xref: /openbmc/linux/ipc/sem.c (revision 160b8e75)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/ipc/sem.c
4  * Copyright (C) 1992 Krishna Balasubramanian
5  * Copyright (C) 1995 Eric Schenk, Bruno Haible
6  *
7  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8  *
9  * SMP-threaded, sysctl's added
10  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11  * Enforced range limit on SEM_UNDO
12  * (c) 2001 Red Hat Inc
13  * Lockless wakeup
14  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15  * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16  * Further wakeup optimizations, documentation
17  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
18  *
19  * support for audit of ipc object properties and permission changes
20  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
21  *
22  * namespaces support
23  * OpenVZ, SWsoft Inc.
24  * Pavel Emelianov <xemul@openvz.org>
25  *
26  * Implementation notes: (May 2010)
27  * This file implements System V semaphores.
28  *
29  * User space visible behavior:
30  * - FIFO ordering for semop() operations (just FIFO, not starvation
31  *   protection)
32  * - multiple semaphore operations that alter the same semaphore in
33  *   one semop() are handled.
34  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35  *   SETALL calls.
36  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37  * - undo adjustments at process exit are limited to 0..SEMVMX.
38  * - namespace are supported.
39  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40  *   to /proc/sys/kernel/sem.
41  * - statistics about the usage are reported in /proc/sysvipc/sem.
42  *
43  * Internals:
44  * - scalability:
45  *   - all global variables are read-mostly.
46  *   - semop() calls and semctl(RMID) are synchronized by RCU.
47  *   - most operations do write operations (actually: spin_lock calls) to
48  *     the per-semaphore array structure.
49  *   Thus: Perfect SMP scaling between independent semaphore arrays.
50  *         If multiple semaphores in one array are used, then cache line
51  *         trashing on the semaphore array spinlock will limit the scaling.
52  * - semncnt and semzcnt are calculated on demand in count_semcnt()
53  * - the task that performs a successful semop() scans the list of all
54  *   sleeping tasks and completes any pending operations that can be fulfilled.
55  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
56  *   (see update_queue())
57  * - To improve the scalability, the actual wake-up calls are performed after
58  *   dropping all locks. (see wake_up_sem_queue_prepare())
59  * - All work is done by the waker, the woken up task does not have to do
60  *   anything - not even acquiring a lock or dropping a refcount.
61  * - A woken up task may not even touch the semaphore array anymore, it may
62  *   have been destroyed already by a semctl(RMID).
63  * - UNDO values are stored in an array (one per process and per
64  *   semaphore array, lazily allocated). For backwards compatibility, multiple
65  *   modes for the UNDO variables are supported (per process, per thread)
66  *   (see copy_semundo, CLONE_SYSVSEM)
67  * - There are two lists of the pending operations: a per-array list
68  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
69  *   ordering without always scanning all pending operations.
70  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
71  */
72 
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/init.h>
76 #include <linux/proc_fs.h>
77 #include <linux/time.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/audit.h>
81 #include <linux/capability.h>
82 #include <linux/seq_file.h>
83 #include <linux/rwsem.h>
84 #include <linux/nsproxy.h>
85 #include <linux/ipc_namespace.h>
86 #include <linux/sched/wake_q.h>
87 
88 #include <linux/uaccess.h>
89 #include "util.h"
90 
91 
92 /* One queue for each sleeping process in the system. */
93 struct sem_queue {
94 	struct list_head	list;	 /* queue of pending operations */
95 	struct task_struct	*sleeper; /* this process */
96 	struct sem_undo		*undo;	 /* undo structure */
97 	int			pid;	 /* process id of requesting process */
98 	int			status;	 /* completion status of operation */
99 	struct sembuf		*sops;	 /* array of pending operations */
100 	struct sembuf		*blocking; /* the operation that blocked */
101 	int			nsops;	 /* number of operations */
102 	bool			alter;	 /* does *sops alter the array? */
103 	bool                    dupsop;	 /* sops on more than one sem_num */
104 };
105 
106 /* Each task has a list of undo requests. They are executed automatically
107  * when the process exits.
108  */
109 struct sem_undo {
110 	struct list_head	list_proc;	/* per-process list: *
111 						 * all undos from one process
112 						 * rcu protected */
113 	struct rcu_head		rcu;		/* rcu struct for sem_undo */
114 	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
115 	struct list_head	list_id;	/* per semaphore array list:
116 						 * all undos for one array */
117 	int			semid;		/* semaphore set identifier */
118 	short			*semadj;	/* array of adjustments */
119 						/* one per semaphore */
120 };
121 
122 /* sem_undo_list controls shared access to the list of sem_undo structures
123  * that may be shared among all a CLONE_SYSVSEM task group.
124  */
125 struct sem_undo_list {
126 	refcount_t		refcnt;
127 	spinlock_t		lock;
128 	struct list_head	list_proc;
129 };
130 
131 
132 #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
133 
134 static int newary(struct ipc_namespace *, struct ipc_params *);
135 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
136 #ifdef CONFIG_PROC_FS
137 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
138 #endif
139 
140 #define SEMMSL_FAST	256 /* 512 bytes on stack */
141 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
142 
143 /*
144  * Switching from the mode suitable for simple ops
145  * to the mode for complex ops is costly. Therefore:
146  * use some hysteresis
147  */
148 #define USE_GLOBAL_LOCK_HYSTERESIS	10
149 
150 /*
151  * Locking:
152  * a) global sem_lock() for read/write
153  *	sem_undo.id_next,
154  *	sem_array.complex_count,
155  *	sem_array.pending{_alter,_const},
156  *	sem_array.sem_undo
157  *
158  * b) global or semaphore sem_lock() for read/write:
159  *	sem_array.sems[i].pending_{const,alter}:
160  *
161  * c) special:
162  *	sem_undo_list.list_proc:
163  *	* undo_list->lock for write
164  *	* rcu for read
165  *	use_global_lock:
166  *	* global sem_lock() for write
167  *	* either local or global sem_lock() for read.
168  *
169  * Memory ordering:
170  * Most ordering is enforced by using spin_lock() and spin_unlock().
171  * The special case is use_global_lock:
172  * Setting it from non-zero to 0 is a RELEASE, this is ensured by
173  * using smp_store_release().
174  * Testing if it is non-zero is an ACQUIRE, this is ensured by using
175  * smp_load_acquire().
176  * Setting it from 0 to non-zero must be ordered with regards to
177  * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
178  * is inside a spin_lock() and after a write from 0 to non-zero a
179  * spin_lock()+spin_unlock() is done.
180  */
181 
182 #define sc_semmsl	sem_ctls[0]
183 #define sc_semmns	sem_ctls[1]
184 #define sc_semopm	sem_ctls[2]
185 #define sc_semmni	sem_ctls[3]
186 
187 int sem_init_ns(struct ipc_namespace *ns)
188 {
189 	ns->sc_semmsl = SEMMSL;
190 	ns->sc_semmns = SEMMNS;
191 	ns->sc_semopm = SEMOPM;
192 	ns->sc_semmni = SEMMNI;
193 	ns->used_sems = 0;
194 	return ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
195 }
196 
197 #ifdef CONFIG_IPC_NS
198 void sem_exit_ns(struct ipc_namespace *ns)
199 {
200 	free_ipcs(ns, &sem_ids(ns), freeary);
201 	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
202 	rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
203 }
204 #endif
205 
206 int __init sem_init(void)
207 {
208 	const int err = sem_init_ns(&init_ipc_ns);
209 
210 	ipc_init_proc_interface("sysvipc/sem",
211 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
212 				IPC_SEM_IDS, sysvipc_sem_proc_show);
213 	return err;
214 }
215 
216 /**
217  * unmerge_queues - unmerge queues, if possible.
218  * @sma: semaphore array
219  *
220  * The function unmerges the wait queues if complex_count is 0.
221  * It must be called prior to dropping the global semaphore array lock.
222  */
223 static void unmerge_queues(struct sem_array *sma)
224 {
225 	struct sem_queue *q, *tq;
226 
227 	/* complex operations still around? */
228 	if (sma->complex_count)
229 		return;
230 	/*
231 	 * We will switch back to simple mode.
232 	 * Move all pending operation back into the per-semaphore
233 	 * queues.
234 	 */
235 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
236 		struct sem *curr;
237 		curr = &sma->sems[q->sops[0].sem_num];
238 
239 		list_add_tail(&q->list, &curr->pending_alter);
240 	}
241 	INIT_LIST_HEAD(&sma->pending_alter);
242 }
243 
244 /**
245  * merge_queues - merge single semop queues into global queue
246  * @sma: semaphore array
247  *
248  * This function merges all per-semaphore queues into the global queue.
249  * It is necessary to achieve FIFO ordering for the pending single-sop
250  * operations when a multi-semop operation must sleep.
251  * Only the alter operations must be moved, the const operations can stay.
252  */
253 static void merge_queues(struct sem_array *sma)
254 {
255 	int i;
256 	for (i = 0; i < sma->sem_nsems; i++) {
257 		struct sem *sem = &sma->sems[i];
258 
259 		list_splice_init(&sem->pending_alter, &sma->pending_alter);
260 	}
261 }
262 
263 static void sem_rcu_free(struct rcu_head *head)
264 {
265 	struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
266 	struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
267 
268 	security_sem_free(sma);
269 	kvfree(sma);
270 }
271 
272 /*
273  * Enter the mode suitable for non-simple operations:
274  * Caller must own sem_perm.lock.
275  */
276 static void complexmode_enter(struct sem_array *sma)
277 {
278 	int i;
279 	struct sem *sem;
280 
281 	if (sma->use_global_lock > 0)  {
282 		/*
283 		 * We are already in global lock mode.
284 		 * Nothing to do, just reset the
285 		 * counter until we return to simple mode.
