmd); 775 if (err) 776 return err; 777 778 memset(&seminfo,0,sizeof(seminfo)); 779 seminfo.semmni = ns->sc_semmni; 780 seminfo.semmns = ns->sc_semmns; 781 seminfo.semmsl = ns->sc_semmsl; 782 seminfo.semopm = ns->sc_semopm; 783 seminfo.semvmx = SEMVMX; 784 seminfo.semmnu = SEMMNU; 785 seminfo.semmap = SEMMAP; 786 seminfo.semume = SEMUME; 787 down_read(&sem_ids(ns).rw_mutex); 788 if (cmd == SEM_INFO) { 789 seminfo.semusz = sem_ids(ns).in_use; 790 seminfo.semaem = ns->used_sems; 791 } else { 792 seminfo.semusz = SEMUSZ; 793 seminfo.semaem = SEMAEM; 794 } 795 max_id = ipc_get_maxid(&sem_ids(ns)); 796 up_read(&sem_ids(ns).rw_mutex); 797 if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo))) 798 return -EFAULT; 799 return (max_id < 0) ? 0: max_id; 800 } 801 case IPC_STAT: 802 case SEM_STAT: 803 { 804 struct semid64_ds tbuf; 805 int id; 806 807 if (cmd == SEM_STAT) { 808 sma = sem_lock(ns, semid); 809 if (IS_ERR(sma)) 810 return PTR_ERR(sma); 811 id = sma->sem_perm.id; 812 } else { 813 sma = sem_lock_check(ns, semid); 814 if (IS_ERR(sma)) 815 return PTR_ERR(sma); 816 id = 0; 817 } 818 819 err = -EACCES; 820 if (ipcperms (&sma->sem_perm, S_IRUGO)) 821 goto out_unlock; 822 823 err = security_sem_semctl(sma, cmd); 824 if (err) 825 goto out_unlock; 826 827 memset(&tbuf, 0, sizeof(tbuf)); 828 829 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); 830 tbuf.sem_otime = sma->sem_otime; 831 tbuf.sem_ctime = sma->sem_ctime; 832 tbuf.sem_nsems = sma->sem_nsems; 833 sem_unlock(sma); 834 if (copy_semid_to_user (arg.buf, &tbuf, version)) 835 return -EFAULT; 836 return id; 837 } 838 default: 839 return -EINVAL; 840 } 841 out_unlock: 842 sem_unlock(sma); 843 return err; 844 } 845 846 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, 847 int cmd, int version, union semun arg) 848 { 849 struct sem_array *sma; 850 struct sem* curr; 851 int err; 852 ushort fast_sem_io[SEMMSL_FAST]; 853 ushort* sem_io = fast_sem_io; 854 int nsems; 855 struct list_head tasks; 856 857 sma = sem_lock_check(ns, semid); 858 if (IS_ERR(sma)) 859 return PTR_ERR(sma); 860 861 INIT_LIST_HEAD(&tasks); 862 nsems = sma->sem_nsems; 863 864 err = -EACCES; 865 if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO)) 866 goto out_unlock; 867 868 err = security_sem_semctl(sma, cmd); 869 if (err) 870 goto out_unlock; 871 872 err = -EACCES; 873 switch (cmd) { 874 case GETALL: 875 { 876 ushort __user *array = arg.array; 877 int i; 878 879 if(nsems > SEMMSL_FAST) { 880 sem_getref_and_unlock(sma); 881 882 sem_io = ipc_alloc(sizeof(ushort)*nsems); 883 if(sem_io == NULL) { 884 sem_putref(sma); 885 return -ENOMEM; 886 } 887 888 sem_lock_and_putref(sma); 889 if (sma->sem_perm.deleted) { 890 sem_unlock(sma); 891 err = -EIDRM; 892 goto out_free; 893 } 894 } 895 896 for (i = 0; i < sma->sem_nsems; i++) 897 sem_io[i] = sma->sem_base[i].semval; 898 sem_unlock(sma); 899 err = 0; 900 if(copy_to_user(array, sem_io, nsems*sizeof(ushort))) 901 err = -EFAULT; 902 goto out_free; 903 } 904 case SETALL: 905 { 906 int i; 907 struct sem_undo *un; 908 909 sem_getref_and_unlock(sma); 910 911 if(nsems > SEMMSL_FAST) { 912 sem_io = ipc_alloc(sizeof(ushort)*nsems); 913 if(sem_io == NULL) { 914 sem_putref(sma); 915 return -ENOMEM; 916 } 917 } 918 919 if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) { 920 sem_putref(sma); 921 err = -EFAULT; 922 goto out_free; 923 } 924 925 for (i = 0; i < nsems; i++) { 926 if (sem_io[i] > SEMVMX) { 927 sem_putref(sma); 928 err = -ERANGE; 929 goto out_free; 930 } 931 } 932 sem_lock_and_putref(sma); 933 if (sma->sem_perm.deleted) { 934 sem_unlock(sma); 935 err = -EIDRM; 936 goto out_free; 937 } 938 939 for (i = 0; i < nsems; i++) 940 sma->sem_base[i].semval = sem_io[i]; 941 942 assert_spin_locked(&sma->sem_perm.lock); 943 list_for_each_entry(un, &sma->list_id, list_id) { 944 for (i = 0; i < nsems; i++) 945 un->semadj[i] = 0; 946 } 947 sma->sem_ctime = get_seconds(); 948 /* maybe some queued-up processes were waiting for this */ 949 do_smart_update(sma, NULL, 0, 0, &tasks); 950 err = 0; 951 goto out_unlock; 952 } 953 /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */ 954 } 955 err = -EINVAL; 956 if(semnum < 0 || semnum >= nsems) 957 goto out_unlock; 958 959 curr = &sma->sem_base[semnum]; 960 961 switch (cmd) { 962 case GETVAL: 963 err = curr->semval; 964 goto out_unlock; 965 case GETPID: 966 err = curr->sempid; 967 goto out_unlock; 968 case GETNCNT: 969 err = count_semncnt(sma,semnum); 970 goto out_unlock; 971 case GETZCNT: 972 err = count_semzcnt(sma,semnum); 973 goto out_unlock; 974 case SETVAL: 975 { 976 int val = arg.val; 977 struct sem_undo *un; 978 979 err = -ERANGE; 980 if (val > SEMVMX || val < 0) 981 goto out_unlock; 982 983 assert_spin_locked(&sma->sem_perm.lock); 984 list_for_each_entry(un, &sma->list_id, list_id) 985 un->semadj[semnum] = 0; 986 987 curr->semval = val; 988 curr->sempid = task_tgid_vnr(current); 989 sma->sem_ctime = get_seconds(); 990 /* maybe some queued-up processes were waiting for this */ 991 do_smart_update(sma, NULL, 0, 0, &tasks); 992 err = 0; 993 goto out_unlock; 994 } 995 } 996 out_unlock: 997 sem_unlock(sma); 998 wake_up_sem_queue_do(&tasks); 999 1000 out_free: 1001 if(sem_io != fast_sem_io) 1002 ipc_free(sem_io, sizeof(ushort)*nsems); 1003 return err; 1004 } 1005 1006 static inline unsigned long 1007 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) 1008 { 1009 switch(version) { 1010 case IPC_64: 1011 if (copy_from_user(out, buf, sizeof(*out))) 1012 return -EFAULT; 1013 return 0; 1014 case IPC_OLD: 1015 { 1016 struct semid_ds tbuf_old; 1017 1018 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) 1019 return -EFAULT; 1020 1021 out->sem_perm.uid = tbuf_old.sem_perm.uid; 1022 out->sem_perm.gid = tbuf_old.sem_perm.gid; 1023 out->sem_perm.mode = tbuf_old.sem_perm.mode; 1024 1025 return 0; 1026 } 1027 default: 1028 return -EINVAL; 1029 } 1030 } 1031 1032 /* 1033 * This function handles some semctl commands which require the rw_mutex 1034 * to be held in write mode. 1035 * NOTE: no locks must be held, the rw_mutex is taken inside this function. 