xref: /openbmc/linux/ipc/sem.c (revision 089a49b6)
1 /*
2  * linux/ipc/sem.c
3  * Copyright (C) 1992 Krishna Balasubramanian
4  * Copyright (C) 1995 Eric Schenk, Bruno Haible
5  *
6  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7  *
8  * SMP-threaded, sysctl's added
9  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10  * Enforced range limit on SEM_UNDO
11  * (c) 2001 Red Hat Inc
12  * Lockless wakeup
13  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14  * Further wakeup optimizations, documentation
15  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
16  *
17  * support for audit of ipc object properties and permission changes
18  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
19  *
20  * namespaces support
21  * OpenVZ, SWsoft Inc.
22  * Pavel Emelianov <xemul@openvz.org>
23  *
24  * Implementation notes: (May 2010)
25  * This file implements System V semaphores.
26  *
27  * User space visible behavior:
28  * - FIFO ordering for semop() operations (just FIFO, not starvation
29  *   protection)
30  * - multiple semaphore operations that alter the same semaphore in
31  *   one semop() are handled.
32  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33  *   SETALL calls.
34  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35  * - undo adjustments at process exit are limited to 0..SEMVMX.
36  * - namespace are supported.
37  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38  *   to /proc/sys/kernel/sem.
39  * - statistics about the usage are reported in /proc/sysvipc/sem.
40  *
41  * Internals:
42  * - scalability:
43  *   - all global variables are read-mostly.
44  *   - semop() calls and semctl(RMID) are synchronized by RCU.
45  *   - most operations do write operations (actually: spin_lock calls) to
46  *     the per-semaphore array structure.
47  *   Thus: Perfect SMP scaling between independent semaphore arrays.
48  *         If multiple semaphores in one array are used, then cache line
49  *         trashing on the semaphore array spinlock will limit the scaling.
50  * - semncnt and semzcnt are calculated on demand in count_semncnt() and
51  *   count_semzcnt()
52  * - the task that performs a successful semop() scans the list of all
53  *   sleeping tasks and completes any pending operations that can be fulfilled.
54  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
55  *   (see update_queue())
56  * - To improve the scalability, the actual wake-up calls are performed after
57  *   dropping all locks. (see wake_up_sem_queue_prepare(),
58  *   wake_up_sem_queue_do())
59  * - All work is done by the waker, the woken up task does not have to do
60  *   anything - not even acquiring a lock or dropping a refcount.
61  * - A woken up task may not even touch the semaphore array anymore, it may
62  *   have been destroyed already by a semctl(RMID).
63  * - The synchronizations between wake-ups due to a timeout/signal and a
64  *   wake-up due to a completed semaphore operation is achieved by using an
65  *   intermediate state (IN_WAKEUP).
66  * - UNDO values are stored in an array (one per process and per
67  *   semaphore array, lazily allocated). For backwards compatibility, multiple
68  *   modes for the UNDO variables are supported (per process, per thread)
69  *   (see copy_semundo, CLONE_SYSVSEM)
70  * - There are two lists of the pending operations: a per-array list
71  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
72  *   ordering without always scanning all pending operations.
73  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
74  */
75 
76 #include <linux/slab.h>
77 #include <linux/spinlock.h>
78 #include <linux/init.h>
79 #include <linux/proc_fs.h>
80 #include <linux/time.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/audit.h>
84 #include <linux/capability.h>
85 #include <linux/seq_file.h>
86 #include <linux/rwsem.h>
87 #include <linux/nsproxy.h>
88 #include <linux/ipc_namespace.h>
89 
90 #include <asm/uaccess.h>
91 #include "util.h"
92 
93 /* One semaphore structure for each semaphore in the system. */
94 struct sem {
95 	int	semval;		/* current value */
96 	int	sempid;		/* pid of last operation */
97 	spinlock_t	lock;	/* spinlock for fine-grained semtimedop */
98 	struct list_head pending_alter; /* pending single-sop operations */
99 					/* that alter the semaphore */
100 	struct list_head pending_const; /* pending single-sop operations */
101 					/* that do not alter the semaphore*/
102 	time_t	sem_otime;	/* candidate for sem_otime */
103 } ____cacheline_aligned_in_smp;
104 
105 /* One queue for each sleeping process in the system. */
106 struct sem_queue {
107 	struct list_head	list;	 /* queue of pending operations */
108 	struct task_struct	*sleeper; /* this process */
109 	struct sem_undo		*undo;	 /* undo structure */
110 	int			pid;	 /* process id of requesting process */
111 	int			status;	 /* completion status of operation */
112 	struct sembuf		*sops;	 /* array of pending operations */
113 	int			nsops;	 /* number of operations */
114 	int			alter;	 /* does *sops alter the array? */
115 };
116 
117 /* Each task has a list of undo requests. They are executed automatically
118  * when the process exits.
119  */
120 struct sem_undo {
121 	struct list_head	list_proc;	/* per-process list: *
122 						 * all undos from one process
123 						 * rcu protected */
124 	struct rcu_head		rcu;		/* rcu struct for sem_undo */
125 	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
126 	struct list_head	list_id;	/* per semaphore array list:
127 						 * all undos for one array */
128 	int			semid;		/* semaphore set identifier */
129 	short			*semadj;	/* array of adjustments */
130 						/* one per semaphore */
131 };
132 
133 /* sem_undo_list controls shared access to the list of sem_undo structures
134  * that may be shared among all a CLONE_SYSVSEM task group.
135  */
136 struct sem_undo_list {
137 	atomic_t		refcnt;
138 	spinlock_t		lock;
139 	struct list_head	list_proc;
140 };
141 
142 
143 #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
144 
145 #define sem_checkid(sma, semid)	ipc_checkid(&sma->sem_perm, semid)
146 
147 static int newary(struct ipc_namespace *, struct ipc_params *);
148 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
149 #ifdef CONFIG_PROC_FS
150 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
151 #endif
152 
153 #define SEMMSL_FAST	256 /* 512 bytes on stack */
154 #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
155 
156 /*
157  * Locking:
158  *	sem_undo.id_next,
159  *	sem_array.complex_count,
160  *	sem_array.pending{_alter,_cont},
161  *	sem_array.sem_undo: global sem_lock() for read/write
162  *	sem_undo.proc_next: only "current" is allowed to read/write that field.
163  *
164  *	sem_array.sem_base[i].pending_{const,alter}:
165  *		global or semaphore sem_lock() for read/write
166  */
167 
168 #define sc_semmsl	sem_ctls[0]
169 #define sc_semmns	sem_ctls[1]
170 #define sc_semopm	sem_ctls[2]
171 #define sc_semmni	sem_ctls[3]
172 
173 void sem_init_ns(struct ipc_namespace *ns)
174 {
175 	ns->sc_semmsl = SEMMSL;
176 	ns->sc_semmns = SEMMNS;
177 	ns->sc_semopm = SEMOPM;
178 	ns->sc_semmni = SEMMNI;
179 	ns->used_sems = 0;
180 	ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
181 }
182 
183 #ifdef CONFIG_IPC_NS
184 void sem_exit_ns(struct ipc_namespace *ns)
185 {
186 	free_ipcs(ns, &sem_ids(ns), freeary);
187 	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
188 }
189 #endif
190 
191 void __init sem_init (void)
192 {
193 	sem_init_ns(&init_ipc_ns);
194 	ipc_init_proc_interface("sysvipc/sem",
195 				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
196 				IPC_SEM_IDS, sysvipc_sem_proc_show);
197 }
198 
199 /**
200  * unmerge_queues - unmerge queues, if possible.
201  * @sma: semaphore array
202  *
203  * The function unmerges the wait queues if complex_count is 0.
204  * It must be called prior to dropping the global semaphore array lock.
205  */
206 static void unmerge_queues(struct sem_array *sma)
207 {
208 	struct sem_queue *q, *tq;
209 
210 	/* complex operations still around? */
211 	if (sma->complex_count)
212 		return;
213 	/*
214 	 * We will switch back to simple mode.
215 	 * Move all pending operation back into the per-semaphore
216 	 * queues.