286 		 */
287 		sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
288 		return;
289 	}
290 	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
291 
292 	for (i = 0; i < sma->sem_nsems; i++) {
293 		sem = &sma->sems[i];
294 		spin_lock(&sem->lock);
295 		spin_unlock(&sem->lock);
296 	}
297 }
298 
299 /*
300  * Try to leave the mode that disallows simple operations:
301  * Caller must own sem_perm.lock.
302  */
303 static void complexmode_tryleave(struct sem_array *sma)
304 {
305 	if (sma->complex_count)  {
306 		/* Complex ops are sleeping.
307 		 * We must stay in complex mode
308 		 */
309 		return;
310 	}
311 	if (sma->use_global_lock == 1) {
312 		/*
313 		 * Immediately after setting use_global_lock to 0,
314 		 * a simple op can start. Thus: all memory writes
315 		 * performed by the current operation must be visible
316 		 * before we set use_global_lock to 0.
317 		 */
318 		smp_store_release(&sma->use_global_lock, 0);
319 	} else {
320 		sma->use_global_lock--;
321 	}
322 }
323 
324 #define SEM_GLOBAL_LOCK	(-1)
325 /*
326  * If the request contains only one semaphore operation, and there are
327  * no complex transactions pending, lock only the semaphore involved.
328  * Otherwise, lock the entire semaphore array, since we either have
329  * multiple semaphores in our own semops, or we need to look at
330  * semaphores from other pending complex operations.
331  */
332 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
333 			      int nsops)
334 {
335 	struct sem *sem;
336 
337 	if (nsops != 1) {
338 		/* Complex operation - acquire a full lock */
339 		ipc_lock_object(&sma->sem_perm);
340 
341 		/* Prevent parallel simple ops */
342 		complexmode_enter(sma);
343 		return SEM_GLOBAL_LOCK;
344 	}
345 
346 	/*
347 	 * Only one semaphore affected - try to optimize locking.
348 	 * Optimized locking is possible if no complex operation
349 	 * is either enqueued or processed right now.
350 	 *
351 	 * Both facts are tracked by use_global_mode.
352 	 */
353 	sem = &sma->sems[sops->sem_num];
354 
355 	/*
356 	 * Initial check for use_global_lock. Just an optimization,
357 	 * no locking, no memory barrier.
358 	 */
359 	if (!sma->use_global_lock) {
360 		/*
361 		 * It appears that no complex operation is around.
362 		 * Acquire the per-semaphore lock.
363 		 */
364 		spin_lock(&sem->lock);
365 
366 		/* pairs with smp_store_release() */
367 		if (!smp_load_acquire(&sma->use_global_lock)) {
368 			/* fast path successful! */
369 			return sops->sem_num;
370 		}
371 		spin_unlock(&sem->lock);
372 	}
373 
374 	/* slow path: acquire the full lock */
375 	ipc_lock_object(&sma->sem_perm);
376 
377 	if (sma->use_global_lock == 0) {
378 		/*
379 		 * The use_global_lock mode ended while we waited for
380 		 * sma->sem_perm.lock. Thus we must switch to locking
381 		 * with sem->lock.
382 		 * Unlike in the fast path, there is no need to recheck
383 		 * sma->use_global_lock after we have acquired sem->lock:
384 		 * We own sma->sem_perm.lock, thus use_global_lock cannot
385 		 * change.
386 		 */
387 		spin_lock(&sem->lock);
388 
389 		ipc_unlock_object(&sma->sem_perm);
390 		return sops->sem_num;
391 	} else {
392 		/*
393 		 * Not a false alarm, thus continue to use the global lock
394 		 * mode. No need for complexmode_enter(), this was done by
395 		 * the caller that has set use_global_mode to non-zero.
396 		 */
397 		return SEM_GLOBAL_LOCK;
398 	}
399 }
400 
401 static inline void sem_unlock(struct sem_array *sma, int locknum)
402 {
403 	if (locknum == SEM_GLOBAL_LOCK) {
404 		unmerge_queues(sma);
405 		complexmode_tryleave(sma);
406 		ipc_unlock_object(&sma->sem_perm);
407 	} else {
408 		struct sem *sem = &sma->sems[locknum];
409 		spin_unlock(&sem->lock);
410 	}
411 }
412 
413 /*
414  * sem_lock_(check_) routines are called in the paths where the rwsem
415  * is not held.
416  *
417  * The caller holds the RCU read lock.
418  */
419 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
420 {
421 	struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
422 
423 	if (IS_ERR(ipcp))
424 		return ERR_CAST(ipcp);
425 
426 	return container_of(ipcp, struct sem_array, sem_perm);
427 }
428 
429 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
430 							int id)
431 {
432 	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
433 
434 	if (IS_ERR(ipcp))
435 		return ERR_CAST(ipcp);
436 
437 	return container_of(ipcp, struct sem_array, sem_perm);
438 }
439 
440 static inline void sem_lock_and_putref(struct sem_array *sma)
441 {
442 	sem_lock(sma, NULL, -1);
443 	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
444 }
445 
446 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
447 {
448 	ipc_rmid(&sem_ids(ns), &s->sem_perm);
449 }
450 
451 static struct sem_array *sem_alloc(size_t nsems)
452 {
453 	struct sem_array *sma;
454 	size_t size;
455 
456 	if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
457 		return NULL;
458 
459 	size = sizeof(*sma) + nsems * sizeof(sma->sems[0]);
460 	sma = kvmalloc(size, GFP_KERNEL);
461 	if (unlikely(!sma))
462 		return NULL;
463 
464 	memset(sma, 0, size);
465 
466 	return sma;
467 }
468 
469 /**
470  * newary - Create a new semaphore set
471  * @ns: namespace
472  * @params: ptr to the structure that contains key, semflg and nsems
473  *
474  * Called with sem_ids.rwsem held (as a writer)
475  */
476 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
477 {
478 	int retval;
479 	struct sem_array *sma;
480 	key_t key = params->key;
481 	int nsems = params->u.nsems;
482 	int semflg = params->flg;
483 	int i;
484 
485 	if (!nsems)
486 		return -EINVAL;
487 	if (ns->used_sems + nsems > ns->sc_semmns)
488 		return -ENOSPC;
489 
490 	sma = sem_alloc(nsems);
491 	if (!sma)
492 		return -ENOMEM;
493 
494 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
495 	sma->sem_perm.key = key;
496 
497 	sma->sem_perm.security = NULL;
498 	retval = security_sem_alloc(sma);
499 	if (retval) {
500 		kvfree(sma);
501 		return retval;
502 	}
503 
504 	for (i = 0; i < nsems; i++) {
505 		INIT_LIST_HEAD(&sma->sems[i].pending_alter);
506 		INIT_LIST_HEAD(&sma->sems[i].pending_const);
507 		spin_lock_init(&sma->sems[i].lock);
508 	}
509 
510 	sma->complex_count = 0;
511 	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
512 	INIT_LIST_HEAD(&sma->pending_alter);
513 	INIT_LIST_HEAD(&sma->pending_const);
514 	INIT_LIST_HEAD(&sma->list_id);
515 	sma->sem_nsems = nsems;
516 	sma->sem_ctime = ktime_get_real_seconds();
517 
518 	/* ipc_addid() locks sma upon success. */
519 	retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
520 	if (retval < 0) {
521 		call_rcu(&sma->sem_perm.rcu, sem_rcu_free);
522 		return retval;
523 	}
524 	ns->used_sems += nsems;
525 
526 	sem_unlock(sma, -1);
527 	rcu_read_unlock();
528 
529 	return sma->sem_perm.id;
530 }
531 
532 
533 /*
534  * Called with sem_ids.rwsem and ipcp locked.
535  */
536 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
537 {
538 	struct sem_array *sma;
539 
540 	sma = container_of(ipcp, struct sem_array, sem_perm);
541 	return security_sem_associate(sma, semflg);
542 }
543 
544 /*
545  * Called with sem_ids.rwsem and ipcp locked.
546  */
547 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
548 				struct ipc_params *params)
549 {
550 	struct sem_array *sma;
551 
552 	sma = container_of(ipcp, struct sem_array, sem_perm);
553 	if (params->u.nsems > sma->sem_nsems)
554 		return -EINVAL;
555 
556 	return 0;
557 }
558 
559 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
560 {
561 	struct ipc_namespace *ns;
562 	static const struct ipc_ops sem_ops = {
563 		.getnew = newary,
564 		.associate = sem_security,
565 		.more_checks = sem_more_checks,
566 	};
567 	struct ipc_params sem_params;
568 
569 	ns = current->nsproxy->ipc_ns;
570 
571 	if (nsems < 0 || nsems > ns->sc_semmsl)
572 		return -EINVAL;
573 
574 	sem_params.key = key;
575 	sem_params.flg = semflg;
576 	sem_params.u.nsems = nsems;
577 
578 	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
579 }
580 
581 /**
582  * perform_atomic_semop[_slow] - Attempt to perform semaphore
583  *                               operations on a given array.
584  * @sma: semaphore array
585  * @q: struct sem_queue that describes the operation
586  *
587  * Caller blocking are as follows, based the value
588  * indicated by the semaphore operation (sem_op):
589  *
590  *  (1) >0 never blocks.
591  *  (2)  0 (wait-for-zero operation): semval is non-zero.
592  *  (3) <0 attempting to decrement semval to a value smaller than zero.
593  *
594  * Returns 0 if the operation was possible.
595  * Returns 1 if the operation is impossible, the caller must sleep.
596  * Returns <0 for error codes.