1036 */ 1037 static int semctl_down(struct ipc_namespace *ns, int semid, 1038 int cmd, int version, union semun arg) 1039 { 1040 struct sem_array *sma; 1041 int err; 1042 struct semid64_ds semid64; 1043 struct kern_ipc_perm *ipcp; 1044 1045 if(cmd == IPC_SET) { 1046 if (copy_semid_from_user(&semid64, arg.buf, version)) 1047 return -EFAULT; 1048 } 1049 1050 ipcp = ipcctl_pre_down(&sem_ids(ns), semid, cmd, &semid64.sem_perm, 0); 1051 if (IS_ERR(ipcp)) 1052 return PTR_ERR(ipcp); 1053 1054 sma = container_of(ipcp, struct sem_array, sem_perm); 1055 1056 err = security_sem_semctl(sma, cmd); 1057 if (err) 1058 goto out_unlock; 1059 1060 switch(cmd){ 1061 case IPC_RMID: 1062 freeary(ns, ipcp); 1063 goto out_up; 1064 case IPC_SET: 1065 ipc_update_perm(&semid64.sem_perm, ipcp); 1066 sma->sem_ctime = get_seconds(); 1067 break; 1068 default: 1069 err = -EINVAL; 1070 } 1071 1072 out_unlock: 1073 sem_unlock(sma); 1074 out_up: 1075 up_write(&sem_ids(ns).rw_mutex); 1076 return err; 1077 } 1078 1079 SYSCALL_DEFINE(semctl)(int semid, int semnum, int cmd, union semun arg) 1080 { 1081 int err = -EINVAL; 1082 int version; 1083 struct ipc_namespace *ns; 1084 1085 if (semid < 0) 1086 return -EINVAL; 1087 1088 version = ipc_parse_version(&cmd); 1089 ns = current->nsproxy->ipc_ns; 1090 1091 switch(cmd) { 1092 case IPC_INFO: 1093 case SEM_INFO: 1094 case IPC_STAT: 1095 case SEM_STAT: 1096 err = semctl_nolock(ns, semid, cmd, version, arg); 1097 return err; 1098 case GETALL: 1099 case GETVAL: 1100 case GETPID: 1101 case GETNCNT: 1102 case GETZCNT: 1103 case SETVAL: 1104 case SETALL: 1105 err = semctl_main(ns,semid,semnum,cmd,version,arg); 1106 return err; 1107 case IPC_RMID: 1108 case IPC_SET: 1109 err = semctl_down(ns, semid, cmd, version, arg); 1110 return err; 1111 default: 1112 return -EINVAL; 1113 } 1114 } 1115 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS 1116 asmlinkage long SyS_semctl(int semid, int semnum, int cmd, union semun arg) 1117 { 1118 return SYSC_semctl((int) semid, (int) semnum, (int) cmd, arg); 1119 } 1120 SYSCALL_ALIAS(sys_semctl, SyS_semctl); 1121 #endif 1122 1123 /* If the task doesn't already have a undo_list, then allocate one 1124 * here. We guarantee there is only one thread using this undo list, 1125 * and current is THE ONE 1126 * 1127 * If this allocation and assignment succeeds, but later 1128 * portions of this code fail, there is no need to free the sem_undo_list. 1129 * Just let it stay associated with the task, and it'll be freed later 1130 * at exit time. 1131 * 1132 * This can block, so callers must hold no locks. 1133 */ 1134 static inline int get_undo_list(struct sem_undo_list **undo_listp) 1135 { 1136 struct sem_undo_list *undo_list; 1137 1138 undo_list = current->sysvsem.undo_list; 1139 if (!undo_list) { 1140 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); 1141 if (undo_list == NULL) 1142 return -ENOMEM; 1143 spin_lock_init(&undo_list->lock); 1144 atomic_set(&undo_list->refcnt, 1); 1145 INIT_LIST_HEAD(&undo_list->list_proc); 1146 1147 current->sysvsem.undo_list = undo_list; 1148 } 1149 *undo_listp = undo_list; 1150 return 0; 1151 } 1152 1153 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) 1154 { 1155 struct sem_undo *un; 1156 1157 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) { 1158 if (un->semid == semid) 1159 return un; 1160 } 1161 return NULL; 1162 } 1163 1164 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) 1165 { 1166 struct sem_undo *un; 1167 1168 assert_spin_locked(&ulp->lock); 1169 1170 un = __lookup_undo(ulp, semid); 1171 if (un) { 1172 list_del_rcu(&un->list_proc); 1173 list_add_rcu(&un->list_proc, &ulp->list_proc); 1174 } 1175 return un; 1176 } 1177 1178 /** 1179 * find_alloc_undo - Lookup (and if not present create) undo array 1180 * @ns: namespace 1181 * @semid: semaphore array id 1182 * 1183 * The function looks up (and if not present creates) the undo structure. 