217 	 */
218 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
219 		struct sem *curr;
220 		curr = &sma->sem_base[q->sops[0].sem_num];
221 
222 		list_add_tail(&q->list, &curr->pending_alter);
223 	}
224 	INIT_LIST_HEAD(&sma->pending_alter);
225 }
226 
227 /**
228  * merge_queues - Merge single semop queues into global queue
229  * @sma: semaphore array
230  *
231  * This function merges all per-semaphore queues into the global queue.
232  * It is necessary to achieve FIFO ordering for the pending single-sop
233  * operations when a multi-semop operation must sleep.
234  * Only the alter operations must be moved, the const operations can stay.
235  */
236 static void merge_queues(struct sem_array *sma)
237 {
238 	int i;
239 	for (i = 0; i < sma->sem_nsems; i++) {
240 		struct sem *sem = sma->sem_base + i;
241 
242 		list_splice_init(&sem->pending_alter, &sma->pending_alter);
243 	}
244 }
245 
246 static void sem_rcu_free(struct rcu_head *head)
247 {
248 	struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
249 	struct sem_array *sma = ipc_rcu_to_struct(p);
250 
251 	security_sem_free(sma);
252 	ipc_rcu_free(head);
253 }
254 
255 /*
256  * If the request contains only one semaphore operation, and there are
257  * no complex transactions pending, lock only the semaphore involved.
258  * Otherwise, lock the entire semaphore array, since we either have
259  * multiple semaphores in our own semops, or we need to look at
260  * semaphores from other pending complex operations.
261  *
262  * Carefully guard against sma->complex_count changing between zero
263  * and non-zero while we are spinning for the lock. The value of
264  * sma->complex_count cannot change while we are holding the lock,
265  * so sem_unlock should be fine.
266  *
267  * The global lock path checks that all the local locks have been released,
268  * checking each local lock once. This means that the local lock paths
269  * cannot start their critical sections while the global lock is held.
270  */
271 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
272 			      int nsops)
273 {
274 	int locknum;
275  again:
276 	if (nsops == 1 && !sma->complex_count) {
277 		struct sem *sem = sma->sem_base + sops->sem_num;
278 
279 		/* Lock just the semaphore we are interested in. */
280 		spin_lock(&sem->lock);
281 
282 		/*
283 		 * If sma->complex_count was set while we were spinning,
284 		 * we may need to look at things we did not lock here.
285 		 */
286 		if (unlikely(sma->complex_count)) {
287 			spin_unlock(&sem->lock);
288 			goto lock_array;
289 		}
290 
291 		/*
292 		 * Another process is holding the global lock on the
293 		 * sem_array; we cannot enter our critical section,
294 		 * but have to wait for the global lock to be released.
295 		 */
296 		if (unlikely(spin_is_locked(&sma->sem_perm.lock))) {
297 			spin_unlock(&sem->lock);
298 			spin_unlock_wait(&sma->sem_perm.lock);
299 			goto again;
300 		}
301 
302 		locknum = sops->sem_num;
303 	} else {
304 		int i;
305 		/*
306 		 * Lock the semaphore array, and wait for all of the
307 		 * individual semaphore locks to go away.  The code
308 		 * above ensures no new single-lock holders will enter
309 		 * their critical section while the array lock is held.
310 		 */
311  lock_array:
312 		ipc_lock_object(&sma->sem_perm);
313 		for (i = 0; i < sma->sem_nsems; i++) {
314 			struct sem *sem = sma->sem_base + i;
315 			spin_unlock_wait(&sem->lock);
316 		}
317 		locknum = -1;
318 	}
319 	return locknum;
320 }
321 
322 static inline void sem_unlock(struct sem_array *sma, int locknum)
323 {
324 	if (locknum == -1) {
325 		unmerge_queues(sma);
326 		ipc_unlock_object(&sma->sem_perm);
327 	} else {
328 		struct sem *sem = sma->sem_base + locknum;
329 		spin_unlock(&sem->lock);
330 	}
331 }
332 
333 /*
334  * sem_lock_(check_) routines are called in the paths where the rwsem
335  * is not held.
336  *
337  * The caller holds the RCU read lock.
338  */
339 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
340 			int id, struct sembuf *sops, int nsops, int *locknum)
341 {
342 	struct kern_ipc_perm *ipcp;
343 	struct sem_array *sma;
344 
345 	ipcp = ipc_obtain_object(&sem_ids(ns), id);
346 	if (IS_ERR(ipcp))
347 		return ERR_CAST(ipcp);
348 
349 	sma = container_of(ipcp, struct sem_array, sem_perm);
350 	*locknum = sem_lock(sma, sops, nsops);
351 
352 	/* ipc_rmid() may have already freed the ID while sem_lock
353 	 * was spinning: verify that the structure is still valid
354 	 */
355 	if (!ipcp->deleted)
356 		return container_of(ipcp, struct sem_array, sem_perm);
357 
358 	sem_unlock(sma, *locknum);
359 	return ERR_PTR(-EINVAL);
360 }
361 
362 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
363 {
364 	struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
365 
366 	if (IS_ERR(ipcp))
367 		return ERR_CAST(ipcp);
368 
369 	return container_of(ipcp, struct sem_array, sem_perm);
370 }
371 
372 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
373 							int id)
374 {
375 	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
376 
377 	if (IS_ERR(ipcp))
378 		return ERR_CAST(ipcp);
379 
380 	return container_of(ipcp, struct sem_array, sem_perm);
381 }
382 
383 static inline void sem_lock_and_putref(struct sem_array *sma)
384 {
385 	sem_lock(sma, NULL, -1);
386 	ipc_rcu_putref(sma, ipc_rcu_free);
387 }
388 
389 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
390 {
391 	ipc_rmid(&sem_ids(ns), &s->sem_perm);
392 }
393 
394 /*
395  * Lockless wakeup algorithm:
396  * Without the check/retry algorithm a lockless wakeup is possible:
397  * - queue.status is initialized to -EINTR before blocking.
398  * - wakeup is performed by
399  *	* unlinking the queue entry from the pending list
400  *	* setting queue.status to IN_WAKEUP
401  *	  This is the notification for the blocked thread that a
402  *	  result value is imminent.
403  *	* call wake_up_process
404  *	* set queue.status to the final value.
405  * - the previously blocked thread checks queue.status:
406  *   	* if it's IN_WAKEUP, then it must wait until the value changes
407  *   	* if it's not -EINTR, then the operation was completed by
408  *   	  update_queue. semtimedop can return queue.status without
409  *   	  performing any operation on the sem array.
410  *   	* otherwise it must acquire the spinlock and check what's up.
411  *
412  * The two-stage algorithm is necessary to protect against the following
413  * races:
414  * - if queue.status is set after wake_up_process, then the woken up idle
415  *   thread could race forward and try (and fail) to acquire sma->lock
416  *   before update_queue had a chance to set queue.status
417  * - if queue.status is written before wake_up_process and if the
418  *   blocked process is woken up by a signal between writing
419  *   queue.status and the wake_up_process, then the woken up
420  *   process could return from semtimedop and die by calling
421  *   sys_exit before wake_up_process is called. Then wake_up_process
422  *   will oops, because the task structure is already invalid.
423  *   (yes, this happened on s390 with sysv msg).