597  */
598 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
599 {
600 	int result, sem_op, nsops, pid;
601 	struct sembuf *sop;
602 	struct sem *curr;
603 	struct sembuf *sops;
604 	struct sem_undo *un;
605 
606 	sops = q->sops;
607 	nsops = q->nsops;
608 	un = q->undo;
609 
610 	for (sop = sops; sop < sops + nsops; sop++) {
611 		curr = &sma->sems[sop->sem_num];
612 		sem_op = sop->sem_op;
613 		result = curr->semval;
614 
615 		if (!sem_op && result)
616 			goto would_block;
617 
618 		result += sem_op;
619 		if (result < 0)
620 			goto would_block;
621 		if (result > SEMVMX)
622 			goto out_of_range;
623 
624 		if (sop->sem_flg & SEM_UNDO) {
625 			int undo = un->semadj[sop->sem_num] - sem_op;
626 			/* Exceeding the undo range is an error. */
627 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
628 				goto out_of_range;
629 			un->semadj[sop->sem_num] = undo;
630 		}
631 
632 		curr->semval = result;
633 	}
634 
635 	sop--;
636 	pid = q->pid;
637 	while (sop >= sops) {
638 		sma->sems[sop->sem_num].sempid = pid;
639 		sop--;
640 	}
641 
642 	return 0;
643 
644 out_of_range:
645 	result = -ERANGE;
646 	goto undo;
647 
648 would_block:
649 	q->blocking = sop;
650 
651 	if (sop->sem_flg & IPC_NOWAIT)
652 		result = -EAGAIN;
653 	else
654 		result = 1;
655 
656 undo:
657 	sop--;
658 	while (sop >= sops) {
659 		sem_op = sop->sem_op;
660 		sma->sems[sop->sem_num].semval -= sem_op;
661 		if (sop->sem_flg & SEM_UNDO)
662 			un->semadj[sop->sem_num] += sem_op;
663 		sop--;
664 	}
665 
666 	return result;
667 }
668 
669 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
670 {
671 	int result, sem_op, nsops;
672 	struct sembuf *sop;
673 	struct sem *curr;
674 	struct sembuf *sops;
675 	struct sem_undo *un;
676 
677 	sops = q->sops;
678 	nsops = q->nsops;
679 	un = q->undo;
680 
681 	if (unlikely(q->dupsop))
682 		return perform_atomic_semop_slow(sma, q);
683 
684 	/*
685 	 * We scan the semaphore set twice, first to ensure that the entire
686 	 * operation can succeed, therefore avoiding any pointless writes
687 	 * to shared memory and having to undo such changes in order to block
688 	 * until the operations can go through.
689 	 */
690 	for (sop = sops; sop < sops + nsops; sop++) {
691 		curr = &sma->sems[sop->sem_num];
692 		sem_op = sop->sem_op;
693 		result = curr->semval;
694 
695 		if (!sem_op && result)
696 			goto would_block; /* wait-for-zero */
697 
698 		result += sem_op;
699 		if (result < 0)
700 			goto would_block;
701 
702 		if (result > SEMVMX)
703 			return -ERANGE;
704 
705 		if (sop->sem_flg & SEM_UNDO) {
706 			int undo = un->semadj[sop->sem_num] - sem_op;
707 
708 			/* Exceeding the undo range is an error. */
709 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
710 				return -ERANGE;
711 		}
712 	}
713 
714 	for (sop = sops; sop < sops + nsops; sop++) {
715 		curr = &sma->sems[sop->sem_num];
716 		sem_op = sop->sem_op;
717 		result = curr->semval;
718 
719 		if (sop->sem_flg & SEM_UNDO) {
720 			int undo = un->semadj[sop->sem_num] - sem_op;
721 
722 			un->semadj[sop->sem_num] = undo;
723 		}
724 		curr->semval += sem_op;
725 		curr->sempid = q->pid;
726 	}
727 
728 	return 0;
729 
730 would_block:
731 	q->blocking = sop;
732 	return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
733 }
734 
735 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
736 					     struct wake_q_head *wake_q)
737 {
738 	wake_q_add(wake_q, q->sleeper);
739 	/*
740 	 * Rely on the above implicit barrier, such that we can
741 	 * ensure that we hold reference to the task before setting
742 	 * q->status. Otherwise we could race with do_exit if the
743 	 * task is awoken by an external event before calling
744 	 * wake_up_process().
745 	 */
746 	WRITE_ONCE(q->status, error);
747 }
748 
749 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
750 {
751 	list_del(&q->list);
752 	if (q->nsops > 1)
753 		sma->complex_count--;
754 }
755 
756 /** check_restart(sma, q)
757  * @sma: semaphore array
758  * @q: the operation that just completed
759  *
760  * update_queue is O(N^2) when it restarts scanning the whole queue of
761  * waiting operations. Therefore this function checks if the restart is
762  * really necessary. It is called after a previously waiting operation
763  * modified the array.
764  * Note that wait-for-zero operations are handled without restart.
765  */
766 static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
767 {
768 	/* pending complex alter operations are too difficult to analyse */
769 	if (!list_empty(&sma->pending_alter))
770 		return 1;
771 
772 	/* we were a sleeping complex operation. Too difficult */
773 	if (q->nsops > 1)
774 		return 1;
775 
776 	/* It is impossible that someone waits for the new value:
777 	 * - complex operations always restart.
778 	 * - wait-for-zero are handled seperately.
779 	 * - q is a previously sleeping simple operation that
780 	 *   altered the array. It must be a decrement, because
781 	 *   simple increments never sleep.
782 	 * - If there are older (higher priority) decrements
783 	 *   in the queue, then they have observed the original
784 	 *   semval value and couldn't proceed. The operation
785 	 *   decremented to value - thus they won't proceed either.
786 	 */
787 	return 0;
788 }
789 
790 /**
791  * wake_const_ops - wake up non-alter tasks
792  * @sma: semaphore array.
793  * @semnum: semaphore that was modified.
794  * @wake_q: lockless wake-queue head.
795  *
796  * wake_const_ops must be called after a semaphore in a semaphore array
797  * was set to 0. If complex const operations are pending, wake_const_ops must
798  * be called with semnum = -1, as well as with the number of each modified
799  * semaphore.
800  * The tasks that must be woken up are added to @wake_q. The return code
801  * is stored in q->pid.
802  * The function returns 1 if at least one operation was completed successfully.
803  */
804 static int wake_const_ops(struct sem_array *sma, int semnum,
805 			  struct wake_q_head *wake_q)
806 {
807 	struct sem_queue *q, *tmp;
808 	struct list_head *pending_list;
809 	int semop_completed = 0;
810 
811 	if (semnum == -1)
812 		pending_list = &sma->pending_const;
813 	else
814 		pending_list = &sma->sems[semnum].pending_const;
815 
816 	list_for_each_entry_safe(q, tmp, pending_list, list) {
817 		int error = perform_atomic_semop(sma, q);
818 
819 		if (error > 0)
820 			continue;
821 		/* operation completed, remove from queue & wakeup */
822 		unlink_queue(sma, q);
823 
824 		wake_up_sem_queue_prepare(q, error, wake_q);
825 		if (error == 0)
826 			semop_completed = 1;
827 	}
828 
829 	return semop_completed;
830 }
831 
832 /**
833  * do_smart_wakeup_zero - wakeup all wait for zero tasks
834  * @sma: semaphore array
835  * @sops: operations that were performed
836  * @nsops: number of operations
837  * @wake_q: lockless wake-queue head
838  *
839  * Checks all required queue for wait-for-zero operations, based
840  * on the actual changes that were performed on the semaphore array.
841  * The function returns 1 if at least one operation was completed successfully.
842  */
843 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
844 				int nsops, struct wake_q_head *wake_q)
845 {
846 	int i;
847 	int semop_completed = 0;
848 	int got_zero = 0;
849 
850 	/* first: the per-semaphore queues, if known */
851 	if (sops) {
852 		for (i = 0; i < nsops; i++) {
853 			int num = sops[i].sem_num;
854 
855 			if (sma->sems[num].semval == 0) {
856 				got_zero = 1;
857 				semop_completed |= wake_const_ops(sma, num, wake_q);
858 			}
859 		}
860 	} else {
861 		/*
862 		 * No sops means modified semaphores not known.
863 		 * Assume all were changed.
864 		 */
865 		for (i = 0; i < sma->sem_nsems; i++) {
866 			if (sma->sems[i].semval == 0) {
867 				got_zero = 1;
868 				semop_completed |= wake_const_ops(sma, i, wake_q);
869 			}
870 		}
871 	}
872 	/*
873 	 * If one of the modified semaphores got 0,
874 	 * then check the global queue, too.
875 	 */
876 	if (got_zero)
877 		semop_completed |= wake_const_ops(sma, -1, wake_q);
878 
879 	return semop_completed;
880 }
881 
882 
883 /**
884  * update_queue - look for tasks that can be completed.
885  * @sma: semaphore array.
886  * @semnum: semaphore that was modified.
887  * @wake_q: lockless wake-queue head.
888  *
889  * update_queue must be called after a semaphore in a semaphore array
890  * was modified. If multiple semaphores were modified, update_queue must
891  * be called with semnum = -1, as well as with the number of each modified
892  * semaphore.
893  * The tasks that must be woken up are added to @wake_q. The return code
894  * is stored in q->pid.
895  * The function internally checks if const operations can now succeed.
896  *
897  * The function return 1 if at least one semop was completed successfully.
898  */
899 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
900 {
901 	struct sem_queue *q, *tmp;
902 	struct list_head *pending_list;
903 	int semop_completed = 0;
904 
905 	if (semnum == -1)
906 		pending_list = &sma->pending_alter;
907 	else
908 		pending_list = &sma->sems[semnum].pending_alter;
909 
910 again:
911 	list_for_each_entry_safe(q, tmp, pending_list, list) {
912 		int error, restart;
913 
914 		/* If we are scanning the single sop, per-semaphore list of
915 		 * one semaphore and that semaphore is 0, then it is not
916 		 * necessary to scan further: simple increments
917 		 * that affect only one entry succeed immediately and cannot
918 		 * be in the  per semaphore pending queue, and decrements
919 		 * cannot be successful if the value is already 0.