1184 * The size of the undo structure depends on the size of the semaphore 1185 * array, thus the alloc path is not that straightforward. 1186 * Lifetime-rules: sem_undo is rcu-protected, on success, the function 1187 * performs a rcu_read_lock(). 1188 */ 1189 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) 1190 { 1191 struct sem_array *sma; 1192 struct sem_undo_list *ulp; 1193 struct sem_undo *un, *new; 1194 int nsems; 1195 int error; 1196 1197 error = get_undo_list(&ulp); 1198 if (error) 1199 return ERR_PTR(error); 1200 1201 rcu_read_lock(); 1202 spin_lock(&ulp->lock); 1203 un = lookup_undo(ulp, semid); 1204 spin_unlock(&ulp->lock); 1205 if (likely(un!=NULL)) 1206 goto out; 1207 rcu_read_unlock(); 1208 1209 /* no undo structure around - allocate one. */ 1210 /* step 1: figure out the size of the semaphore array */ 1211 sma = sem_lock_check(ns, semid); 1212 if (IS_ERR(sma)) 1213 return ERR_CAST(sma); 1214 1215 nsems = sma->sem_nsems; 1216 sem_getref_and_unlock(sma); 1217 1218 /* step 2: allocate new undo structure */ 1219 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); 1220 if (!new) { 1221 sem_putref(sma); 1222 return ERR_PTR(-ENOMEM); 1223 } 1224 1225 /* step 3: Acquire the lock on semaphore array */ 1226 sem_lock_and_putref(sma); 1227 if (sma->sem_perm.deleted) { 1228 sem_unlock(sma); 1229 kfree(new); 1230 un = ERR_PTR(-EIDRM); 1231 goto out; 1232 } 1233 spin_lock(&ulp->lock); 1234 1235 /* 1236 * step 4: check for races: did someone else allocate the undo struct? 1237 */ 1238 un = lookup_undo(ulp, semid); 1239 if (un) { 1240 kfree(new); 1241 goto success; 1242 } 1243 /* step 5: initialize & link new undo structure */ 1244 new->semadj = (short *) &new[1]; 1245 new->ulp = ulp; 1246 new->semid = semid; 1247 assert_spin_locked(&ulp->lock); 1248 list_add_rcu(&new->list_proc, &ulp->list_proc); 1249 assert_spin_locked(&sma->sem_perm.lock); 1250 list_add(&new->list_id, &sma->list_id); 1251 un = new; 1252 1253 success: 1254 spin_unlock(&ulp->lock); 1255 rcu_read_lock(); 1256 sem_unlock(sma); 1257 out: 1258 return un; 1259 } 1260 1261 1262 /** 1263 * get_queue_result - Retrieve the result code from sem_queue 1264 * @q: Pointer to queue structure 1265 * 1266 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in 1267 * q->status, then we must loop until the value is replaced with the final 1268 * value: This may happen if a task is woken up by an unrelated event (e.g. 1269 * signal) and in parallel the task is woken up by another task because it got 1270 * the requested semaphores. 1271 * 1272 * The function can be called with or without holding the semaphore spinlock. 