xref: /openbmc/linux/ipc/sem.c (revision 3f2fb9a834cb1fcddbae22deca7fde136944dc89)
1  /*
2   * linux/ipc/sem.c
3   * Copyright (C) 1992 Krishna Balasubramanian
4   * Copyright (C) 1995 Eric Schenk, Bruno Haible
5   *
6   * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7   *
8   * SMP-threaded, sysctl's added
9   * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10   * Enforced range limit on SEM_UNDO
11   * (c) 2001 Red Hat Inc
12   * Lockless wakeup
13   * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14   * Further wakeup optimizations, documentation
15   * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
16   *
17   * support for audit of ipc object properties and permission changes
18   * Dustin Kirkland <dustin.kirkland@us.ibm.com>
19   *
20   * namespaces support
21   * OpenVZ, SWsoft Inc.
22   * Pavel Emelianov <xemul@openvz.org>
23   *
24   * Implementation notes: (May 2010)
25   * This file implements System V semaphores.
26   *
27   * User space visible behavior:
28   * - FIFO ordering for semop() operations (just FIFO, not starvation
29   *   protection)
30   * - multiple semaphore operations that alter the same semaphore in
31   *   one semop() are handled.
32   * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33   *   SETALL calls.
34   * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35   * - undo adjustments at process exit are limited to 0..SEMVMX.
36   * - namespace are supported.
37   * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38   *   to /proc/sys/kernel/sem.
39   * - statistics about the usage are reported in /proc/sysvipc/sem.
40   *
41   * Internals:
42   * - scalability:
43   *   - all global variables are read-mostly.
44   *   - semop() calls and semctl(RMID) are synchronized by RCU.
45   *   - most operations do write operations (actually: spin_lock calls) to
46   *     the per-semaphore array structure.
47   *   Thus: Perfect SMP scaling between independent semaphore arrays.
48   *         If multiple semaphores in one array are used, then cache line
49   *         trashing on the semaphore array spinlock will limit the scaling.
50   * - semncnt and semzcnt are calculated on demand in count_semcnt()
51   * - the task that performs a successful semop() scans the list of all
52   *   sleeping tasks and completes any pending operations that can be fulfilled.
53   *   Semaphores are actively given to waiting tasks (necessary for FIFO).
54   *   (see update_queue())
55   * - To improve the scalability, the actual wake-up calls are performed after
56   *   dropping all locks. (see wake_up_sem_queue_prepare(),
57   *   wake_up_sem_queue_do())
58   * - All work is done by the waker, the woken up task does not have to do
59   *   anything - not even acquiring a lock or dropping a refcount.
60   * - A woken up task may not even touch the semaphore array anymore, it may
61   *   have been destroyed already by a semctl(RMID).
62   * - The synchronizations between wake-ups due to a timeout/signal and a
63   *   wake-up due to a completed semaphore operation is achieved by using an
64   *   intermediate state (IN_WAKEUP).
65   * - UNDO values are stored in an array (one per process and per
66   *   semaphore array, lazily allocated). For backwards compatibility, multiple
67   *   modes for the UNDO variables are supported (per process, per thread)
68   *   (see copy_semundo, CLONE_SYSVSEM)
69   * - There are two lists of the pending operations: a per-array list
70   *   and per-semaphore list (stored in the array). This allows to achieve FIFO
71   *   ordering without always scanning all pending operations.
72   *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
73   */
74  
75  #include <linux/slab.h>
76  #include <linux/spinlock.h>
77  #include <linux/init.h>
78  #include <linux/proc_fs.h>
79  #include <linux/time.h>
80  #include <linux/security.h>
81  #include <linux/syscalls.h>
82  #include <linux/audit.h>
83  #include <linux/capability.h>
84  #include <linux/seq_file.h>
85  #include <linux/rwsem.h>
86  #include <linux/nsproxy.h>
87  #include <linux/ipc_namespace.h>
88  
89  #include <linux/uaccess.h>
90  #include "util.h"
91  
92  /* One semaphore structure for each semaphore in the system. */
93  struct sem {
94  	int	semval;		/* current value */
95  	int	sempid;		/* pid of last operation */
96  	spinlock_t	lock;	/* spinlock for fine-grained semtimedop */
97  	struct list_head pending_alter; /* pending single-sop operations */
98  					/* that alter the semaphore */
99  	struct list_head pending_const; /* pending single-sop operations */
100  					/* that do not alter the semaphore*/
101  	time_t	sem_otime;	/* candidate for sem_otime */
102  } ____cacheline_aligned_in_smp;
103  
104  /* One queue for each sleeping process in the system. */
105  struct sem_queue {
106  	struct list_head	list;	 /* queue of pending operations */
107  	struct task_struct	*sleeper; /* this process */
108  	struct sem_undo		*undo;	 /* undo structure */
109  	int			pid;	 /* process id of requesting process */
110  	int			status;	 /* completion status of operation */
111  	struct sembuf		*sops;	 /* array of pending operations */
112  	struct sembuf		*blocking; /* the operation that blocked */
113  	int			nsops;	 /* number of operations */
114  	int			alter;	 /* does *sops alter the array? */
115  };
116  
117  /* Each task has a list of undo requests. They are executed automatically
118   * when the process exits.
119   */
120  struct sem_undo {
121  	struct list_head	list_proc;	/* per-process list: *
122  						 * all undos from one process
123  						 * rcu protected */
124  	struct rcu_head		rcu;		/* rcu struct for sem_undo */
125  	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
126  	struct list_head	list_id;	/* per semaphore array list:
127  						 * all undos for one array */
128  	int			semid;		/* semaphore set identifier */
129  	short			*semadj;	/* array of adjustments */
130  						/* one per semaphore */
131  };
132  
133  /* sem_undo_list controls shared access to the list of sem_undo structures
134   * that may be shared among all a CLONE_SYSVSEM task group.
135   */
136  struct sem_undo_list {
137  	atomic_t		refcnt;
138  	spinlock_t		lock;
139  	struct list_head	list_proc;
140  };
141  
142  
143  #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
144  
145  #define sem_checkid(sma, semid)	ipc_checkid(&sma->sem_perm, semid)
146  
147  static int newary(struct ipc_namespace *, struct ipc_params *);
148  static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
149  #ifdef CONFIG_PROC_FS
150  static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
151  #endif
152  
153  #define SEMMSL_FAST	256 /* 512 bytes on stack */
154  #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
155  
156  /*
157   * Locking:
158   *	sem_undo.id_next,
159   *	sem_array.complex_count,
160   *	sem_array.pending{_alter,_cont},
161   *	sem_array.sem_undo: global sem_lock() for read/write
162   *	sem_undo.proc_next: only "current" is allowed to read/write that field.
163   *
164   *	sem_array.sem_base[i].pending_{const,alter}:
165   *		global or semaphore sem_lock() for read/write
166   */
167  
168  #define sc_semmsl	sem_ctls[0]
169  #define sc_semmns	sem_ctls[1]
170  #define sc_semopm	sem_ctls[2]
171  #define sc_semmni	sem_ctls[3]
172  
173  void sem_init_ns(struct ipc_namespace *ns)
174  {
175  	ns->sc_semmsl = SEMMSL;
176  	ns->sc_semmns = SEMMNS;
177  	ns->sc_semopm = SEMOPM;
178  	ns->sc_semmni = SEMMNI;
179  	ns->used_sems = 0;
180  	ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
181  }
182  
183  #ifdef CONFIG_IPC_NS
184  void sem_exit_ns(struct ipc_namespace *ns)
185  {
186  	free_ipcs(ns, &sem_ids(ns), freeary);
187  	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
188  }
189  #endif
190  
191  void __init sem_init(void)
192  {
193  	sem_init_ns(&init_ipc_ns);
194  	ipc_init_proc_interface("sysvipc/sem",
195  				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
196  				IPC_SEM_IDS, sysvipc_sem_proc_show);
197  }
198  
199  /**
200   * unmerge_queues - unmerge queues, if possible.
201   * @sma: semaphore array
202   *
203   * The function unmerges the wait queues if complex_count is 0.
204   * It must be called prior to dropping the global semaphore array lock.
205   */
206  static void unmerge_queues(struct sem_array *sma)
207  {
208  	struct sem_queue *q, *tq;
209  
210  	/* complex operations still around? */
211  	if (sma->complex_count)
212  		return;
213  	/*
214  	 * We will switch back to simple mode.
215  	 * Move all pending operation back into the per-semaphore
216  	 * queues.
217  	 */
218  	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
219  		struct sem *curr;
220  		curr = &sma->sem_base[q->sops[0].sem_num];
221  
222  		list_add_tail(&q->list, &curr->pending_alter);
223  	}
224  	INIT_LIST_HEAD(&sma->pending_alter);
225  }
226  
227  /**
228   * merge_queues - merge single semop queues into global queue
229   * @sma: semaphore array
230   *
231   * This function merges all per-semaphore queues into the global queue.
232   * It is necessary to achieve FIFO ordering for the pending single-sop
233   * operations when a multi-semop operation must sleep.
234   * Only the alter operations must be moved, the const operations can stay.