424  *
425  */
426 #define IN_WAKEUP	1
427 
428 /**
429  * newary - Create a new semaphore set
430  * @ns: namespace
431  * @params: ptr to the structure that contains key, semflg and nsems
432  *
433  * Called with sem_ids.rwsem held (as a writer)
434  */
435 
436 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
437 {
438 	int id;
439 	int retval;
440 	struct sem_array *sma;
441 	int size;
442 	key_t key = params->key;
443 	int nsems = params->u.nsems;
444 	int semflg = params->flg;
445 	int i;
446 
447 	if (!nsems)
448 		return -EINVAL;
449 	if (ns->used_sems + nsems > ns->sc_semmns)
450 		return -ENOSPC;
451 
452 	size = sizeof (*sma) + nsems * sizeof (struct sem);
453 	sma = ipc_rcu_alloc(size);
454 	if (!sma) {
455 		return -ENOMEM;
456 	}
457 	memset (sma, 0, size);
458 
459 	sma->sem_perm.mode = (semflg & S_IRWXUGO);
460 	sma->sem_perm.key = key;
461 
462 	sma->sem_perm.security = NULL;
463 	retval = security_sem_alloc(sma);
464 	if (retval) {
465 		ipc_rcu_putref(sma, ipc_rcu_free);
466 		return retval;
467 	}
468 
469 	id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
470 	if (id < 0) {
471 		ipc_rcu_putref(sma, sem_rcu_free);
472 		return id;
473 	}
474 	ns->used_sems += nsems;
475 
476 	sma->sem_base = (struct sem *) &sma[1];
477 
478 	for (i = 0; i < nsems; i++) {
479 		INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
480 		INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
481 		spin_lock_init(&sma->sem_base[i].lock);
482 	}
483 
484 	sma->complex_count = 0;
485 	INIT_LIST_HEAD(&sma->pending_alter);
486 	INIT_LIST_HEAD(&sma->pending_const);
487 	INIT_LIST_HEAD(&sma->list_id);
488 	sma->sem_nsems = nsems;
489 	sma->sem_ctime = get_seconds();
490 	sem_unlock(sma, -1);
491 	rcu_read_unlock();
492 
493 	return sma->sem_perm.id;
494 }
495 
496 
497 /*
498  * Called with sem_ids.rwsem and ipcp locked.
499  */
500 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
501 {
502 	struct sem_array *sma;
503 
504 	sma = container_of(ipcp, struct sem_array, sem_perm);
505 	return security_sem_associate(sma, semflg);
506 }
507 
508 /*
509  * Called with sem_ids.rwsem and ipcp locked.
510  */
511 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
512 				struct ipc_params *params)
513 {
514 	struct sem_array *sma;
515 
516 	sma = container_of(ipcp, struct sem_array, sem_perm);
517 	if (params->u.nsems > sma->sem_nsems)
518 		return -EINVAL;
519 
520 	return 0;
521 }
522 
523 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
524 {
525 	struct ipc_namespace *ns;
526 	struct ipc_ops sem_ops;
527 	struct ipc_params sem_params;
528 
529 	ns = current->nsproxy->ipc_ns;
530 
531 	if (nsems < 0 || nsems > ns->sc_semmsl)
532 		return -EINVAL;
533 
534 	sem_ops.getnew = newary;
535 	sem_ops.associate = sem_security;
536 	sem_ops.more_checks = sem_more_checks;
537 
538 	sem_params.key = key;
539 	sem_params.flg = semflg;
540 	sem_params.u.nsems = nsems;
541 
542 	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
543 }
544 
545 /** perform_atomic_semop - Perform (if possible) a semaphore operation
546  * @sma: semaphore array
547  * @sops: array with operations that should be checked
548  * @nsems: number of sops
549  * @un: undo array
550  * @pid: pid that did the change
551  *
552  * Returns 0 if the operation was possible.
553  * Returns 1 if the operation is impossible, the caller must sleep.
554  * Negative values are error codes.
555  */
556 
557 static int perform_atomic_semop(struct sem_array *sma, struct sembuf *sops,
558 			     int nsops, struct sem_undo *un, int pid)
559 {
560 	int result, sem_op;
561 	struct sembuf *sop;
562 	struct sem * curr;
563 
564 	for (sop = sops; sop < sops + nsops; sop++) {
565 		curr = sma->sem_base + sop->sem_num;
566 		sem_op = sop->sem_op;
567 		result = curr->semval;
568 
569 		if (!sem_op && result)
570 			goto would_block;
571 
572 		result += sem_op;
573 		if (result < 0)
574 			goto would_block;
575 		if (result > SEMVMX)
576 			goto out_of_range;
577 		if (sop->sem_flg & SEM_UNDO) {
578 			int undo = un->semadj[sop->sem_num] - sem_op;
579 			/*
580 	 		 *	Exceeding the undo range is an error.
581 			 */
582 			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
583 				goto out_of_range;
584 		}
585 		curr->semval = result;
586 	}
587 
588 	sop--;
589 	while (sop >= sops) {
590 		sma->sem_base[sop->sem_num].sempid = pid;
591 		if (sop->sem_flg & SEM_UNDO)
592 			un->semadj[sop->sem_num] -= sop->sem_op;
593 		sop--;
594 	}
595 
596 	return 0;
597 
598 out_of_range:
599 	result = -ERANGE;
600 	goto undo;
601 
602 would_block:
603 	if (sop->sem_flg & IPC_NOWAIT)
604 		result = -EAGAIN;
605 	else
606 		result = 1;
607 
608 undo:
609 	sop--;
610 	while (sop >= sops) {
611 		sma->sem_base[sop->sem_num].semval -= sop->sem_op;
612 		sop--;
613 	}
614 
615 	return result;
616 }
617 
618 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
619  * @q: queue entry that must be signaled
620  * @error: Error value for the signal
621  *
622  * Prepare the wake-up of the queue entry q.
623  */
624 static void wake_up_sem_queue_prepare(struct list_head *pt,
625 				struct sem_queue *q, int error)
626 {
627 	if (list_empty(pt)) {
628 		/*
629 		 * Hold preempt off so that we don't get preempted and have the
630 		 * wakee busy-wait until we're scheduled back on.
631 		 */
632 		preempt_disable();
633 	}
634 	q->status = IN_WAKEUP;
635 	q->pid = error;
636 
637 	list_add_tail(&q->list, pt);
638 }
639 
640 /**
641  * wake_up_sem_queue_do(pt) - do the actual wake-up
642  * @pt: list of tasks to be woken up
643  *
644  * Do the actual wake-up.
645  * The function is called without any locks held, thus the semaphore array
646  * could be destroyed already and the tasks can disappear as soon as the
647  * status is set to the actual return code.
648  */
649 static void wake_up_sem_queue_do(struct list_head *pt)
650 {
651 	struct sem_queue *q, *t;
652 	int did_something;
653 
654 	did_something = !list_empty(pt);
655 	list_for_each_entry_safe(q, t, pt, list) {
656 		wake_up_process(q->sleeper);
657 		/* q can disappear immediately after writing q->status. */
658 		smp_wmb();
659 		q->status = q->pid;
660 	}
661 	if (did_something)
662 		preempt_enable();
663 }
664 
665 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
666 {
667 	list_del(&q->list);
668 	if (q->nsops > 1)
669 		sma->complex_count--;
670 }
671 
672 /** check_restart(sma, q)
673  * @sma: semaphore array
674  * @q: the operation that just completed
675  *
676  * update_queue is O(N^2) when it restarts scanning the whole queue of
677  * waiting operations. Therefore this function checks if the restart is
678  * really necessary. It is called after a previously waiting operation
679  * modified the array.
680  * Note that wait-for-zero operations are handled without restart.
681  */
682 static int check_restart(struct sem_array *sma, struct sem_queue *q)
683 {
684 	/* pending complex alter operations are too difficult to analyse */
685 	if (!list_empty(&sma->pending_alter))
686 		return 1;
687 
688 	/* we were a sleeping complex operation. Too difficult */
689 	if (q->nsops > 1)
690 		return 1;
691 
692 	/* It is impossible that someone waits for the new value:
693 	 * - complex operations always restart.
694 	 * - wait-for-zero are handled seperately.
695 	 * - q is a previously sleeping simple operation that
696 	 *   altered the array. It must be a decrement, because
697 	 *   simple increments never sleep.
698 	 * - If there are older (higher priority) decrements
699 	 *   in the queue, then they have observed the original
700 	 *   semval value and couldn't proceed. The operation
701 	 *   decremented to value - thus they won't proceed either.
702 	 */
703 	return 0;
704 }
705 
706 /**
707  * wake_const_ops(sma, semnum, pt) - Wake up non-alter tasks
708  * @sma: semaphore array.
709  * @semnum: semaphore that was modified.
710  * @pt: list head for the tasks that must be woken up.
711  *
712  * wake_const_ops must be called after a semaphore in a semaphore array
713  * was set to 0. If complex const operations are pending, wake_const_ops must
714  * be called with semnum = -1, as well as with the number of each modified
715  * semaphore.
