xref: /openbmc/linux/ipc/sem.c (revision 32981ea5)
1 /*
2  * linux/ipc/sem.c
3  * Copyright (C) 1992 Krishna Balasubramanian
4  * Copyright (C) 1995 Eric Schenk, Bruno Haible
5  *
6  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7  *
8  * SMP-threaded, sysctl's added
9  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10  * Enforced range limit on SEM_UNDO
11  * (c) 2001 Red Hat Inc
12  * Lockless wakeup
13  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14  * Further wakeup optimizations, documentation
15  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
16  *
17  * support for audit of ipc object properties and permission changes
18  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
19  *
20  * namespaces support
21  * OpenVZ, SWsoft Inc.
22  * Pavel Emelianov <xemul@openvz.org>
23  *
24  * Implementation notes: (May 2010)
25  * This file implements System V semaphores.
26  *
27  * User space visible behavior:
28  * - FIFO ordering for semop() operations (just FIFO, not starvation
29  *   protection)
30  * - multiple semaphore operations that alter the same semaphore in
31  *   one semop() are handled.
32  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33  *   SETALL calls.
34  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35  * - undo adjustments at process exit are limited to 0..SEMVMX.
36  * - namespace are supported.
37  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38  *   to /proc/sys/kernel/sem.
39  * - statistics about the usage are reported in /proc/sysvipc/sem.
40  *
41  * Internals:
42  * - scalability:
43  *   - all global variables are read-mostly.
44  *   - semop() calls and semctl(RMID) are synchronized by RCU.
45  *   - most operations do write operations (actually: spin_lock calls) to
46  *     the per-semaphore array structure.
47  *   Thus: Perfect SMP scaling between independent semaphore arrays.
48  *         If multiple semaphores in one array are used, then cache line
49  *         trashing on the semaphore array spinlock will limit the scaling.
50  * - semncnt and semzcnt are calculated on demand in count_semcnt()
51  * - the task that performs a successful semop() scans the list of all
52  *   sleeping tasks and completes any pending operations that can be fulfilled.
53  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
54  *   (see update_queue())
55  * - To improve the scalability, the actual wake-up calls are performed after
56  *   dropping all locks. (see wake_up_sem_queue_prepare(),
57  *   wake_up_sem_queue_do())
58  * - All work is done by the waker, the woken up task does not have to do
59  *   anything - not even acquiring a lock or dropping a refcount.
60  * - A woken up task may not even touch the semaphore array anymore, it may
61  *   have been destroyed already by a semctl(RMID).
62  * - The synchronizations between wake-ups due to a timeout/signal and a
63  *   wake-up due to a completed semaphore operation is achieved by using an
64  *   intermediate state (IN_WAKEUP).
65  * - UNDO values are stored in an array (one per process and per
66  *   semaphore array, lazily allocated). For backwards compatibility, multiple
67  *   modes for the UNDO variables are supported (per process, per thread)
68  *   (see copy_semundo, CLONE_SYSVSEM)
69  * - There are two lists of the pending operations: a per-array list
70  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
71  *   ordering without always scanning all pending operations.
72  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
73  */
74 
75 #include <linux/slab.h>
76 #include <linux/spinlock.h>
77 #include <linux/init.h>
78 #include <linux/proc_fs.h>
79 #include <linux/time.h>
80 #include <linux/security.h>
81 #include <linux/syscalls.h>
82 #include <linux/audit.h>
83 #include <linux/capability.h>
84 #include <linux/seq_file.h>
85 #include <linux/rwsem.h>
86 #include <linux/nsproxy.h>
87 #include <linux/ipc_namespace.h>
88 
89 #include <linux/uaccess.h>
90 #include "util.h"
91 
92 /* One semaphore structure for each semaphore in the system. */
93 struct sem {
94 	int	semval;		/* current value */
95 	/*
96 	 * PID of the process that last modified the semaphore. For
97 	 * Linux, specifically these are:
98 	 *  - semop
99 	 *  - semctl, via SETVAL and SETALL.
100 	 *  - at task exit when performing undo adjustments (see exit_sem).
101 	 */
102 	int	sempid;
103 	spinlock_t	lock;	/* spinlock for fine-grained semtimedop */
104 	struct list_head pending_alter; /* pending single-sop operations */
105 					/* that alter the semaphore */
106 	struct list_head pending_const; /* pending single-sop operations */
107 					/* that do not alter the semaphore*/
108 	time_t	sem_otime;	/* candidate for sem_otime */
109 } ____cacheline_aligned_in_smp;
110 
111 /* One queue for each sleeping process in the system. */
112 struct sem_queue {
113 	struct list_head	list;	 /* queue of pending operations */
114 	struct task_struct	*sleeper; /* this process */
115 	struct sem_undo		*undo;	 /* undo structure */
116 	int			pid;	 /* process id of requesting process */
117 	int			status;	 /* completion status of operation */
118 	struct sembuf		*sops;	 /* array of pending operations */
119 	struct sembuf		*blocking; /* the operation that blocked */
120 	int			nsops;	 /* number of operations */
121 	int			alter;	 /* does *sops alter the array? */
122 };
123 
124 /* Each task has a list of undo requests. They are executed automatically
125  * when the process exits.
126  */
127 struct sem_undo {
128 	struct list_head	list_proc;	/* per-process list: *
129 						 * all undos from one process
130 						 * rcu protected */
131 	struct rcu_head		rcu;		/* rcu struct for sem_undo */
132 	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
133 	struct list_head	list_id;	/* per semaphore array list:
134 						 * all undos for one array */
135 	int			semid;		/* semaphore set identifier */
136 	short			*semadj;	/* array of adjustments */
137 						/* one per semaphore */
138 };
139 
140 /* sem_undo_list controls shared access to the list of sem_undo structures
141  * that may be shared among all a CLONE_SYSVSEM task group.
142  */
143 struct sem_undo_list {
144 	atomic_t		refcnt;
145 	spinlock_t		lock;
146 	struct list_head	list_proc;
147 };
148 
149 
150 #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
151 
152 #define sem_checkid(sma, semid)	ipc_checkid(&sma->sem_perm, semid)
153 
154 static int newary(struct ipc_namespace *, struct ipc_params *);
155 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
156 #ifdef CONFIG_PROC_FS
157 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
158 #endif
159 
160 #define SEMMSL_FAST	256 /* 512 bytes on stack */
161 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
162 
163 /*
164  * Locking:
165  *	sem_undo.id_next,
166  *	sem_array.complex_count,
167  *	sem_array.pending{_alter,_cont},
168  *	sem_array.sem_undo: global sem_lock() for read/write
169  *	sem_undo.proc_next: only "current" is allowed to read/write that field.
170  *
171  *	sem_array.sem_base[i].pending_{const,alter}:
172  *		global or semaphore sem_lock() for read/write
173  */
174 
175 #define sc_semmsl	sem_ctls[0]
176 #define sc_semmns	sem_ctls[1]
177 #define sc_semopm	sem_ctls[2]
178 #define sc_semmni	sem_ctls[3]
179 
180 void sem_init_ns(struct ipc_namespace *ns)
181 {
182 	ns->sc_semmsl = SEMMSL;
183 	ns->sc_semmns = SEMMNS;
184 	ns->sc_semopm = SEMOPM;
185 	ns->sc_semmni = SEMMNI;
186 	ns->used_sems = 0;
187 	ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
188 }
189 
190 #ifdef CONFIG_IPC_NS
191 void sem_exit_ns(struct ipc_namespace *ns)
192 {
193 	free_ipcs(ns, &sem_ids(ns), freeary);
194 	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
195 }
196 #endif
197 
198 void __init sem_init(void)
199 {
200 	sem_init_ns(&init_ipc_ns);
201 	ipc_init_proc_interface("sysvipc/sem",
202 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
203 				IPC_SEM_IDS, sysvipc_sem_proc_show);
204 }
205 
206 /**
207  * unmerge_queues - unmerge queues, if possible.
208  * @sma: semaphore array
209  *
210  * The function unmerges the wait queues if complex_count is 0.
211  * It must be called prior to dropping the global semaphore array lock.
212  */
213 static void unmerge_queues(struct sem_array *sma)
214 {
215 	struct sem_queue *q, *tq;
216 
217 	/* complex operations still around? */
218 	if (sma->complex_count)
219 		return;
220 	/*
221 	 * We will switch back to simple mode.
222 	 * Move all pending operation back into the per-semaphore
223 	 * queues.
224 	 */
225 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
226 		struct sem *curr;
227 		curr = &sma->sem_base[q->sops[0].sem_num];
228 
229 		list_add_tail(&q->list, &curr->pending_alter);
230 	}
231 	INIT_LIST_HEAD(&sma->pending_alter);
232 }
233 
234 /**
235  * merge_queues - merge single semop queues into global queue
236  * @sma: semaphore array
237  *
238  * This function merges all per-semaphore queues into the global queue.
239  * It is necessary to achieve FIFO ordering for the pending single-sop
240  * operations when a multi-semop operation must sleep.
241  * Only the alter operations must be moved, the const operations can stay.
