1 /* 2 * linux/ipc/sem.c 3 * Copyright (C) 1992 Krishna Balasubramanian 4 * Copyright (C) 1995 Eric Schenk, Bruno Haible 5 * 6 * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995): 7 * This code underwent a massive rewrite in order to solve some problems 8 * with the original code. In particular the original code failed to 9 * wake up processes that were waiting for semval to go to 0 if the 10 * value went to 0 and was then incremented rapidly enough. In solving 11 * this problem I have also modified the implementation so that it 12 * processes pending operations in a FIFO manner, thus give a guarantee 13 * that processes waiting for a lock on the semaphore won't starve 14 * unless another locking process fails to unlock. 15 * In addition the following two changes in behavior have been introduced: 16 * - The original implementation of semop returned the value 17 * last semaphore element examined on success. This does not 18 * match the manual page specifications, and effectively 19 * allows the user to read the semaphore even if they do not 20 * have read permissions. The implementation now returns 0 21 * on success as stated in the manual page. 22 * - There is some confusion over whether the set of undo adjustments 23 * to be performed at exit should be done in an atomic manner. 24 * That is, if we are attempting to decrement the semval should we queue 25 * up and wait until we can do so legally? 26 * The original implementation attempted to do this. 27 * The current implementation does not do so. This is because I don't 28 * think it is the right thing (TM) to do, and because I couldn't 29 * see a clean way to get the old behavior with the new design. 30 * The POSIX standard and SVID should be consulted to determine 31 * what behavior is mandated. 32 * 33 * Further notes on refinement (Christoph Rohland, December 1998): 34 * - The POSIX standard says, that the undo adjustments simply should 35 * redo. So the current implementation is o.K. 36 * - The previous code had two flaws: 37 * 1) It actively gave the semaphore to the next waiting process 38 * sleeping on the semaphore. Since this process did not have the 39 * cpu this led to many unnecessary context switches and bad 40 * performance. Now we only check which process should be able to 41 * get the semaphore and if this process wants to reduce some 42 * semaphore value we simply wake it up without doing the 43 * operation. So it has to try to get it later. Thus e.g. the 44 * running process may reacquire the semaphore during the current 45 * time slice. If it only waits for zero or increases the semaphore, 46 * we do the operation in advance and wake it up. 47 * 2) It did not wake up all zero waiting processes. We try to do 48 * better but only get the semops right which only wait for zero or 49 * increase. If there are decrement operations in the operations 50 * array we do the same as before. 51 * 52 * With the incarnation of O(1) scheduler, it becomes unnecessary to perform 53 * check/retry algorithm for waking up blocked processes as the new scheduler 54 * is better at handling thread switch than the old one. 55 * 56 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> 57 * 58 * SMP-threaded, sysctl's added 59 * (c) 1999 Manfred Spraul <manfred@colorfullife.com> 60 * Enforced range limit on SEM_UNDO 61 * (c) 2001 Red Hat Inc <alan@redhat.com> 62 * Lockless wakeup 63 * (c) 2003 Manfred Spraul <manfred@colorfullife.com> 64 * 65 * support for audit of ipc object properties and permission changes 66 * Dustin Kirkland <dustin.kirkland@us.ibm.com> 67 * 68 * namespaces support 69 * OpenVZ, SWsoft Inc. 70 * Pavel Emelianov <xemul@openvz.org> 71 */ 72 73 #include <linux/slab.h> 74 #include <linux/spinlock.h> 75 #include <linux/init.h> 76 #include <linux/proc_fs.h> 77 #include <linux/time.h> 78 #include <linux/security.h> 79 #include <linux/syscalls.h> 80 #include <linux/audit.h> 81 #include <linux/capability.h> 82 #include <linux/seq_file.h> 83 #include <linux/rwsem.h> 84 #include <linux/nsproxy.h> 85 #include <linux/ipc_namespace.h> 86 87 #include <asm/uaccess.h> 88 #include "util.h" 89 90 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) 91 92 #define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm) 93 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid) 94 95 static int newary(struct ipc_namespace *, struct ipc_params *); 96 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); 97 #ifdef CONFIG_PROC_FS 98 static int sysvipc_sem_proc_show(struct seq_file *s, void *it); 99 #endif 100 101 #define SEMMSL_FAST 256 /* 512 bytes on stack */ 102 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ 103 104 /* 105 * linked list protection: 106 * sem_undo.id_next, 107 * sem_array.sem_pending{,last}, 108 * sem_array.sem_undo: sem_lock() for read/write 109 * sem_undo.proc_next: only "current" is allowed to read/write that field. 