716  * The tasks that must be woken up are added to @pt. The return code
717  * is stored in q->pid.
718  * The function returns 1 if at least one operation was completed successfully.
719  */
720 static int wake_const_ops(struct sem_array *sma, int semnum,
721 				struct list_head *pt)
722 {
723 	struct sem_queue *q;
724 	struct list_head *walk;
725 	struct list_head *pending_list;
726 	int semop_completed = 0;
727 
728 	if (semnum == -1)
729 		pending_list = &sma->pending_const;
730 	else
731 		pending_list = &sma->sem_base[semnum].pending_const;
732 
733 	walk = pending_list->next;
734 	while (walk != pending_list) {
735 		int error;
736 
737 		q = container_of(walk, struct sem_queue, list);
738 		walk = walk->next;
739 
740 		error = perform_atomic_semop(sma, q->sops, q->nsops,
741 						 q->undo, q->pid);
742 
743 		if (error <= 0) {
744 			/* operation completed, remove from queue & wakeup */
745 
746 			unlink_queue(sma, q);
747 
748 			wake_up_sem_queue_prepare(pt, q, error);
749 			if (error == 0)
750 				semop_completed = 1;
751 		}
752 	}
753 	return semop_completed;
754 }
755 
756 /**
757  * do_smart_wakeup_zero(sma, sops, nsops, pt) - wakeup all wait for zero tasks
758  * @sma: semaphore array
759  * @sops: operations that were performed
760  * @nsops: number of operations
761  * @pt: list head of the tasks that must be woken up.
762  *
763  * do_smart_wakeup_zero() checks all required queue for wait-for-zero
764  * operations, based on the actual changes that were performed on the
765  * semaphore array.
766  * The function returns 1 if at least one operation was completed successfully.
767  */
768 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
769 					int nsops, struct list_head *pt)
770 {
771 	int i;
772 	int semop_completed = 0;
773 	int got_zero = 0;
774 
775 	/* first: the per-semaphore queues, if known */
776 	if (sops) {
777 		for (i = 0; i < nsops; i++) {
778 			int num = sops[i].sem_num;
779 
780 			if (sma->sem_base[num].semval == 0) {
781 				got_zero = 1;
782 				semop_completed |= wake_const_ops(sma, num, pt);
783 			}
784 		}
785 	} else {
786 		/*
787 		 * No sops means modified semaphores not known.
788 		 * Assume all were changed.
789 		 */
790 		for (i = 0; i < sma->sem_nsems; i++) {
791 			if (sma->sem_base[i].semval == 0) {
792 				got_zero = 1;
793 				semop_completed |= wake_const_ops(sma, i, pt);
794 			}
795 		}
796 	}
797 	/*
798 	 * If one of the modified semaphores got 0,
799 	 * then check the global queue, too.
800 	 */
801 	if (got_zero)
802 		semop_completed |= wake_const_ops(sma, -1, pt);
803 
804 	return semop_completed;
805 }
806 
807 
808 /**
809  * update_queue(sma, semnum): Look for tasks that can be completed.
810  * @sma: semaphore array.
811  * @semnum: semaphore that was modified.
812  * @pt: list head for the tasks that must be woken up.
813  *
814  * update_queue must be called after a semaphore in a semaphore array
815  * was modified. If multiple semaphores were modified, update_queue must
816  * be called with semnum = -1, as well as with the number of each modified
817  * semaphore.
818  * The tasks that must be woken up are added to @pt. The return code
819  * is stored in q->pid.
820  * The function internally checks if const operations can now succeed.
821  *
822  * The function return 1 if at least one semop was completed successfully.
823  */
824 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
825 {
826 	struct sem_queue *q;
827 	struct list_head *walk;
828 	struct list_head *pending_list;
829 	int semop_completed = 0;
830 
831 	if (semnum == -1)
832 		pending_list = &sma->pending_alter;
833 	else
834 		pending_list = &sma->sem_base[semnum].pending_alter;
835 
836 again:
837 	walk = pending_list->next;
838 	while (walk != pending_list) {
839 		int error, restart;
840 
841 		q = container_of(walk, struct sem_queue, list);
842 		walk = walk->next;
843 
844 		/* If we are scanning the single sop, per-semaphore list of
845 		 * one semaphore and that semaphore is 0, then it is not
846 		 * necessary to scan further: simple increments
847 		 * that affect only one entry succeed immediately and cannot
848 		 * be in the  per semaphore pending queue, and decrements
849 		 * cannot be successful if the value is already 0.
850 		 */
851 		if (semnum != -1 && sma->sem_base[semnum].semval == 0)
852 			break;
853 
854 		error = perform_atomic_semop(sma, q->sops, q->nsops,
855 					 q->undo, q->pid);
856 
857 		/* Does q->sleeper still need to sleep? */
858 		if (error > 0)
859 			continue;
860 
861 		unlink_queue(sma, q);
862 
863 		if (error) {
864 			restart = 0;
865 		} else {
866 			semop_completed = 1;
867 			do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
868 			restart = check_restart(sma, q);
869 		}
870 
871 		wake_up_sem_queue_prepare(pt, q, error);
872 		if (restart)
873 			goto again;
874 	}
875 	return semop_completed;
876 }
877 
878 /**
879  * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
880  * @sma: semaphore array
881  * @sops: operations that were performed
882  * @nsops: number of operations
883  * @otime: force setting otime
884  * @pt: list head of the tasks that must be woken up.
885  *
886  * do_smart_update() does the required calls to update_queue and wakeup_zero,
887  * based on the actual changes that were performed on the semaphore array.
888  * Note that the function does not do the actual wake-up: the caller is
889  * responsible for calling wake_up_sem_queue_do(@pt).
890  * It is safe to perform this call after dropping all locks.
891  */
892 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
893 			int otime, struct list_head *pt)
894 {
895 	int i;
896 
897 	otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
898 
899 	if (!list_empty(&sma->pending_alter)) {
900 		/* semaphore array uses the global queue - just process it. */
901 		otime |= update_queue(sma, -1, pt);
902 	} else {
903 		if (!sops) {
904 			/*
905 			 * No sops, thus the modified semaphores are not
906 			 * known. Check all.
907 			 */
908 			for (i = 0; i < sma->sem_nsems; i++)
909 				otime |= update_queue(sma, i, pt);
910 		} else {
911 			/*
912 			 * Check the semaphores that were increased:
913 			 * - No complex ops, thus all sleeping ops are
914 			 *   decrease.
915 			 * - if we decreased the value, then any sleeping
916 			 *   semaphore ops wont be able to run: If the
917 			 *   previous value was too small, then the new
918 			 *   value will be too small, too.
919 			 */
920 			for (i = 0; i < nsops; i++) {
921 				if (sops[i].sem_op > 0) {
922 					otime |= update_queue(sma,
923 							sops[i].sem_num, pt);
924 				}
925 			}
926 		}
927 	}
928 	if (otime) {
929 		if (sops == NULL) {
930 			sma->sem_base[0].sem_otime = get_seconds();
931 		} else {
932 			sma->sem_base[sops[0].sem_num].sem_otime =
933 								get_seconds();
934 		}
935 	}
936 }
937 
938 
939 /* The following counts are associated to each semaphore:
940  *   semncnt        number of tasks waiting on semval being nonzero
941  *   semzcnt        number of tasks waiting on semval being zero
942  * This model assumes that a task waits on exactly one semaphore.
943  * Since semaphore operations are to be performed atomically, tasks actually
944  * wait on a whole sequence of semaphores simultaneously.