242  */
243 static void merge_queues(struct sem_array *sma)
244 {
245 	int i;
246 	for (i = 0; i < sma->sem_nsems; i++) {
247 		struct sem *sem = sma->sem_base + i;
248 
249 		list_splice_init(&sem->pending_alter, &sma->pending_alter);
250 	}
251 }
252 
253 static void sem_rcu_free(struct rcu_head *head)
254 {
255 	struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
256 	struct sem_array *sma = ipc_rcu_to_struct(p);
257 
258 	security_sem_free(sma);
259 	ipc_rcu_free(head);
260 }
261 
262 /*
263  * spin_unlock_wait() and !spin_is_locked() are not memory barriers, they
264  * are only control barriers.
265  * The code must pair with spin_unlock(&sem->lock) or
266  * spin_unlock(&sem_perm.lock), thus just the control barrier is insufficient.
267  *
268  * smp_rmb() is sufficient, as writes cannot pass the control barrier.
269  */
270 #define ipc_smp_acquire__after_spin_is_unlocked()	smp_rmb()
271 
272 /*
273  * Wait until all currently ongoing simple ops have completed.
274  * Caller must own sem_perm.lock.
275  * New simple ops cannot start, because simple ops first check
276  * that sem_perm.lock is free.
277  * that a) sem_perm.lock is free and b) complex_count is 0.
278  */
279 static void sem_wait_array(struct sem_array *sma)
280 {
281 	int i;
282 	struct sem *sem;
283 
284 	if (sma->complex_count)  {
285 		/* The thread that increased sma->complex_count waited on
286 		 * all sem->lock locks. Thus we don't need to wait again.
287 		 */
288 		return;
289 	}
290 
291 	for (i = 0; i < sma->sem_nsems; i++) {
292 		sem = sma->sem_base + i;
293 		spin_unlock_wait(&sem->lock);
294 	}
295 	ipc_smp_acquire__after_spin_is_unlocked();
296 }
297 
298 /*
299  * If the request contains only one semaphore operation, and there are
300  * no complex transactions pending, lock only the semaphore involved.
301  * Otherwise, lock the entire semaphore array, since we either have
302  * multiple semaphores in our own semops, or we need to look at
303  * semaphores from other pending complex operations.
304  */
305 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
306 			      int nsops)
307 {
308 	struct sem *sem;
309 
310 	if (nsops != 1) {
311 		/* Complex operation - acquire a full lock */
312 		ipc_lock_object(&sma->sem_perm);
313 
314 		/* And wait until all simple ops that are processed
315 		 * right now have dropped their locks.
316 		 */
317 		sem_wait_array(sma);
318 		return -1;
319 	}
320 
321 	/*
322 	 * Only one semaphore affected - try to optimize locking.
323 	 * The rules are:
324 	 * - optimized locking is possible if no complex operation
325 	 *   is either enqueued or processed right now.
326 	 * - The test for enqueued complex ops is simple:
327 	 *      sma->complex_count != 0
328 	 * - Testing for complex ops that are processed right now is
329 	 *   a bit more difficult. Complex ops acquire the full lock
330 	 *   and first wait that the running simple ops have completed.
331 	 *   (see above)
332 	 *   Thus: If we own a simple lock and the global lock is free
333 	 *	and complex_count is now 0, then it will stay 0 and
334 	 *	thus just locking sem->lock is sufficient.
335 	 */
336 	sem = sma->sem_base + sops->sem_num;
337 
338 	if (sma->complex_count == 0) {
339 		/*
340 		 * It appears that no complex operation is around.
341 		 * Acquire the per-semaphore lock.
342 		 */
343 		spin_lock(&sem->lock);
344 
345 		/* Then check that the global lock is free */
346 		if (!spin_is_locked(&sma->sem_perm.lock)) {
347 			/*
348 			 * We need a memory barrier with acquire semantics,
349 			 * otherwise we can race with another thread that does:
350 			 *	complex_count++;
351 			 *	spin_unlock(sem_perm.lock);
352 			 */
353 			ipc_smp_acquire__after_spin_is_unlocked();
354 
355 			/*
356 			 * Now repeat the test of complex_count:
357 			 * It can't change anymore until we drop sem->lock.
358 			 * Thus: if is now 0, then it will stay 0.
359 			 */
360 			if (sma->complex_count == 0) {
361 				/* fast path successful! */
362 				return sops->sem_num;
363 			}
364 		}
365 		spin_unlock(&sem->lock);
366 	}
367 
368 	/* slow path: acquire the full lock */
369 	ipc_lock_object(&sma->sem_perm);
370 
371 	if (sma->complex_count == 0) {
372 		/* False alarm:
373 		 * There is no complex operation, thus we can switch
374 		 * back to the fast path.
375 		 */
376 		spin_lock(&sem->lock);
377 		ipc_unlock_object(&sma->sem_perm);
378 		return sops->sem_num;
379 	} else {
380 		/* Not a false alarm, thus complete the sequence for a
381 		 * full lock.
382 		 */
383 		sem_wait_array(sma);
384 		return -1;
385 	}
386 }
387 
388 static inline void sem_unlock(struct sem_array *sma, int locknum)
389 {
390 	if (locknum == -1) {
391 		unmerge_queues(sma);
392 		ipc_unlock_object(&sma->sem_perm);
393 	} else {
394 		struct sem *sem = sma->sem_base + locknum;
395 		spin_unlock(&sem->lock);
396 	}
397 }
398 
399 /*
400  * sem_lock_(check_) routines are called in the paths where the rwsem
401  * is not held.
402  *
403  * The caller holds the RCU read lock.
404  */
405 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
406 			int id, struct sembuf *sops, int nsops, int *locknum)
407 {
408 	struct kern_ipc_perm *ipcp;
409 	struct sem_array *sma;
410 
411 	ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
412 	if (IS_ERR(ipcp))
413 		return ERR_CAST(ipcp);
414 
415 	sma = container_of(ipcp, struct sem_array, sem_perm);
416 	*locknum = sem_lock(sma, sops, nsops);
417 
418 	/* ipc_rmid() may have already freed the ID while sem_lock
419 	 * was spinning: verify that the structure is still valid
420 	 */
421 	if (ipc_valid_object(ipcp))
422 		return container_of(ipcp, struct sem_array, sem_perm);
423 
424 	sem_unlock(sma, *locknum);
425 	return ERR_PTR(-EINVAL);
426 }
427 
428 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
429 {
430 	struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
431 
432 	if (IS_ERR(ipcp))
433 		return ERR_CAST(ipcp);
434 
435 	return container_of(ipcp, struct sem_array, sem_perm);
436 }
437 
438 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
439 							int id)
440 {
441 	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
442 
443 	if (IS_ERR(ipcp))
444 		return ERR_CAST(ipcp);
445 
446 	return container_of(ipcp, struct sem_array, sem_perm);
447 }
448 
449 static inline void sem_lock_and_putref(struct sem_array *sma)
450 {
451 	sem_lock(sma, NULL, -1);
452 	ipc_rcu_putref(sma, ipc_rcu_free);
453 }
454 
455 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
456 {
457 	ipc_rmid(&sem_ids(ns), &s->sem_perm);
458 }
459 
460 /*
461  * Lockless wakeup algorithm:
462  * Without the check/retry algorithm a lockless wakeup is possible:
463  * - queue.status is initialized to -EINTR before blocking.
464  * - wakeup is performed by
465  *	* unlinking the queue entry from the pending list
466  *	* setting queue.status to IN_WAKEUP
467  *	  This is the notification for the blocked thread that a
468  *	  result value is imminent.
469  *	* call wake_up_process
470  *	* set queue.status to the final value.
471  * - the previously blocked thread checks queue.status:
472  *	* if it's IN_WAKEUP, then it must wait until the value changes
473  *	* if it's not -EINTR, then the operation was completed by
474  *	  update_queue. semtimedop can return queue.status without
475  *	  performing any operation on the sem array.
476  *	* otherwise it must acquire the spinlock and check what's up.
477  *
478  * The two-stage algorithm is necessary to protect against the following
479  * races:
480  * - if queue.status is set after wake_up_process, then the woken up idle
481  *   thread could race forward and try (and fail) to acquire sma->lock
482  *   before update_queue had a chance to set queue.status
483  * - if queue.status is written before wake_up_process and if the
484  *   blocked process is woken up by a signal between writing
485  *   queue.status and the wake_up_process, then the woken up
486  *   process could return from semtimedop and die by calling
487  *   sys_exit before wake_up_process is called. Then wake_up_process
488  *   will oops, because the task structure is already invalid.
489  *   (yes, this happened on s390 with sysv msg).