110 * 111 */ 112 113 #define sc_semmsl sem_ctls[0] 114 #define sc_semmns sem_ctls[1] 115 #define sc_semopm sem_ctls[2] 116 #define sc_semmni sem_ctls[3] 117 118 void sem_init_ns(struct ipc_namespace *ns) 119 { 120 ns->sc_semmsl = SEMMSL; 121 ns->sc_semmns = SEMMNS; 122 ns->sc_semopm = SEMOPM; 123 ns->sc_semmni = SEMMNI; 124 ns->used_sems = 0; 125 ipc_init_ids(&ns->ids[IPC_SEM_IDS]); 126 } 127 128 #ifdef CONFIG_IPC_NS 129 void sem_exit_ns(struct ipc_namespace *ns) 130 { 131 free_ipcs(ns, &sem_ids(ns), freeary); 132 } 133 #endif 134 135 void __init sem_init (void) 136 { 137 sem_init_ns(&init_ipc_ns); 138 ipc_init_proc_interface("sysvipc/sem", 139 " key semid perms nsems uid gid cuid cgid otime ctime\n", 140 IPC_SEM_IDS, sysvipc_sem_proc_show); 141 } 142 143 /* 144 * sem_lock_(check_) routines are called in the paths where the rw_mutex 145 * is not held. 146 */ 147 static inline struct sem_array *sem_lock(struct ipc_namespace *ns, int id) 148 { 149 struct kern_ipc_perm *ipcp = ipc_lock(&sem_ids(ns), id); 150 151 if (IS_ERR(ipcp)) 152 return (struct sem_array *)ipcp; 153 154 return container_of(ipcp, struct sem_array, sem_perm); 155 } 156 157 static inline struct sem_array *sem_lock_check(struct ipc_namespace *ns, 158 int id) 159 { 160 struct kern_ipc_perm *ipcp = ipc_lock_check(&sem_ids(ns), id); 161 162 if (IS_ERR(ipcp)) 163 return (struct sem_array *)ipcp; 164 165 return container_of(ipcp, struct sem_array, sem_perm); 166 } 167 168 static inline void sem_lock_and_putref(struct sem_array *sma) 169 { 170 ipc_lock_by_ptr(&sma->sem_perm); 171 ipc_rcu_putref(sma); 172 } 173 174 static inline void sem_getref_and_unlock(struct sem_array *sma) 175 { 176 ipc_rcu_getref(sma); 177 ipc_unlock(&(sma)->sem_perm); 178 } 179 180 static inline void sem_putref(struct sem_array *sma) 181 { 182 ipc_lock_by_ptr(&sma->sem_perm); 183 ipc_rcu_putref(sma); 184 ipc_unlock(&(sma)->sem_perm); 185 } 186 187 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) 188 { 189 ipc_rmid(&sem_ids(ns), &s->sem_perm); 190 } 191 192 /* 193 * Lockless wakeup algorithm: 194 * Without the check/retry algorithm a lockless wakeup is possible: 195 * - queue.status is initialized to -EINTR before blocking. 196 * - wakeup is performed by 197 * * unlinking the queue entry from sma->sem_pending 198 * * setting queue.status to IN_WAKEUP 199 * This is the notification for the blocked thread that a 200 * result value is imminent. 201 * * call wake_up_process 202 * * set queue.status to the final value. 203 * - the previously blocked thread checks queue.status: 204 * * if it's IN_WAKEUP, then it must wait until the value changes 205 * * if it's not -EINTR, then the operation was completed by 206 * update_queue. semtimedop can return queue.status without 207 * performing any operation on the sem array. 208 * * otherwise it must acquire the spinlock and check what's up. 209 * 210 * The two-stage algorithm is necessary to protect against the following 211 * races: 212 * - if queue.status is set after wake_up_process, then the woken up idle 213 * thread could race forward and try (and fail) to acquire sma->lock 214 * before update_queue had a chance to set queue.status 215 * - if queue.status is written before wake_up_process and if the 216 * blocked process is woken up by a signal between writing 217 * queue.status and the wake_up_process, then the woken up 218 * process could return from semtimedop and die by calling 219 * sys_exit before wake_up_process is called. Then wake_up_process 220 * will oops, because the task structure is already invalid. 221 * (yes, this happened on s390 with sysv msg). 