1273 */ 1274 static int get_queue_result(struct sem_queue *q) 1275 { 1276 int error; 1277 1278 error = q->status; 1279 while (unlikely(error == IN_WAKEUP)) { 1280 cpu_relax(); 1281 error = q->status; 1282 } 1283 1284 return error; 1285 } 1286 1287 1288 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, 1289 unsigned, nsops, const struct timespec __user *, timeout) 1290 { 1291 int error = -EINVAL; 1292 struct sem_array *sma; 1293 struct sembuf fast_sops[SEMOPM_FAST]; 1294 struct sembuf* sops = fast_sops, *sop; 1295 struct sem_undo *un; 1296 int undos = 0, alter = 0, max; 1297 struct sem_queue queue; 1298 unsigned long jiffies_left = 0; 1299 struct ipc_namespace *ns; 1300 struct list_head tasks; 1301 1302 ns = current->nsproxy->ipc_ns; 1303 1304 if (nsops < 1 || semid < 0) 1305 return -EINVAL; 1306 if (nsops > ns->sc_semopm) 1307 return -E2BIG; 1308 if(nsops > SEMOPM_FAST) { 1309 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL); 1310 if(sops==NULL) 1311 return -ENOMEM; 1312 } 1313 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) { 1314 error=-EFAULT; 1315 goto out_free; 1316 } 1317 if (timeout) { 1318 struct timespec _timeout; 1319 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) { 1320 error = -EFAULT; 1321 goto out_free; 1322 } 1323 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 || 1324 _timeout.tv_nsec >= 1000000000L) { 1325 error = -EINVAL; 1326 goto out_free; 1327 } 1328 jiffies_left = timespec_to_jiffies(&_timeout); 1329 } 1330 max = 0; 1331 for (sop = sops; sop < sops + nsops; sop++) { 1332 if (sop->sem_num >= max) 1333 max = sop->sem_num; 1334 if (sop->sem_flg & SEM_UNDO) 1335 undos = 1; 1336 if (sop->sem_op != 0) 1337 alter = 1; 1338 } 1339 1340 if (undos) { 1341 un = find_alloc_undo(ns, semid); 1342 if (IS_ERR(un)) { 1343 error = PTR_ERR(un); 1344 goto out_free; 1345 } 1346 } else 1347 un = NULL; 1348 1349 INIT_LIST_HEAD(&tasks); 1350 1351 sma = sem_lock_check(ns, semid); 1352 if (IS_ERR(sma)) { 1353 if (un) 1354 rcu_read_unlock(); 1355 error = PTR_ERR(sma); 1356 goto out_free; 1357 } 1358 1359 /* 1360 * semid identifiers are not unique - find_alloc_undo may have 1361 * allocated an undo structure, it was invalidated by an RMID 1362 * and now a new array with received the same id. Check and fail. 1363 * This case can be detected checking un->semid. The existance of 1364 * "un" itself is guaranteed by rcu. 1365 */ 1366 error = -EIDRM; 1367 if (un) { 1368 if (un->semid == -1) { 1369 rcu_read_unlock(); 1370 goto out_unlock_free; 1371 } else { 1372 /* 1373 * rcu lock can be released, "un" cannot disappear: 1374 * - sem_lock is acquired, thus IPC_RMID is 1375 * impossible. 1376 * - exit_sem is impossible, it always operates on 1377 * current (or a dead task). 1378 */ 1379 1380 rcu_read_unlock(); 1381 } 1382 } 1383 1384 error = -EFBIG; 1385 if (max >= sma->sem_nsems) 1386 goto out_unlock_free; 1387 1388 error = -EACCES; 1389 if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) 1390 goto out_unlock_free; 1391 1392 error = security_sem_semop(sma, sops, nsops, alter); 1393 if (error) 1394 goto out_unlock_free; 1395 1396 error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current)); 1397 if (error <= 0) { 1398 if (alter && error == 0) 1399 do_smart_update(sma, sops, nsops, 1, &tasks); 1400 1401 goto out_unlock_free; 1402 } 1403 1404 /* We need to sleep on this operation, so we put the current 1405 * task into the pending queue and go to sleep. 