490  *
491  */
492 #define IN_WAKEUP	1
493 
494 /**
495  * newary - Create a new semaphore set
496  * @ns: namespace
497  * @params: ptr to the structure that contains key, semflg and nsems
498  *
499  * Called with sem_ids.rwsem held (as a writer)
500  */
501 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
502 {
503 	int id;
504 	int retval;
505 	struct sem_array *sma;
506 	int size;
507 	key_t key = params->key;
508 	int nsems = params->u.nsems;
509 	int semflg = params->flg;
510 	int i;
511 
512 	if (!nsems)
513 		return -EINVAL;
514 	if (ns->used_sems + nsems > ns->sc_semmns)
515 		return -ENOSPC;
516 
517 	size = sizeof(*sma) + nsems * sizeof(struct sem);
518 	sma = ipc_rcu_alloc(size);
519 	if (!sma)
520 		return -ENOMEM;
521 
522 	memset(sma, 0, size);
523 
524 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
525 	sma->sem_perm.key = key;
526 
527 	sma->sem_perm.security = NULL;
528 	retval = security_sem_alloc(sma);
529 	if (retval) {
530 		ipc_rcu_putref(sma, ipc_rcu_free);
531 		return retval;
532 	}
533 
534 	sma->sem_base = (struct sem *) &sma[1];
535 
536 	for (i = 0; i < nsems; i++) {
537 		INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
538 		INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
539 		spin_lock_init(&sma->sem_base[i].lock);
540 	}
541 
542 	sma->complex_count = 0;
543 	INIT_LIST_HEAD(&sma->pending_alter);
544 	INIT_LIST_HEAD(&sma->pending_const);
545 	INIT_LIST_HEAD(&sma->list_id);
546 	sma->sem_nsems = nsems;
547 	sma->sem_ctime = get_seconds();
548 
549 	id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
550 	if (id < 0) {
551 		ipc_rcu_putref(sma, sem_rcu_free);
552 		return id;
553 	}
554 	ns->used_sems += nsems;
555 
556 	sem_unlock(sma, -1);
557 	rcu_read_unlock();
558 
559 	return sma->sem_perm.id;
560 }
561 
562 
563 /*
564  * Called with sem_ids.rwsem and ipcp locked.
565  */
566 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
567 {
568 	struct sem_array *sma;
569 
570 	sma = container_of(ipcp, struct sem_array, sem_perm);
571 	return security_sem_associate(sma, semflg);
572 }
573 
574 /*
575  * Called with sem_ids.rwsem and ipcp locked.
576  */
577 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
578 				struct ipc_params *params)
579 {
580 	struct sem_array *sma;
581 
582 	sma = container_of(ipcp, struct sem_array, sem_perm);
583 	if (params->u.nsems > sma->sem_nsems)
584 		return -EINVAL;
585 
586 	return 0;
587 }
588 
589 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
590 {
591 	struct ipc_namespace *ns;
592 	static const struct ipc_ops sem_ops = {
593 		.getnew = newary,
594 		.associate = sem_security,
595 		.more_checks = sem_more_checks,
596 	};
597 	struct ipc_params sem_params;
598 
599 	ns = current->nsproxy->ipc_ns;
600 
601 	if (nsems < 0 || nsems > ns->sc_semmsl)
602 		return -EINVAL;
603 
604 	sem_params.key = key;
605 	sem_params.flg = semflg;
606 	sem_params.u.nsems = nsems;
607 
608 	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
609 }
610 
611 /**
612  * perform_atomic_semop - Perform (if possible) a semaphore operation
613  * @sma: semaphore array
614  * @q: struct sem_queue that describes the operation
615  *
616  * Returns 0 if the operation was possible.
617  * Returns 1 if the operation is impossible, the caller must sleep.
618  * Negative values are error codes.
619  */
620 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
621 {
622 	int result, sem_op, nsops, pid;
623 	struct sembuf *sop;
624 	struct sem *curr;
625 	struct sembuf *sops;
626 	struct sem_undo *un;
627 
628 	sops = q->sops;
629 	nsops = q->nsops;
630 	un = q->undo;
631 
632 	for (sop = sops; sop < sops + nsops; sop++) {
633 		curr = sma->sem_base + sop->sem_num;
634 		sem_op = sop->sem_op;
635 		result = curr->semval;
636 
637 		if (!sem_op && result)
638 			goto would_block;
639 
640 		result += sem_op;
641 		if (result < 0)
642 			goto would_block;
643 		if (result > SEMVMX)
644 			goto out_of_range;
645 
646 		if (sop->sem_flg & SEM_UNDO) {
647 			int undo = un->semadj[sop->sem_num] - sem_op;
648 			/* Exceeding the undo range is an error. */
649 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
650 				goto out_of_range;
651 			un->semadj[sop->sem_num] = undo;
652 		}
653 
654 		curr->semval = result;
655 	}
656 
657 	sop--;
658 	pid = q->pid;
659 	while (sop >= sops) {
660 		sma->sem_base[sop->sem_num].sempid = pid;
661 		sop--;
662 	}
663 
664 	return 0;
665 
666 out_of_range:
667 	result = -ERANGE;
668 	goto undo;
669 
670 would_block:
671 	q->blocking = sop;
672 
673 	if (sop->sem_flg & IPC_NOWAIT)
674 		result = -EAGAIN;
675 	else
676 		result = 1;
677 
678 undo:
679 	sop--;
680 	while (sop >= sops) {
681 		sem_op = sop->sem_op;
682 		sma->sem_base[sop->sem_num].semval -= sem_op;
683 		if (sop->sem_flg & SEM_UNDO)
684 			un->semadj[sop->sem_num] += sem_op;
685 		sop--;
686 	}
687 
688 	return result;
689 }
690 
691 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
692  * @q: queue entry that must be signaled
693  * @error: Error value for the signal
694  *
695  * Prepare the wake-up of the queue entry q.
696  */
697 static void wake_up_sem_queue_prepare(struct list_head *pt,
698 				struct sem_queue *q, int error)
699 {
700 	if (list_empty(pt)) {
701 		/*
702 		 * Hold preempt off so that we don't get preempted and have the
703 		 * wakee busy-wait until we're scheduled back on.
704 		 */
705 		preempt_disable();
706 	}
707 	q->status = IN_WAKEUP;
708 	q->pid = error;
709 
710 	list_add_tail(&q->list, pt);
711 }
712 
713 /**
714  * wake_up_sem_queue_do - do the actual wake-up
715  * @pt: list of tasks to be woken up
716  *
717  * Do the actual wake-up.
718  * The function is called without any locks held, thus the semaphore array
719  * could be destroyed already and the tasks can disappear as soon as the
720  * status is set to the actual return code.
721  */
722 static void wake_up_sem_queue_do(struct list_head *pt)
723 {
724 	struct sem_queue *q, *t;
725 	int did_something;
726 
727 	did_something = !list_empty(pt);
728 	list_for_each_entry_safe(q, t, pt, list) {
729 		wake_up_process(q->sleeper);
730 		/* q can disappear immediately after writing q->status. */
731 		smp_wmb();
732 		q->status = q->pid;
733 	}
734 	if (did_something)
735 		preempt_enable();
736 }
737 
738 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
739 {
740 	list_del(&q->list);
741 	if (q->nsops > 1)
742 		sma->complex_count--;
743 }
744 
745 /** check_restart(sma, q)
746  * @sma: semaphore array
747  * @q: the operation that just completed
748  *
749  * update_queue is O(N^2) when it restarts scanning the whole queue of
750  * waiting operations. Therefore this function checks if the restart is
751  * really necessary. It is called after a previously waiting operation
752  * modified the array.
753  * Note that wait-for-zero operations are handled without restart.
754  */
755 static int check_restart(struct sem_array *sma, struct sem_queue *q)
756 {
757 	/* pending complex alter operations are too difficult to analyse */
758 	if (!list_empty(&sma->pending_alter))
759 		return 1;
760 
761 	/* we were a sleeping complex operation. Too difficult */
762 	if (q->nsops > 1)
763 		return 1;
764 
765 	/* It is impossible that someone waits for the new value:
766 	 * - complex operations always restart.
767 	 * - wait-for-zero are handled seperately.
768 	 * - q is a previously sleeping simple operation that
769 	 *   altered the array. It must be a decrement, because
770 	 *   simple increments never sleep.
771 	 * - If there are older (higher priority) decrements
772 	 *   in the queue, then they have observed the original
773 	 *   semval value and couldn't proceed. The operation
774 	 *   decremented to value - thus they won't proceed either.
775 	 */
776 	return 0;
777 }
778 
779 /**
780  * wake_const_ops - wake up non-alter tasks
781  * @sma: semaphore array.
782  * @semnum: semaphore that was modified.
783  * @pt: list head for the tasks that must be woken up.
784  *
785  * wake_const_ops must be called after a semaphore in a semaphore array
786  * was set to 0. If complex const operations are pending, wake_const_ops must
787  * be called with semnum = -1, as well as with the number of each modified
788  * semaphore.
789  * The tasks that must be woken up are added to @pt. The return code
790  * is stored in q->pid.
791  * The function returns 1 if at least one operation was completed successfully.
792  */
793 static int wake_const_ops(struct sem_array *sma, int semnum,
794 				struct list_head *pt)
795 {
796 	struct sem_queue *q;
797 	struct list_head *walk;
798 	struct list_head *pending_list;
799 	int semop_completed = 0;
800 
801 	if (semnum == -1)
802 		pending_list = &sma->pending_const;
803 	else
804 		pending_list = &sma->sem_base[semnum].pending_const;
805 
806 	walk = pending_list->next;
807 	while (walk != pending_list) {
808 		int error;
809 
810 		q = container_of(walk, struct sem_queue, list);
811 		walk = walk->next;
812 
813 		error = perform_atomic_semop(sma, q);
814 
815 		if (error <= 0) {
816 			/* operation completed, remove from queue & wakeup */
817 
818 			unlink_queue(sma, q);
819 
820 			wake_up_sem_queue_prepare(pt, q, error);
821 			if (error == 0)
822 				semop_completed = 1;
823 		}
824 	}
825 	return semop_completed;
826 }
827 
828 /**
829  * do_smart_wakeup_zero - wakeup all wait for zero tasks
830  * @sma: semaphore array
831  * @sops: operations that were performed
832  * @nsops: number of operations
833  * @pt: list head of the tasks that must be woken up.