945  * The counts we return here are a rough approximation, but still
946  * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
947  */
948 static int count_semncnt (struct sem_array * sma, ushort semnum)
949 {
950 	int semncnt;
951 	struct sem_queue * q;
952 
953 	semncnt = 0;
954 	list_for_each_entry(q, &sma->sem_base[semnum].pending_alter, list) {
955 		struct sembuf * sops = q->sops;
956 		BUG_ON(sops->sem_num != semnum);
957 		if ((sops->sem_op < 0) && !(sops->sem_flg & IPC_NOWAIT))
958 			semncnt++;
959 	}
960 
961 	list_for_each_entry(q, &sma->pending_alter, list) {
962 		struct sembuf * sops = q->sops;
963 		int nsops = q->nsops;
964 		int i;
965 		for (i = 0; i < nsops; i++)
966 			if (sops[i].sem_num == semnum
967 			    && (sops[i].sem_op < 0)
968 			    && !(sops[i].sem_flg & IPC_NOWAIT))
969 				semncnt++;
970 	}
971 	return semncnt;
972 }
973 
974 static int count_semzcnt (struct sem_array * sma, ushort semnum)
975 {
976 	int semzcnt;
977 	struct sem_queue * q;
978 
979 	semzcnt = 0;
980 	list_for_each_entry(q, &sma->sem_base[semnum].pending_const, list) {
981 		struct sembuf * sops = q->sops;
982 		BUG_ON(sops->sem_num != semnum);
983 		if ((sops->sem_op == 0) && !(sops->sem_flg & IPC_NOWAIT))
984 			semzcnt++;
985 	}
986 
987 	list_for_each_entry(q, &sma->pending_const, list) {
988 		struct sembuf * sops = q->sops;
989 		int nsops = q->nsops;
990 		int i;
991 		for (i = 0; i < nsops; i++)
992 			if (sops[i].sem_num == semnum
993 			    && (sops[i].sem_op == 0)
994 			    && !(sops[i].sem_flg & IPC_NOWAIT))
995 				semzcnt++;
996 	}
997 	return semzcnt;
998 }
999 
1000 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1001  * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1002  * remains locked on exit.
1003  */
1004 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1005 {
1006 	struct sem_undo *un, *tu;
1007 	struct sem_queue *q, *tq;
1008 	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1009 	struct list_head tasks;
1010 	int i;
1011 
1012 	/* Free the existing undo structures for this semaphore set.  */
1013 	ipc_assert_locked_object(&sma->sem_perm);
1014 	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1015 		list_del(&un->list_id);
1016 		spin_lock(&un->ulp->lock);
1017 		un->semid = -1;
1018 		list_del_rcu(&un->list_proc);
1019 		spin_unlock(&un->ulp->lock);
1020 		kfree_rcu(un, rcu);
1021 	}
1022 
1023 	/* Wake up all pending processes and let them fail with EIDRM. */
1024 	INIT_LIST_HEAD(&tasks);
1025 	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1026 		unlink_queue(sma, q);
1027 		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1028 	}
1029 
1030 	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1031 		unlink_queue(sma, q);
1032 		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1033 	}
1034 	for (i = 0; i < sma->sem_nsems; i++) {
1035 		struct sem *sem = sma->sem_base + i;
1036 		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1037 			unlink_queue(sma, q);
1038 			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1039 		}
1040 		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1041 			unlink_queue(sma, q);
1042 			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1043 		}
1044 	}
1045 
1046 	/* Remove the semaphore set from the IDR */
1047 	sem_rmid(ns, sma);
1048 	sem_unlock(sma, -1);
1049 	rcu_read_unlock();
1050 
1051 	wake_up_sem_queue_do(&tasks);
1052 	ns->used_sems -= sma->sem_nsems;
1053 	ipc_rcu_putref(sma, sem_rcu_free);
1054 }
1055 
1056 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1057 {
1058 	switch(version) {
1059 	case IPC_64:
1060 		return copy_to_user(buf, in, sizeof(*in));
1061 	case IPC_OLD:
1062 	    {
1063 		struct semid_ds out;
1064 
1065 		memset(&out, 0, sizeof(out));
1066 
1067 		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1068 
1069 		out.sem_otime	= in->sem_otime;
1070 		out.sem_ctime	= in->sem_ctime;
1071 		out.sem_nsems	= in->sem_nsems;
1072 
1073 		return copy_to_user(buf, &out, sizeof(out));
1074 	    }
1075 	default:
1076 		return -EINVAL;
1077 	}
1078 }
1079 
1080 static time_t get_semotime(struct sem_array *sma)
1081 {
1082 	int i;
1083 	time_t res;
1084 
1085 	res = sma->sem_base[0].sem_otime;
1086 	for (i = 1; i < sma->sem_nsems; i++) {
1087 		time_t to = sma->sem_base[i].sem_otime;
1088 
1089 		if (to > res)
1090 			res = to;
1091 	}
1092 	return res;
1093 }
1094 
1095 static int semctl_nolock(struct ipc_namespace *ns, int semid,
1096 			 int cmd, int version, void __user *p)
1097 {
1098 	int err;
1099 	struct sem_array *sma;
1100 
1101 	switch(cmd) {
1102 	case IPC_INFO:
1103 	case SEM_INFO:
1104 	{
1105 		struct seminfo seminfo;
1106 		int max_id;
1107 
1108 		err = security_sem_semctl(NULL, cmd);
1109 		if (err)
1110 			return err;
1111 
1112 		memset(&seminfo,0,sizeof(seminfo));
1113 		seminfo.semmni = ns->sc_semmni;
1114 		seminfo.semmns = ns->sc_semmns;
1115 		seminfo.semmsl = ns->sc_semmsl;
1116 		seminfo.semopm = ns->sc_semopm;
1117 		seminfo.semvmx = SEMVMX;
1118 		seminfo.semmnu = SEMMNU;
1119 		seminfo.semmap = SEMMAP;
1120 		seminfo.semume = SEMUME;
1121 		down_read(&sem_ids(ns).rwsem);
1122 		if (cmd == SEM_INFO) {
1123 			seminfo.semusz = sem_ids(ns).in_use;
1124 			seminfo.semaem = ns->used_sems;
1125 		} else {
1126 			seminfo.semusz = SEMUSZ;
1127 			seminfo.semaem = SEMAEM;
1128 		}
1129 		max_id = ipc_get_maxid(&sem_ids(ns));
1130 		up_read(&sem_ids(ns).rwsem);
1131 		if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1132 			return -EFAULT;
1133 		return (max_id < 0) ? 0: max_id;
1134 	}
1135 	case IPC_STAT:
1136 	case SEM_STAT:
1137 	{
1138 		struct semid64_ds tbuf;
1139 		int id = 0;
1140 
1141 		memset(&tbuf, 0, sizeof(tbuf));
1142 
1143 		rcu_read_lock();
1144 		if (cmd == SEM_STAT) {
1145 			sma = sem_obtain_object(ns, semid);
1146 			if (IS_ERR(sma)) {
1147 				err = PTR_ERR(sma);
1148 				goto out_unlock;
1149 			}
1150 			id = sma->sem_perm.id;
1151 		} else {
1152 			sma = sem_obtain_object_check(ns, semid);
1153 			if (IS_ERR(sma)) {
1154 				err = PTR_ERR(sma);
1155 				goto out_unlock;
1156 			}
1157 		}
1158 
1159 		err = -EACCES;
1160 		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1161 			goto out_unlock;
1162 
1163 		err = security_sem_semctl(sma, cmd);
1164 		if (err)
1165 			goto out_unlock;
1166 
1167 		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1168 		tbuf.sem_otime = get_semotime(sma);
1169 		tbuf.sem_ctime = sma->sem_ctime;
1170 		tbuf.sem_nsems = sma->sem_nsems;
1171 		rcu_read_unlock();
1172 		if (copy_semid_to_user(p, &tbuf, version))
1173 			return -EFAULT;
1174 		return id;
1175 	}
1176 	default:
1177 		return -EINVAL;
1178 	}
1179 out_unlock:
1180 	rcu_read_unlock();
1181 	return err;
1182 }
1183 
1184 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1185 		unsigned long arg)
1186 {
1187 	struct sem_undo *un;
1188 	struct sem_array *sma;
1189 	struct sem* curr;
1190 	int err;
1191 	struct list_head tasks;
1192 	int val;
1193 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1194 	/* big-endian 64bit */
1195 	val = arg >> 32;
1196 #else
1197 	/* 32bit or little-endian 64bit */
1198 	val = arg;
1199 #endif
1200 
1201 	if (val > SEMVMX || val < 0)
1202 		return -ERANGE;
1203 
1204 	INIT_LIST_HEAD(&tasks);
1205 
1206 	rcu_read_lock();
1207 	sma = sem_obtain_object_check(ns, semid);
1208 	if (IS_ERR(sma)) {
1209 		rcu_read_unlock();
1210 		return PTR_ERR(sma);
1211 	}
1212 
1213 	if (semnum < 0 || semnum >= sma->sem_nsems) {
1214 		rcu_read_unlock();
1215 		return -EINVAL;
1216 	}
1217 
1218 
1219 	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1220 		rcu_read_unlock();
1221 		return -EACCES;
1222 	}
1223 
1224 	err = security_sem_semctl(sma, SETVAL);
1225 	if (err) {
1226 		rcu_read_unlock();
1227 		return -EACCES;
1228 	}
1229 
1230 	sem_lock(sma, NULL, -1);
1231 
1232 	curr = &sma->sem_base[semnum];
1233 
1234 	ipc_assert_locked_object(&sma->sem_perm);
1235 	list_for_each_entry(un, &sma->list_id, list_id)
1236 		un->semadj[semnum] = 0;
1237 
1238 	curr->semval = val;
1239 	curr->sempid = task_tgid_vnr(current);
1240 	sma->sem_ctime = get_seconds();
1241 	/* maybe some queued-up processes were waiting for this */
1242 	do_smart_update(sma, NULL, 0, 0, &tasks);
1243 	sem_unlock(sma, -1);
1244 	rcu_read_unlock();
1245 	wake_up_sem_queue_do(&tasks);
1246 	return 0;
1247 }
1248 
1249 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1250 		int cmd, void __user *p)
1251 {
1252 	struct sem_array *sma;
1253 	struct sem* curr;
1254 	int err, nsems;
1255 	ushort fast_sem_io[SEMMSL_FAST];
1256 	ushort* sem_io = fast_sem_io;
1257 	struct list_head tasks;
1258 
1259 	INIT_LIST_HEAD(&tasks);
1260 
1261 	rcu_read_lock();
1262 	sma = sem_obtain_object_check(ns, semid);
1263 	if (IS_ERR(sma)) {
1264 		rcu_read_unlock();
1265 		return PTR_ERR(sma);
1266 	}
1267 
1268 	nsems = sma->sem_nsems;
1269 
1270 	err = -EACCES;
1271 	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1272 		goto out_rcu_wakeup;
1273 
1274 	err = security_sem_semctl(sma, cmd);
1275 	if (err)
1276 		goto out_rcu_wakeup;
1277 
1278 	err = -EACCES;
1279 	switch (cmd) {
1280 	case GETALL:
1281 	{
1282 		ushort __user *array = p;
1283 		int i;
1284 
1285 		sem_lock(sma, NULL, -1);
1286 		if(nsems > SEMMSL_FAST) {
1287 			if (!ipc_rcu_getref(sma)) {
1288 				sem_unlock(sma, -1);
1289 				rcu_read_unlock();
1290 				err = -EIDRM;
1291 				goto out_free;
1292 			}
1293 			sem_unlock(sma, -1);
1294 			rcu_read_unlock();
1295 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1296 			if(sem_io == NULL) {
1297 				ipc_rcu_putref(sma, ipc_rcu_free);
1298 				return -ENOMEM;
1299 			}
1300 
1301 			rcu_read_lock();
1302 			sem_lock_and_putref(sma);
1303 			if (sma->sem_perm.deleted) {
1304 				sem_unlock(sma, -1);
1305 				rcu_read_unlock();
1306 				err = -EIDRM;
1307 				goto out_free;
1308 			}
1309 		}
1310 		for (i = 0; i < sma->sem_nsems; i++)
1311 			sem_io[i] = sma->sem_base[i].semval;
1312 		sem_unlock(sma, -1);
1313 		rcu_read_unlock();
1314 		err = 0;
1315 		if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1316 			err = -EFAULT;
1317 		goto out_free;
1318 	}
1319 	case SETALL:
1320 	{
1321 		int i;
1322 		struct sem_undo *un;
1323 
1324 		if (!ipc_rcu_getref(sma)) {
1325 			rcu_read_unlock();
1326 			return -EIDRM;
1327 		}
1328 		rcu_read_unlock();
1329 
1330 		if(nsems > SEMMSL_FAST) {
1331 			sem_io = ipc_alloc(sizeof(ushort)*nsems);
1332 			if(sem_io == NULL) {
1333 				ipc_rcu_putref(sma, ipc_rcu_free);
1334 				return -ENOMEM;
1335 			}
1336 		}
1337 
1338 		if (copy_from_user (sem_io, p, nsems*sizeof(ushort))) {
1339 			ipc_rcu_putref(sma, ipc_rcu_free);
1340 			err = -EFAULT;
1341 			goto out_free;
1342 		}
1343 
1344 		for (i = 0; i < nsems; i++) {
1345 			if (sem_io[i] > SEMVMX) {
1346 				ipc_rcu_putref(sma, ipc_rcu_free);
1347 				err = -ERANGE;
1348 				goto out_free;
1349 			}
1350 		}
1351 		rcu_read_lock();
1352 		sem_lock_and_putref(sma);
1353 		if (sma->sem_perm.deleted) {
1354 			sem_unlock(sma, -1);
1355 			rcu_read_unlock();
1356 			err = -EIDRM;
1357 			goto out_free;
1358 		}
1359 
1360 		for (i = 0; i < nsems; i++)
1361 			sma->sem_base[i].semval = sem_io[i];
1362 
1363 		ipc_assert_locked_object(&sma->sem_perm);
1364 		list_for_each_entry(un, &sma->list_id, list_id) {
1365 			for (i = 0; i < nsems; i++)
1366 				un->semadj[i] = 0;
1367 		}
1368 		sma->sem_ctime = get_seconds();
1369 		/* maybe some queued-up processes were waiting for this */
1370 		do_smart_update(sma, NULL, 0, 0, &tasks);
1371 		err = 0;
1372 		goto out_unlock;
1373 	}
1374 	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1375 	}
1376 	err = -EINVAL;
1377 	if (semnum < 0 || semnum >= nsems)
1378 		goto out_rcu_wakeup;
1379 
1380 	sem_lock(sma, NULL, -1);
1381 	curr = &sma->sem_base[semnum];
1382 
1383 	switch (cmd) {
1384 	case GETVAL:
1385 		err = curr->semval;
1386 		goto out_unlock;
1387 	case GETPID:
1388 		err = curr->sempid;
1389 		goto out_unlock;
1390 	case GETNCNT:
1391 		err = count_semncnt(sma,semnum);
1392 		goto out_unlock;
1393 	case GETZCNT:
1394 		err = count_semzcnt(sma,semnum);
1395 		goto out_unlock;
1396 	}
1397 
1398 out_unlock:
1399 	sem_unlock(sma, -1);
1400 out_rcu_wakeup:
1401 	rcu_read_unlock();
1402 	wake_up_sem_queue_do(&tasks);
1403 out_free:
1404 	if(sem_io != fast_sem_io)
1405 		ipc_free(sem_io, sizeof(ushort)*nsems);
1406 	return err;
1407 }
1408 
1409 static inline unsigned long
1410 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1411 {
1412 	switch(version) {
1413 	case IPC_64:
1414 		if (copy_from_user(out, buf, sizeof(*out)))
1415 			return -EFAULT;
1416 		return 0;
1417 	case IPC_OLD:
1418 	    {
1419 		struct semid_ds tbuf_old;
1420 
1421 		if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1422 			return -EFAULT;
1423 
1424 		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1425 		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1426 		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1427 
1428 		return 0;
1429 	    }
1430 	default:
1431 		return -EINVAL;
1432 	}
1433 }
1434 
1435 /*
1436  * This function handles some semctl commands which require the rwsem
1437  * to be held in write mode.
1438  * NOTE: no locks must be held, the rwsem is taken inside this function.