222 * 223 */ 224 #define IN_WAKEUP 1 225 226 /** 227 * newary - Create a new semaphore set 228 * @ns: namespace 229 * @params: ptr to the structure that contains key, semflg and nsems 230 * 231 * Called with sem_ids.rw_mutex held (as a writer) 232 */ 233 234 static int newary(struct ipc_namespace *ns, struct ipc_params *params) 235 { 236 int id; 237 int retval; 238 struct sem_array *sma; 239 int size; 240 key_t key = params->key; 241 int nsems = params->u.nsems; 242 int semflg = params->flg; 243 244 if (!nsems) 245 return -EINVAL; 246 if (ns->used_sems + nsems > ns->sc_semmns) 247 return -ENOSPC; 248 249 size = sizeof (*sma) + nsems * sizeof (struct sem); 250 sma = ipc_rcu_alloc(size); 251 if (!sma) { 252 return -ENOMEM; 253 } 254 memset (sma, 0, size); 255 256 sma->sem_perm.mode = (semflg & S_IRWXUGO); 257 sma->sem_perm.key = key; 258 259 sma->sem_perm.security = NULL; 260 retval = security_sem_alloc(sma); 261 if (retval) { 262 ipc_rcu_putref(sma); 263 return retval; 264 } 265 266 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); 267 if (id < 0) { 268 security_sem_free(sma); 269 ipc_rcu_putref(sma); 270 return id; 271 } 272 ns->used_sems += nsems; 273 274 sma->sem_base = (struct sem *) &sma[1]; 275 /* sma->sem_pending = NULL; */ 276 sma->sem_pending_last = &sma->sem_pending; 277 /* sma->undo = NULL; */ 278 sma->sem_nsems = nsems; 279 sma->sem_ctime = get_seconds(); 280 sem_unlock(sma); 281 282 return sma->sem_perm.id; 283 } 284 285 286 /* 287 * Called with sem_ids.rw_mutex and ipcp locked. 288 */ 289 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg) 290 { 291 struct sem_array *sma; 292 293 sma = container_of(ipcp, struct sem_array, sem_perm); 294 return security_sem_associate(sma, semflg); 295 } 296 297 /* 298 * Called with sem_ids.rw_mutex and ipcp locked. 299 */ 300 static inline int sem_more_checks(struct kern_ipc_perm *ipcp, 301 struct ipc_params *params) 302 { 303 struct sem_array *sma; 304 305 sma = container_of(ipcp, struct sem_array, sem_perm); 306 if (params->u.nsems > sma->sem_nsems) 307 return -EINVAL; 308 309 return 0; 310 } 311 312 asmlinkage long sys_semget(key_t key, int nsems, int semflg) 313 { 314 struct ipc_namespace *ns; 315 struct ipc_ops sem_ops; 316 struct ipc_params sem_params; 317 318 ns = current->nsproxy->ipc_ns; 319 320 if (nsems < 0 || nsems > ns->sc_semmsl) 321 return -EINVAL; 322 323 sem_ops.getnew = newary; 324 sem_ops.associate = sem_security; 325 sem_ops.more_checks = sem_more_checks; 326 327 sem_params.key = key; 328 sem_params.flg = semflg; 329 sem_params.u.nsems = nsems; 330 331 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); 332 } 333 334 /* Manage the doubly linked list sma->sem_pending as a FIFO: 335 * insert new queue elements at the tail sma->sem_pending_last. 336 */ 337 static inline void append_to_queue (struct sem_array * sma, 338 struct sem_queue * q) 339 { 340 *(q->prev = sma->sem_pending_last) = q; 341 *(sma->sem_pending_last = &q->next) = NULL; 342 } 343 344 static inline void prepend_to_queue (struct sem_array * sma, 345 struct sem_queue * q) 346 { 347 q->next = sma->sem_pending; 348 *(q->prev = &sma->sem_pending) = q; 349 if (q->next) 350 q->next->prev = &q->next; 351 else /* sma->sem_pending_last == &sma->sem_pending */ 352 sma->sem_pending_last = &q->next; 353 } 354 355 static inline void remove_from_queue (struct sem_array * sma, 356 struct sem_queue * q) 357 { 358 *(q->prev) = q->next; 359 if (q->next) 360 q->next->prev = q->prev; 361 else /* sma->sem_pending_last == &q->next */ 362 sma->sem_pending_last = q->prev; 363 q->prev = NULL; /* mark as removed */ 364 } 365 366 /* 367 * Determine whether a sequence of semaphore operations would succeed 368 * all at once. Return 0 if yes, 1 if need to sleep, else return error code. 369 */ 370 371 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops, 372 int nsops, struct sem_undo *un, int pid) 373 { 374 int result, sem_op; 375 struct sembuf *sop; 376 struct sem * curr; 377 378 for (sop = sops; sop < sops + nsops; sop++) { 379 curr = sma->sem_base + sop->sem_num; 380 sem_op = sop->sem_op; 381 result = curr->semval; 382 383 if (!sem_op && result) 384 goto would_block; 385 386 result += sem_op; 387 if (result < 0) 388 goto would_block; 389 if (result > SEMVMX) 390 goto out_of_range; 391 if (sop->sem_flg & SEM_UNDO) { 392 int undo = un->semadj[sop->sem_num] - sem_op; 393 /* 394 * Exceeding the undo range is an error. 395 */ 396 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 397 goto out_of_range; 398 } 399 curr->semval = result; 400 } 401 402 sop--; 403 while (sop >= sops) { 404 sma->sem_base[sop->sem_num].sempid = pid; 405 if (sop->sem_flg & SEM_UNDO) 406 un->semadj[sop->sem_num] -= sop->sem_op; 407 sop--; 408 } 409 410 sma->sem_otime = get_seconds(); 411 return 0; 412 413 out_of_range: 414 result = -ERANGE; 415 goto undo; 416 417 would_block: 418 if (sop->sem_flg & IPC_NOWAIT) 419 result = -EAGAIN; 420 else 421 result = 1; 422 423 undo: 424 sop--; 425 while (sop >= sops) { 426 sma->sem_base[sop->sem_num].semval -= sop->sem_op; 427 sop--; 428 } 429 430 return result; 431 } 432 433 /* Go through the pending queue for the indicated semaphore 434 * looking for tasks that can be completed. 