235   */
236  static void merge_queues(struct sem_array *sma)
237  {
238  	int i;
239  	for (i = 0; i < sma->sem_nsems; i++) {
240  		struct sem *sem = sma->sem_base + i;
241  
242  		list_splice_init(&sem->pending_alter, &sma->pending_alter);
243  	}
244  }
245  
246  static void sem_rcu_free(struct rcu_head *head)
247  {
248  	struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
249  	struct sem_array *sma = ipc_rcu_to_struct(p);
250  
251  	security_sem_free(sma);
252  	ipc_rcu_free(head);
253  }
254  
255  /*
256   * spin_unlock_wait() and !spin_is_locked() are not memory barriers, they
257   * are only control barriers.
258   * The code must pair with spin_unlock(&sem->lock) or
259   * spin_unlock(&sem_perm.lock), thus just the control barrier is insufficient.
260   *
261   * smp_rmb() is sufficient, as writes cannot pass the control barrier.
262   */
263  #define ipc_smp_acquire__after_spin_is_unlocked()	smp_rmb()
264  
265  /*
266   * Wait until all currently ongoing simple ops have completed.
267   * Caller must own sem_perm.lock.
268   * New simple ops cannot start, because simple ops first check
269   * that sem_perm.lock is free.
270   * that a) sem_perm.lock is free and b) complex_count is 0.
271   */
272  static void sem_wait_array(struct sem_array *sma)
273  {
274  	int i;
275  	struct sem *sem;
276  
277  	if (sma->complex_count)  {
278  		/* The thread that increased sma->complex_count waited on
279  		 * all sem->lock locks. Thus we don't need to wait again.
280  		 */
281  		return;
282  	}
283  
284  	for (i = 0; i < sma->sem_nsems; i++) {
285  		sem = sma->sem_base + i;
286  		spin_unlock_wait(&sem->lock);
287  	}
288  	ipc_smp_acquire__after_spin_is_unlocked();
289  }
290  
291  /*
292   * If the request contains only one semaphore operation, and there are
293   * no complex transactions pending, lock only the semaphore involved.
294   * Otherwise, lock the entire semaphore array, since we either have
295   * multiple semaphores in our own semops, or we need to look at
296   * semaphores from other pending complex operations.
297   */
298  static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
299  			      int nsops)
300  {
301  	struct sem *sem;
302  
303  	if (nsops != 1) {
304  		/* Complex operation - acquire a full lock */
305  		ipc_lock_object(&sma->sem_perm);
306  
307  		/* And wait until all simple ops that are processed
308  		 * right now have dropped their locks.
309  		 */
310  		sem_wait_array(sma);
311  		return -1;
312  	}
313  
314  	/*
315  	 * Only one semaphore affected - try to optimize locking.
316  	 * The rules are:
317  	 * - optimized locking is possible if no complex operation
318  	 *   is either enqueued or processed right now.
319  	 * - The test for enqueued complex ops is simple:
320  	 *      sma->complex_count != 0
321  	 * - Testing for complex ops that are processed right now is
322  	 *   a bit more difficult. Complex ops acquire the full lock
323  	 *   and first wait that the running simple ops have completed.
324  	 *   (see above)
325  	 *   Thus: If we own a simple lock and the global lock is free
326  	 *	and complex_count is now 0, then it will stay 0 and
327  	 *	thus just locking sem->lock is sufficient.
328  	 */
329  	sem = sma->sem_base + sops->sem_num;
330  
331  	if (sma->complex_count == 0) {
332  		/*
333  		 * It appears that no complex operation is around.
334  		 * Acquire the per-semaphore lock.
335  		 */
336  		spin_lock(&sem->lock);
337  
338  		/* Then check that the global lock is free */
339  		if (!spin_is_locked(&sma->sem_perm.lock)) {
340  			/*
341  			 * We need a memory barrier with acquire semantics,
342  			 * otherwise we can race with another thread that does:
343  			 *	complex_count++;
344  			 *	spin_unlock(sem_perm.lock);
345  			 */
346  			ipc_smp_acquire__after_spin_is_unlocked();
347  
348  			/*
349  			 * Now repeat the test of complex_count:
350  			 * It can't change anymore until we drop sem->lock.
351  			 * Thus: if is now 0, then it will stay 0.
352  			 */
353  			if (sma->complex_count == 0) {
354  				/* fast path successful! */
355  				return sops->sem_num;
356  			}
357  		}
358  		spin_unlock(&sem->lock);
359  	}
360  
361  	/* slow path: acquire the full lock */
362  	ipc_lock_object(&sma->sem_perm);
363  
364  	if (sma->complex_count == 0) {
365  		/* False alarm:
366  		 * There is no complex operation, thus we can switch
367  		 * back to the fast path.
368  		 */
369  		spin_lock(&sem->lock);
370  		ipc_unlock_object(&sma->sem_perm);
371  		return sops->sem_num;
372  	} else {
373  		/* Not a false alarm, thus complete the sequence for a
374  		 * full lock.
375  		 */
376  		sem_wait_array(sma);
377  		return -1;
378  	}
379  }
380  
381  static inline void sem_unlock(struct sem_array *sma, int locknum)
382  {
383  	if (locknum == -1) {
384  		unmerge_queues(sma);
385  		ipc_unlock_object(&sma->sem_perm);
386  	} else {
387  		struct sem *sem = sma->sem_base + locknum;
388  		spin_unlock(&sem->lock);
389  	}
390  }
391  
392  /*
393   * sem_lock_(check_) routines are called in the paths where the rwsem
394   * is not held.
395   *
396   * The caller holds the RCU read lock.
397   */
398  static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
399  			int id, struct sembuf *sops, int nsops, int *locknum)
400  {
401  	struct kern_ipc_perm *ipcp;
402  	struct sem_array *sma;
403  
404  	ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
405  	if (IS_ERR(ipcp))
406  		return ERR_CAST(ipcp);
407  
408  	sma = container_of(ipcp, struct sem_array, sem_perm);
409  	*locknum = sem_lock(sma, sops, nsops);
410  
411  	/* ipc_rmid() may have already freed the ID while sem_lock
412  	 * was spinning: verify that the structure is still valid
413  	 */
414  	if (ipc_valid_object(ipcp))
415  		return container_of(ipcp, struct sem_array, sem_perm);
416  
417  	sem_unlock(sma, *locknum);
418  	return ERR_PTR(-EINVAL);
419  }
420  
421  static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
422  {
423  	struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
424  
425  	if (IS_ERR(ipcp))
426  		return ERR_CAST(ipcp);
427  
428  	return container_of(ipcp, struct sem_array, sem_perm);
429  }
430  
431  static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
432  							int id)
433  {
434  	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
435  
436  	if (IS_ERR(ipcp))
437  		return ERR_CAST(ipcp);
438  
439  	return container_of(ipcp, struct sem_array, sem_perm);
440  }
441  
442  static inline void sem_lock_and_putref(struct sem_array *sma)
443  {
444  	sem_lock(sma, NULL, -1);
445  	ipc_rcu_putref(sma, ipc_rcu_free);
446  }
447  
448  static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
449  {
450  	ipc_rmid(&sem_ids(ns), &s->sem_perm);
451  }
452  
453  /*
454   * Lockless wakeup algorithm:
455   * Without the check/retry algorithm a lockless wakeup is possible:
456   * - queue.status is initialized to -EINTR before blocking.
457   * - wakeup is performed by
458   *	* unlinking the queue entry from the pending list
459   *	* setting queue.status to IN_WAKEUP
460   *	  This is the notification for the blocked thread that a
461   *	  result value is imminent.
462   *	* call wake_up_process
463   *	* set queue.status to the final value.
464   * - the previously blocked thread checks queue.status:
465   *	* if it's IN_WAKEUP, then it must wait until the value changes
466   *	* if it's not -EINTR, then the operation was completed by
467   *	  update_queue. semtimedop can return queue.status without
468   *	  performing any operation on the sem array.
469   *	* otherwise it must acquire the spinlock and check what's up.
470   *
471   * The two-stage algorithm is necessary to protect against the following
472   * races:
473   * - if queue.status is set after wake_up_process, then the woken up idle
474   *   thread could race forward and try (and fail) to acquire sma->lock
475   *   before update_queue had a chance to set queue.status
476   * - if queue.status is written before wake_up_process and if the
477   *   blocked process is woken up by a signal between writing
478   *   queue.status and the wake_up_process, then the woken up
479   *   process could return from semtimedop and die by calling
480   *   sys_exit before wake_up_process is called. Then wake_up_process
481   *   will oops, because the task structure is already invalid.
482   *   (yes, this happened on s390 with sysv msg).