920 		 */
921 		if (semnum != -1 && sma->sems[semnum].semval == 0)
922 			break;
923 
924 		error = perform_atomic_semop(sma, q);
925 
926 		/* Does q->sleeper still need to sleep? */
927 		if (error > 0)
928 			continue;
929 
930 		unlink_queue(sma, q);
931 
932 		if (error) {
933 			restart = 0;
934 		} else {
935 			semop_completed = 1;
936 			do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
937 			restart = check_restart(sma, q);
938 		}
939 
940 		wake_up_sem_queue_prepare(q, error, wake_q);
941 		if (restart)
942 			goto again;
943 	}
944 	return semop_completed;
945 }
946 
947 /**
948  * set_semotime - set sem_otime
949  * @sma: semaphore array
950  * @sops: operations that modified the array, may be NULL
951  *
952  * sem_otime is replicated to avoid cache line trashing.
953  * This function sets one instance to the current time.
954  */
955 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
956 {
957 	if (sops == NULL) {
958 		sma->sems[0].sem_otime = get_seconds();
959 	} else {
960 		sma->sems[sops[0].sem_num].sem_otime =
961 							get_seconds();
962 	}
963 }
964 
965 /**
966  * do_smart_update - optimized update_queue
967  * @sma: semaphore array
968  * @sops: operations that were performed
969  * @nsops: number of operations
970  * @otime: force setting otime
971  * @wake_q: lockless wake-queue head
972  *
973  * do_smart_update() does the required calls to update_queue and wakeup_zero,
974  * based on the actual changes that were performed on the semaphore array.
975  * Note that the function does not do the actual wake-up: the caller is
976  * responsible for calling wake_up_q().
977  * It is safe to perform this call after dropping all locks.
978  */
979 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
980 			    int otime, struct wake_q_head *wake_q)
981 {
982 	int i;
983 
984 	otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
985 
986 	if (!list_empty(&sma->pending_alter)) {
987 		/* semaphore array uses the global queue - just process it. */
988 		otime |= update_queue(sma, -1, wake_q);
989 	} else {
990 		if (!sops) {
991 			/*
992 			 * No sops, thus the modified semaphores are not
993 			 * known. Check all.
994 			 */
995 			for (i = 0; i < sma->sem_nsems; i++)
996 				otime |= update_queue(sma, i, wake_q);
997 		} else {
998 			/*
999 			 * Check the semaphores that were increased:
1000 			 * - No complex ops, thus all sleeping ops are
1001 			 *   decrease.
1002 			 * - if we decreased the value, then any sleeping
1003 			 *   semaphore ops wont be able to run: If the
1004 			 *   previous value was too small, then the new
1005 			 *   value will be too small, too.
1006 			 */
1007 			for (i = 0; i < nsops; i++) {
1008 				if (sops[i].sem_op > 0) {
1009 					otime |= update_queue(sma,
1010 							      sops[i].sem_num, wake_q);
1011 				}
1012 			}
1013 		}
1014 	}
1015 	if (otime)
1016 		set_semotime(sma, sops);
1017 }
1018 
1019 /*
1020  * check_qop: Test if a queued operation sleeps on the semaphore semnum
1021  */
1022 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1023 			bool count_zero)
1024 {
1025 	struct sembuf *sop = q->blocking;
1026 
1027 	/*
1028 	 * Linux always (since 0.99.10) reported a task as sleeping on all
1029 	 * semaphores. This violates SUS, therefore it was changed to the
1030 	 * standard compliant behavior.
1031 	 * Give the administrators a chance to notice that an application
1032 	 * might misbehave because it relies on the Linux behavior.
1033 	 */
1034 	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1035 			"The task %s (%d) triggered the difference, watch for misbehavior.\n",
1036 			current->comm, task_pid_nr(current));
1037 
1038 	if (sop->sem_num != semnum)
1039 		return 0;
1040 
1041 	if (count_zero && sop->sem_op == 0)
1042 		return 1;
1043 	if (!count_zero && sop->sem_op < 0)
1044 		return 1;
1045 
1046 	return 0;
1047 }
1048 
1049 /* The following counts are associated to each semaphore:
1050  *   semncnt        number of tasks waiting on semval being nonzero
1051  *   semzcnt        number of tasks waiting on semval being zero
1052  *
1053  * Per definition, a task waits only on the semaphore of the first semop
1054  * that cannot proceed, even if additional operation would block, too.
1055  */
1056 static int count_semcnt(struct sem_array *sma, ushort semnum,
1057 			bool count_zero)
1058 {
1059 	struct list_head *l;
1060 	struct sem_queue *q;
1061 	int semcnt;
1062 
1063 	semcnt = 0;
1064 	/* First: check the simple operations. They are easy to evaluate */
1065 	if (count_zero)
1066 		l = &sma->sems[semnum].pending_const;
1067 	else
1068 		l = &sma->sems[semnum].pending_alter;
1069 
1070 	list_for_each_entry(q, l, list) {
1071 		/* all task on a per-semaphore list sleep on exactly
1072 		 * that semaphore
1073 		 */
1074 		semcnt++;
1075 	}
1076 
1077 	/* Then: check the complex operations. */
1078 	list_for_each_entry(q, &sma->pending_alter, list) {
1079 		semcnt += check_qop(sma, semnum, q, count_zero);
1080 	}
1081 	if (count_zero) {
1082 		list_for_each_entry(q, &sma->pending_const, list) {
1083 			semcnt += check_qop(sma, semnum, q, count_zero);
1084 		}
1085 	}
1086 	return semcnt;
1087 }
1088 
1089 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1090  * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1091  * remains locked on exit.
1092  */
1093 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1094 {
1095 	struct sem_undo *un, *tu;
1096 	struct sem_queue *q, *tq;
1097 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1098 	int i;
1099 	DEFINE_WAKE_Q(wake_q);
1100 
1101 	/* Free the existing undo structures for this semaphore set.  */
1102 	ipc_assert_locked_object(&sma->sem_perm);
1103 	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1104 		list_del(&un->list_id);
1105 		spin_lock(&un->ulp->lock);
1106 		un->semid = -1;
1107 		list_del_rcu(&un->list_proc);
1108 		spin_unlock(&un->ulp->lock);
1109 		kfree_rcu(un, rcu);
1110 	}
1111 
1112 	/* Wake up all pending processes and let them fail with EIDRM. */
1113 	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1114 		unlink_queue(sma, q);
1115 		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1116 	}
1117 
1118 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1119 		unlink_queue(sma, q);
1120 		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1121 	}
1122 	for (i = 0; i < sma->sem_nsems; i++) {
1123 		struct sem *sem = &sma->sems[i];
1124 		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1125 			unlink_queue(sma, q);
1126 			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1127 		}
1128 		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1129 			unlink_queue(sma, q);
1130 			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1131 		}
1132 	}
1133 
1134 	/* Remove the semaphore set from the IDR */
1135 	sem_rmid(ns, sma);
1136 	sem_unlock(sma, -1);
1137 	rcu_read_unlock();
1138 
1139 	wake_up_q(&wake_q);
1140 	ns->used_sems -= sma->sem_nsems;
1141 	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1142 }
1143 
1144 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1145 {
1146 	switch (version) {
1147 	case IPC_64:
1148 		return copy_to_user(buf, in, sizeof(*in));
1149 	case IPC_OLD:
1150 	    {
1151 		struct semid_ds out;
1152 
1153 		memset(&out, 0, sizeof(out));
1154 
1155 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1156 
1157 		out.sem_otime	= in->sem_otime;
1158 		out.sem_ctime	= in->sem_ctime;
1159 		out.sem_nsems	= in->sem_nsems;
1160 
1161 		return copy_to_user(buf, &out, sizeof(out));
1162 	    }
1163 	default:
1164 		return -EINVAL;
1165 	}
1166 }
1167 
1168 static time64_t get_semotime(struct sem_array *sma)
1169 {
1170 	int i;
1171 	time64_t res;
1172 
1173 	res = sma->sems[0].sem_otime;
1174 	for (i = 1; i < sma->sem_nsems; i++) {
1175 		time64_t to = sma->sems[i].sem_otime;
1176 
1177 		if (to > res)
1178 			res = to;
1179 	}
1180 	return res;
1181 }
1182 
1183 static int semctl_stat(struct ipc_namespace *ns, int semid,
1184 			 int cmd, struct semid64_ds *semid64)
1185 {
1186 	struct sem_array *sma;
1187 	int id = 0;
1188 	int err;
1189 
1190 	memset(semid64, 0, sizeof(*semid64));
1191 
1192 	rcu_read_lock();
1193 	if (cmd == SEM_STAT) {
1194 		sma = sem_obtain_object(ns, semid);
1195 		if (IS_ERR(sma)) {
1196 			err = PTR_ERR(sma);
1197 			goto out_unlock;
1198 		}
1199 		id = sma->sem_perm.id;
1200 	} else {
1201 		sma = sem_obtain_object_check(ns, semid);