435 */ 436 static void update_queue (struct sem_array * sma) 437 { 438 int error; 439 struct sem_queue * q; 440 441 q = sma->sem_pending; 442 while(q) { 443 error = try_atomic_semop(sma, q->sops, q->nsops, 444 q->undo, q->pid); 445 446 /* Does q->sleeper still need to sleep? */ 447 if (error <= 0) { 448 struct sem_queue *n; 449 remove_from_queue(sma,q); 450 q->status = IN_WAKEUP; 451 /* 452 * Continue scanning. The next operation 453 * that must be checked depends on the type of the 454 * completed operation: 455 * - if the operation modified the array, then 456 * restart from the head of the queue and 457 * check for threads that might be waiting 458 * for semaphore values to become 0. 459 * - if the operation didn't modify the array, 460 * then just continue. 461 */ 462 if (q->alter) 463 n = sma->sem_pending; 464 else 465 n = q->next; 466 wake_up_process(q->sleeper); 467 /* hands-off: q will disappear immediately after 468 * writing q->status. 469 */ 470 smp_wmb(); 471 q->status = error; 472 q = n; 473 } else { 474 q = q->next; 475 } 476 } 477 } 478 479 /* The following counts are associated to each semaphore: 480 * semncnt number of tasks waiting on semval being nonzero 481 * semzcnt number of tasks waiting on semval being zero 482 * This model assumes that a task waits on exactly one semaphore. 483 * Since semaphore operations are to be performed atomically, tasks actually 484 * wait on a whole sequence of semaphores simultaneously. 485 * The counts we return here are a rough approximation, but still 486 * warrant that semncnt+semzcnt>0 if the task is on the pending queue. 487 */ 488 static int count_semncnt (struct sem_array * sma, ushort semnum) 489 { 490 int semncnt; 491 struct sem_queue * q; 492 493 semncnt = 0; 494 for (q = sma->sem_pending; q; q = q->next) { 495 struct sembuf * sops = q->sops; 496 int nsops = q->nsops; 497 int i; 498 for (i = 0; i < nsops; i++) 499 if (sops[i].sem_num == semnum 500 && (sops[i].sem_op < 0) 501 && !(sops[i].sem_flg & IPC_NOWAIT)) 502 semncnt++; 503 } 504 return semncnt; 505 } 506 static int count_semzcnt (struct sem_array * sma, ushort semnum) 507 { 508 int semzcnt; 509 struct sem_queue * q; 510 511 semzcnt = 0; 512 for (q = sma->sem_pending; q; q = q->next) { 513 struct sembuf * sops = q->sops; 514 int nsops = q->nsops; 515 int i; 516 for (i = 0; i < nsops; i++) 517 if (sops[i].sem_num == semnum 518 && (sops[i].sem_op == 0) 519 && !(sops[i].sem_flg & IPC_NOWAIT)) 520 semzcnt++; 521 } 522 return semzcnt; 523 } 524 525 /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked 526 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex 527 * remains locked on exit. 528 */ 529 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) 530 { 531 struct sem_undo *un; 532 struct sem_queue *q; 533 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 534 535 /* Invalidate the existing undo structures for this semaphore set. 536 * (They will be freed without any further action in exit_sem() 537 * or during the next semop.) 538 */ 539 for (un = sma->undo; un; un = un->id_next) 540 un->semid = -1; 541 542 /* Wake up all pending processes and let them fail with EIDRM. */ 543 q = sma->sem_pending; 544 while(q) { 545 struct sem_queue *n; 546 /* lazy remove_from_queue: we are killing the whole queue */ 547 q->prev = NULL; 548 n = q->next; 549 q->status = IN_WAKEUP; 550 wake_up_process(q->sleeper); /* doesn't sleep */ 551 smp_wmb(); 552 q->status = -EIDRM; /* hands-off q */ 553 q = n; 554 } 555 556 /* Remove the semaphore set from the IDR */ 557 sem_rmid(ns, sma); 558 sem_unlock(sma); 559 560 ns->used_sems -= sma->sem_nsems; 561 security_sem_free(sma); 562 ipc_rcu_putref(sma); 563 } 564 565 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) 566 { 567 switch(version) { 568 case IPC_64: 569 return copy_to_user(buf, in, sizeof(*in)); 570 case IPC_OLD: 571 { 572 struct semid_ds out; 573 574 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); 575 576 out.sem_otime = in->sem_otime; 577 out.sem_ctime = in->sem_ctime; 578 out.sem_nsems = in->sem_nsems; 579 580 return copy_to_user(buf, &out, sizeof(out)); 581 } 582 default: 583 return -EINVAL; 584 } 585 } 586 587 static int semctl_nolock(struct ipc_namespace *ns, int semid, 588 int cmd, int version, union semun arg) 589 { 590 int err = -EINVAL; 591 struct sem_array *sma; 592 593 switch(cmd) { 594 case IPC_INFO: 595 case SEM_INFO: 596 { 597 struct seminfo seminfo; 598 int max_id; 599 600 err = security_sem_semctl(NULL, cmd); 601 if (err) 602 return err; 603 604 memset(&seminfo,0,sizeof(seminfo)); 605 seminfo.semmni = ns->sc_semmni; 606 seminfo.semmns = ns->sc_semmns; 607 seminfo.semmsl = ns->sc_semmsl; 608 seminfo.semopm = ns->sc_semopm; 609 seminfo.semvmx = SEMVMX; 610 seminfo.semmnu = SEMMNU; 611 seminfo.semmap = SEMMAP; 612 seminfo.semume = SEMUME; 613 down_read(&sem_ids(ns).rw_mutex); 614 if (cmd == SEM_INFO) { 615 seminfo.semusz = sem_ids(ns).in_use; 616 seminfo.semaem = ns->used_sems; 617 } else { 618 seminfo.semusz = SEMUSZ; 619 seminfo.semaem = SEMAEM; 620 } 621 max_id = ipc_get_maxid(&sem_ids(ns)); 622 up_read(&sem_ids(ns).rw_mutex); 623 if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo))) 624 return -EFAULT; 625 return (max_id < 0) ? 