483   *
484   */
485  #define IN_WAKEUP	1
486  
487  /**
488   * newary - Create a new semaphore set
489   * @ns: namespace
490   * @params: ptr to the structure that contains key, semflg and nsems
491   *
492   * Called with sem_ids.rwsem held (as a writer)
493   */
494  static int newary(struct ipc_namespace *ns, struct ipc_params *params)
495  {
496  	int id;
497  	int retval;
498  	struct sem_array *sma;
499  	int size;
500  	key_t key = params->key;
501  	int nsems = params->u.nsems;
502  	int semflg = params->flg;
503  	int i;
504  
505  	if (!nsems)
506  		return -EINVAL;
507  	if (ns->used_sems + nsems > ns->sc_semmns)
508  		return -ENOSPC;
509  
510  	size = sizeof(*sma) + nsems * sizeof(struct sem);
511  	sma = ipc_rcu_alloc(size);
512  	if (!sma)
513  		return -ENOMEM;
514  
515  	memset(sma, 0, size);
516  
517  	sma->sem_perm.mode = (semflg & S_IRWXUGO);
518  	sma->sem_perm.key = key;
519  
520  	sma->sem_perm.security = NULL;
521  	retval = security_sem_alloc(sma);
522  	if (retval) {
523  		ipc_rcu_putref(sma, ipc_rcu_free);
524  		return retval;
525  	}
526  
527  	sma->sem_base = (struct sem *) &sma[1];
528  
529  	for (i = 0; i < nsems; i++) {
530  		INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
531  		INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
532  		spin_lock_init(&sma->sem_base[i].lock);
533  	}
534  
535  	sma->complex_count = 0;
536  	INIT_LIST_HEAD(&sma->pending_alter);
537  	INIT_LIST_HEAD(&sma->pending_const);
538  	INIT_LIST_HEAD(&sma->list_id);
539  	sma->sem_nsems = nsems;
540  	sma->sem_ctime = get_seconds();
541  
542  	id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
543  	if (id < 0) {
544  		ipc_rcu_putref(sma, sem_rcu_free);
545  		return id;
546  	}
547  	ns->used_sems += nsems;
548  
549  	sem_unlock(sma, -1);
550  	rcu_read_unlock();
551  
552  	return sma->sem_perm.id;
553  }
554  
555  
556  /*
557   * Called with sem_ids.rwsem and ipcp locked.
558   */
559  static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
560  {
561  	struct sem_array *sma;
562  
563  	sma = container_of(ipcp, struct sem_array, sem_perm);
564  	return security_sem_associate(sma, semflg);
565  }
566  
567  /*
568   * Called with sem_ids.rwsem and ipcp locked.
569   */
570  static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
571  				struct ipc_params *params)
572  {
573  	struct sem_array *sma;
574  
575  	sma = container_of(ipcp, struct sem_array, sem_perm);
576  	if (params->u.nsems > sma->sem_nsems)
577  		return -EINVAL;
578  
579  	return 0;
580  }
581  
582  SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
583  {
584  	struct ipc_namespace *ns;
585  	static const struct ipc_ops sem_ops = {
586  		.getnew = newary,
587  		.associate = sem_security,
588  		.more_checks = sem_more_checks,
589  	};
590  	struct ipc_params sem_params;
591  
592  	ns = current->nsproxy->ipc_ns;
593  
594  	if (nsems < 0 || nsems > ns->sc_semmsl)
595  		return -EINVAL;
596  
597  	sem_params.key = key;
598  	sem_params.flg = semflg;
599  	sem_params.u.nsems = nsems;
600  
601  	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
602  }
603  
604  /**
605   * perform_atomic_semop - Perform (if possible) a semaphore operation
606   * @sma: semaphore array
607   * @q: struct sem_queue that describes the operation
608   *
609   * Returns 0 if the operation was possible.
610   * Returns 1 if the operation is impossible, the caller must sleep.
611   * Negative values are error codes.
612   */
613  static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
614  {
615  	int result, sem_op, nsops, pid;
616  	struct sembuf *sop;
617  	struct sem *curr;
618  	struct sembuf *sops;
619  	struct sem_undo *un;
620  
621  	sops = q->sops;
622  	nsops = q->nsops;
623  	un = q->undo;
624  
625  	for (sop = sops; sop < sops + nsops; sop++) {
626  		curr = sma->sem_base + sop->sem_num;
627  		sem_op = sop->sem_op;
628  		result = curr->semval;
629  
630  		if (!sem_op && result)
631  			goto would_block;
632  
633  		result += sem_op;
634  		if (result < 0)
635  			goto would_block;
636  		if (result > SEMVMX)
637  			goto out_of_range;
638  
639  		if (sop->sem_flg & SEM_UNDO) {
640  			int undo = un->semadj[sop->sem_num] - sem_op;
641  			/* Exceeding the undo range is an error. */
642  			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
643  				goto out_of_range;
644  			un->semadj[sop->sem_num] = undo;
645  		}
646  
647  		curr->semval = result;
648  	}
649  
650  	sop--;
651  	pid = q->pid;
652  	while (sop >= sops) {
653  		sma->sem_base[sop->sem_num].sempid = pid;
654  		sop--;
655  	}
656  
657  	return 0;
658  
659  out_of_range:
660  	result = -ERANGE;
661  	goto undo;
662  
663  would_block:
664  	q->blocking = sop;
665  
666  	if (sop->sem_flg & IPC_NOWAIT)
667  		result = -EAGAIN;
668  	else
669  		result = 1;
670  
671  undo:
672  	sop--;
673  	while (sop >= sops) {
674  		sem_op = sop->sem_op;
675  		sma->sem_base[sop->sem_num].semval -= sem_op;
676  		if (sop->sem_flg & SEM_UNDO)
677  			un->semadj[sop->sem_num] += sem_op;
678  		sop--;
679  	}
680  
681  	return result;
682  }
683  
684  /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
685   * @q: queue entry that must be signaled
686   * @error: Error value for the signal
687   *
688   * Prepare the wake-up of the queue entry q.
689   */
690  static void wake_up_sem_queue_prepare(struct list_head *pt,
691  				struct sem_queue *q, int error)
692  {
693  	if (list_empty(pt)) {
694  		/*
695  		 * Hold preempt off so that we don't get preempted and have the
696  		 * wakee busy-wait until we're scheduled back on.
697  		 */
698  		preempt_disable();
699  	}
700  	q->status = IN_WAKEUP;
701  	q->pid = error;
702  
703  	list_add_tail(&q->list, pt);
704  }
705  
706  /**
707   * wake_up_sem_queue_do - do the actual wake-up
708   * @pt: list of tasks to be woken up
709   *
710   * Do the actual wake-up.
711   * The function is called without any locks held, thus the semaphore array
712   * could be destroyed already and the tasks can disappear as soon as the
713   * status is set to the actual return code.
714   */
715  static void wake_up_sem_queue_do(struct list_head *pt)
716  {
717  	struct sem_queue *q, *t;
718  	int did_something;
719  
720  	did_something = !list_empty(pt);
721  	list_for_each_entry_safe(q, t, pt, list) {
722  		wake_up_process(q->sleeper);
723  		/* q can disappear immediately after writing q->status. */
724  		smp_wmb();
725  		q->status = q->pid;
726  	}
727  	if (did_something)
728  		preempt_enable();
729  }
730  
731  static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
732  {
733  	list_del(&q->list);
734  	if (q->nsops > 1)
735  		sma->complex_count--;
736  }
737  
738  /** check_restart(sma, q)
739   * @sma: semaphore array
740   * @q: the operation that just completed
741   *
742   * update_queue is O(N^2) when it restarts scanning the whole queue of
743   * waiting operations. Therefore this function checks if the restart is
744   * really necessary. It is called after a previously waiting operation
745   * modified the array.
746   * Note that wait-for-zero operations are handled without restart.
747   */
748  static int check_restart(struct sem_array *sma, struct sem_queue *q)
749  {
750  	/* pending complex alter operations are too difficult to analyse */
751  	if (!list_empty(&sma->pending_alter))
752  		return 1;
753  
754  	/* we were a sleeping complex operation. Too difficult */
755  	if (q->nsops > 1)
756  		return 1;
757  
758  	/* It is impossible that someone waits for the new value:
759  	 * - complex operations always restart.
760  	 * - wait-for-zero are handled seperately.
761  	 * - q is a previously sleeping simple operation that
762  	 *   altered the array. It must be a decrement, because
763  	 *   simple increments never sleep.
764  	 * - If there are older (higher priority) decrements
765  	 *   in the queue, then they have observed the original
766  	 *   semval value and couldn't proceed. The operation
767  	 *   decremented to value - thus they won't proceed either.
768  	 */
769  	return 0;
770  }
771  
772  /**
773   * wake_const_ops - wake up non-alter tasks
774   * @sma: semaphore array.
775   * @semnum: semaphore that was modified.
776   * @pt: list head for the tasks that must be woken up.
777   *
778   * wake_const_ops must be called after a semaphore in a semaphore array
779   * was set to 0. If complex const operations are pending, wake_const_ops must
780   * be called with semnum = -1, as well as with the number of each modified
781   * semaphore.
782   * The tasks that must be woken up are added to @pt. The return code
783   * is stored in q->pid.
784   * The function returns 1 if at least one operation was completed successfully.
785   */
786  static int wake_const_ops(struct sem_array *sma, int semnum,
787  				struct list_head *pt)
788  {
789  	struct sem_queue *q;
790  	struct list_head *walk;
791  	struct list_head *pending_list;
792  	int semop_completed = 0;
793  
794  	if (semnum == -1)
795  		pending_list = &sma->pending_const;
796  	else
797  		pending_list = &sma->sem_base[semnum].pending_const;
798  
799  	walk = pending_list->next;
800  	while (walk != pending_list) {
801  		int error;
802  
803  		q = container_of(walk, struct sem_queue, list);
804  		walk = walk->next;
805  
806  		error = perform_atomic_semop(sma, q);
807  
808  		if (error <= 0) {
809  			/* operation completed, remove from queue & wakeup */
810  
811  			unlink_queue(sma, q);
812  
813  			wake_up_sem_queue_prepare(pt, q, error);
814  			if (error == 0)
815  				semop_completed = 1;
816  		}
817  	}
818  	return semop_completed;
819  }
820  
821  /**
822   * do_smart_wakeup_zero - wakeup all wait for zero tasks
823   * @sma: semaphore array
824   * @sops: operations that were performed
825   * @nsops: number of operations
826   * @pt: list head of the tasks that must be woken up.