1202 		if (IS_ERR(sma)) {
1203 			err = PTR_ERR(sma);
1204 			goto out_unlock;
1205 		}
1206 	}
1207 
1208 	err = -EACCES;
1209 	if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1210 		goto out_unlock;
1211 
1212 	err = security_sem_semctl(sma, cmd);
1213 	if (err)
1214 		goto out_unlock;
1215 
1216 	ipc_lock_object(&sma->sem_perm);
1217 
1218 	if (!ipc_valid_object(&sma->sem_perm)) {
1219 		ipc_unlock_object(&sma->sem_perm);
1220 		err = -EIDRM;
1221 		goto out_unlock;
1222 	}
1223 
1224 	kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1225 	semid64->sem_otime = get_semotime(sma);
1226 	semid64->sem_ctime = sma->sem_ctime;
1227 	semid64->sem_nsems = sma->sem_nsems;
1228 
1229 	ipc_unlock_object(&sma->sem_perm);
1230 	rcu_read_unlock();
1231 	return id;
1232 
1233 out_unlock:
1234 	rcu_read_unlock();
1235 	return err;
1236 }
1237 
1238 static int semctl_info(struct ipc_namespace *ns, int semid,
1239 			 int cmd, void __user *p)
1240 {
1241 	struct seminfo seminfo;
1242 	int max_id;
1243 	int err;
1244 
1245 	err = security_sem_semctl(NULL, cmd);
1246 	if (err)
1247 		return err;
1248 
1249 	memset(&seminfo, 0, sizeof(seminfo));
1250 	seminfo.semmni = ns->sc_semmni;
1251 	seminfo.semmns = ns->sc_semmns;
1252 	seminfo.semmsl = ns->sc_semmsl;
1253 	seminfo.semopm = ns->sc_semopm;
1254 	seminfo.semvmx = SEMVMX;
1255 	seminfo.semmnu = SEMMNU;
1256 	seminfo.semmap = SEMMAP;
1257 	seminfo.semume = SEMUME;
1258 	down_read(&sem_ids(ns).rwsem);
1259 	if (cmd == SEM_INFO) {
1260 		seminfo.semusz = sem_ids(ns).in_use;
1261 		seminfo.semaem = ns->used_sems;
1262 	} else {
1263 		seminfo.semusz = SEMUSZ;
1264 		seminfo.semaem = SEMAEM;
1265 	}
1266 	max_id = ipc_get_maxid(&sem_ids(ns));
1267 	up_read(&sem_ids(ns).rwsem);
1268 	if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1269 		return -EFAULT;
1270 	return (max_id < 0) ? 0 : max_id;
1271 }
1272 
1273 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1274 		int val)
1275 {
1276 	struct sem_undo *un;
1277 	struct sem_array *sma;
1278 	struct sem *curr;
1279 	int err;
1280 	DEFINE_WAKE_Q(wake_q);
1281 
1282 	if (val > SEMVMX || val < 0)
1283 		return -ERANGE;
1284 
1285 	rcu_read_lock();
1286 	sma = sem_obtain_object_check(ns, semid);
1287 	if (IS_ERR(sma)) {
1288 		rcu_read_unlock();
1289 		return PTR_ERR(sma);
1290 	}
1291 
1292 	if (semnum < 0 || semnum >= sma->sem_nsems) {
1293 		rcu_read_unlock();
1294 		return -EINVAL;
1295 	}
1296 
1297 
1298 	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1299 		rcu_read_unlock();
1300 		return -EACCES;
1301 	}
1302 
1303 	err = security_sem_semctl(sma, SETVAL);
1304 	if (err) {
1305 		rcu_read_unlock();
1306 		return -EACCES;
1307 	}
1308 
1309 	sem_lock(sma, NULL, -1);
1310 
1311 	if (!ipc_valid_object(&sma->sem_perm)) {
1312 		sem_unlock(sma, -1);
1313 		rcu_read_unlock();
1314 		return -EIDRM;
1315 	}
1316 
1317 	curr = &sma->sems[semnum];
1318 
1319 	ipc_assert_locked_object(&sma->sem_perm);
1320 	list_for_each_entry(un, &sma->list_id, list_id)
1321 		un->semadj[semnum] = 0;
1322 
1323 	curr->semval = val;
1324 	curr->sempid = task_tgid_vnr(current);
1325 	sma->sem_ctime = ktime_get_real_seconds();
1326 	/* maybe some queued-up processes were waiting for this */
1327 	do_smart_update(sma, NULL, 0, 0, &wake_q);
1328 	sem_unlock(sma, -1);
1329 	rcu_read_unlock();
1330 	wake_up_q(&wake_q);
1331 	return 0;
1332 }
1333 
1334 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1335 		int cmd, void __user *p)
1336 {
1337 	struct sem_array *sma;
1338 	struct sem *curr;
1339 	int err, nsems;
1340 	ushort fast_sem_io[SEMMSL_FAST];
1341 	ushort *sem_io = fast_sem_io;
1342 	DEFINE_WAKE_Q(wake_q);
1343 
1344 	rcu_read_lock();
1345 	sma = sem_obtain_object_check(ns, semid);
1346 	if (IS_ERR(sma)) {
1347 		rcu_read_unlock();
1348 		return PTR_ERR(sma);
1349 	}
1350 
1351 	nsems = sma->sem_nsems;
1352 
1353 	err = -EACCES;
1354 	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1355 		goto out_rcu_wakeup;
1356 
1357 	err = security_sem_semctl(sma, cmd);
1358 	if (err)
1359 		goto out_rcu_wakeup;
1360 
1361 	err = -EACCES;
1362 	switch (cmd) {
1363 	case GETALL:
1364 	{
1365 		ushort __user *array = p;
1366 		int i;
1367 
1368 		sem_lock(sma, NULL, -1);
1369 		if (!ipc_valid_object(&sma->sem_perm)) {
1370 			err = -EIDRM;
1371 			goto out_unlock;
1372 		}
1373 		if (nsems > SEMMSL_FAST) {
1374 			if (!ipc_rcu_getref(&sma->sem_perm)) {
1375 				err = -EIDRM;
1376 				goto out_unlock;
1377 			}
1378 			sem_unlock(sma, -1);
1379 			rcu_read_unlock();
1380 			sem_io = kvmalloc_array(nsems, sizeof(ushort),
1381 						GFP_KERNEL);
1382 			if (sem_io == NULL) {
1383 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1384 				return -ENOMEM;
1385 			}
1386 
1387 			rcu_read_lock();
1388 			sem_lock_and_putref(sma);
1389 			if (!ipc_valid_object(&sma->sem_perm)) {
1390 				err = -EIDRM;
1391 				goto out_unlock;
1392 			}
1393 		}
1394 		for (i = 0; i < sma->sem_nsems; i++)
1395 			sem_io[i] = sma->sems[i].semval;
1396 		sem_unlock(sma, -1);
1397 		rcu_read_unlock();
1398 		err = 0;
1399 		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1400 			err = -EFAULT;
1401 		goto out_free;
1402 	}
1403 	case SETALL:
1404 	{
1405 		int i;
1406 		struct sem_undo *un;
1407 
1408 		if (!ipc_rcu_getref(&sma->sem_perm)) {
1409 			err = -EIDRM;
1410 			goto out_rcu_wakeup;
1411 		}
1412 		rcu_read_unlock();
1413 
1414 		if (nsems > SEMMSL_FAST) {
1415 			sem_io = kvmalloc_array(nsems, sizeof(ushort),
1416 						GFP_KERNEL);
1417 			if (sem_io == NULL) {
1418 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1419 				return -ENOMEM;
1420 			}
1421 		}
1422 
1423 		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1424 			ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1425 			err = -EFAULT;
1426 			goto out_free;
1427 		}
1428 
1429 		for (i = 0; i < nsems; i++) {
1430 			if (sem_io[i] > SEMVMX) {
1431 				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1432 				err = -ERANGE;
1433 				goto out_free;
1434 			}
1435 		}
1436 		rcu_read_lock();
1437 		sem_lock_and_putref(sma);
1438 		if (!ipc_valid_object(&sma->sem_perm)) {
1439 			err = -EIDRM;
1440 			goto out_unlock;
1441 		}
1442 
1443 		for (i = 0; i < nsems; i++) {
1444 			sma->sems[i].semval = sem_io[i];
1445 			sma->sems[i].sempid = task_tgid_vnr(current);
1446 		}
1447 
1448 		ipc_assert_locked_object(&sma->sem_perm);
1449 		list_for_each_entry(un, &sma->list_id, list_id) {
1450 			for (i = 0; i < nsems; i++)
1451 				un->semadj[i] = 0;
1452 		}
1453 		sma->sem_ctime = ktime_get_real_seconds();
1454 		/* maybe some queued-up processes were waiting for this */
1455 		do_smart_update(sma, NULL, 0, 0, &wake_q);
1456 		err = 0;
1457 		goto out_unlock;
1458 	}
1459 	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1460 	}
1461 	err = -EINVAL;
1462 	if (semnum < 0 || semnum >= nsems)
1463 		goto out_rcu_wakeup;
1464 
1465 	sem_lock(sma, NULL, -1);
1466 	if (!ipc_valid_object(&sma->sem_perm)) {
1467 		err = -EIDRM;
1468 		goto out_unlock;
1469 	}
1470 	curr = &sma->sems[semnum];
1471 
1472 	switch (cmd) {
1473 	case GETVAL:
1474 		err = curr->semval;
1475 		goto out_unlock;
1476 	case GETPID:
1477 		err = curr->sempid;
1478 		goto out_unlock;
1479 	case GETNCNT:
1480 		err = count_semcnt(sma, semnum, 0);
1481 		goto out_unlock;
1482 	case GETZCNT:
1483 		err = count_semcnt(sma, semnum, 1);
1484 		goto out_unlock;
1485 	}
1486 
1487 out_unlock:
1488 	sem_unlock(sma, -1);
1489 out_rcu_wakeup:
1490 	rcu_read_unlock();
1491 	wake_up_q(&wake_q);
1492 out_free:
1493 	if (sem_io != fast_sem_io)
1494 		kvfree(sem_io);
1495 	return err;
1496 }
1497 
1498 static inline unsigned long
1499 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1500 {
1501 	switch (version) {
1502 	case IPC_64:
1503 		if (copy_from_user(out, buf, sizeof(*out)))
1504 			return -EFAULT;
1505 		return 0;
1506 	case IPC_OLD:
1507 	    {
1508 		struct semid_ds tbuf_old;
1509 
1510 		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1511 			return -EFAULT;
1512 
1513 		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1514 		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1515 		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1516 
1517 		return 0;
1518 	    }
1519 	default:
1520 		return -EINVAL;
1521 	}
1522 }
1523 
1524 /*
1525  * This function handles some semctl commands which require the rwsem
1526  * to be held in write mode.