0: max_id; 626 } 627 case IPC_STAT: 628 case SEM_STAT: 629 { 630 struct semid64_ds tbuf; 631 int id; 632 633 if (cmd == SEM_STAT) { 634 sma = sem_lock(ns, semid); 635 if (IS_ERR(sma)) 636 return PTR_ERR(sma); 637 id = sma->sem_perm.id; 638 } else { 639 sma = sem_lock_check(ns, semid); 640 if (IS_ERR(sma)) 641 return PTR_ERR(sma); 642 id = 0; 643 } 644 645 err = -EACCES; 646 if (ipcperms (&sma->sem_perm, S_IRUGO)) 647 goto out_unlock; 648 649 err = security_sem_semctl(sma, cmd); 650 if (err) 651 goto out_unlock; 652 653 memset(&tbuf, 0, sizeof(tbuf)); 654 655 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); 656 tbuf.sem_otime = sma->sem_otime; 657 tbuf.sem_ctime = sma->sem_ctime; 658 tbuf.sem_nsems = sma->sem_nsems; 659 sem_unlock(sma); 660 if (copy_semid_to_user (arg.buf, &tbuf, version)) 661 return -EFAULT; 662 return id; 663 } 664 default: 665 return -EINVAL; 666 } 667 return err; 668 out_unlock: 669 sem_unlock(sma); 670 return err; 671 } 672 673 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, 674 int cmd, int version, union semun arg) 675 { 676 struct sem_array *sma; 677 struct sem* curr; 678 int err; 679 ushort fast_sem_io[SEMMSL_FAST]; 680 ushort* sem_io = fast_sem_io; 681 int nsems; 682 683 sma = sem_lock_check(ns, semid); 684 if (IS_ERR(sma)) 685 return PTR_ERR(sma); 686 687 nsems = sma->sem_nsems; 688 689 err = -EACCES; 690 if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO)) 691 goto out_unlock; 692 693 err = security_sem_semctl(sma, cmd); 694 if (err) 695 goto out_unlock; 696 697 err = -EACCES; 698 switch (cmd) { 699 case GETALL: 700 { 701 ushort __user *array = arg.array; 702 int i; 703 704 if(nsems > SEMMSL_FAST) { 705 sem_getref_and_unlock(sma); 706 707 sem_io = ipc_alloc(sizeof(ushort)*nsems); 708 if(sem_io == NULL) { 709 sem_putref(sma); 710 return -ENOMEM; 711 } 712 713 sem_lock_and_putref(sma); 714 if (sma->sem_perm.deleted) { 715 sem_unlock(sma); 716 err = -EIDRM; 717 goto out_free; 718 } 719 } 720 721 for (i = 0; i < sma->sem_nsems; i++) 722 sem_io[i] = sma->sem_base[i].semval; 723 sem_unlock(sma); 724 err = 0; 725 if(copy_to_user(array, sem_io, nsems*sizeof(ushort))) 726 err = -EFAULT; 727 goto out_free; 728 } 729 case SETALL: 730 { 731 int i; 732 struct sem_undo *un; 733 734 sem_getref_and_unlock(sma); 735 736 if(nsems > SEMMSL_FAST) { 737 sem_io = ipc_alloc(sizeof(ushort)*nsems); 738 if(sem_io == NULL) { 739 sem_putref(sma); 740 return -ENOMEM; 741 } 742 } 743 744 if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) { 745 sem_putref(sma); 746 err = -EFAULT; 747 goto out_free; 748 } 749 750 for (i = 0; i < nsems; i++) { 751 if (sem_io[i] > SEMVMX) { 752 sem_putref(sma); 753 err = -ERANGE; 754 goto out_free; 755 } 756 } 757 sem_lock_and_putref(sma); 758 if (sma->sem_perm.deleted) { 759 sem_unlock(sma); 760 err = -EIDRM; 761 goto out_free; 762 } 763 764 for (i = 0; i < nsems; i++) 765 sma->sem_base[i].semval = sem_io[i]; 766 for (un = sma->undo; un; un = un->id_next) 767 for (i = 0; i < nsems; i++) 768 un->semadj[i] = 0; 769 sma->sem_ctime = get_seconds(); 770 /* maybe some queued-up processes were waiting for this */ 771 update_queue(sma); 772 err = 0; 773 goto out_unlock; 774 } 775 /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */ 776 } 777 err = -EINVAL; 778 if(semnum < 0 || semnum >= nsems) 779 goto out_unlock; 780 781 curr = &sma->sem_base[semnum]; 782 783 switch (cmd) { 784 case GETVAL: 785 err = curr->semval; 786 goto out_unlock; 787 case GETPID: 788 err = curr->sempid; 789 goto out_unlock; 790 case GETNCNT: 791 err = count_semncnt(sma,semnum); 792 goto out_unlock; 793 case GETZCNT: 794 err = count_semzcnt(sma,semnum); 795 goto out_unlock; 796 case SETVAL: 797 { 798 int val = arg.val; 799 struct sem_undo *un; 800 err = -ERANGE; 801 if (val > SEMVMX || val < 0) 802 goto out_unlock; 803 804 for (un = sma->undo; un; un = un->id_next) 805 un->semadj[semnum] = 0; 806 curr->semval = val; 807 curr->sempid = task_tgid_vnr(current); 