827   *
828   * Checks all required queue for wait-for-zero operations, based
829   * on the actual changes that were performed on the semaphore array.
830   * The function returns 1 if at least one operation was completed successfully.
831   */
832  static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
833  					int nsops, struct list_head *pt)
834  {
835  	int i;
836  	int semop_completed = 0;
837  	int got_zero = 0;
838  
839  	/* first: the per-semaphore queues, if known */
840  	if (sops) {
841  		for (i = 0; i < nsops; i++) {
842  			int num = sops[i].sem_num;
843  
844  			if (sma->sem_base[num].semval == 0) {
845  				got_zero = 1;
846  				semop_completed |= wake_const_ops(sma, num, pt);
847  			}
848  		}
849  	} else {
850  		/*
851  		 * No sops means modified semaphores not known.
852  		 * Assume all were changed.
853  		 */
854  		for (i = 0; i < sma->sem_nsems; i++) {
855  			if (sma->sem_base[i].semval == 0) {
856  				got_zero = 1;
857  				semop_completed |= wake_const_ops(sma, i, pt);
858  			}
859  		}
860  	}
861  	/*
862  	 * If one of the modified semaphores got 0,
863  	 * then check the global queue, too.
864  	 */
865  	if (got_zero)
866  		semop_completed |= wake_const_ops(sma, -1, pt);
867  
868  	return semop_completed;
869  }
870  
871  
872  /**
873   * update_queue - look for tasks that can be completed.
874   * @sma: semaphore array.
875   * @semnum: semaphore that was modified.
876   * @pt: list head for the tasks that must be woken up.
877   *
878   * update_queue must be called after a semaphore in a semaphore array
879   * was modified. If multiple semaphores were modified, update_queue must
880   * be called with semnum = -1, as well as with the number of each modified
881   * semaphore.
882   * The tasks that must be woken up are added to @pt. The return code
883   * is stored in q->pid.
884   * The function internally checks if const operations can now succeed.
885   *
886   * The function return 1 if at least one semop was completed successfully.
887   */
888  static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
889  {
890  	struct sem_queue *q;
891  	struct list_head *walk;
892  	struct list_head *pending_list;
893  	int semop_completed = 0;
894  
895  	if (semnum == -1)
896  		pending_list = &sma->pending_alter;
897  	else
898  		pending_list = &sma->sem_base[semnum].pending_alter;
899  
900  again:
901  	walk = pending_list->next;
902  	while (walk != pending_list) {
903  		int error, restart;
904  
905  		q = container_of(walk, struct sem_queue, list);
906  		walk = walk->next;
907  
908  		/* If we are scanning the single sop, per-semaphore list of
909  		 * one semaphore and that semaphore is 0, then it is not
910  		 * necessary to scan further: simple increments
911  		 * that affect only one entry succeed immediately and cannot
912  		 * be in the  per semaphore pending queue, and decrements
913  		 * cannot be successful if the value is already 0.
914  		 */
915  		if (semnum != -1 && sma->sem_base[semnum].semval == 0)
916  			break;
917  
918  		error = perform_atomic_semop(sma, q);
919  
920  		/* Does q->sleeper still need to sleep? */
921  		if (error > 0)
922  			continue;
923  
924  		unlink_queue(sma, q);
925  
926  		if (error) {
927  			restart = 0;
928  		} else {
929  			semop_completed = 1;
930  			do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
931  			restart = check_restart(sma, q);
932  		}
933  
934  		wake_up_sem_queue_prepare(pt, q, error);
935  		if (restart)
936  			goto again;
937  	}
938  	return semop_completed;
939  }
940  
941  /**
942   * set_semotime - set sem_otime
943   * @sma: semaphore array
944   * @sops: operations that modified the array, may be NULL
945   *
946   * sem_otime is replicated to avoid cache line trashing.
947   * This function sets one instance to the current time.
948   */
949  static void set_semotime(struct sem_array *sma, struct sembuf *sops)
950  {
951  	if (sops == NULL) {
952  		sma->sem_base[0].sem_otime = get_seconds();
953  	} else {
954  		sma->sem_base[sops[0].sem_num].sem_otime =
955  							get_seconds();
956  	}
957  }
958  
959  /**
960   * do_smart_update - optimized update_queue
961   * @sma: semaphore array
962   * @sops: operations that were performed
963   * @nsops: number of operations
964   * @otime: force setting otime
965   * @pt: list head of the tasks that must be woken up.
966   *
967   * do_smart_update() does the required calls to update_queue and wakeup_zero,
968   * based on the actual changes that were performed on the semaphore array.
969   * Note that the function does not do the actual wake-up: the caller is
970   * responsible for calling wake_up_sem_queue_do(@pt).
971   * It is safe to perform this call after dropping all locks.
972   */
973  static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
974  			int otime, struct list_head *pt)
975  {
976  	int i;
977  
978  	otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
979  
980  	if (!list_empty(&sma->pending_alter)) {
981  		/* semaphore array uses the global queue - just process it. */
982  		otime |= update_queue(sma, -1, pt);
983  	} else {
984  		if (!sops) {
985  			/*
986  			 * No sops, thus the modified semaphores are not
987  			 * known. Check all.
988  			 */
989  			for (i = 0; i < sma->sem_nsems; i++)
990  				otime |= update_queue(sma, i, pt);
991  		} else {
992  			/*
993  			 * Check the semaphores that were increased:
994  			 * - No complex ops, thus all sleeping ops are
995  			 *   decrease.
996  			 * - if we decreased the value, then any sleeping
997  			 *   semaphore ops wont be able to run: If the
998  			 *   previous value was too small, then the new
999  			 *   value will be too small, too.
1000  			 */
1001  			for (i = 0; i < nsops; i++) {
1002  				if (sops[i].sem_op > 0) {
1003  					otime |= update_queue(sma,
1004  							sops[i].sem_num, pt);
1005  				}
1006  			}
1007  		}
1008  	}
1009  	if (otime)
1010  		set_semotime(sma, sops);
1011  }
1012  
1013  /*
1014   * check_qop: Test if a queued operation sleeps on the semaphore semnum
1015   */
1016  static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1017  			bool count_zero)
1018  {
1019  	struct sembuf *sop = q->blocking;
1020  
1021  	/*
1022  	 * Linux always (since 0.99.10) reported a task as sleeping on all
1023  	 * semaphores. This violates SUS, therefore it was changed to the
1024  	 * standard compliant behavior.
1025  	 * Give the administrators a chance to notice that an application
1026  	 * might misbehave because it relies on the Linux behavior.
1027  	 */
1028  	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1029  			"The task %s (%d) triggered the difference, watch for misbehavior.\n",
1030  			current->comm, task_pid_nr(current));
1031  
1032  	if (sop->sem_num != semnum)
1033  		return 0;
1034  
1035  	if (count_zero && sop->sem_op == 0)
1036  		return 1;
1037  	if (!count_zero && sop->sem_op < 0)
1038  		return 1;
1039  
1040  	return 0;
1041  }
1042  
1043  /* The following counts are associated to each semaphore:
1044   *   semncnt        number of tasks waiting on semval being nonzero
1045   *   semzcnt        number of tasks waiting on semval being zero
1046   *
1047   * Per definition, a task waits only on the semaphore of the first semop
1048   * that cannot proceed, even if additional operation would block, too.
1049   */
1050  static int count_semcnt(struct sem_array *sma, ushort semnum,
1051  			bool count_zero)
1052  {
1053  	struct list_head *l;
1054  	struct sem_queue *q;
1055  	int semcnt;
1056  
1057  	semcnt = 0;
1058  	/* First: check the simple operations. They are easy to evaluate */
1059  	if (count_zero)
1060  		l = &sma->sem_base[semnum].pending_const;
1061  	else
1062  		l = &sma->sem_base[semnum].pending_alter;
1063  
1064  	list_for_each_entry(q, l, list) {
1065  		/* all task on a per-semaphore list sleep on exactly
1066  		 * that semaphore
1067  		 */
1068  		semcnt++;
1069  	}
1070  
1071  	/* Then: check the complex operations. */
1072  	list_for_each_entry(q, &sma->pending_alter, list) {
1073  		semcnt += check_qop(sma, semnum, q, count_zero);
1074  	}
1075  	if (count_zero) {
1076  		list_for_each_entry(q, &sma->pending_const, list) {
1077  			semcnt += check_qop(sma, semnum, q, count_zero);
1078  		}
1079  	}
1080  	return semcnt;
1081  }
1082  
1083  /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1084   * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1085   * remains locked on exit.