834  *
835  * Checks all required queue for wait-for-zero operations, based
836  * on the actual changes that were performed on the semaphore array.
837  * The function returns 1 if at least one operation was completed successfully.
838  */
839 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
840 					int nsops, struct list_head *pt)
841 {
842 	int i;
843 	int semop_completed = 0;
844 	int got_zero = 0;
845 
846 	/* first: the per-semaphore queues, if known */
847 	if (sops) {
848 		for (i = 0; i < nsops; i++) {
849 			int num = sops[i].sem_num;
850 
851 			if (sma->sem_base[num].semval == 0) {
852 				got_zero = 1;
853 				semop_completed |= wake_const_ops(sma, num, pt);
854 			}
855 		}
856 	} else {
857 		/*
858 		 * No sops means modified semaphores not known.
859 		 * Assume all were changed.
860 		 */
861 		for (i = 0; i < sma->sem_nsems; i++) {
862 			if (sma->sem_base[i].semval == 0) {
863 				got_zero = 1;
864 				semop_completed |= wake_const_ops(sma, i, pt);
865 			}
866 		}
867 	}
868 	/*
869 	 * If one of the modified semaphores got 0,
870 	 * then check the global queue, too.
871 	 */
872 	if (got_zero)
873 		semop_completed |= wake_const_ops(sma, -1, pt);
874 
875 	return semop_completed;
876 }
877 
878 
879 /**
880  * update_queue - look for tasks that can be completed.
881  * @sma: semaphore array.
882  * @semnum: semaphore that was modified.
883  * @pt: list head for the tasks that must be woken up.
884  *
885  * update_queue must be called after a semaphore in a semaphore array
886  * was modified. If multiple semaphores were modified, update_queue must
887  * be called with semnum = -1, as well as with the number of each modified
888  * semaphore.
889  * The tasks that must be woken up are added to @pt. The return code
890  * is stored in q->pid.
891  * The function internally checks if const operations can now succeed.
892  *
893  * The function return 1 if at least one semop was completed successfully.
894  */
895 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
896 {
897 	struct sem_queue *q;
898 	struct list_head *walk;
899 	struct list_head *pending_list;
900 	int semop_completed = 0;
901 
902 	if (semnum == -1)
903 		pending_list = &sma->pending_alter;
904 	else
905 		pending_list = &sma->sem_base[semnum].pending_alter;
906 
907 again:
908 	walk = pending_list->next;
909 	while (walk != pending_list) {
910 		int error, restart;
911 
912 		q = container_of(walk, struct sem_queue, list);
913 		walk = walk->next;
914 
915 		/* If we are scanning the single sop, per-semaphore list of
916 		 * one semaphore and that semaphore is 0, then it is not
917 		 * necessary to scan further: simple increments
918 		 * that affect only one entry succeed immediately and cannot
919 		 * be in the  per semaphore pending queue, and decrements
920 		 * cannot be successful if the value is already 0.
921 		 */
922 		if (semnum != -1 && sma->sem_base[semnum].semval == 0)
923 			break;
924 
925 		error = perform_atomic_semop(sma, q);
926 
927 		/* Does q->sleeper still need to sleep? */
928 		if (error > 0)
929 			continue;
930 
931 		unlink_queue(sma, q);
932 
933 		if (error) {
934 			restart = 0;
935 		} else {
936 			semop_completed = 1;
937 			do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
938 			restart = check_restart(sma, q);
939 		}
940 
941 		wake_up_sem_queue_prepare(pt, q, error);
942 		if (restart)
943 			goto again;
944 	}
945 	return semop_completed;
946 }
947 
948 /**
949  * set_semotime - set sem_otime
950  * @sma: semaphore array
951  * @sops: operations that modified the array, may be NULL
952  *
953  * sem_otime is replicated to avoid cache line trashing.
954  * This function sets one instance to the current time.
955  */
956 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
957 {
958 	if (sops == NULL) {
959 		sma->sem_base[0].sem_otime = get_seconds();
960 	} else {
961 		sma->sem_base[sops[0].sem_num].sem_otime =
962 							get_seconds();
963 	}
964 }
965 
966 /**
967  * do_smart_update - optimized update_queue
968  * @sma: semaphore array
969  * @sops: operations that were performed
970  * @nsops: number of operations
971  * @otime: force setting otime
972  * @pt: list head of the tasks that must be woken up.
973  *
974  * do_smart_update() does the required calls to update_queue and wakeup_zero,
975  * based on the actual changes that were performed on the semaphore array.
976  * Note that the function does not do the actual wake-up: the caller is
977  * responsible for calling wake_up_sem_queue_do(@pt).
978  * It is safe to perform this call after dropping all locks.
979  */
980 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
981 			int otime, struct list_head *pt)
982 {
983 	int i;
984 
985 	otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
986 
987 	if (!list_empty(&sma->pending_alter)) {
988 		/* semaphore array uses the global queue - just process it. */
989 		otime |= update_queue(sma, -1, pt);
990 	} else {
991 		if (!sops) {
992 			/*
993 			 * No sops, thus the modified semaphores are not
994 			 * known. Check all.
995 			 */
996 			for (i = 0; i < sma->sem_nsems; i++)
997 				otime |= update_queue(sma, i, pt);
998 		} else {
999 			/*
1000 			 * Check the semaphores that were increased:
1001 			 * - No complex ops, thus all sleeping ops are
1002 			 *   decrease.
1003 			 * - if we decreased the value, then any sleeping
1004 			 *   semaphore ops wont be able to run: If the
1005 			 *   previous value was too small, then the new
1006 			 *   value will be too small, too.
1007 			 */
1008 			for (i = 0; i < nsops; i++) {
1009 				if (sops[i].sem_op > 0) {
1010 					otime |= update_queue(sma,
1011 							sops[i].sem_num, pt);
1012 				}
1013 			}
1014 		}
1015 	}
1016 	if (otime)
1017 		set_semotime(sma, sops);
1018 }
1019 
1020 /*
1021  * check_qop: Test if a queued operation sleeps on the semaphore semnum
1022  */
1023 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1024 			bool count_zero)
1025 {
1026 	struct sembuf *sop = q->blocking;
1027 
1028 	/*
1029 	 * Linux always (since 0.99.10) reported a task as sleeping on all
1030 	 * semaphores. This violates SUS, therefore it was changed to the
1031 	 * standard compliant behavior.
1032 	 * Give the administrators a chance to notice that an application
1033 	 * might misbehave because it relies on the Linux behavior.
1034 	 */
1035 	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1036 			"The task %s (%d) triggered the difference, watch for misbehavior.\n",
1037 			current->comm, task_pid_nr(current));
1038 
1039 	if (sop->sem_num != semnum)
1040 		return 0;
1041 
1042 	if (count_zero && sop->sem_op == 0)
1043 		return 1;
1044 	if (!count_zero && sop->sem_op < 0)
1045 		return 1;
1046 
1047 	return 0;
1048 }
1049 
1050 /* The following counts are associated to each semaphore:
1051  *   semncnt        number of tasks waiting on semval being nonzero
1052  *   semzcnt        number of tasks waiting on semval being zero
1053  *
1054  * Per definition, a task waits only on the semaphore of the first semop
1055  * that cannot proceed, even if additional operation would block, too.
1056  */
1057 static int count_semcnt(struct sem_array *sma, ushort semnum,
1058 			bool count_zero)
1059 {
1060 	struct list_head *l;
1061 	struct sem_queue *q;
1062 	int semcnt;
1063 
1064 	semcnt = 0;
1065 	/* First: check the simple operations. They are easy to evaluate */
1066 	if (count_zero)
1067 		l = &sma->sem_base[semnum].pending_const;
1068 	else
1069 		l = &sma->sem_base[semnum].pending_alter;
1070 
1071 	list_for_each_entry(q, l, list) {
1072 		/* all task on a per-semaphore list sleep on exactly
1073 		 * that semaphore
1074 		 */
1075 		semcnt++;
1076 	}
1077 
1078 	/* Then: check the complex operations. */
1079 	list_for_each_entry(q, &sma->pending_alter, list) {
1080 		semcnt += check_qop(sma, semnum, q, count_zero);
1081 	}
1082 	if (count_zero) {
1083 		list_for_each_entry(q, &sma->pending_const, list) {
1084 			semcnt += check_qop(sma, semnum, q, count_zero);
1085 		}
1086 	}
1087 	return semcnt;
1088 }
1089 
1090 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1091  * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1092  * remains locked on exit.