1527  * NOTE: no locks must be held, the rwsem is taken inside this function.
1528  */
1529 static int semctl_down(struct ipc_namespace *ns, int semid,
1530 		       int cmd, struct semid64_ds *semid64)
1531 {
1532 	struct sem_array *sma;
1533 	int err;
1534 	struct kern_ipc_perm *ipcp;
1535 
1536 	down_write(&sem_ids(ns).rwsem);
1537 	rcu_read_lock();
1538 
1539 	ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1540 				      &semid64->sem_perm, 0);
1541 	if (IS_ERR(ipcp)) {
1542 		err = PTR_ERR(ipcp);
1543 		goto out_unlock1;
1544 	}
1545 
1546 	sma = container_of(ipcp, struct sem_array, sem_perm);
1547 
1548 	err = security_sem_semctl(sma, cmd);
1549 	if (err)
1550 		goto out_unlock1;
1551 
1552 	switch (cmd) {
1553 	case IPC_RMID:
1554 		sem_lock(sma, NULL, -1);
1555 		/* freeary unlocks the ipc object and rcu */
1556 		freeary(ns, ipcp);
1557 		goto out_up;
1558 	case IPC_SET:
1559 		sem_lock(sma, NULL, -1);
1560 		err = ipc_update_perm(&semid64->sem_perm, ipcp);
1561 		if (err)
1562 			goto out_unlock0;
1563 		sma->sem_ctime = ktime_get_real_seconds();
1564 		break;
1565 	default:
1566 		err = -EINVAL;
1567 		goto out_unlock1;
1568 	}
1569 
1570 out_unlock0:
1571 	sem_unlock(sma, -1);
1572 out_unlock1:
1573 	rcu_read_unlock();
1574 out_up:
1575 	up_write(&sem_ids(ns).rwsem);
1576 	return err;
1577 }
1578 
1579 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1580 {
1581 	int version;
1582 	struct ipc_namespace *ns;
1583 	void __user *p = (void __user *)arg;
1584 	struct semid64_ds semid64;
1585 	int err;
1586 
1587 	if (semid < 0)
1588 		return -EINVAL;
1589 
1590 	version = ipc_parse_version(&cmd);
1591 	ns = current->nsproxy->ipc_ns;
1592 
1593 	switch (cmd) {
1594 	case IPC_INFO:
1595 	case SEM_INFO:
1596 		return semctl_info(ns, semid, cmd, p);
1597 	case IPC_STAT:
1598 	case SEM_STAT:
1599 		err = semctl_stat(ns, semid, cmd, &semid64);
1600 		if (err < 0)
1601 			return err;
1602 		if (copy_semid_to_user(p, &semid64, version))
1603 			err = -EFAULT;
1604 		return err;
1605 	case GETALL:
1606 	case GETVAL:
1607 	case GETPID:
1608 	case GETNCNT:
1609 	case GETZCNT:
1610 	case SETALL:
1611 		return semctl_main(ns, semid, semnum, cmd, p);
1612 	case SETVAL: {
1613 		int val;
1614 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1615 		/* big-endian 64bit */
1616 		val = arg >> 32;
1617 #else
1618 		/* 32bit or little-endian 64bit */
1619 		val = arg;
1620 #endif
1621 		return semctl_setval(ns, semid, semnum, val);
1622 	}
1623 	case IPC_SET:
1624 		if (copy_semid_from_user(&semid64, p, version))
1625 			return -EFAULT;
1626 	case IPC_RMID:
1627 		return semctl_down(ns, semid, cmd, &semid64);
1628 	default:
1629 		return -EINVAL;
1630 	}
1631 }
1632 
1633 #ifdef CONFIG_COMPAT
1634 
1635 struct compat_semid_ds {
1636 	struct compat_ipc_perm sem_perm;
1637 	compat_time_t sem_otime;
1638 	compat_time_t sem_ctime;
1639 	compat_uptr_t sem_base;
1640 	compat_uptr_t sem_pending;
1641 	compat_uptr_t sem_pending_last;
1642 	compat_uptr_t undo;
1643 	unsigned short sem_nsems;
1644 };
1645 
1646 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1647 					int version)
1648 {
1649 	memset(out, 0, sizeof(*out));
1650 	if (version == IPC_64) {
1651 		struct compat_semid64_ds __user *p = buf;
1652 		return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1653 	} else {
1654 		struct compat_semid_ds __user *p = buf;
1655 		return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1656 	}
1657 }
1658 
1659 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1660 					int version)
1661 {
1662 	if (version == IPC_64) {
1663 		struct compat_semid64_ds v;
1664 		memset(&v, 0, sizeof(v));
1665 		to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1666 		v.sem_otime = in->sem_otime;
1667 		v.sem_ctime = in->sem_ctime;
1668 		v.sem_nsems = in->sem_nsems;
1669 		return copy_to_user(buf, &v, sizeof(v));
1670 	} else {
1671 		struct compat_semid_ds v;
1672 		memset(&v, 0, sizeof(v));
1673 		to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1674 		v.sem_otime = in->sem_otime;
1675 		v.sem_ctime = in->sem_ctime;
1676 		v.sem_nsems = in->sem_nsems;
1677 		return copy_to_user(buf, &v, sizeof(v));
1678 	}
1679 }
1680 
1681 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1682 {
1683 	void __user *p = compat_ptr(arg);
1684 	struct ipc_namespace *ns;
1685 	struct semid64_ds semid64;
1686 	int version = compat_ipc_parse_version(&cmd);
1687 	int err;
1688 
1689 	ns = current->nsproxy->ipc_ns;
1690 
1691 	if (semid < 0)
1692 		return -EINVAL;
1693 
1694 	switch (cmd & (~IPC_64)) {
1695 	case IPC_INFO:
1696 	case SEM_INFO:
1697 		return semctl_info(ns, semid, cmd, p);
1698 	case IPC_STAT:
1699 	case SEM_STAT:
1700 		err = semctl_stat(ns, semid, cmd, &semid64);
1701 		if (err < 0)
1702 			return err;
1703 		if (copy_compat_semid_to_user(p, &semid64, version))
1704 			err = -EFAULT;
1705 		return err;
1706 	case GETVAL:
1707 	case GETPID:
1708 	case GETNCNT:
1709 	case GETZCNT:
1710 	case GETALL:
1711 	case SETALL:
1712 		return semctl_main(ns, semid, semnum, cmd, p);
1713 	case SETVAL:
1714 		return semctl_setval(ns, semid, semnum, arg);
1715 	case IPC_SET:
1716 		if (copy_compat_semid_from_user(&semid64, p, version))
1717 			return -EFAULT;
1718 		/* fallthru */
1719 	case IPC_RMID:
1720 		return semctl_down(ns, semid, cmd, &semid64);
1721 	default:
1722 		return -EINVAL;
1723 	}
1724 }
1725 #endif
1726 
1727 /* If the task doesn't already have a undo_list, then allocate one
1728  * here.  We guarantee there is only one thread using this undo list,
1729  * and current is THE ONE
1730  *
1731  * If this allocation and assignment succeeds, but later
1732  * portions of this code fail, there is no need to free the sem_undo_list.
1733  * Just let it stay associated with the task, and it'll be freed later
1734  * at exit time.
1735  *
1736  * This can block, so callers must hold no locks.
1737  */
1738 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1739 {
1740 	struct sem_undo_list *undo_list;
1741 
1742 	undo_list = current->sysvsem.undo_list;
1743 	if (!undo_list) {
1744 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1745 		if (undo_list == NULL)
1746 			return -ENOMEM;
1747 		spin_lock_init(&undo_list->lock);
1748 		refcount_set(&undo_list->refcnt, 1);
1749 		INIT_LIST_HEAD(&undo_list->list_proc);
1750 
1751 		current->sysvsem.undo_list = undo_list;
1752 	}
1753 	*undo_listp = undo_list;
1754 	return 0;
1755 }
1756 
1757 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1758 {
1759 	struct sem_undo *un;
1760 
1761 	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1762 		if (un->semid == semid)
1763 			return un;
1764 	}
1765 	return NULL;
1766 }
1767 
1768 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1769 {
1770 	struct sem_undo *un;
1771 
1772 	assert_spin_locked(&ulp->lock);
1773 
1774 	un = __lookup_undo(ulp, semid);
1775 	if (un) {
1776 		list_del_rcu(&un->list_proc);
1777 		list_add_rcu(&un->list_proc, &ulp->list_proc);
1778 	}
1779 	return un;
1780 }
1781 
1782 /**
1783  * find_alloc_undo - lookup (and if not present create) undo array
1784  * @ns: namespace
1785  * @semid: semaphore array id
1786  *
1787  * The function looks up (and if not present creates) the undo structure.
1788  * The size of the undo structure depends on the size of the semaphore
1789  * array, thus the alloc path is not that straightforward.
1790  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1791  * performs a rcu_read_lock().