1439  */
1440 static int semctl_down(struct ipc_namespace *ns, int semid,
1441 		       int cmd, int version, void __user *p)
1442 {
1443 	struct sem_array *sma;
1444 	int err;
1445 	struct semid64_ds semid64;
1446 	struct kern_ipc_perm *ipcp;
1447 
1448 	if(cmd == IPC_SET) {
1449 		if (copy_semid_from_user(&semid64, p, version))
1450 			return -EFAULT;
1451 	}
1452 
1453 	down_write(&sem_ids(ns).rwsem);
1454 	rcu_read_lock();
1455 
1456 	ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1457 				      &semid64.sem_perm, 0);
1458 	if (IS_ERR(ipcp)) {
1459 		err = PTR_ERR(ipcp);
1460 		goto out_unlock1;
1461 	}
1462 
1463 	sma = container_of(ipcp, struct sem_array, sem_perm);
1464 
1465 	err = security_sem_semctl(sma, cmd);
1466 	if (err)
1467 		goto out_unlock1;
1468 
1469 	switch (cmd) {
1470 	case IPC_RMID:
1471 		sem_lock(sma, NULL, -1);
1472 		/* freeary unlocks the ipc object and rcu */
1473 		freeary(ns, ipcp);
1474 		goto out_up;
1475 	case IPC_SET:
1476 		sem_lock(sma, NULL, -1);
1477 		err = ipc_update_perm(&semid64.sem_perm, ipcp);
1478 		if (err)
1479 			goto out_unlock0;
1480 		sma->sem_ctime = get_seconds();
1481 		break;
1482 	default:
1483 		err = -EINVAL;
1484 		goto out_unlock1;
1485 	}
1486 
1487 out_unlock0:
1488 	sem_unlock(sma, -1);
1489 out_unlock1:
1490 	rcu_read_unlock();
1491 out_up:
1492 	up_write(&sem_ids(ns).rwsem);
1493 	return err;
1494 }
1495 
1496 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1497 {
1498 	int version;
1499 	struct ipc_namespace *ns;
1500 	void __user *p = (void __user *)arg;
1501 
1502 	if (semid < 0)
1503 		return -EINVAL;
1504 
1505 	version = ipc_parse_version(&cmd);
1506 	ns = current->nsproxy->ipc_ns;
1507 
1508 	switch(cmd) {
1509 	case IPC_INFO:
1510 	case SEM_INFO:
1511 	case IPC_STAT:
1512 	case SEM_STAT:
1513 		return semctl_nolock(ns, semid, cmd, version, p);
1514 	case GETALL:
1515 	case GETVAL:
1516 	case GETPID:
1517 	case GETNCNT:
1518 	case GETZCNT:
1519 	case SETALL:
1520 		return semctl_main(ns, semid, semnum, cmd, p);
1521 	case SETVAL:
1522 		return semctl_setval(ns, semid, semnum, arg);
1523 	case IPC_RMID:
1524 	case IPC_SET:
1525 		return semctl_down(ns, semid, cmd, version, p);
1526 	default:
1527 		return -EINVAL;
1528 	}
1529 }
1530 
1531 /* If the task doesn't already have a undo_list, then allocate one
1532  * here.  We guarantee there is only one thread using this undo list,
1533  * and current is THE ONE
1534  *
1535  * If this allocation and assignment succeeds, but later
1536  * portions of this code fail, there is no need to free the sem_undo_list.
1537  * Just let it stay associated with the task, and it'll be freed later
1538  * at exit time.
1539  *
1540  * This can block, so callers must hold no locks.
1541  */
1542 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1543 {
1544 	struct sem_undo_list *undo_list;
1545 
1546 	undo_list = current->sysvsem.undo_list;
1547 	if (!undo_list) {
1548 		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1549 		if (undo_list == NULL)
1550 			return -ENOMEM;
1551 		spin_lock_init(&undo_list->lock);
1552 		atomic_set(&undo_list->refcnt, 1);
1553 		INIT_LIST_HEAD(&undo_list->list_proc);
1554 
1555 		current->sysvsem.undo_list = undo_list;
1556 	}
1557 	*undo_listp = undo_list;
1558 	return 0;
1559 }
1560 
1561 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1562 {
1563 	struct sem_undo *un;
1564 
1565 	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1566 		if (un->semid == semid)
1567 			return un;
1568 	}
1569 	return NULL;
1570 }
1571 
1572 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1573 {
1574 	struct sem_undo *un;
1575 
1576   	assert_spin_locked(&ulp->lock);
1577 
1578 	un = __lookup_undo(ulp, semid);
1579 	if (un) {
1580 		list_del_rcu(&un->list_proc);
1581 		list_add_rcu(&un->list_proc, &ulp->list_proc);
1582 	}
1583 	return un;
1584 }
1585 
1586 /**
1587  * find_alloc_undo - Lookup (and if not present create) undo array
1588  * @ns: namespace
1589  * @semid: semaphore array id
1590  *
1591  * The function looks up (and if not present creates) the undo structure.
1592  * The size of the undo structure depends on the size of the semaphore
1593  * array, thus the alloc path is not that straightforward.
1594  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1595  * performs a rcu_read_lock().
1596  */
1597 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1598 {
1599 	struct sem_array *sma;
1600 	struct sem_undo_list *ulp;
1601 	struct sem_undo *un, *new;
1602 	int nsems, error;
1603 
1604 	error = get_undo_list(&ulp);
1605 	if (error)
1606 		return ERR_PTR(error);
1607 
1608 	rcu_read_lock();
1609 	spin_lock(&ulp->lock);
1610 	un = lookup_undo(ulp, semid);
1611 	spin_unlock(&ulp->lock);
1612 	if (likely(un!=NULL))
1613 		goto out;
1614 
1615 	/* no undo structure around - allocate one. */
1616 	/* step 1: figure out the size of the semaphore array */
1617 	sma = sem_obtain_object_check(ns, semid);
1618 	if (IS_ERR(sma)) {
1619 		rcu_read_unlock();
1620 		return ERR_CAST(sma);
1621 	}
1622 
1623 	nsems = sma->sem_nsems;
1624 	if (!ipc_rcu_getref(sma)) {
1625 		rcu_read_unlock();
1626 		un = ERR_PTR(-EIDRM);
1627 		goto out;
1628 	}
1629 	rcu_read_unlock();
1630 
1631 	/* step 2: allocate new undo structure */
1632 	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1633 	if (!new) {
1634 		ipc_rcu_putref(sma, ipc_rcu_free);
1635 		return ERR_PTR(-ENOMEM);
1636 	}
1637 
1638 	/* step 3: Acquire the lock on semaphore array */
1639 	rcu_read_lock();
1640 	sem_lock_and_putref(sma);
1641 	if (sma->sem_perm.deleted) {
1642 		sem_unlock(sma, -1);
1643 		rcu_read_unlock();
1644 		kfree(new);
1645 		un = ERR_PTR(-EIDRM);
1646 		goto out;
1647 	}
1648 	spin_lock(&ulp->lock);
1649 
1650 	/*
1651 	 * step 4: check for races: did someone else allocate the undo struct?
1652 	 */
1653 	un = lookup_undo(ulp, semid);
1654 	if (un) {
1655 		kfree(new);
1656 		goto success;
1657 	}
1658 	/* step 5: initialize & link new undo structure */
1659 	new->semadj = (short *) &new[1];
1660 	new->ulp = ulp;
1661 	new->semid = semid;
1662 	assert_spin_locked(&ulp->lock);
1663 	list_add_rcu(&new->list_proc, &ulp->list_proc);
1664 	ipc_assert_locked_object(&sma->sem_perm);
1665 	list_add(&new->list_id, &sma->list_id);
1666 	un = new;
1667 
1668 success:
1669 	spin_unlock(&ulp->lock);
1670 	sem_unlock(sma, -1);
1671 out:
1672 	return un;
1673 }
1674 
1675 
1676 /**
1677  * get_queue_result - Retrieve the result code from sem_queue
1678  * @q: Pointer to queue structure
1679  *
1680  * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1681  * q->status, then we must loop until the value is replaced with the final
1682  * value: This may happen if a task is woken up by an unrelated event (e.g.
1683  * signal) and in parallel the task is woken up by another task because it got
1684  * the requested semaphores.
1685  *
1686  * The function can be called with or without holding the semaphore spinlock.