808 sma->sem_ctime = get_seconds(); 809 /* maybe some queued-up processes were waiting for this */ 810 update_queue(sma); 811 err = 0; 812 goto out_unlock; 813 } 814 } 815 out_unlock: 816 sem_unlock(sma); 817 out_free: 818 if(sem_io != fast_sem_io) 819 ipc_free(sem_io, sizeof(ushort)*nsems); 820 return err; 821 } 822 823 static inline unsigned long 824 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) 825 { 826 switch(version) { 827 case IPC_64: 828 if (copy_from_user(out, buf, sizeof(*out))) 829 return -EFAULT; 830 return 0; 831 case IPC_OLD: 832 { 833 struct semid_ds tbuf_old; 834 835 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) 836 return -EFAULT; 837 838 out->sem_perm.uid = tbuf_old.sem_perm.uid; 839 out->sem_perm.gid = tbuf_old.sem_perm.gid; 840 out->sem_perm.mode = tbuf_old.sem_perm.mode; 841 842 return 0; 843 } 844 default: 845 return -EINVAL; 846 } 847 } 848 849 /* 850 * This function handles some semctl commands which require the rw_mutex 851 * to be held in write mode. 852 * NOTE: no locks must be held, the rw_mutex is taken inside this function. 853 */ 854 static int semctl_down(struct ipc_namespace *ns, int semid, 855 int cmd, int version, union semun arg) 856 { 857 struct sem_array *sma; 858 int err; 859 struct semid64_ds semid64; 860 struct kern_ipc_perm *ipcp; 861 862 if(cmd == IPC_SET) { 863 if (copy_semid_from_user(&semid64, arg.buf, version)) 864 return -EFAULT; 865 } 866 867 ipcp = ipcctl_pre_down(&sem_ids(ns), semid, cmd, &semid64.sem_perm, 0); 868 if (IS_ERR(ipcp)) 869 return PTR_ERR(ipcp); 870 871 sma = container_of(ipcp, struct sem_array, sem_perm); 872 873 err = security_sem_semctl(sma, cmd); 874 if (err) 875 goto out_unlock; 876 877 switch(cmd){ 878 case IPC_RMID: 879 freeary(ns, ipcp); 880 goto out_up; 881 case IPC_SET: 882 ipc_update_perm(&semid64.sem_perm, ipcp); 883 sma->sem_ctime = get_seconds(); 884 break; 885 default: 886 err = -EINVAL; 887 } 888 889 out_unlock: 890 sem_unlock(sma); 891 out_up: 892 up_write(&sem_ids(ns).rw_mutex); 893 return err; 894 } 895 896 asmlinkage long sys_semctl (int semid, int semnum, int cmd, union semun arg) 897 { 898 int err = -EINVAL; 899 int version; 900 struct ipc_namespace *ns; 901 902 if (semid < 0) 903 return -EINVAL; 904 905 version = ipc_parse_version(&cmd); 906 ns = current->nsproxy->ipc_ns; 907 908 switch(cmd) { 909 case IPC_INFO: 910 case SEM_INFO: 911 case IPC_STAT: 912 case SEM_STAT: 913 err = semctl_nolock(ns, semid, cmd, version, arg); 914 return err; 915 case GETALL: 916 case GETVAL: 917 case GETPID: 918 case GETNCNT: 919 case GETZCNT: 920 case SETVAL: 921 case SETALL: 922 err = semctl_main(ns,semid,semnum,cmd,version,arg); 923 return err; 924 case IPC_RMID: 925 case IPC_SET: 926 err = semctl_down(ns, semid, cmd, version, arg); 927 return err; 928 default: 929 return -EINVAL; 930 } 931 } 932 933 /* If the task doesn't already have a undo_list, then allocate one 934 * here. We guarantee there is only one thread using this undo list, 935 * and current is THE ONE 936 * 937 * If this allocation and assignment succeeds, but later 938 * portions of this code fail, there is no need to free the sem_undo_list. 939 * Just let it stay associated with the task, and it'll be freed later 940 * at exit time. 941 * 942 * This can block, so callers must hold no locks. 943 */ 944 static inline int get_undo_list(struct sem_undo_list **undo_listp) 945 { 946 struct sem_undo_list *undo_list; 947 948 undo_list = current->sysvsem.undo_list; 949 if (!undo_list) { 950 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); 951 if (undo_list == NULL) 952 return -ENOMEM; 953 spin_lock_init(&undo_list->lock); 954 atomic_set(&undo_list->refcnt, 1); 955 current->sysvsem.undo_list = undo_list; 956 } 957 *undo_listp = undo_list; 958 return 0; 959 } 960 961 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) 962 { 963 struct sem_undo **last, *un; 964 965 last = &ulp->proc_list; 966 un = *last; 967 while(un != NULL) { 968 if(un->semid==semid) 969 break; 970 if(un->semid==-1) { 971 *last=un->proc_next; 972 kfree(un); 973 } else { 974 last=&un->proc_next; 975 } 976 un=*last; 977 } 978 return un; 979 } 980 981 static struct sem_undo *find_undo(struct ipc_namespace *ns, int semid) 982 { 983 struct sem_array *sma; 984 struct sem_undo_list *ulp; 985 struct sem_undo *un, *new; 986 int nsems; 987 int error; 988 989 error = get_undo_list(&ulp); 990 if (error) 991 return ERR_PTR(error); 992 993 spin_lock(&ulp->lock); 994 un = lookup_undo(ulp, semid); 995 spin_unlock(&ulp->lock); 996 if (likely(un!