1792  */
1793 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1794 {
1795 	struct sem_array *sma;
1796 	struct sem_undo_list *ulp;
1797 	struct sem_undo *un, *new;
1798 	int nsems, error;
1799 
1800 	error = get_undo_list(&ulp);
1801 	if (error)
1802 		return ERR_PTR(error);
1803 
1804 	rcu_read_lock();
1805 	spin_lock(&ulp->lock);
1806 	un = lookup_undo(ulp, semid);
1807 	spin_unlock(&ulp->lock);
1808 	if (likely(un != NULL))
1809 		goto out;
1810 
1811 	/* no undo structure around - allocate one. */
1812 	/* step 1: figure out the size of the semaphore array */
1813 	sma = sem_obtain_object_check(ns, semid);
1814 	if (IS_ERR(sma)) {
1815 		rcu_read_unlock();
1816 		return ERR_CAST(sma);
1817 	}
1818 
1819 	nsems = sma->sem_nsems;
1820 	if (!ipc_rcu_getref(&sma->sem_perm)) {
1821 		rcu_read_unlock();
1822 		un = ERR_PTR(-EIDRM);
1823 		goto out;
1824 	}
1825 	rcu_read_unlock();
1826 
1827 	/* step 2: allocate new undo structure */
1828 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1829 	if (!new) {
1830 		ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1831 		return ERR_PTR(-ENOMEM);
1832 	}
1833 
1834 	/* step 3: Acquire the lock on semaphore array */
1835 	rcu_read_lock();
1836 	sem_lock_and_putref(sma);
1837 	if (!ipc_valid_object(&sma->sem_perm)) {
1838 		sem_unlock(sma, -1);
1839 		rcu_read_unlock();
1840 		kfree(new);
1841 		un = ERR_PTR(-EIDRM);
1842 		goto out;
1843 	}
1844 	spin_lock(&ulp->lock);
1845 
1846 	/*
1847 	 * step 4: check for races: did someone else allocate the undo struct?
1848 	 */
1849 	un = lookup_undo(ulp, semid);
1850 	if (un) {
1851 		kfree(new);
1852 		goto success;
1853 	}
1854 	/* step 5: initialize & link new undo structure */
1855 	new->semadj = (short *) &new[1];
1856 	new->ulp = ulp;
1857 	new->semid = semid;
1858 	assert_spin_locked(&ulp->lock);
1859 	list_add_rcu(&new->list_proc, &ulp->list_proc);
1860 	ipc_assert_locked_object(&sma->sem_perm);
1861 	list_add(&new->list_id, &sma->list_id);
1862 	un = new;
1863 
1864 success:
1865 	spin_unlock(&ulp->lock);
1866 	sem_unlock(sma, -1);
1867 out:
1868 	return un;
1869 }
1870 
1871 static long do_semtimedop(int semid, struct sembuf __user *tsops,
1872 		unsigned nsops, const struct timespec64 *timeout)
1873 {
1874 	int error = -EINVAL;
1875 	struct sem_array *sma;
1876 	struct sembuf fast_sops[SEMOPM_FAST];
1877 	struct sembuf *sops = fast_sops, *sop;
1878 	struct sem_undo *un;
1879 	int max, locknum;
1880 	bool undos = false, alter = false, dupsop = false;
1881 	struct sem_queue queue;
1882 	unsigned long dup = 0, jiffies_left = 0;
1883 	struct ipc_namespace *ns;
1884 
1885 	ns = current->nsproxy->ipc_ns;
1886 
1887 	if (nsops < 1 || semid < 0)
1888 		return -EINVAL;
1889 	if (nsops > ns->sc_semopm)
1890 		return -E2BIG;
1891 	if (nsops > SEMOPM_FAST) {
1892 		sops = kvmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1893 		if (sops == NULL)
1894 			return -ENOMEM;
1895 	}
1896 
1897 	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1898 		error =  -EFAULT;
1899 		goto out_free;
1900 	}
1901 
1902 	if (timeout) {
1903 		if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
1904 			timeout->tv_nsec >= 1000000000L) {
1905 			error = -EINVAL;
1906 			goto out_free;
1907 		}
1908 		jiffies_left = timespec64_to_jiffies(timeout);
1909 	}
1910 
1911 	max = 0;
1912 	for (sop = sops; sop < sops + nsops; sop++) {
1913 		unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
1914 
1915 		if (sop->sem_num >= max)
1916 			max = sop->sem_num;
1917 		if (sop->sem_flg & SEM_UNDO)
1918 			undos = true;
1919 		if (dup & mask) {
1920 			/*
1921 			 * There was a previous alter access that appears
1922 			 * to have accessed the same semaphore, thus use
1923 			 * the dupsop logic. "appears", because the detection
1924 			 * can only check % BITS_PER_LONG.
1925 			 */
1926 			dupsop = true;
1927 		}
1928 		if (sop->sem_op != 0) {
1929 			alter = true;
1930 			dup |= mask;
1931 		}
1932 	}
1933 
1934 	if (undos) {
1935 		/* On success, find_alloc_undo takes the rcu_read_lock */
1936 		un = find_alloc_undo(ns, semid);
1937 		if (IS_ERR(un)) {
1938 			error = PTR_ERR(un);
1939 			goto out_free;
1940 		}
1941 	} else {
1942 		un = NULL;
1943 		rcu_read_lock();
1944 	}
1945 
1946 	sma = sem_obtain_object_check(ns, semid);
1947 	if (IS_ERR(sma)) {
1948 		rcu_read_unlock();
1949 		error = PTR_ERR(sma);
1950 		goto out_free;
1951 	}
1952 
1953 	error = -EFBIG;
1954 	if (max >= sma->sem_nsems) {
1955 		rcu_read_unlock();
1956 		goto out_free;
1957 	}
1958 
1959 	error = -EACCES;
1960 	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
1961 		rcu_read_unlock();
1962 		goto out_free;
1963 	}
1964 
1965 	error = security_sem_semop(sma, sops, nsops, alter);
1966 	if (error) {
1967 		rcu_read_unlock();
1968 		goto out_free;
1969 	}
1970 
1971 	error = -EIDRM;
1972 	locknum = sem_lock(sma, sops, nsops);
1973 	/*
1974 	 * We eventually might perform the following check in a lockless
1975 	 * fashion, considering ipc_valid_object() locking constraints.
1976 	 * If nsops == 1 and there is no contention for sem_perm.lock, then
1977 	 * only a per-semaphore lock is held and it's OK to proceed with the
1978 	 * check below. More details on the fine grained locking scheme
1979 	 * entangled here and why it's RMID race safe on comments at sem_lock()
1980 	 */
1981 	if (!ipc_valid_object(&sma->sem_perm))
1982 		goto out_unlock_free;
1983 	/*
1984 	 * semid identifiers are not unique - find_alloc_undo may have
1985 	 * allocated an undo structure, it was invalidated by an RMID
1986 	 * and now a new array with received the same id. Check and fail.
1987 	 * This case can be detected checking un->semid. The existence of
1988 	 * "un" itself is guaranteed by rcu.
1989 	 */
1990 	if (un && un->semid == -1)
1991 		goto out_unlock_free;
1992 
1993 	queue.sops = sops;
1994 	queue.nsops = nsops;
1995 	queue.undo = un;
1996 	queue.pid = task_tgid_vnr(current);
1997 	queue.alter = alter;
1998 	queue.dupsop = dupsop;
1999 
2000 	error = perform_atomic_semop(sma, &queue);
2001 	if (error == 0) { /* non-blocking succesfull path */
2002 		DEFINE_WAKE_Q(wake_q);
2003 
2004 		/*
2005 		 * If the operation was successful, then do
2006 		 * the required updates.
2007 		 */
2008 		if (alter)
2009 			do_smart_update(sma, sops, nsops, 1, &wake_q);
2010 		else
2011 			set_semotime(sma, sops);
2012 
2013 		sem_unlock(sma, locknum);
2014 		rcu_read_unlock();
2015 		wake_up_q(&wake_q);
2016 
2017 		goto out_free;
2018 	}
2019 	if (error < 0) /* non-blocking error path */
2020 		goto out_unlock_free;
2021 
2022 	/*
2023 	 * We need to sleep on this operation, so we put the current
2024 	 * task into the pending queue and go to sleep.
2025 	 */
2026 	if (nsops == 1) {
2027 		struct sem *curr;
2028 		curr = &sma->sems[sops->sem_num];
2029 
2030 		if (alter) {
2031 			if (sma->complex_count) {
2032 				list_add_tail(&queue.list,
2033 						&sma->pending_alter);
2034 			} else {
2035 
2036 				list_add_tail(&queue.list,
2037 						&curr->pending_alter);
2038 			}
2039 		} else {
2040 			list_add_tail(&queue.list, &curr->pending_const);
2041 		}
2042 	} else {
2043 		if (!sma->complex_count)
2044 			merge_queues(sma);
2045 
2046 		if (alter)
2047 			list_add_tail(&queue.list, &sma->pending_alter);
2048 		else
2049 			list_add_tail(&queue.list, &sma->pending_const);
2050 
2051 		sma->complex_count++;
2052 	}
2053 
2054 	do {
2055 		queue.status = -EINTR;
2056 		queue.sleeper = current;
2057 
2058 		__set_current_state(TASK_INTERRUPTIBLE);
2059 		sem_unlock(sma, locknum);
2060 		rcu_read_unlock();
2061 
2062 		if (timeout)
2063 			jiffies_left = schedule_timeout(jiffies_left);
2064 		else
2065 			schedule();
2066 
2067 		/*
2068 		 * fastpath: the semop has completed, either successfully or
2069 		 * not, from the syscall pov, is quite irrelevant to us at this
2070 		 * point; we're done.
2071 		 *
2072 		 * We _do_ care, nonetheless, about being awoken by a signal or
2073 		 * spuriously.  The queue.status is checked again in the
2074 		 * slowpath (aka after taking sem_lock), such that we can detect
2075 		 * scenarios where we were awakened externally, during the
2076 		 * window between wake_q_add() and wake_up_q().