1086   */
1087  static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1088  {
1089  	struct sem_undo *un, *tu;
1090  	struct sem_queue *q, *tq;
1091  	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1092  	struct list_head tasks;
1093  	int i;
1094  
1095  	/* Free the existing undo structures for this semaphore set.  */
1096  	ipc_assert_locked_object(&sma->sem_perm);
1097  	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1098  		list_del(&un->list_id);
1099  		spin_lock(&un->ulp->lock);
1100  		un->semid = -1;
1101  		list_del_rcu(&un->list_proc);
1102  		spin_unlock(&un->ulp->lock);
1103  		kfree_rcu(un, rcu);
1104  	}
1105  
1106  	/* Wake up all pending processes and let them fail with EIDRM. */
1107  	INIT_LIST_HEAD(&tasks);
1108  	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1109  		unlink_queue(sma, q);
1110  		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1111  	}
1112  
1113  	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1114  		unlink_queue(sma, q);
1115  		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1116  	}
1117  	for (i = 0; i < sma->sem_nsems; i++) {
1118  		struct sem *sem = sma->sem_base + i;
1119  		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1120  			unlink_queue(sma, q);
1121  			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1122  		}
1123  		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1124  			unlink_queue(sma, q);
1125  			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1126  		}
1127  	}
1128  
1129  	/* Remove the semaphore set from the IDR */
1130  	sem_rmid(ns, sma);
1131  	sem_unlock(sma, -1);
1132  	rcu_read_unlock();
1133  
1134  	wake_up_sem_queue_do(&tasks);
1135  	ns->used_sems -= sma->sem_nsems;
1136  	ipc_rcu_putref(sma, sem_rcu_free);
1137  }
1138  
1139  static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1140  {
1141  	switch (version) {
1142  	case IPC_64:
1143  		return copy_to_user(buf, in, sizeof(*in));
1144  	case IPC_OLD:
1145  	    {
1146  		struct semid_ds out;
1147  
1148  		memset(&out, 0, sizeof(out));
1149  
1150  		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1151  
1152  		out.sem_otime	= in->sem_otime;
1153  		out.sem_ctime	= in->sem_ctime;
1154  		out.sem_nsems	= in->sem_nsems;
1155  
1156  		return copy_to_user(buf, &out, sizeof(out));
1157  	    }
1158  	default:
1159  		return -EINVAL;
1160  	}
1161  }
1162  
1163  static time_t get_semotime(struct sem_array *sma)
1164  {
1165  	int i;
1166  	time_t res;
1167  
1168  	res = sma->sem_base[0].sem_otime;
1169  	for (i = 1; i < sma->sem_nsems; i++) {
1170  		time_t to = sma->sem_base[i].sem_otime;
1171  
1172  		if (to > res)
1173  			res = to;
1174  	}
1175  	return res;
1176  }
1177  
1178  static int semctl_nolock(struct ipc_namespace *ns, int semid,
1179  			 int cmd, int version, void __user *p)
1180  {
1181  	int err;
1182  	struct sem_array *sma;
1183  
1184  	switch (cmd) {
1185  	case IPC_INFO:
1186  	case SEM_INFO:
1187  	{
1188  		struct seminfo seminfo;
1189  		int max_id;
1190  
1191  		err = security_sem_semctl(NULL, cmd);
1192  		if (err)
1193  			return err;
1194  
1195  		memset(&seminfo, 0, sizeof(seminfo));
1196  		seminfo.semmni = ns->sc_semmni;
1197  		seminfo.semmns = ns->sc_semmns;
1198  		seminfo.semmsl = ns->sc_semmsl;
1199  		seminfo.semopm = ns->sc_semopm;
1200  		seminfo.semvmx = SEMVMX;
1201  		seminfo.semmnu = SEMMNU;
1202  		seminfo.semmap = SEMMAP;
1203  		seminfo.semume = SEMUME;
1204  		down_read(&sem_ids(ns).rwsem);
1205  		if (cmd == SEM_INFO) {
1206  			seminfo.semusz = sem_ids(ns).in_use;
1207  			seminfo.semaem = ns->used_sems;
1208  		} else {
1209  			seminfo.semusz = SEMUSZ;
1210  			seminfo.semaem = SEMAEM;
1211  		}
1212  		max_id = ipc_get_maxid(&sem_ids(ns));
1213  		up_read(&sem_ids(ns).rwsem);
1214  		if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1215  			return -EFAULT;
1216  		return (max_id < 0) ? 0 : max_id;
1217  	}
1218  	case IPC_STAT:
1219  	case SEM_STAT:
1220  	{
1221  		struct semid64_ds tbuf;
1222  		int id = 0;
1223  
1224  		memset(&tbuf, 0, sizeof(tbuf));
1225  
1226  		rcu_read_lock();
1227  		if (cmd == SEM_STAT) {
1228  			sma = sem_obtain_object(ns, semid);
1229  			if (IS_ERR(sma)) {
1230  				err = PTR_ERR(sma);
1231  				goto out_unlock;
1232  			}
1233  			id = sma->sem_perm.id;
1234  		} else {
1235  			sma = sem_obtain_object_check(ns, semid);
1236  			if (IS_ERR(sma)) {
1237  				err = PTR_ERR(sma);
1238  				goto out_unlock;
1239  			}
1240  		}
1241  
1242  		err = -EACCES;
1243  		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1244  			goto out_unlock;
1245  
1246  		err = security_sem_semctl(sma, cmd);
1247  		if (err)
1248  			goto out_unlock;
1249  
1250  		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1251  		tbuf.sem_otime = get_semotime(sma);
1252  		tbuf.sem_ctime = sma->sem_ctime;
1253  		tbuf.sem_nsems = sma->sem_nsems;
1254  		rcu_read_unlock();
1255  		if (copy_semid_to_user(p, &tbuf, version))
1256  			return -EFAULT;
1257  		return id;
1258  	}
1259  	default:
1260  		return -EINVAL;
1261  	}
1262  out_unlock:
1263  	rcu_read_unlock();
1264  	return err;
1265  }
1266  
1267  static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1268  		unsigned long arg)
1269  {
1270  	struct sem_undo *un;
1271  	struct sem_array *sma;
1272  	struct sem *curr;
1273  	int err;
1274  	struct list_head tasks;
1275  	int val;
1276  #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1277  	/* big-endian 64bit */
1278  	val = arg >> 32;
1279  #else
1280  	/* 32bit or little-endian 64bit */
1281  	val = arg;
1282  #endif
1283  
1284  	if (val > SEMVMX || val < 0)
1285  		return -ERANGE;
1286  
1287  	INIT_LIST_HEAD(&tasks);
1288  
1289  	rcu_read_lock();
1290  	sma = sem_obtain_object_check(ns, semid);
1291  	if (IS_ERR(sma)) {
1292  		rcu_read_unlock();
1293  		return PTR_ERR(sma);
1294  	}
1295  
1296  	if (semnum < 0 || semnum >= sma->sem_nsems) {
1297  		rcu_read_unlock();
1298  		return -EINVAL;
1299  	}
1300  
1301  
1302  	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1303  		rcu_read_unlock();
1304  		return -EACCES;
1305  	}
1306  
1307  	err = security_sem_semctl(sma, SETVAL);
1308  	if (err) {
1309  		rcu_read_unlock();
1310  		return -EACCES;
1311  	}
1312  
1313  	sem_lock(sma, NULL, -1);
1314  
1315  	if (!ipc_valid_object(&sma->sem_perm)) {
1316  		sem_unlock(sma, -1);
1317  		rcu_read_unlock();
1318  		return -EIDRM;
1319  	}
1320  
1321  	curr = &sma->sem_base[semnum];
1322  
1323  	ipc_assert_locked_object(&sma->sem_perm);
1324  	list_for_each_entry(un, &sma->list_id, list_id)
1325  		un->semadj[semnum] = 0;
1326  
1327  	curr->semval = val;
1328  	curr->sempid = task_tgid_vnr(current);
1329  	sma->sem_ctime = get_seconds();
1330  	/* maybe some queued-up processes were waiting for this */
1331  	do_smart_update(sma, NULL, 0, 0, &tasks);
1332  	sem_unlock(sma, -1);
1333  	rcu_read_unlock();
1334  	wake_up_sem_queue_do(&tasks);
1335  	return 0;
1336  }
1337  
1338  static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1339  		int cmd, void __user *p)
1340  {
1341  	struct sem_array *sma;
1342  	struct sem *curr;
1343  	int err, nsems;
1344  	ushort fast_sem_io[SEMMSL_FAST];
1345  	ushort *sem_io = fast_sem_io;
1346  	struct list_head tasks;
1347  
1348  	INIT_LIST_HEAD(&tasks);
1349  
1350  	rcu_read_lock();
1351  	sma = sem_obtain_object_check(ns, semid);
1352  	if (IS_ERR(sma)) {
1353  		rcu_read_unlock();
1354  		return PTR_ERR(sma);
1355  	}
1356  
1357  	nsems = sma->sem_nsems;
1358  
1359  	err = -EACCES;
1360  	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1361  		goto out_rcu_wakeup;
1362  
1363  	err = security_sem_semctl(sma, cmd);
1364  	if (err)
1365  		goto out_rcu_wakeup;
1366  
1367  	err = -EACCES;
1368  	switch (cmd) {
1369  	case GETALL:
1370  	{
1371  		ushort __user *array = p;
1372  		int i;
1373  
1374  		sem_lock(sma, NULL, -1);
1375  		if (!ipc_valid_object(&sma->sem_perm)) {
1376  			err = -EIDRM;
1377  			goto out_unlock;
1378  		}
1379  		if (nsems > SEMMSL_FAST) {
1380  			if (!ipc_rcu_getref(sma)) {
1381  				err = -EIDRM;
1382  				goto out_unlock;
1383  			}
1384  			sem_unlock(sma, -1);
1385  			rcu_read_unlock();