1093  */
1094 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1095 {
1096 	struct sem_undo *un, *tu;
1097 	struct sem_queue *q, *tq;
1098 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1099 	struct list_head tasks;
1100 	int i;
1101 
1102 	/* Free the existing undo structures for this semaphore set.  */
1103 	ipc_assert_locked_object(&sma->sem_perm);
1104 	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1105 		list_del(&un->list_id);
1106 		spin_lock(&un->ulp->lock);
1107 		un->semid = -1;
1108 		list_del_rcu(&un->list_proc);
1109 		spin_unlock(&un->ulp->lock);
1110 		kfree_rcu(un, rcu);
1111 	}
1112 
1113 	/* Wake up all pending processes and let them fail with EIDRM. */
1114 	INIT_LIST_HEAD(&tasks);
1115 	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1116 		unlink_queue(sma, q);
1117 		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1118 	}
1119 
1120 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1121 		unlink_queue(sma, q);
1122 		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1123 	}
1124 	for (i = 0; i < sma->sem_nsems; i++) {
1125 		struct sem *sem = sma->sem_base + i;
1126 		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1127 			unlink_queue(sma, q);
1128 			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1129 		}
1130 		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1131 			unlink_queue(sma, q);
1132 			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1133 		}
1134 	}
1135 
1136 	/* Remove the semaphore set from the IDR */
1137 	sem_rmid(ns, sma);
1138 	sem_unlock(sma, -1);
1139 	rcu_read_unlock();
1140 
1141 	wake_up_sem_queue_do(&tasks);
1142 	ns->used_sems -= sma->sem_nsems;
1143 	ipc_rcu_putref(sma, sem_rcu_free);
1144 }
1145 
1146 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1147 {
1148 	switch (version) {
1149 	case IPC_64:
1150 		return copy_to_user(buf, in, sizeof(*in));
1151 	case IPC_OLD:
1152 	    {
1153 		struct semid_ds out;
1154 
1155 		memset(&out, 0, sizeof(out));
1156 
1157 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1158 
1159 		out.sem_otime	= in->sem_otime;
1160 		out.sem_ctime	= in->sem_ctime;
1161 		out.sem_nsems	= in->sem_nsems;
1162 
1163 		return copy_to_user(buf, &out, sizeof(out));
1164 	    }
1165 	default:
1166 		return -EINVAL;
1167 	}
1168 }
1169 
1170 static time_t get_semotime(struct sem_array *sma)
1171 {
1172 	int i;
1173 	time_t res;
1174 
1175 	res = sma->sem_base[0].sem_otime;
1176 	for (i = 1; i < sma->sem_nsems; i++) {
1177 		time_t to = sma->sem_base[i].sem_otime;
1178 
1179 		if (to > res)
1180 			res = to;
1181 	}
1182 	return res;
1183 }
1184 
1185 static int semctl_nolock(struct ipc_namespace *ns, int semid,
1186 			 int cmd, int version, void __user *p)
1187 {
1188 	int err;
1189 	struct sem_array *sma;
1190 
1191 	switch (cmd) {
1192 	case IPC_INFO:
1193 	case SEM_INFO:
1194 	{
1195 		struct seminfo seminfo;
1196 		int max_id;
1197 
1198 		err = security_sem_semctl(NULL, cmd);
1199 		if (err)
1200 			return err;
1201 
1202 		memset(&seminfo, 0, sizeof(seminfo));
1203 		seminfo.semmni = ns->sc_semmni;
1204 		seminfo.semmns = ns->sc_semmns;
1205 		seminfo.semmsl = ns->sc_semmsl;
1206 		seminfo.semopm = ns->sc_semopm;
1207 		seminfo.semvmx = SEMVMX;
1208 		seminfo.semmnu = SEMMNU;
1209 		seminfo.semmap = SEMMAP;
1210 		seminfo.semume = SEMUME;
1211 		down_read(&sem_ids(ns).rwsem);
1212 		if (cmd == SEM_INFO) {
1213 			seminfo.semusz = sem_ids(ns).in_use;
1214 			seminfo.semaem = ns->used_sems;
1215 		} else {
1216 			seminfo.semusz = SEMUSZ;
1217 			seminfo.semaem = SEMAEM;
1218 		}
1219 		max_id = ipc_get_maxid(&sem_ids(ns));
1220 		up_read(&sem_ids(ns).rwsem);
1221 		if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1222 			return -EFAULT;
1223 		return (max_id < 0) ? 0 : max_id;
1224 	}
1225 	case IPC_STAT:
1226 	case SEM_STAT:
1227 	{
1228 		struct semid64_ds tbuf;
1229 		int id = 0;
1230 
1231 		memset(&tbuf, 0, sizeof(tbuf));
1232 
1233 		rcu_read_lock();
1234 		if (cmd == SEM_STAT) {
1235 			sma = sem_obtain_object(ns, semid);
1236 			if (IS_ERR(sma)) {
1237 				err = PTR_ERR(sma);
1238 				goto out_unlock;
1239 			}
1240 			id = sma->sem_perm.id;
1241 		} else {
1242 			sma = sem_obtain_object_check(ns, semid);
1243 			if (IS_ERR(sma)) {
1244 				err = PTR_ERR(sma);
1245 				goto out_unlock;
1246 			}
1247 		}
1248 
1249 		err = -EACCES;
1250 		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1251 			goto out_unlock;
1252 
1253 		err = security_sem_semctl(sma, cmd);
1254 		if (err)
1255 			goto out_unlock;
1256 
1257 		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1258 		tbuf.sem_otime = get_semotime(sma);
1259 		tbuf.sem_ctime = sma->sem_ctime;
1260 		tbuf.sem_nsems = sma->sem_nsems;
1261 		rcu_read_unlock();
1262 		if (copy_semid_to_user(p, &tbuf, version))
1263 			return -EFAULT;
1264 		return id;
1265 	}
1266 	default:
1267 		return -EINVAL;
1268 	}
1269 out_unlock:
1270 	rcu_read_unlock();
1271 	return err;
1272 }
1273 
1274 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1275 		unsigned long arg)
1276 {
1277 	struct sem_undo *un;
1278 	struct sem_array *sma;
1279 	struct sem *curr;
1280 	int err;
1281 	struct list_head tasks;
1282 	int val;
1283 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1284 	/* big-endian 64bit */
1285 	val = arg >> 32;
1286 #else
1287 	/* 32bit or little-endian 64bit */
1288 	val = arg;
1289 #endif
1290 
1291 	if (val > SEMVMX || val < 0)
1292 		return -ERANGE;
1293 
1294 	INIT_LIST_HEAD(&tasks);
1295 
1296 	rcu_read_lock();
1297 	sma = sem_obtain_object_check(ns, semid);
1298 	if (IS_ERR(sma)) {
1299 		rcu_read_unlock();
1300 		return PTR_ERR(sma);
1301 	}
1302 
1303 	if (semnum < 0 || semnum >= sma->sem_nsems) {
1304 		rcu_read_unlock();
1305 		return -EINVAL;
1306 	}
1307 
1308 
1309 	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1310 		rcu_read_unlock();
1311 		return -EACCES;
1312 	}
1313 
1314 	err = security_sem_semctl(sma, SETVAL);
1315 	if (err) {
1316 		rcu_read_unlock();
1317 		return -EACCES;
1318 	}
1319 
1320 	sem_lock(sma, NULL, -1);
1321 
1322 	if (!ipc_valid_object(&sma->sem_perm)) {
1323 		sem_unlock(sma, -1);
1324 		rcu_read_unlock();
1325 		return -EIDRM;
1326 	}
1327 
1328 	curr = &sma->sem_base[semnum];
1329 
1330 	ipc_assert_locked_object(&sma->sem_perm);
1331 	list_for_each_entry(un, &sma->list_id, list_id)
1332 		un->semadj[semnum] = 0;
1333 
1334 	curr->semval = val;
1335 	curr->sempid = task_tgid_vnr(current);
1336 	sma->sem_ctime = get_seconds();
1337 	/* maybe some queued-up processes were waiting for this */
1338 	do_smart_update(sma, NULL, 0, 0, &tasks);
1339 	sem_unlock(sma, -1);
1340 	rcu_read_unlock();
1341 	wake_up_sem_queue_do(&tasks);
1342 	return 0;
1343 }
1344 
1345 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1346 		int cmd, void __user *p)
1347 {
1348 	struct sem_array *sma;
1349 	struct sem *curr;
1350 	int err, nsems;
1351 	ushort fast_sem_io[SEMMSL_FAST];
1352 	ushort *sem_io = fast_sem_io;
1353 	struct list_head tasks;
1354 
1355 	INIT_LIST_HEAD(&tasks);
1356 
1357 	rcu_read_lock();
1358 	sma = sem_obtain_object_check(ns, semid);
1359 	if (IS_ERR(sma)) {
1360 		rcu_read_unlock();
1361 		return PTR_ERR(sma);
1362 	}
1363 
1364 	nsems = sma->sem_nsems;
1365 
1366 	err = -EACCES;
1367 	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1368 		goto out_rcu_wakeup;
1369 
1370 	err = security_sem_semctl(sma, cmd);
1371 	if (err)
1372 		goto out_rcu_wakeup;
1373 
1374 	err = -EACCES;
1375 	switch (cmd) {
1376 	case GETALL:
1377 	{
1378 		ushort __user *array = p;
1379 		int i;
1380 
1381 		sem_lock(sma, NULL, -1);
1382 		if (!ipc_valid_object(&sma->sem_perm)) {
1383 			err = -EIDRM;
1384 			goto out_unlock;
1385 		}
1386 		if (nsems > SEMMSL_FAST) {
1387 			if (!ipc_rcu_getref(sma)) {
1388 				err = -EIDRM;
1389 				goto out_unlock;
1390 			}
1391 			sem_unlock(sma, -1);
1392 			rcu_read_unlock();