1406 */ 1407 1408 queue.sops = sops; 1409 queue.nsops = nsops; 1410 queue.undo = un; 1411 queue.pid = task_tgid_vnr(current); 1412 queue.alter = alter; 1413 if (alter) 1414 list_add_tail(&queue.list, &sma->sem_pending); 1415 else 1416 list_add(&queue.list, &sma->sem_pending); 1417 1418 if (nsops == 1) { 1419 struct sem *curr; 1420 curr = &sma->sem_base[sops->sem_num]; 1421 1422 if (alter) 1423 list_add_tail(&queue.simple_list, &curr->sem_pending); 1424 else 1425 list_add(&queue.simple_list, &curr->sem_pending); 1426 } else { 1427 INIT_LIST_HEAD(&queue.simple_list); 1428 sma->complex_count++; 1429 } 1430 1431 queue.status = -EINTR; 1432 queue.sleeper = current; 1433 current->state = TASK_INTERRUPTIBLE; 1434 sem_unlock(sma); 1435 1436 if (timeout) 1437 jiffies_left = schedule_timeout(jiffies_left); 1438 else 1439 schedule(); 1440 1441 error = get_queue_result(&queue); 1442 1443 if (error != -EINTR) { 1444 /* fast path: update_queue already obtained all requested 1445 * resources. 1446 * Perform a smp_mb(): User space could assume that semop() 1447 * is a memory barrier: Without the mb(), the cpu could 1448 * speculatively read in user space stale data that was 1449 * overwritten by the previous owner of the semaphore. 1450 */ 1451 smp_mb(); 1452 1453 goto out_free; 1454 } 1455 1456 sma = sem_lock(ns, semid); 1457 if (IS_ERR(sma)) { 1458 error = -EIDRM; 1459 goto out_free; 1460 } 1461 1462 error = get_queue_result(&queue); 1463 1464 /* 1465 * If queue.status != -EINTR we are woken up by another process 1466 */ 1467 1468 if (error != -EINTR) { 1469 goto out_unlock_free; 1470 } 1471 1472 /* 1473 * If an interrupt occurred we have to clean up the queue 1474 */ 1475 if (timeout && jiffies_left == 0) 1476 error = -EAGAIN; 1477 unlink_queue(sma, &queue); 1478 1479 out_unlock_free: 1480 sem_unlock(sma); 1481 1482 wake_up_sem_queue_do(&tasks); 1483 out_free: 1484 if(sops != fast_sops) 1485 kfree(sops); 1486 return error; 1487 } 1488 1489 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, 1490 unsigned, nsops) 1491 { 1492 return sys_semtimedop(semid, tsops, nsops, NULL); 1493 } 1494 1495 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between 1496 * parent and child tasks. 1497 */ 1498 1499 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) 1500 { 1501 struct sem_undo_list *undo_list; 1502 int error; 1503 1504 if (clone_flags & CLONE_SYSVSEM) { 1505 error = get_undo_list(&undo_list); 1506 if (error) 1507 return error; 1508 atomic_inc(&undo_list->refcnt); 1509 tsk->sysvsem.undo_list = undo_list; 1510 } else 1511 tsk->sysvsem.undo_list = NULL; 1512 1513 return 0; 1514 } 1515 1516 /* 1517 * add semadj values to semaphores, free undo structures. 1518 * undo structures are not freed when semaphore arrays are destroyed 1519 * so some of them may be out of date. 1520 * IMPLEMENTATION NOTE: There is some confusion over whether the 1521 * set of adjustments that needs to be done should be done in an atomic 1522 * manner or not. That is, if we are attempting to decrement the semval 1523 * should we queue up and wait until we can do so legally? 