1386  			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1387  			if (sem_io == NULL) {
1388  				ipc_rcu_putref(sma, ipc_rcu_free);
1389  				return -ENOMEM;
1390  			}
1391  
1392  			rcu_read_lock();
1393  			sem_lock_and_putref(sma);
1394  			if (!ipc_valid_object(&sma->sem_perm)) {
1395  				err = -EIDRM;
1396  				goto out_unlock;
1397  			}
1398  		}
1399  		for (i = 0; i < sma->sem_nsems; i++)
1400  			sem_io[i] = sma->sem_base[i].semval;
1401  		sem_unlock(sma, -1);
1402  		rcu_read_unlock();
1403  		err = 0;
1404  		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1405  			err = -EFAULT;
1406  		goto out_free;
1407  	}
1408  	case SETALL:
1409  	{
1410  		int i;
1411  		struct sem_undo *un;
1412  
1413  		if (!ipc_rcu_getref(sma)) {
1414  			err = -EIDRM;
1415  			goto out_rcu_wakeup;
1416  		}
1417  		rcu_read_unlock();
1418  
1419  		if (nsems > SEMMSL_FAST) {
1420  			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1421  			if (sem_io == NULL) {
1422  				ipc_rcu_putref(sma, ipc_rcu_free);
1423  				return -ENOMEM;
1424  			}
1425  		}
1426  
1427  		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1428  			ipc_rcu_putref(sma, ipc_rcu_free);
1429  			err = -EFAULT;
1430  			goto out_free;
1431  		}
1432  
1433  		for (i = 0; i < nsems; i++) {
1434  			if (sem_io[i] > SEMVMX) {
1435  				ipc_rcu_putref(sma, ipc_rcu_free);
1436  				err = -ERANGE;
1437  				goto out_free;
1438  			}
1439  		}
1440  		rcu_read_lock();
1441  		sem_lock_and_putref(sma);
1442  		if (!ipc_valid_object(&sma->sem_perm)) {
1443  			err = -EIDRM;
1444  			goto out_unlock;
1445  		}
1446  
1447  		for (i = 0; i < nsems; i++)
1448  			sma->sem_base[i].semval = sem_io[i];
1449  
1450  		ipc_assert_locked_object(&sma->sem_perm);
1451  		list_for_each_entry(un, &sma->list_id, list_id) {
1452  			for (i = 0; i < nsems; i++)
1453  				un->semadj[i] = 0;
1454  		}
1455  		sma->sem_ctime = get_seconds();
1456  		/* maybe some queued-up processes were waiting for this */
1457  		do_smart_update(sma, NULL, 0, 0, &tasks);
1458  		err = 0;
1459  		goto out_unlock;
1460  	}
1461  	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1462  	}
1463  	err = -EINVAL;
1464  	if (semnum < 0 || semnum >= nsems)
1465  		goto out_rcu_wakeup;
1466  
1467  	sem_lock(sma, NULL, -1);
1468  	if (!ipc_valid_object(&sma->sem_perm)) {
1469  		err = -EIDRM;
1470  		goto out_unlock;
1471  	}
1472  	curr = &sma->sem_base[semnum];
1473  
1474  	switch (cmd) {
1475  	case GETVAL:
1476  		err = curr->semval;
1477  		goto out_unlock;
1478  	case GETPID:
1479  		err = curr->sempid;
1480  		goto out_unlock;
1481  	case GETNCNT:
1482  		err = count_semcnt(sma, semnum, 0);
1483  		goto out_unlock;
1484  	case GETZCNT:
1485  		err = count_semcnt(sma, semnum, 1);
1486  		goto out_unlock;
1487  	}
1488  
1489  out_unlock:
1490  	sem_unlock(sma, -1);
1491  out_rcu_wakeup:
1492  	rcu_read_unlock();
1493  	wake_up_sem_queue_do(&tasks);
1494  out_free:
1495  	if (sem_io != fast_sem_io)
1496  		ipc_free(sem_io);
1497  	return err;
1498  }
1499  
1500  static inline unsigned long
1501  copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1502  {
1503  	switch (version) {
1504  	case IPC_64:
1505  		if (copy_from_user(out, buf, sizeof(*out)))
1506  			return -EFAULT;
1507  		return 0;
1508  	case IPC_OLD:
1509  	    {
1510  		struct semid_ds tbuf_old;
1511  
1512  		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1513  			return -EFAULT;
1514  
1515  		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1516  		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1517  		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1518  
1519  		return 0;
1520  	    }
1521  	default:
1522  		return -EINVAL;
1523  	}
1524  }
1525  
1526  /*
1527   * This function handles some semctl commands which require the rwsem
1528   * to be held in write mode.
1529   * NOTE: no locks must be held, the rwsem is taken inside this function.
1530   */
1531  static int semctl_down(struct ipc_namespace *ns, int semid,
1532  		       int cmd, int version, void __user *p)
1533  {
1534  	struct sem_array *sma;
1535  	int err;
1536  	struct semid64_ds semid64;
1537  	struct kern_ipc_perm *ipcp;
1538  
1539  	if (cmd == IPC_SET) {
1540  		if (copy_semid_from_user(&semid64, p, version))
1541  			return -EFAULT;
1542  	}
1543  
1544  	down_write(&sem_ids(ns).rwsem);
1545  	rcu_read_lock();
1546  
1547  	ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1548  				      &semid64.sem_perm, 0);
1549  	if (IS_ERR(ipcp)) {
1550  		err = PTR_ERR(ipcp);
1551  		goto out_unlock1;
1552  	}
1553  
1554  	sma = container_of(ipcp, struct sem_array, sem_perm);
1555  
1556  	err = security_sem_semctl(sma, cmd);
1557  	if (err)
1558  		goto out_unlock1;
1559  
1560  	switch (cmd) {
1561  	case IPC_RMID:
1562  		sem_lock(sma, NULL, -1);
1563  		/* freeary unlocks the ipc object and rcu */
1564  		freeary(ns, ipcp);
1565  		goto out_up;
1566  	case IPC_SET:
1567  		sem_lock(sma, NULL, -1);
1568  		err = ipc_update_perm(&semid64.sem_perm, ipcp);
1569  		if (err)
1570  			goto out_unlock0;
1571  		sma->sem_ctime = get_seconds();
1572  		break;
1573  	default:
1574  		err = -EINVAL;
1575  		goto out_unlock1;
1576  	}
1577  
1578  out_unlock0:
1579  	sem_unlock(sma, -1);
1580  out_unlock1:
1581  	rcu_read_unlock();
1582  out_up:
1583  	up_write(&sem_ids(ns).rwsem);
1584  	return err;
1585  }
1586  
1587  SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1588  {
1589  	int version;
1590  	struct ipc_namespace *ns;
1591  	void __user *p = (void __user *)arg;
1592  
1593  	if (semid < 0)
1594  		return -EINVAL;
1595  
1596  	version = ipc_parse_version(&cmd);
1597  	ns = current->nsproxy->ipc_ns;
1598  
1599  	switch (cmd) {
1600  	case IPC_INFO:
1601  	case SEM_INFO:
1602  	case IPC_STAT:
1603  	case SEM_STAT:
1604  		return semctl_nolock(ns, semid, cmd, version, p);
1605  	case GETALL:
1606  	case GETVAL:
1607  	case GETPID:
1608  	case GETNCNT:
1609  	case GETZCNT:
1610  	case SETALL:
1611  		return semctl_main(ns, semid, semnum, cmd, p);
1612  	case SETVAL:
1613  		return semctl_setval(ns, semid, semnum, arg);
1614  	case IPC_RMID:
1615  	case IPC_SET:
1616  		return semctl_down(ns, semid, cmd, version, p);
1617  	default:
1618  		return -EINVAL;
1619  	}
1620  }
1621  
1622  /* If the task doesn't already have a undo_list, then allocate one
1623   * here.  We guarantee there is only one thread using this undo list,
1624   * and current is THE ONE
1625   *
1626   * If this allocation and assignment succeeds, but later
1627   * portions of this code fail, there is no need to free the sem_undo_list.
1628   * Just let it stay associated with the task, and it'll be freed later
1629   * at exit time.
1630   *
1631   * This can block, so callers must hold no locks.
1632   */
1633  static inline int get_undo_list(struct sem_undo_list **undo_listp)
1634  {
1635  	struct sem_undo_list *undo_list;
1636  
1637  	undo_list = current->sysvsem.undo_list;
1638  	if (!undo_list) {
1639  		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1640  		if (undo_list == NULL)
1641  			return -ENOMEM;
1642  		spin_lock_init(&undo_list->lock);
1643  		atomic_set(&undo_list->refcnt, 1);
1644  		INIT_LIST_HEAD(&undo_list->list_proc);
1645  
1646  		current->sysvsem.undo_list = undo_list;
1647  	}
1648  	*undo_listp = undo_list;
1649  	return 0;
1650  }
1651  
1652  static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1653  {
1654  	struct sem_undo *un;
1655  
1656  	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1657  		if (un->semid == semid)
1658  			return un;
1659  	}
1660  	return NULL;
1661  }
1662  
1663  static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1664  {
1665  	struct sem_undo *un;
1666  
1667  	assert_spin_locked(&ulp->lock);
1668  
1669  	un = __lookup_undo(ulp, semid);
1670  	if (un) {
1671  		list_del_rcu(&un->list_proc);
1672  		list_add_rcu(&un->list_proc, &ulp->list_proc);
1673  	}
1674  	return un;
1675  }
1676  
1677  /**
1678   * find_alloc_undo - lookup (and if not present create) undo array
1679   * @ns: namespace
1680   * @semid: semaphore array id
1681   *
1682   * The function looks up (and if not present creates) the undo structure.