1393 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1394 			if (sem_io == NULL) {
1395 				ipc_rcu_putref(sma, ipc_rcu_free);
1396 				return -ENOMEM;
1397 			}
1398 
1399 			rcu_read_lock();
1400 			sem_lock_and_putref(sma);
1401 			if (!ipc_valid_object(&sma->sem_perm)) {
1402 				err = -EIDRM;
1403 				goto out_unlock;
1404 			}
1405 		}
1406 		for (i = 0; i < sma->sem_nsems; i++)
1407 			sem_io[i] = sma->sem_base[i].semval;
1408 		sem_unlock(sma, -1);
1409 		rcu_read_unlock();
1410 		err = 0;
1411 		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1412 			err = -EFAULT;
1413 		goto out_free;
1414 	}
1415 	case SETALL:
1416 	{
1417 		int i;
1418 		struct sem_undo *un;
1419 
1420 		if (!ipc_rcu_getref(sma)) {
1421 			err = -EIDRM;
1422 			goto out_rcu_wakeup;
1423 		}
1424 		rcu_read_unlock();
1425 
1426 		if (nsems > SEMMSL_FAST) {
1427 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1428 			if (sem_io == NULL) {
1429 				ipc_rcu_putref(sma, ipc_rcu_free);
1430 				return -ENOMEM;
1431 			}
1432 		}
1433 
1434 		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1435 			ipc_rcu_putref(sma, ipc_rcu_free);
1436 			err = -EFAULT;
1437 			goto out_free;
1438 		}
1439 
1440 		for (i = 0; i < nsems; i++) {
1441 			if (sem_io[i] > SEMVMX) {
1442 				ipc_rcu_putref(sma, ipc_rcu_free);
1443 				err = -ERANGE;
1444 				goto out_free;
1445 			}
1446 		}
1447 		rcu_read_lock();
1448 		sem_lock_and_putref(sma);
1449 		if (!ipc_valid_object(&sma->sem_perm)) {
1450 			err = -EIDRM;
1451 			goto out_unlock;
1452 		}
1453 
1454 		for (i = 0; i < nsems; i++) {
1455 			sma->sem_base[i].semval = sem_io[i];
1456 			sma->sem_base[i].sempid = task_tgid_vnr(current);
1457 		}
1458 
1459 		ipc_assert_locked_object(&sma->sem_perm);
1460 		list_for_each_entry(un, &sma->list_id, list_id) {
1461 			for (i = 0; i < nsems; i++)
1462 				un->semadj[i] = 0;
1463 		}
1464 		sma->sem_ctime = get_seconds();
1465 		/* maybe some queued-up processes were waiting for this */
1466 		do_smart_update(sma, NULL, 0, 0, &tasks);
1467 		err = 0;
1468 		goto out_unlock;
1469 	}
1470 	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1471 	}
1472 	err = -EINVAL;
1473 	if (semnum < 0 || semnum >= nsems)
1474 		goto out_rcu_wakeup;
1475 
1476 	sem_lock(sma, NULL, -1);
1477 	if (!ipc_valid_object(&sma->sem_perm)) {
1478 		err = -EIDRM;
1479 		goto out_unlock;
1480 	}
1481 	curr = &sma->sem_base[semnum];
1482 
1483 	switch (cmd) {
1484 	case GETVAL:
1485 		err = curr->semval;
1486 		goto out_unlock;
1487 	case GETPID:
1488 		err = curr->sempid;
1489 		goto out_unlock;
1490 	case GETNCNT:
1491 		err = count_semcnt(sma, semnum, 0);
1492 		goto out_unlock;
1493 	case GETZCNT:
1494 		err = count_semcnt(sma, semnum, 1);
1495 		goto out_unlock;
1496 	}
1497 
1498 out_unlock:
1499 	sem_unlock(sma, -1);
1500 out_rcu_wakeup:
1501 	rcu_read_unlock();
1502 	wake_up_sem_queue_do(&tasks);
1503 out_free:
1504 	if (sem_io != fast_sem_io)
1505 		ipc_free(sem_io);
1506 	return err;
1507 }
1508 
1509 static inline unsigned long
1510 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1511 {
1512 	switch (version) {
1513 	case IPC_64:
1514 		if (copy_from_user(out, buf, sizeof(*out)))
1515 			return -EFAULT;
1516 		return 0;
1517 	case IPC_OLD:
1518 	    {
1519 		struct semid_ds tbuf_old;
1520 
1521 		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1522 			return -EFAULT;
1523 
1524 		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1525 		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1526 		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1527 
1528 		return 0;
1529 	    }
1530 	default:
1531 		return -EINVAL;
1532 	}
1533 }
1534 
1535 /*
1536  * This function handles some semctl commands which require the rwsem
1537  * to be held in write mode.
1538  * NOTE: no locks must be held, the rwsem is taken inside this function.
1539  */
1540 static int semctl_down(struct ipc_namespace *ns, int semid,
1541 		       int cmd, int version, void __user *p)
1542 {
1543 	struct sem_array *sma;
1544 	int err;
1545 	struct semid64_ds semid64;
1546 	struct kern_ipc_perm *ipcp;
1547 
1548 	if (cmd == IPC_SET) {
1549 		if (copy_semid_from_user(&semid64, p, version))
1550 			return -EFAULT;
1551 	}
1552 
1553 	down_write(&sem_ids(ns).rwsem);
1554 	rcu_read_lock();
1555 
1556 	ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1557 				      &semid64.sem_perm, 0);
1558 	if (IS_ERR(ipcp)) {
1559 		err = PTR_ERR(ipcp);
1560 		goto out_unlock1;
1561 	}
1562 
1563 	sma = container_of(ipcp, struct sem_array, sem_perm);
1564 
1565 	err = security_sem_semctl(sma, cmd);
1566 	if (err)
1567 		goto out_unlock1;
1568 
1569 	switch (cmd) {
1570 	case IPC_RMID:
1571 		sem_lock(sma, NULL, -1);
1572 		/* freeary unlocks the ipc object and rcu */
1573 		freeary(ns, ipcp);
1574 		goto out_up;
1575 	case IPC_SET:
1576 		sem_lock(sma, NULL, -1);
1577 		err = ipc_update_perm(&semid64.sem_perm, ipcp);
1578 		if (err)
1579 			goto out_unlock0;
1580 		sma->sem_ctime = get_seconds();
1581 		break;
1582 	default:
1583 		err = -EINVAL;
1584 		goto out_unlock1;
1585 	}
1586 
1587 out_unlock0:
1588 	sem_unlock(sma, -1);
1589 out_unlock1:
1590 	rcu_read_unlock();
1591 out_up:
1592 	up_write(&sem_ids(ns).rwsem);
1593 	return err;
1594 }
1595 
1596 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1597 {
1598 	int version;
1599 	struct ipc_namespace *ns;
1600 	void __user *p = (void __user *)arg;
1601 
1602 	if (semid < 0)
1603 		return -EINVAL;
1604 
1605 	version = ipc_parse_version(&cmd);
1606 	ns = current->nsproxy->ipc_ns;
1607 
1608 	switch (cmd) {
1609 	case IPC_INFO:
1610 	case SEM_INFO:
1611 	case IPC_STAT:
1612 	case SEM_STAT:
1613 		return semctl_nolock(ns, semid, cmd, version, p);
1614 	case GETALL:
1615 	case GETVAL:
1616 	case GETPID:
1617 	case GETNCNT:
1618 	case GETZCNT:
1619 	case SETALL:
1620 		return semctl_main(ns, semid, semnum, cmd, p);
1621 	case SETVAL:
1622 		return semctl_setval(ns, semid, semnum, arg);
1623 	case IPC_RMID:
1624 	case IPC_SET:
1625 		return semctl_down(ns, semid, cmd, version, p);
1626 	default:
1627 		return -EINVAL;
1628 	}
1629 }
1630 
1631 /* If the task doesn't already have a undo_list, then allocate one
1632  * here.  We guarantee there is only one thread using this undo list,
1633  * and current is THE ONE
1634  *
1635  * If this allocation and assignment succeeds, but later
1636  * portions of this code fail, there is no need to free the sem_undo_list.
1637  * Just let it stay associated with the task, and it'll be freed later
1638  * at exit time.
1639  *
1640  * This can block, so callers must hold no locks.
1641  */
1642 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1643 {
1644 	struct sem_undo_list *undo_list;
1645 
1646 	undo_list = current->sysvsem.undo_list;
1647 	if (!undo_list) {
1648 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1649 		if (undo_list == NULL)
1650 			return -ENOMEM;
1651 		spin_lock_init(&undo_list->lock);
1652 		atomic_set(&undo_list->refcnt, 1);
1653 		INIT_LIST_HEAD(&undo_list->list_proc);
1654 
1655 		current->sysvsem.undo_list = undo_list;
1656 	}
1657 	*undo_listp = undo_list;
1658 	return 0;
1659 }
1660 
1661 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1662 {
1663 	struct sem_undo *un;
1664 
1665 	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1666 		if (un->semid == semid)
1667 			return un;
1668 	}
1669 	return NULL;
1670 }
1671 
1672 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1673 {
1674 	struct sem_undo *un;
1675 
1676 	assert_spin_locked(&ulp->lock);
1677 
1678 	un = __lookup_undo(ulp, semid);
1679 	if (un) {
1680 		list_del_rcu(&un->list_proc);
1681 		list_add_rcu(&un->list_proc, &ulp->list_proc);
1682 	}
1683 	return un;
1684 }
1685 
1686 /**
1687  * find_alloc_undo - lookup (and if not present create) undo array
1688  * @ns: namespace
1689  * @semid: semaphore array id
1690  *
1691  * The function looks up (and if not present creates) the undo structure.