1524 * The original implementation attempted to do this (queue and wait). 1525 * The current implementation does not do so. The POSIX standard 1526 * and SVID should be consulted to determine what behavior is mandated. 1527 */ 1528 void exit_sem(struct task_struct *tsk) 1529 { 1530 struct sem_undo_list *ulp; 1531 1532 ulp = tsk->sysvsem.undo_list; 1533 if (!ulp) 1534 return; 1535 tsk->sysvsem.undo_list = NULL; 1536 1537 if (!atomic_dec_and_test(&ulp->refcnt)) 1538 return; 1539 1540 for (;;) { 1541 struct sem_array *sma; 1542 struct sem_undo *un; 1543 struct list_head tasks; 1544 int semid; 1545 int i; 1546 1547 rcu_read_lock(); 1548 un = list_entry_rcu(ulp->list_proc.next, 1549 struct sem_undo, list_proc); 1550 if (&un->list_proc == &ulp->list_proc) 1551 semid = -1; 1552 else 1553 semid = un->semid; 1554 rcu_read_unlock(); 1555 1556 if (semid == -1) 1557 break; 1558 1559 sma = sem_lock_check(tsk->nsproxy->ipc_ns, un->semid); 1560 1561 /* exit_sem raced with IPC_RMID, nothing to do */ 1562 if (IS_ERR(sma)) 1563 continue; 1564 1565 un = __lookup_undo(ulp, semid); 1566 if (un == NULL) { 1567 /* exit_sem raced with IPC_RMID+semget() that created 1568 * exactly the same semid. Nothing to do. 1569 */ 1570 sem_unlock(sma); 1571 continue; 1572 } 1573 1574 /* remove un from the linked lists */ 1575 assert_spin_locked(&sma->sem_perm.lock); 1576 list_del(&un->list_id); 1577 1578 spin_lock(&ulp->lock); 1579 list_del_rcu(&un->list_proc); 1580 spin_unlock(&ulp->lock); 1581 1582 /* perform adjustments registered in un */ 1583 for (i = 0; i < sma->sem_nsems; i++) { 1584 struct sem * semaphore = &sma->sem_base[i]; 1585 if (un->semadj[i]) { 1586 semaphore->semval += un->semadj[i]; 1587 /* 1588 * Range checks of the new semaphore value, 1589 * not defined by sus: 1590 * - Some unices ignore the undo entirely 1591 * (e.g. HP UX 11i 11.22, Tru64 V5.1) 1592 * - some cap the value (e.g. FreeBSD caps 1593 * at 0, but doesn't enforce SEMVMX) 1594 * 1595 * Linux caps the semaphore value, both at 0 1596 * and at SEMVMX. 1597 * 1598 * Manfred <manfred@colorfullife.com> 1599 */ 1600 if (semaphore->semval < 0) 1601 semaphore->semval = 0; 1602 if (semaphore->semval > SEMVMX) 1603 semaphore->semval = SEMVMX; 1604 semaphore->sempid = task_tgid_vnr(current); 1605 } 1606 } 1607 /* maybe some queued-up processes were waiting for this */ 1608 INIT_LIST_HEAD(&tasks); 1609 do_smart_update(sma, NULL, 0, 1, &tasks); 1610 sem_unlock(sma); 1611 wake_up_sem_queue_do(&tasks); 1612 1613 call_rcu(&un->rcu, free_un); 1614 } 1615 kfree(ulp); 1616 } 1617 1618 #ifdef CONFIG_PROC_FS 1619 static int sysvipc_sem_proc_show(struct seq_file *s, void *it) 1620 { 1621 struct sem_array *sma = it; 1622 1623 return seq_printf(s, 1624 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n", 1625 sma->sem_perm.key, 1626 sma->sem_perm.id, 1627 sma->sem_perm.mode, 1628 sma->sem_nsems, 1629 sma->sem_perm.uid, 1630 sma->sem_perm.gid, 1631 sma->sem_perm.cuid, 1632 sma->sem_perm.cgid, 1633 sma->sem_otime, 1634 sma->sem_ctime); 1635 } 1636 #endif 1637