1683   * The size of the undo structure depends on the size of the semaphore
1684   * array, thus the alloc path is not that straightforward.
1685   * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1686   * performs a rcu_read_lock().
1687   */
1688  static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1689  {
1690  	struct sem_array *sma;
1691  	struct sem_undo_list *ulp;
1692  	struct sem_undo *un, *new;
1693  	int nsems, error;
1694  
1695  	error = get_undo_list(&ulp);
1696  	if (error)
1697  		return ERR_PTR(error);
1698  
1699  	rcu_read_lock();
1700  	spin_lock(&ulp->lock);
1701  	un = lookup_undo(ulp, semid);
1702  	spin_unlock(&ulp->lock);
1703  	if (likely(un != NULL))
1704  		goto out;
1705  
1706  	/* no undo structure around - allocate one. */
1707  	/* step 1: figure out the size of the semaphore array */
1708  	sma = sem_obtain_object_check(ns, semid);
1709  	if (IS_ERR(sma)) {
1710  		rcu_read_unlock();
1711  		return ERR_CAST(sma);
1712  	}
1713  
1714  	nsems = sma->sem_nsems;
1715  	if (!ipc_rcu_getref(sma)) {
1716  		rcu_read_unlock();
1717  		un = ERR_PTR(-EIDRM);
1718  		goto out;
1719  	}
1720  	rcu_read_unlock();
1721  
1722  	/* step 2: allocate new undo structure */
1723  	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1724  	if (!new) {
1725  		ipc_rcu_putref(sma, ipc_rcu_free);
1726  		return ERR_PTR(-ENOMEM);
1727  	}
1728  
1729  	/* step 3: Acquire the lock on semaphore array */
1730  	rcu_read_lock();
1731  	sem_lock_and_putref(sma);
1732  	if (!ipc_valid_object(&sma->sem_perm)) {
1733  		sem_unlock(sma, -1);
1734  		rcu_read_unlock();
1735  		kfree(new);
1736  		un = ERR_PTR(-EIDRM);
1737  		goto out;
1738  	}
1739  	spin_lock(&ulp->lock);
1740  
1741  	/*
1742  	 * step 4: check for races: did someone else allocate the undo struct?
1743  	 */
1744  	un = lookup_undo(ulp, semid);
1745  	if (un) {
1746  		kfree(new);
1747  		goto success;
1748  	}
1749  	/* step 5: initialize & link new undo structure */
1750  	new->semadj = (short *) &new[1];
1751  	new->ulp = ulp;
1752  	new->semid = semid;
1753  	assert_spin_locked(&ulp->lock);
1754  	list_add_rcu(&new->list_proc, &ulp->list_proc);
1755  	ipc_assert_locked_object(&sma->sem_perm);
1756  	list_add(&new->list_id, &sma->list_id);
1757  	un = new;
1758  
1759  success:
1760  	spin_unlock(&ulp->lock);
1761  	sem_unlock(sma, -1);
1762  out:
1763  	return un;
1764  }
1765  
1766  
1767  /**
1768   * get_queue_result - retrieve the result code from sem_queue
1769   * @q: Pointer to queue structure
1770   *
1771   * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1772   * q->status, then we must loop until the value is replaced with the final
1773   * value: This may happen if a task is woken up by an unrelated event (e.g.
1774   * signal) and in parallel the task is woken up by another task because it got
1775   * the requested semaphores.
1776   *
1777   * The function can be called with or without holding the semaphore spinlock.
1778   */
1779  static int get_queue_result(struct sem_queue *q)
1780  {
1781  	int error;
1782  
1783  	error = q->status;
1784  	while (unlikely(error == IN_WAKEUP)) {
1785  		cpu_relax();
1786  		error = q->status;
1787  	}
1788  
1789  	return error;
1790  }
1791  
1792  SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1793  		unsigned, nsops, const struct timespec __user *, timeout)
1794  {
1795  	int error = -EINVAL;
1796  	struct sem_array *sma;
1797  	struct sembuf fast_sops[SEMOPM_FAST];
1798  	struct sembuf *sops = fast_sops, *sop;
1799  	struct sem_undo *un;
1800  	int undos = 0, alter = 0, max, locknum;
1801  	struct sem_queue queue;
1802  	unsigned long jiffies_left = 0;
1803  	struct ipc_namespace *ns;
1804  	struct list_head tasks;
1805  
1806  	ns = current->nsproxy->ipc_ns;
1807  
1808  	if (nsops < 1 || semid < 0)
1809  		return -EINVAL;
1810  	if (nsops > ns->sc_semopm)
1811  		return -E2BIG;
1812  	if (nsops > SEMOPM_FAST) {
1813  		sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1814  		if (sops == NULL)
1815  			return -ENOMEM;
1816  	}
1817  	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1818  		error =  -EFAULT;
1819  		goto out_free;
1820  	}
1821  	if (timeout) {
1822  		struct timespec _timeout;
1823  		if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1824  			error = -EFAULT;
1825  			goto out_free;
1826  		}
1827  		if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1828  			_timeout.tv_nsec >= 1000000000L) {
1829  			error = -EINVAL;
1830  			goto out_free;
1831  		}
1832  		jiffies_left = timespec_to_jiffies(&_timeout);
1833  	}
1834  	max = 0;
1835  	for (sop = sops; sop < sops + nsops; sop++) {
1836  		if (sop->sem_num >= max)
1837  			max = sop->sem_num;
1838  		if (sop->sem_flg & SEM_UNDO)
1839  			undos = 1;
1840  		if (sop->sem_op != 0)
1841  			alter = 1;
1842  	}
1843  
1844  	INIT_LIST_HEAD(&tasks);
1845  
1846  	if (undos) {
1847  		/* On success, find_alloc_undo takes the rcu_read_lock */
1848  		un = find_alloc_undo(ns, semid);
1849  		if (IS_ERR(un)) {
1850  			error = PTR_ERR(un);
1851  			goto out_free;
1852  		}
1853  	} else {
1854  		un = NULL;
1855  		rcu_read_lock();
1856  	}
1857  
1858  	sma = sem_obtain_object_check(ns, semid);
1859  	if (IS_ERR(sma)) {
1860  		rcu_read_unlock();
1861  		error = PTR_ERR(sma);
1862  		goto out_free;
1863  	}
1864  
1865  	error = -EFBIG;
1866  	if (max >= sma->sem_nsems)
1867  		goto out_rcu_wakeup;
1868  
1869  	error = -EACCES;
1870  	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1871  		goto out_rcu_wakeup;
1872  
1873  	error = security_sem_semop(sma, sops, nsops, alter);
1874  	if (error)
1875  		goto out_rcu_wakeup;
1876  
1877  	error = -EIDRM;
1878  	locknum = sem_lock(sma, sops, nsops);
1879  	/*
1880  	 * We eventually might perform the following check in a lockless
1881  	 * fashion, considering ipc_valid_object() locking constraints.
1882  	 * If nsops == 1 and there is no contention for sem_perm.lock, then
1883  	 * only a per-semaphore lock is held and it's OK to proceed with the
1884  	 * check below. More details on the fine grained locking scheme
1885  	 * entangled here and why it's RMID race safe on comments at sem_lock()
1886  	 */
1887  	if (!ipc_valid_object(&sma->sem_perm))
1888  		goto out_unlock_free;
1889  	/*
1890  	 * semid identifiers are not unique - find_alloc_undo may have
1891  	 * allocated an undo structure, it was invalidated by an RMID
1892  	 * and now a new array with received the same id. Check and fail.
1893  	 * This case can be detected checking un->semid. The existence of
1894  	 * "un" itself is guaranteed by rcu.
1895  	 */
1896  	if (un && un->semid == -1)
1897  		goto out_unlock_free;
1898  
1899  	queue.sops = sops;
1900  	queue.nsops = nsops;
1901  	queue.undo = un;
1902  	queue.pid = task_tgid_vnr(current);
1903  	queue.alter = alter;
1904  
1905  	error = perform_atomic_semop(sma, &queue);
1906  	if (error == 0) {
1907  		/* If the operation was successful, then do
1908  		 * the required updates.
1909  		 */
1910  		if (alter)
1911  			do_smart_update(sma, sops, nsops, 1, &tasks);
1912  		else
1913  			set_semotime(sma, sops);
1914  	}
1915  	if (error <= 0)
1916  		goto out_unlock_free;
1917  
1918  	/* We need to sleep on this operation, so we put the current
1919  	 * task into the pending queue and go to sleep.
1920  	 */
1921  
1922  	if (nsops == 1) {
1923  		struct sem *curr;
1924  		curr = &sma->sem_base[sops->sem_num];
1925  
1926  		if (alter) {
1927  			if (sma->complex_count) {
1928  				list_add_tail(&queue.list,
1929  						&sma->pending_alter);
1930  			} else {
1931  
1932  				list_add_tail(&queue.list,
1933  						&curr->pending_alter);
1934  			}
1935  		} else {
1936  			list_add_tail(&queue.list, &curr->pending_const);
1937  		}
1938  	} else {
1939  		if (!sma->complex_count)
1940  			merge_queues(sma);
1941  
1942  		if (alter)
1943  			list_add_tail(&queue.list, &sma->pending_alter);
1944  		else
1945  			list_add_tail(&queue.list, &sma->pending_const);
1946  
1947  		sma->complex_count++;
1948  	}
1949  
1950  	queue.status = -EINTR;
1951  	queue.sleeper = current;
1952  
1953  sleep_again:
1954  	__set_current_state(TASK_INTERRUPTIBLE);
1955  	sem_unlock(sma, locknum);
1956  	rcu_read_unlock();
1957  
1958  	if (timeout)
1959  		jiffies_left = schedule_timeout(jiffies_left);
1960  	else
1961  		schedule();
1962  
1963  	error = get_queue_result(&queue);
1964  
1965  	if (error != -EINTR) {
1966  		/* fast path: update_queue already obtained all requested
1967  		 * resources.