1692  * The size of the undo structure depends on the size of the semaphore
1693  * array, thus the alloc path is not that straightforward.
1694  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1695  * performs a rcu_read_lock().
1696  */
1697 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1698 {
1699 	struct sem_array *sma;
1700 	struct sem_undo_list *ulp;
1701 	struct sem_undo *un, *new;
1702 	int nsems, error;
1703 
1704 	error = get_undo_list(&ulp);
1705 	if (error)
1706 		return ERR_PTR(error);
1707 
1708 	rcu_read_lock();
1709 	spin_lock(&ulp->lock);
1710 	un = lookup_undo(ulp, semid);
1711 	spin_unlock(&ulp->lock);
1712 	if (likely(un != NULL))
1713 		goto out;
1714 
1715 	/* no undo structure around - allocate one. */
1716 	/* step 1: figure out the size of the semaphore array */
1717 	sma = sem_obtain_object_check(ns, semid);
1718 	if (IS_ERR(sma)) {
1719 		rcu_read_unlock();
1720 		return ERR_CAST(sma);
1721 	}
1722 
1723 	nsems = sma->sem_nsems;
1724 	if (!ipc_rcu_getref(sma)) {
1725 		rcu_read_unlock();
1726 		un = ERR_PTR(-EIDRM);
1727 		goto out;
1728 	}
1729 	rcu_read_unlock();
1730 
1731 	/* step 2: allocate new undo structure */
1732 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1733 	if (!new) {
1734 		ipc_rcu_putref(sma, ipc_rcu_free);
1735 		return ERR_PTR(-ENOMEM);
1736 	}
1737 
1738 	/* step 3: Acquire the lock on semaphore array */
1739 	rcu_read_lock();
1740 	sem_lock_and_putref(sma);
1741 	if (!ipc_valid_object(&sma->sem_perm)) {
1742 		sem_unlock(sma, -1);
1743 		rcu_read_unlock();
1744 		kfree(new);
1745 		un = ERR_PTR(-EIDRM);
1746 		goto out;
1747 	}
1748 	spin_lock(&ulp->lock);
1749 
1750 	/*
1751 	 * step 4: check for races: did someone else allocate the undo struct?
1752 	 */
1753 	un = lookup_undo(ulp, semid);
1754 	if (un) {
1755 		kfree(new);
1756 		goto success;
1757 	}
1758 	/* step 5: initialize & link new undo structure */
1759 	new->semadj = (short *) &new[1];
1760 	new->ulp = ulp;
1761 	new->semid = semid;
1762 	assert_spin_locked(&ulp->lock);
1763 	list_add_rcu(&new->list_proc, &ulp->list_proc);
1764 	ipc_assert_locked_object(&sma->sem_perm);
1765 	list_add(&new->list_id, &sma->list_id);
1766 	un = new;
1767 
1768 success:
1769 	spin_unlock(&ulp->lock);
1770 	sem_unlock(sma, -1);
1771 out:
1772 	return un;
1773 }
1774 
1775 
1776 /**
1777  * get_queue_result - retrieve the result code from sem_queue
1778  * @q: Pointer to queue structure
1779  *
1780  * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1781  * q->status, then we must loop until the value is replaced with the final
1782  * value: This may happen if a task is woken up by an unrelated event (e.g.
1783  * signal) and in parallel the task is woken up by another task because it got
1784  * the requested semaphores.
1785  *
1786  * The function can be called with or without holding the semaphore spinlock.
1787  */
1788 static int get_queue_result(struct sem_queue *q)
1789 {
1790 	int error;
1791 
1792 	error = q->status;
1793 	while (unlikely(error == IN_WAKEUP)) {
1794 		cpu_relax();
1795 		error = q->status;
1796 	}
1797 
1798 	return error;
1799 }
1800 
1801 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1802 		unsigned, nsops, const struct timespec __user *, timeout)
1803 {
1804 	int error = -EINVAL;
1805 	struct sem_array *sma;
1806 	struct sembuf fast_sops[SEMOPM_FAST];
1807 	struct sembuf *sops = fast_sops, *sop;
1808 	struct sem_undo *un;
1809 	int undos = 0, alter = 0, max, locknum;
1810 	struct sem_queue queue;
1811 	unsigned long jiffies_left = 0;
1812 	struct ipc_namespace *ns;
1813 	struct list_head tasks;
1814 
1815 	ns = current->nsproxy->ipc_ns;
1816 
1817 	if (nsops < 1 || semid < 0)
1818 		return -EINVAL;
1819 	if (nsops > ns->sc_semopm)
1820 		return -E2BIG;
1821 	if (nsops > SEMOPM_FAST) {
1822 		sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1823 		if (sops == NULL)
1824 			return -ENOMEM;
1825 	}
1826 	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1827 		error =  -EFAULT;
1828 		goto out_free;
1829 	}
1830 	if (timeout) {
1831 		struct timespec _timeout;
1832 		if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1833 			error = -EFAULT;
1834 			goto out_free;
1835 		}
1836 		if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1837 			_timeout.tv_nsec >= 1000000000L) {
1838 			error = -EINVAL;
1839 			goto out_free;
1840 		}
1841 		jiffies_left = timespec_to_jiffies(&_timeout);
1842 	}
1843 	max = 0;
1844 	for (sop = sops; sop < sops + nsops; sop++) {
1845 		if (sop->sem_num >= max)
1846 			max = sop->sem_num;
1847 		if (sop->sem_flg & SEM_UNDO)
1848 			undos = 1;
1849 		if (sop->sem_op != 0)
1850 			alter = 1;
1851 	}
1852 
1853 	INIT_LIST_HEAD(&tasks);
1854 
1855 	if (undos) {
1856 		/* On success, find_alloc_undo takes the rcu_read_lock */
1857 		un = find_alloc_undo(ns, semid);
1858 		if (IS_ERR(un)) {
1859 			error = PTR_ERR(un);
1860 			goto out_free;
1861 		}
1862 	} else {
1863 		un = NULL;
1864 		rcu_read_lock();
1865 	}
1866 
1867 	sma = sem_obtain_object_check(ns, semid);
1868 	if (IS_ERR(sma)) {
1869 		rcu_read_unlock();
1870 		error = PTR_ERR(sma);
1871 		goto out_free;
1872 	}
1873 
1874 	error = -EFBIG;
1875 	if (max >= sma->sem_nsems)
1876 		goto out_rcu_wakeup;
1877 
1878 	error = -EACCES;
1879 	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1880 		goto out_rcu_wakeup;
1881 
1882 	error = security_sem_semop(sma, sops, nsops, alter);
1883 	if (error)
1884 		goto out_rcu_wakeup;
1885 
1886 	error = -EIDRM;
1887 	locknum = sem_lock(sma, sops, nsops);
1888 	/*
1889 	 * We eventually might perform the following check in a lockless
1890 	 * fashion, considering ipc_valid_object() locking constraints.
1891 	 * If nsops == 1 and there is no contention for sem_perm.lock, then
1892 	 * only a per-semaphore lock is held and it's OK to proceed with the
1893 	 * check below. More details on the fine grained locking scheme
1894 	 * entangled here and why it's RMID race safe on comments at sem_lock()
1895 	 */
1896 	if (!ipc_valid_object(&sma->sem_perm))
1897 		goto out_unlock_free;
1898 	/*
1899 	 * semid identifiers are not unique - find_alloc_undo may have
1900 	 * allocated an undo structure, it was invalidated by an RMID
1901 	 * and now a new array with received the same id. Check and fail.
1902 	 * This case can be detected checking un->semid. The existence of
1903 	 * "un" itself is guaranteed by rcu.
1904 	 */
1905 	if (un && un->semid == -1)
1906 		goto out_unlock_free;
1907 
1908 	queue.sops = sops;
1909 	queue.nsops = nsops;
1910 	queue.undo = un;
1911 	queue.pid = task_tgid_vnr(current);
1912 	queue.alter = alter;
1913 
1914 	error = perform_atomic_semop(sma, &queue);
1915 	if (error == 0) {
1916 		/* If the operation was successful, then do
1917 		 * the required updates.
1918 		 */
1919 		if (alter)
1920 			do_smart_update(sma, sops, nsops, 1, &tasks);
1921 		else
1922 			set_semotime(sma, sops);
1923 	}
1924 	if (error <= 0)
1925 		goto out_unlock_free;
1926 
1927 	/* We need to sleep on this operation, so we put the current
1928 	 * task into the pending queue and go to sleep.
1929 	 */
1930 
1931 	if (nsops == 1) {
1932 		struct sem *curr;
1933 		curr = &sma->sem_base[sops->sem_num];
1934 
1935 		if (alter) {
1936 			if (sma->complex_count) {
1937 				list_add_tail(&queue.list,
1938 						&sma->pending_alter);
1939 			} else {
1940 
1941 				list_add_tail(&queue.list,
1942 						&curr->pending_alter);
1943 			}
1944 		} else {
1945 			list_add_tail(&queue.list, &curr->pending_const);
1946 		}
1947 	} else {
1948 		if (!sma->complex_count)
1949 			merge_queues(sma);
1950 
1951 		if (alter)
1952 			list_add_tail(&queue.list, &sma->pending_alter);
1953 		else
1954 			list_add_tail(&queue.list, &sma->pending_const);
1955 
1956 		sma->complex_count++;
1957 	}
1958 
1959 	queue.status = -EINTR;
1960 	queue.sleeper = current;
1961 
1962 sleep_again:
1963 	__set_current_state(TASK_INTERRUPTIBLE);
1964 	sem_unlock(sma, locknum);
1965 	rcu_read_unlock();
1966 
1967 	if (timeout)
1968 		jiffies_left = schedule_timeout(jiffies_left);
1969 	else
1970 		schedule();
1971 
1972 	error = get_queue_result(&queue);
1973 
1974 	if (error != -EINTR) {
1975 		/* fast path: update_queue already obtained all requested
1976 		 * resources.