2077 		 */
2078 		error = READ_ONCE(queue.status);
2079 		if (error != -EINTR) {
2080 			/*
2081 			 * User space could assume that semop() is a memory
2082 			 * barrier: Without the mb(), the cpu could
2083 			 * speculatively read in userspace stale data that was
2084 			 * overwritten by the previous owner of the semaphore.
2085 			 */
2086 			smp_mb();
2087 			goto out_free;
2088 		}
2089 
2090 		rcu_read_lock();
2091 		locknum = sem_lock(sma, sops, nsops);
2092 
2093 		if (!ipc_valid_object(&sma->sem_perm))
2094 			goto out_unlock_free;
2095 
2096 		error = READ_ONCE(queue.status);
2097 
2098 		/*
2099 		 * If queue.status != -EINTR we are woken up by another process.
2100 		 * Leave without unlink_queue(), but with sem_unlock().
2101 		 */
2102 		if (error != -EINTR)
2103 			goto out_unlock_free;
2104 
2105 		/*
2106 		 * If an interrupt occurred we have to clean up the queue.
2107 		 */
2108 		if (timeout && jiffies_left == 0)
2109 			error = -EAGAIN;
2110 	} while (error == -EINTR && !signal_pending(current)); /* spurious */
2111 
2112 	unlink_queue(sma, &queue);
2113 
2114 out_unlock_free:
2115 	sem_unlock(sma, locknum);
2116 	rcu_read_unlock();
2117 out_free:
2118 	if (sops != fast_sops)
2119 		kvfree(sops);
2120 	return error;
2121 }
2122 
2123 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2124 		unsigned, nsops, const struct timespec __user *, timeout)
2125 {
2126 	if (timeout) {
2127 		struct timespec64 ts;
2128 		if (get_timespec64(&ts, timeout))
2129 			return -EFAULT;
2130 		return do_semtimedop(semid, tsops, nsops, &ts);
2131 	}
2132 	return do_semtimedop(semid, tsops, nsops, NULL);
2133 }
2134 
2135 #ifdef CONFIG_COMPAT
2136 COMPAT_SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsems,
2137 		       unsigned, nsops,
2138 		       const struct compat_timespec __user *, timeout)
2139 {
2140 	if (timeout) {
2141 		struct timespec64 ts;
2142 		if (compat_get_timespec64(&ts, timeout))
2143 			return -EFAULT;
2144 		return do_semtimedop(semid, tsems, nsops, &ts);
2145 	}
2146 	return do_semtimedop(semid, tsems, nsops, NULL);
2147 }
2148 #endif
2149 
2150 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2151 		unsigned, nsops)
2152 {
2153 	return do_semtimedop(semid, tsops, nsops, NULL);
2154 }
2155 
2156 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2157  * parent and child tasks.
2158  */
2159 
2160 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2161 {
2162 	struct sem_undo_list *undo_list;
2163 	int error;
2164 
2165 	if (clone_flags & CLONE_SYSVSEM) {
2166 		error = get_undo_list(&undo_list);
2167 		if (error)
2168 			return error;
2169 		refcount_inc(&undo_list->refcnt);
2170 		tsk->sysvsem.undo_list = undo_list;
2171 	} else
2172 		tsk->sysvsem.undo_list = NULL;
2173 
2174 	return 0;
2175 }
2176 
2177 /*
2178  * add semadj values to semaphores, free undo structures.
2179  * undo structures are not freed when semaphore arrays are destroyed
2180  * so some of them may be out of date.
2181  * IMPLEMENTATION NOTE: There is some confusion over whether the
2182  * set of adjustments that needs to be done should be done in an atomic
2183  * manner or not. That is, if we are attempting to decrement the semval
2184  * should we queue up and wait until we can do so legally?
2185  * The original implementation attempted to do this (queue and wait).
2186  * The current implementation does not do so. The POSIX standard
2187  * and SVID should be consulted to determine what behavior is mandated.
2188  */
2189 void exit_sem(struct task_struct *tsk)
2190 {
2191 	struct sem_undo_list *ulp;
2192 
2193 	ulp = tsk->sysvsem.undo_list;
2194 	if (!ulp)
2195 		return;
2196 	tsk->sysvsem.undo_list = NULL;
2197 
2198 	if (!refcount_dec_and_test(&ulp->refcnt))
2199 		return;
2200 
2201 	for (;;) {
2202 		struct sem_array *sma;
2203 		struct sem_undo *un;
2204 		int semid, i;
2205 		DEFINE_WAKE_Q(wake_q);
2206 
2207 		cond_resched();
2208 
2209 		rcu_read_lock();
2210 		un = list_entry_rcu(ulp->list_proc.next,
2211 				    struct sem_undo, list_proc);
2212 		if (&un->list_proc == &ulp->list_proc) {
2213 			/*
2214 			 * We must wait for freeary() before freeing this ulp,
2215 			 * in case we raced with last sem_undo. There is a small
2216 			 * possibility where we exit while freeary() didn't
2217 			 * finish unlocking sem_undo_list.
2218 			 */
2219 			spin_lock(&ulp->lock);
2220 			spin_unlock(&ulp->lock);
2221 			rcu_read_unlock();
2222 			break;
2223 		}
2224 		spin_lock(&ulp->lock);
2225 		semid = un->semid;
2226 		spin_unlock(&ulp->lock);
2227 
2228 		/* exit_sem raced with IPC_RMID, nothing to do */
2229 		if (semid == -1) {
2230 			rcu_read_unlock();
2231 			continue;
2232 		}
2233 
2234 		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2235 		/* exit_sem raced with IPC_RMID, nothing to do */
2236 		if (IS_ERR(sma)) {
2237 			rcu_read_unlock();
2238 			continue;
2239 		}
2240 
2241 		sem_lock(sma, NULL, -1);
2242 		/* exit_sem raced with IPC_RMID, nothing to do */
2243 		if (!ipc_valid_object(&sma->sem_perm)) {
2244 			sem_unlock(sma, -1);
2245 			rcu_read_unlock();
2246 			continue;
2247 		}
2248 		un = __lookup_undo(ulp, semid);
2249 		if (un == NULL) {
2250 			/* exit_sem raced with IPC_RMID+semget() that created
2251 			 * exactly the same semid. Nothing to do.
2252 			 */
2253 			sem_unlock(sma, -1);
2254 			rcu_read_unlock();
2255 			continue;
2256 		}
2257 
2258 		/* remove un from the linked lists */
2259 		ipc_assert_locked_object(&sma->sem_perm);
2260 		list_del(&un->list_id);
2261 
2262 		/* we are the last process using this ulp, acquiring ulp->lock
2263 		 * isn't required. Besides that, we are also protected against
2264 		 * IPC_RMID as we hold sma->sem_perm lock now
2265 		 */
2266 		list_del_rcu(&un->list_proc);
2267 
2268 		/* perform adjustments registered in un */
2269 		for (i = 0; i < sma->sem_nsems; i++) {
2270 			struct sem *semaphore = &sma->sems[i];
2271 			if (un->semadj[i]) {
2272 				semaphore->semval += un->semadj[i];
2273 				/*
2274 				 * Range checks of the new semaphore value,
2275 				 * not defined by sus:
2276 				 * - Some unices ignore the undo entirely
2277 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2278 				 * - some cap the value (e.g. FreeBSD caps
2279 				 *   at 0, but doesn't enforce SEMVMX)
2280 				 *
2281 				 * Linux caps the semaphore value, both at 0
2282 				 * and at SEMVMX.
2283 				 *
2284 				 *	Manfred <manfred@colorfullife.com>
2285 				 */
2286 				if (semaphore->semval < 0)
2287 					semaphore->semval = 0;
2288 				if (semaphore->semval > SEMVMX)
2289 					semaphore->semval = SEMVMX;
2290 				semaphore->sempid = task_tgid_vnr(current);
2291 			}
2292 		}
2293 		/* maybe some queued-up processes were waiting for this */
2294 		do_smart_update(sma, NULL, 0, 1, &wake_q);
2295 		sem_unlock(sma, -1);
2296 		rcu_read_unlock();
2297 		wake_up_q(&wake_q);
2298 
2299 		kfree_rcu(un, rcu);
2300 	}
2301 	kfree(ulp);
2302 }
2303 
2304 #ifdef CONFIG_PROC_FS
2305 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2306 {
2307 	struct user_namespace *user_ns = seq_user_ns(s);
2308 	struct kern_ipc_perm *ipcp = it;
2309 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2310 	time64_t sem_otime;
2311 
2312 	/*
2313 	 * The proc interface isn't aware of sem_lock(), it calls
2314 	 * ipc_lock_object() directly (in sysvipc_find_ipc).
2315 	 * In order to stay compatible with sem_lock(), we must
2316 	 * enter / leave complex_mode.
2317 	 */
2318 	complexmode_enter(sma);
2319 
2320 	sem_otime = get_semotime(sma);
2321 
2322 	seq_printf(s,
2323 		   "%10d %10d  %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2324 		   sma->sem_perm.key,
2325 		   sma->sem_perm.id,
2326 		   sma->sem_perm.mode,
2327 		   sma->sem_nsems,
2328 		   from_kuid_munged(user_ns, sma->sem_perm.uid),
2329 		   from_kgid_munged(user_ns, sma->sem_perm.gid),
2330 		   from_kuid_munged(user_ns, sma->sem_perm.cuid),
2331 		   from_kgid_munged(user_ns, sma->sem_perm.cgid),
2332 		   sem_otime,
2333 		   sma->sem_ctime);
2334 
2335 	complexmode_tryleave(sma);
2336 
2337 	return 0;
2338 }
2339 #endif
2340