=NULL)) 997 goto out; 998 999 /* no undo structure around - allocate one. */ 1000 sma = sem_lock_check(ns, semid); 1001 if (IS_ERR(sma)) 1002 return ERR_PTR(PTR_ERR(sma)); 1003 1004 nsems = sma->sem_nsems; 1005 sem_getref_and_unlock(sma); 1006 1007 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); 1008 if (!new) { 1009 sem_putref(sma); 1010 return ERR_PTR(-ENOMEM); 1011 } 1012 new->semadj = (short *) &new[1]; 1013 new->semid = semid; 1014 1015 spin_lock(&ulp->lock); 1016 un = lookup_undo(ulp, semid); 1017 if (un) { 1018 spin_unlock(&ulp->lock); 1019 kfree(new); 1020 sem_putref(sma); 1021 goto out; 1022 } 1023 sem_lock_and_putref(sma); 1024 if (sma->sem_perm.deleted) { 1025 sem_unlock(sma); 1026 spin_unlock(&ulp->lock); 1027 kfree(new); 1028 un = ERR_PTR(-EIDRM); 1029 goto out; 1030 } 1031 new->proc_next = ulp->proc_list; 1032 ulp->proc_list = new; 1033 new->id_next = sma->undo; 1034 sma->undo = new; 1035 sem_unlock(sma); 1036 un = new; 1037 spin_unlock(&ulp->lock); 1038 out: 1039 return un; 1040 } 1041 1042 asmlinkage long sys_semtimedop(int semid, struct sembuf __user *tsops, 1043 unsigned nsops, const struct timespec __user *timeout) 1044 { 1045 int error = -EINVAL; 1046 struct sem_array *sma; 1047 struct sembuf fast_sops[SEMOPM_FAST]; 1048 struct sembuf* sops = fast_sops, *sop; 1049 struct sem_undo *un; 1050 int undos = 0, alter = 0, max; 1051 struct sem_queue queue; 1052 unsigned long jiffies_left = 0; 1053 struct ipc_namespace *ns; 1054 1055 ns = current->nsproxy->ipc_ns; 1056 1057 if (nsops < 1 || semid < 0) 1058 return -EINVAL; 1059 if (nsops > ns->sc_semopm) 1060 return -E2BIG; 1061 if(nsops > SEMOPM_FAST) { 1062 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL); 1063 if(sops==NULL) 1064 return -ENOMEM; 1065 } 1066 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) { 1067 error=-EFAULT; 1068 goto out_free; 1069 } 1070 if (timeout) { 1071 struct timespec _timeout; 1072 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) { 1073 error = -EFAULT; 1074 goto out_free; 1075 } 1076 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 || 1077 _timeout.tv_nsec >= 1000000000L) { 1078 error = -EINVAL; 1079 goto out_free; 1080 } 1081 jiffies_left = timespec_to_jiffies(&_timeout); 1082 } 1083 max = 0; 1084 for (sop = sops; sop < sops + nsops; sop++) { 1085 if (sop->sem_num >= max) 1086 max = sop->sem_num; 1087 if (sop->sem_flg & SEM_UNDO) 1088 undos = 1; 1089 if (sop->sem_op != 0) 1090 alter = 1; 1091 } 1092 1093 retry_undos: 1094 if (undos) { 1095 un = find_undo(ns, semid); 1096 if (IS_ERR(un)) { 1097 error = PTR_ERR(un); 1098 goto out_free; 1099 } 1100 } else 1101 un = NULL; 1102 1103 sma = sem_lock_check(ns, semid); 1104 if (IS_ERR(sma)) { 1105 error = PTR_ERR(sma); 1106 goto out_free; 1107 } 1108 1109 /* 1110 * semid identifiers are not unique - find_undo may have 1111 * allocated an undo structure, it was invalidated by an RMID 1112 * and now a new array with received the same id. Check and retry. 1113 */ 1114 if (un && un->semid == -1) { 1115 sem_unlock(sma); 1116 goto retry_undos; 1117 } 1118 error = -EFBIG; 1119 if (max >= sma->sem_nsems) 1120 goto out_unlock_free; 1121 1122 error = -EACCES; 1123 if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) 1124 goto out_unlock_free; 1125 1126 error = security_sem_semop(sma, sops, nsops, alter); 1127 if (error) 1128 goto out_unlock_free; 1129 1130 error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current)); 1131 if (error <= 0) { 1132 if (alter && error == 0) 1133 update_queue (sma); 1134 goto out_unlock_free; 1135 } 1136 1137 /* We need to sleep on this operation, so we put the current 1138 * task into the pending queue and go to sleep. 1139 */ 1140 1141 queue.sma = sma; 1142 queue.sops = sops; 1143 queue.nsops = nsops; 1144 queue.undo = un; 1145 queue.pid = task_tgid_vnr(current); 1146 queue.id = semid; 1147 queue.alter = alter; 1148 if (alter) 1149 append_to_queue(sma ,&queue); 1150 else 1151 prepend_to_queue(sma ,&queue); 1152 1153 queue.status = -EINTR; 1154 queue.sleeper = current; 1155 current->state = TASK_INTERRUPTIBLE; 1156 sem_unlock(sma); 1157 1158 if (timeout) 1159 jiffies_left = schedule_timeout(jiffies_left); 1160 else 1161 schedule(); 1162 1163 error = queue.status; 1164 while(unlikely(error == IN_WAKEUP)) { 1165 cpu_relax(); 1166 error = queue.status; 1167 } 1168 1169 if (error != -EINTR) { 1170 /* fast path: update_queue already obtained all requested 1171 * resources */ 1172 goto out_free; 1173 } 1174 1175 sma = sem_lock(ns, semid); 1176 if (IS_ERR(sma)) { 1177 BUG_ON(queue.prev != NULL); 1178 error = -EIDRM; 1179 goto out_free; 1180 } 1181 