1977 		 * Perform a smp_mb(): User space could assume that semop()
1978 		 * is a memory barrier: Without the mb(), the cpu could
1979 		 * speculatively read in user space stale data that was
1980 		 * overwritten by the previous owner of the semaphore.
1981 		 */
1982 		smp_mb();
1983 
1984 		goto out_free;
1985 	}
1986 
1987 	rcu_read_lock();
1988 	sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
1989 
1990 	/*
1991 	 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1992 	 */
1993 	error = get_queue_result(&queue);
1994 
1995 	/*
1996 	 * Array removed? If yes, leave without sem_unlock().
1997 	 */
1998 	if (IS_ERR(sma)) {
1999 		rcu_read_unlock();
2000 		goto out_free;
2001 	}
2002 
2003 
2004 	/*
2005 	 * If queue.status != -EINTR we are woken up by another process.
2006 	 * Leave without unlink_queue(), but with sem_unlock().
2007 	 */
2008 	if (error != -EINTR)
2009 		goto out_unlock_free;
2010 
2011 	/*
2012 	 * If an interrupt occurred we have to clean up the queue
2013 	 */
2014 	if (timeout && jiffies_left == 0)
2015 		error = -EAGAIN;
2016 
2017 	/*
2018 	 * If the wakeup was spurious, just retry
2019 	 */
2020 	if (error == -EINTR && !signal_pending(current))
2021 		goto sleep_again;
2022 
2023 	unlink_queue(sma, &queue);
2024 
2025 out_unlock_free:
2026 	sem_unlock(sma, locknum);
2027 out_rcu_wakeup:
2028 	rcu_read_unlock();
2029 	wake_up_sem_queue_do(&tasks);
2030 out_free:
2031 	if (sops != fast_sops)
2032 		kfree(sops);
2033 	return error;
2034 }
2035 
2036 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2037 		unsigned, nsops)
2038 {
2039 	return sys_semtimedop(semid, tsops, nsops, NULL);
2040 }
2041 
2042 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2043  * parent and child tasks.
2044  */
2045 
2046 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2047 {
2048 	struct sem_undo_list *undo_list;
2049 	int error;
2050 
2051 	if (clone_flags & CLONE_SYSVSEM) {
2052 		error = get_undo_list(&undo_list);
2053 		if (error)
2054 			return error;
2055 		atomic_inc(&undo_list->refcnt);
2056 		tsk->sysvsem.undo_list = undo_list;
2057 	} else
2058 		tsk->sysvsem.undo_list = NULL;
2059 
2060 	return 0;
2061 }
2062 
2063 /*
2064  * add semadj values to semaphores, free undo structures.
2065  * undo structures are not freed when semaphore arrays are destroyed
2066  * so some of them may be out of date.
2067  * IMPLEMENTATION NOTE: There is some confusion over whether the
2068  * set of adjustments that needs to be done should be done in an atomic
2069  * manner or not. That is, if we are attempting to decrement the semval
2070  * should we queue up and wait until we can do so legally?
2071  * The original implementation attempted to do this (queue and wait).
2072  * The current implementation does not do so. The POSIX standard
2073  * and SVID should be consulted to determine what behavior is mandated.
2074  */
2075 void exit_sem(struct task_struct *tsk)
2076 {
2077 	struct sem_undo_list *ulp;
2078 
2079 	ulp = tsk->sysvsem.undo_list;
2080 	if (!ulp)
2081 		return;
2082 	tsk->sysvsem.undo_list = NULL;
2083 
2084 	if (!atomic_dec_and_test(&ulp->refcnt))
2085 		return;
2086 
2087 	for (;;) {
2088 		struct sem_array *sma;
2089 		struct sem_undo *un;
2090 		struct list_head tasks;
2091 		int semid, i;
2092 
2093 		rcu_read_lock();
2094 		un = list_entry_rcu(ulp->list_proc.next,
2095 				    struct sem_undo, list_proc);
2096 		if (&un->list_proc == &ulp->list_proc) {
2097 			/*
2098 			 * We must wait for freeary() before freeing this ulp,
2099 			 * in case we raced with last sem_undo. There is a small
2100 			 * possibility where we exit while freeary() didn't
2101 			 * finish unlocking sem_undo_list.
2102 			 */
2103 			spin_unlock_wait(&ulp->lock);
2104 			rcu_read_unlock();
2105 			break;
2106 		}
2107 		spin_lock(&ulp->lock);
2108 		semid = un->semid;
2109 		spin_unlock(&ulp->lock);
2110 
2111 		/* exit_sem raced with IPC_RMID, nothing to do */
2112 		if (semid == -1) {
2113 			rcu_read_unlock();
2114 			continue;
2115 		}
2116 
2117 		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2118 		/* exit_sem raced with IPC_RMID, nothing to do */
2119 		if (IS_ERR(sma)) {
2120 			rcu_read_unlock();
2121 			continue;
2122 		}
2123 
2124 		sem_lock(sma, NULL, -1);
2125 		/* exit_sem raced with IPC_RMID, nothing to do */
2126 		if (!ipc_valid_object(&sma->sem_perm)) {
2127 			sem_unlock(sma, -1);
2128 			rcu_read_unlock();
2129 			continue;
2130 		}
2131 		un = __lookup_undo(ulp, semid);
2132 		if (un == NULL) {
2133 			/* exit_sem raced with IPC_RMID+semget() that created
2134 			 * exactly the same semid. Nothing to do.
2135 			 */
2136 			sem_unlock(sma, -1);
2137 			rcu_read_unlock();
2138 			continue;
2139 		}
2140 
2141 		/* remove un from the linked lists */
2142 		ipc_assert_locked_object(&sma->sem_perm);
2143 		list_del(&un->list_id);
2144 
2145 		/* we are the last process using this ulp, acquiring ulp->lock
2146 		 * isn't required. Besides that, we are also protected against
2147 		 * IPC_RMID as we hold sma->sem_perm lock now
2148 		 */
2149 		list_del_rcu(&un->list_proc);
2150 
2151 		/* perform adjustments registered in un */
2152 		for (i = 0; i < sma->sem_nsems; i++) {
2153 			struct sem *semaphore = &sma->sem_base[i];
2154 			if (un->semadj[i]) {
2155 				semaphore->semval += un->semadj[i];
2156 				/*
2157 				 * Range checks of the new semaphore value,
2158 				 * not defined by sus:
2159 				 * - Some unices ignore the undo entirely
2160 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2161 				 * - some cap the value (e.g. FreeBSD caps
2162 				 *   at 0, but doesn't enforce SEMVMX)
2163 				 *
2164 				 * Linux caps the semaphore value, both at 0
2165 				 * and at SEMVMX.
2166 				 *
2167 				 *	Manfred <manfred@colorfullife.com>
2168 				 */
2169 				if (semaphore->semval < 0)
2170 					semaphore->semval = 0;
2171 				if (semaphore->semval > SEMVMX)
2172 					semaphore->semval = SEMVMX;
2173 				semaphore->sempid = task_tgid_vnr(current);
2174 			}
2175 		}
2176 		/* maybe some queued-up processes were waiting for this */
2177 		INIT_LIST_HEAD(&tasks);
2178 		do_smart_update(sma, NULL, 0, 1, &tasks);
2179 		sem_unlock(sma, -1);
2180 		rcu_read_unlock();
2181 		wake_up_sem_queue_do(&tasks);
2182 
2183 		kfree_rcu(un, rcu);
2184 	}
2185 	kfree(ulp);
2186 }
2187 
2188 #ifdef CONFIG_PROC_FS
2189 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2190 {
2191 	struct user_namespace *user_ns = seq_user_ns(s);
2192 	struct sem_array *sma = it;
2193 	time_t sem_otime;
2194 
2195 	/*
2196 	 * The proc interface isn't aware of sem_lock(), it calls
2197 	 * ipc_lock_object() directly (in sysvipc_find_ipc).
2198 	 * In order to stay compatible with sem_lock(), we must wait until
2199 	 * all simple semop() calls have left their critical regions.
2200 	 */
2201 	sem_wait_array(sma);
2202 
2203 	sem_otime = get_semotime(sma);
2204 
2205 	seq_printf(s,
2206 		   "%10d %10d  %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2207 		   sma->sem_perm.key,
2208 		   sma->sem_perm.id,
2209 		   sma->sem_perm.mode,
2210 		   sma->sem_nsems,
2211 		   from_kuid_munged(user_ns, sma->sem_perm.uid),
2212 		   from_kgid_munged(user_ns, sma->sem_perm.gid),
2213 		   from_kuid_munged(user_ns, sma->sem_perm.cuid),
2214 		   from_kgid_munged(user_ns, sma->sem_perm.cgid),
2215 		   sem_otime,
2216 		   sma->sem_ctime);
2217 
2218 	return 0;
2219 }
2220 #endif
2221