1968  		 * Perform a smp_mb(): User space could assume that semop()
1969  		 * is a memory barrier: Without the mb(), the cpu could
1970  		 * speculatively read in user space stale data that was
1971  		 * overwritten by the previous owner of the semaphore.
1972  		 */
1973  		smp_mb();
1974  
1975  		goto out_free;
1976  	}
1977  
1978  	rcu_read_lock();
1979  	sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
1980  
1981  	/*
1982  	 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1983  	 */
1984  	error = get_queue_result(&queue);
1985  
1986  	/*
1987  	 * Array removed? If yes, leave without sem_unlock().
1988  	 */
1989  	if (IS_ERR(sma)) {
1990  		rcu_read_unlock();
1991  		goto out_free;
1992  	}
1993  
1994  
1995  	/*
1996  	 * If queue.status != -EINTR we are woken up by another process.
1997  	 * Leave without unlink_queue(), but with sem_unlock().
1998  	 */
1999  	if (error != -EINTR)
2000  		goto out_unlock_free;
2001  
2002  	/*
2003  	 * If an interrupt occurred we have to clean up the queue
2004  	 */
2005  	if (timeout && jiffies_left == 0)
2006  		error = -EAGAIN;
2007  
2008  	/*
2009  	 * If the wakeup was spurious, just retry
2010  	 */
2011  	if (error == -EINTR && !signal_pending(current))
2012  		goto sleep_again;
2013  
2014  	unlink_queue(sma, &queue);
2015  
2016  out_unlock_free:
2017  	sem_unlock(sma, locknum);
2018  out_rcu_wakeup:
2019  	rcu_read_unlock();
2020  	wake_up_sem_queue_do(&tasks);
2021  out_free:
2022  	if (sops != fast_sops)
2023  		kfree(sops);
2024  	return error;
2025  }
2026  
2027  SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2028  		unsigned, nsops)
2029  {
2030  	return sys_semtimedop(semid, tsops, nsops, NULL);
2031  }
2032  
2033  /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2034   * parent and child tasks.
2035   */
2036  
2037  int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2038  {
2039  	struct sem_undo_list *undo_list;
2040  	int error;
2041  
2042  	if (clone_flags & CLONE_SYSVSEM) {
2043  		error = get_undo_list(&undo_list);
2044  		if (error)
2045  			return error;
2046  		atomic_inc(&undo_list->refcnt);
2047  		tsk->sysvsem.undo_list = undo_list;
2048  	} else
2049  		tsk->sysvsem.undo_list = NULL;
2050  
2051  	return 0;
2052  }
2053  
2054  /*
2055   * add semadj values to semaphores, free undo structures.
2056   * undo structures are not freed when semaphore arrays are destroyed
2057   * so some of them may be out of date.
2058   * IMPLEMENTATION NOTE: There is some confusion over whether the
2059   * set of adjustments that needs to be done should be done in an atomic
2060   * manner or not. That is, if we are attempting to decrement the semval
2061   * should we queue up and wait until we can do so legally?
2062   * The original implementation attempted to do this (queue and wait).
2063   * The current implementation does not do so. The POSIX standard
2064   * and SVID should be consulted to determine what behavior is mandated.
2065   */
2066  void exit_sem(struct task_struct *tsk)
2067  {
2068  	struct sem_undo_list *ulp;
2069  
2070  	ulp = tsk->sysvsem.undo_list;
2071  	if (!ulp)
2072  		return;
2073  	tsk->sysvsem.undo_list = NULL;
2074  
2075  	if (!atomic_dec_and_test(&ulp->refcnt))
2076  		return;
2077  
2078  	for (;;) {
2079  		struct sem_array *sma;
2080  		struct sem_undo *un;
2081  		struct list_head tasks;
2082  		int semid, i;
2083  
2084  		rcu_read_lock();
2085  		un = list_entry_rcu(ulp->list_proc.next,
2086  				    struct sem_undo, list_proc);
2087  		if (&un->list_proc == &ulp->list_proc) {
2088  			/*
2089  			 * We must wait for freeary() before freeing this ulp,
2090  			 * in case we raced with last sem_undo. There is a small
2091  			 * possibility where we exit while freeary() didn't
2092  			 * finish unlocking sem_undo_list.
2093  			 */
2094  			spin_unlock_wait(&ulp->lock);
2095  			rcu_read_unlock();
2096  			break;
2097  		}
2098  		spin_lock(&ulp->lock);
2099  		semid = un->semid;
2100  		spin_unlock(&ulp->lock);
2101  
2102  		/* exit_sem raced with IPC_RMID, nothing to do */
2103  		if (semid == -1) {
2104  			rcu_read_unlock();
2105  			continue;
2106  		}
2107  
2108  		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2109  		/* exit_sem raced with IPC_RMID, nothing to do */
2110  		if (IS_ERR(sma)) {
2111  			rcu_read_unlock();
2112  			continue;
2113  		}
2114  
2115  		sem_lock(sma, NULL, -1);
2116  		/* exit_sem raced with IPC_RMID, nothing to do */
2117  		if (!ipc_valid_object(&sma->sem_perm)) {
2118  			sem_unlock(sma, -1);
2119  			rcu_read_unlock();
2120  			continue;
2121  		}
2122  		un = __lookup_undo(ulp, semid);
2123  		if (un == NULL) {
2124  			/* exit_sem raced with IPC_RMID+semget() that created
2125  			 * exactly the same semid. Nothing to do.
2126  			 */
2127  			sem_unlock(sma, -1);
2128  			rcu_read_unlock();
2129  			continue;
2130  		}
2131  
2132  		/* remove un from the linked lists */
2133  		ipc_assert_locked_object(&sma->sem_perm);
2134  		list_del(&un->list_id);
2135  
2136  		/* we are the last process using this ulp, acquiring ulp->lock
2137  		 * isn't required. Besides that, we are also protected against
2138  		 * IPC_RMID as we hold sma->sem_perm lock now
2139  		 */
2140  		list_del_rcu(&un->list_proc);
2141  
2142  		/* perform adjustments registered in un */
2143  		for (i = 0; i < sma->sem_nsems; i++) {
2144  			struct sem *semaphore = &sma->sem_base[i];
2145  			if (un->semadj[i]) {
2146  				semaphore->semval += un->semadj[i];
2147  				/*
2148  				 * Range checks of the new semaphore value,
2149  				 * not defined by sus:
2150  				 * - Some unices ignore the undo entirely
2151  				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2152  				 * - some cap the value (e.g. FreeBSD caps
2153  				 *   at 0, but doesn't enforce SEMVMX)
2154  				 *
2155  				 * Linux caps the semaphore value, both at 0
2156  				 * and at SEMVMX.
2157  				 *
2158  				 *	Manfred <manfred@colorfullife.com>
2159  				 */
2160  				if (semaphore->semval < 0)
2161  					semaphore->semval = 0;
2162  				if (semaphore->semval > SEMVMX)
2163  					semaphore->semval = SEMVMX;
2164  				semaphore->sempid = task_tgid_vnr(current);
2165  			}
2166  		}
2167  		/* maybe some queued-up processes were waiting for this */
2168  		INIT_LIST_HEAD(&tasks);
2169  		do_smart_update(sma, NULL, 0, 1, &tasks);
2170  		sem_unlock(sma, -1);
2171  		rcu_read_unlock();
2172  		wake_up_sem_queue_do(&tasks);
2173  
2174  		kfree_rcu(un, rcu);
2175  	}
2176  	kfree(ulp);
2177  }
2178  
2179  #ifdef CONFIG_PROC_FS
2180  static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2181  {
2182  	struct user_namespace *user_ns = seq_user_ns(s);
2183  	struct sem_array *sma = it;
2184  	time_t sem_otime;
2185  
2186  	/*
2187  	 * The proc interface isn't aware of sem_lock(), it calls
2188  	 * ipc_lock_object() directly (in sysvipc_find_ipc).
2189  	 * In order to stay compatible with sem_lock(), we must wait until
2190  	 * all simple semop() calls have left their critical regions.
2191  	 */
2192  	sem_wait_array(sma);
2193  
2194  	sem_otime = get_semotime(sma);
2195  
2196  	seq_printf(s,
2197  		   "%10d %10d  %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2198  		   sma->sem_perm.key,
2199  		   sma->sem_perm.id,
2200  		   sma->sem_perm.mode,
2201  		   sma->sem_nsems,
2202  		   from_kuid_munged(user_ns, sma->sem_perm.uid),
2203  		   from_kgid_munged(user_ns, sma->sem_perm.gid),
2204  		   from_kuid_munged(user_ns, sma->sem_perm.cuid),
2205  		   from_kgid_munged(user_ns, sma->sem_perm.cgid),
2206  		   sem_otime,
2207  		   sma->sem_ctime);
2208  
2209  	return 0;
2210  }
2211  #endif
2212