1182 /* 1183 * If queue.status != -EINTR we are woken up by another process 1184 */ 1185 error = queue.status; 1186 if (error != -EINTR) { 1187 goto out_unlock_free; 1188 } 1189 1190 /* 1191 * If an interrupt occurred we have to clean up the queue 1192 */ 1193 if (timeout && jiffies_left == 0) 1194 error = -EAGAIN; 1195 remove_from_queue(sma,&queue); 1196 goto out_unlock_free; 1197 1198 out_unlock_free: 1199 sem_unlock(sma); 1200 out_free: 1201 if(sops != fast_sops) 1202 kfree(sops); 1203 return error; 1204 } 1205 1206 asmlinkage long sys_semop (int semid, struct sembuf __user *tsops, unsigned nsops) 1207 { 1208 return sys_semtimedop(semid, tsops, nsops, NULL); 1209 } 1210 1211 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between 1212 * parent and child tasks. 1213 */ 1214 1215 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) 1216 { 1217 struct sem_undo_list *undo_list; 1218 int error; 1219 1220 if (clone_flags & CLONE_SYSVSEM) { 1221 error = get_undo_list(&undo_list); 1222 if (error) 1223 return error; 1224 atomic_inc(&undo_list->refcnt); 1225 tsk->sysvsem.undo_list = undo_list; 1226 } else 1227 tsk->sysvsem.undo_list = NULL; 1228 1229 return 0; 1230 } 1231 1232 /* 1233 * add semadj values to semaphores, free undo structures. 1234 * undo structures are not freed when semaphore arrays are destroyed 1235 * so some of them may be out of date. 1236 * IMPLEMENTATION NOTE: There is some confusion over whether the 1237 * set of adjustments that needs to be done should be done in an atomic 1238 * manner or not. That is, if we are attempting to decrement the semval 1239 * should we queue up and wait until we can do so legally? 1240 * The original implementation attempted to do this (queue and wait). 1241 * The current implementation does not do so. The POSIX standard 1242 * and SVID should be consulted to determine what behavior is mandated. 1243 */ 1244 void exit_sem(struct task_struct *tsk) 1245 { 1246 struct sem_undo_list *undo_list; 1247 struct sem_undo *u, **up; 1248 struct ipc_namespace *ns; 1249 1250 undo_list = tsk->sysvsem.undo_list; 1251 if (!undo_list) 1252 return; 1253 tsk->sysvsem.undo_list = NULL; 1254 1255 if (!atomic_dec_and_test(&undo_list->refcnt)) 1256 return; 1257 1258 ns = tsk->nsproxy->ipc_ns; 1259 /* There's no need to hold the semundo list lock, as current 1260 * is the last task exiting for this undo list. 1261 */ 1262 for (up = &undo_list->proc_list; (u = *up); *up = u->proc_next, kfree(u)) { 1263 struct sem_array *sma; 1264 int nsems, i; 1265 struct sem_undo *un, **unp; 1266 int semid; 1267 1268 semid = u->semid; 1269 1270 if(semid == -1) 1271 continue; 1272 sma = sem_lock(ns, semid); 1273 if (IS_ERR(sma)) 1274 continue; 1275 1276 if (u->semid == -1) 1277 goto next_entry; 1278 1279 BUG_ON(sem_checkid(sma, u->semid)); 1280 1281 /* remove u from the sma->undo list */ 1282 for (unp = &sma->undo; (un = *unp); unp = &un->id_next) { 1283 if (u == un) 1284 goto found; 1285 } 1286 printk ("exit_sem undo list error id=%d\n", u->semid); 1287 goto next_entry; 1288 found: 1289 *unp = un->id_next; 1290 /* perform adjustments registered in u */ 1291 nsems = sma->sem_nsems; 1292 for (i = 0; i < nsems; i++) { 1293 struct sem * semaphore = &sma->sem_base[i]; 1294 if (u->semadj[i]) { 1295 semaphore->semval += u->semadj[i]; 1296 /* 1297 * Range checks of the new semaphore value, 1298 * not defined by sus: 1299 * - Some unices ignore the undo entirely 1300 * (e.g. HP UX 11i 11.22, Tru64 V5.1) 1301 * - some cap the value (e.g. FreeBSD caps 1302 * at 0, but doesn't enforce SEMVMX) 1303 * 1304 * Linux caps the semaphore value, both at 0 1305 * and at SEMVMX. 1306 * 1307 * Manfred <manfred@colorfullife.com> 1308 */ 1309 if (semaphore->semval < 0) 1310 semaphore->semval = 0; 1311 if (semaphore->semval > SEMVMX) 1312 semaphore->semval = SEMVMX; 1313 semaphore->sempid = task_tgid_vnr(current); 1314 } 1315 } 1316 sma->sem_otime = get_seconds(); 1317 /* maybe some queued-up processes were waiting for this */ 1318 update_queue(sma); 1319 next_entry: 1320 sem_unlock(sma); 1321 } 1322 kfree(undo_list); 1323 } 1324 1325 #ifdef CONFIG_PROC_FS 1326 static int sysvipc_sem_proc_show(struct seq_file *s, void *it) 1327 { 1328 struct sem_array *sma = it; 1329 1330 return seq_printf(s, 1331 "%10d %10d %4o %10lu %5u %5u %5u %5u %10lu %10lu\n", 1332 sma->sem_perm.key, 1333 sma->sem_perm.id, 1334 sma->sem_perm.mode, 1335 sma->sem_nsems, 1336 sma->sem_perm.uid, 1337 sma->sem_perm.gid, 1338 sma->sem_perm.cuid, 1339 sma->sem_perm.cgid, 1340 sma->sem_otime, 1341 sma->sem_ctime); 1342 } 1343 #endif 1344