1687  */
1688 static int get_queue_result(struct sem_queue *q)
1689 {
1690 	int error;
1691 
1692 	error = q->status;
1693 	while (unlikely(error == IN_WAKEUP)) {
1694 		cpu_relax();
1695 		error = q->status;
1696 	}
1697 
1698 	return error;
1699 }
1700 
1701 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1702 		unsigned, nsops, const struct timespec __user *, timeout)
1703 {
1704 	int error = -EINVAL;
1705 	struct sem_array *sma;
1706 	struct sembuf fast_sops[SEMOPM_FAST];
1707 	struct sembuf* sops = fast_sops, *sop;
1708 	struct sem_undo *un;
1709 	int undos = 0, alter = 0, max, locknum;
1710 	struct sem_queue queue;
1711 	unsigned long jiffies_left = 0;
1712 	struct ipc_namespace *ns;
1713 	struct list_head tasks;
1714 
1715 	ns = current->nsproxy->ipc_ns;
1716 
1717 	if (nsops < 1 || semid < 0)
1718 		return -EINVAL;
1719 	if (nsops > ns->sc_semopm)
1720 		return -E2BIG;
1721 	if(nsops > SEMOPM_FAST) {
1722 		sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1723 		if(sops==NULL)
1724 			return -ENOMEM;
1725 	}
1726 	if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1727 		error=-EFAULT;
1728 		goto out_free;
1729 	}
1730 	if (timeout) {
1731 		struct timespec _timeout;
1732 		if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1733 			error = -EFAULT;
1734 			goto out_free;
1735 		}
1736 		if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1737 			_timeout.tv_nsec >= 1000000000L) {
1738 			error = -EINVAL;
1739 			goto out_free;
1740 		}
1741 		jiffies_left = timespec_to_jiffies(&_timeout);
1742 	}
1743 	max = 0;
1744 	for (sop = sops; sop < sops + nsops; sop++) {
1745 		if (sop->sem_num >= max)
1746 			max = sop->sem_num;
1747 		if (sop->sem_flg & SEM_UNDO)
1748 			undos = 1;
1749 		if (sop->sem_op != 0)
1750 			alter = 1;
1751 	}
1752 
1753 	INIT_LIST_HEAD(&tasks);
1754 
1755 	if (undos) {
1756 		/* On success, find_alloc_undo takes the rcu_read_lock */
1757 		un = find_alloc_undo(ns, semid);
1758 		if (IS_ERR(un)) {
1759 			error = PTR_ERR(un);
1760 			goto out_free;
1761 		}
1762 	} else {
1763 		un = NULL;
1764 		rcu_read_lock();
1765 	}
1766 
1767 	sma = sem_obtain_object_check(ns, semid);
1768 	if (IS_ERR(sma)) {
1769 		rcu_read_unlock();
1770 		error = PTR_ERR(sma);
1771 		goto out_free;
1772 	}
1773 
1774 	error = -EFBIG;
1775 	if (max >= sma->sem_nsems)
1776 		goto out_rcu_wakeup;
1777 
1778 	error = -EACCES;
1779 	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1780 		goto out_rcu_wakeup;
1781 
1782 	error = security_sem_semop(sma, sops, nsops, alter);
1783 	if (error)
1784 		goto out_rcu_wakeup;
1785 
1786 	/*
1787 	 * semid identifiers are not unique - find_alloc_undo may have
1788 	 * allocated an undo structure, it was invalidated by an RMID
1789 	 * and now a new array with received the same id. Check and fail.
1790 	 * This case can be detected checking un->semid. The existence of
1791 	 * "un" itself is guaranteed by rcu.
1792 	 */
1793 	error = -EIDRM;
1794 	locknum = sem_lock(sma, sops, nsops);
1795 	if (un && un->semid == -1)
1796 		goto out_unlock_free;
1797 
1798 	error = perform_atomic_semop(sma, sops, nsops, un,
1799 					task_tgid_vnr(current));
1800 	if (error <= 0) {
1801 		if (alter && error == 0)
1802 			do_smart_update(sma, sops, nsops, 1, &tasks);
1803 
1804 		goto out_unlock_free;
1805 	}
1806 
1807 	/* We need to sleep on this operation, so we put the current
1808 	 * task into the pending queue and go to sleep.
1809 	 */
1810 
1811 	queue.sops = sops;
1812 	queue.nsops = nsops;
1813 	queue.undo = un;
1814 	queue.pid = task_tgid_vnr(current);
1815 	queue.alter = alter;
1816 
1817 	if (nsops == 1) {
1818 		struct sem *curr;
1819 		curr = &sma->sem_base[sops->sem_num];
1820 
1821 		if (alter) {
1822 			if (sma->complex_count) {
1823 				list_add_tail(&queue.list,
1824 						&sma->pending_alter);
1825 			} else {
1826 
1827 				list_add_tail(&queue.list,
1828 						&curr->pending_alter);
1829 			}
1830 		} else {
1831 			list_add_tail(&queue.list, &curr->pending_const);
1832 		}
1833 	} else {
1834 		if (!sma->complex_count)
1835 			merge_queues(sma);
1836 
1837 		if (alter)
1838 			list_add_tail(&queue.list, &sma->pending_alter);
1839 		else
1840 			list_add_tail(&queue.list, &sma->pending_const);
1841 
1842 		sma->complex_count++;
1843 	}
1844 
1845 	queue.status = -EINTR;
1846 	queue.sleeper = current;
1847 
1848 sleep_again:
1849 	current->state = TASK_INTERRUPTIBLE;
1850 	sem_unlock(sma, locknum);
1851 	rcu_read_unlock();
1852 
1853 	if (timeout)
1854 		jiffies_left = schedule_timeout(jiffies_left);
1855 	else
1856 		schedule();
1857 
1858 	error = get_queue_result(&queue);
1859 
1860 	if (error != -EINTR) {
1861 		/* fast path: update_queue already obtained all requested
1862 		 * resources.
1863 		 * Perform a smp_mb(): User space could assume that semop()
1864 		 * is a memory barrier: Without the mb(), the cpu could
1865 		 * speculatively read in user space stale data that was
1866 		 * overwritten by the previous owner of the semaphore.
1867 		 */
1868 		smp_mb();
1869 
1870 		goto out_free;
1871 	}
1872 
1873 	rcu_read_lock();
1874 	sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
1875 
1876 	/*
1877 	 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1878 	 */
1879 	error = get_queue_result(&queue);
1880 
1881 	/*
1882 	 * Array removed? If yes, leave without sem_unlock().
1883 	 */
1884 	if (IS_ERR(sma)) {
1885 		rcu_read_unlock();
1886 		goto out_free;
1887 	}
1888 
1889 
1890 	/*
1891 	 * If queue.status != -EINTR we are woken up by another process.
1892 	 * Leave without unlink_queue(), but with sem_unlock().
1893 	 */
1894 
1895 	if (error != -EINTR) {
1896 		goto out_unlock_free;
1897 	}
1898 
1899 	/*
1900 	 * If an interrupt occurred we have to clean up the queue
1901 	 */
1902 	if (timeout && jiffies_left == 0)
1903 		error = -EAGAIN;
1904 
1905 	/*
1906 	 * If the wakeup was spurious, just retry
1907 	 */
1908 	if (error == -EINTR && !signal_pending(current))
1909 		goto sleep_again;
1910 
1911 	unlink_queue(sma, &queue);
1912 
1913 out_unlock_free:
1914 	sem_unlock(sma, locknum);
1915 out_rcu_wakeup:
1916 	rcu_read_unlock();
1917 	wake_up_sem_queue_do(&tasks);
1918 out_free:
1919 	if(sops != fast_sops)
1920 		kfree(sops);
1921 	return error;
1922 }
1923 
1924 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1925 		unsigned, nsops)
1926 {
1927 	return sys_semtimedop(semid, tsops, nsops, NULL);
1928 }
1929 
1930 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1931  * parent and child tasks.
1932  */
1933 
1934 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1935 {
1936 	struct sem_undo_list *undo_list;
1937 	int error;
1938 
1939 	if (clone_flags & CLONE_SYSVSEM) {
1940 		error = get_undo_list(&undo_list);
1941 		if (error)
1942 			return error;
1943 		atomic_inc(&undo_list->refcnt);
1944 		tsk->sysvsem.undo_list = undo_list;
1945 	} else
1946 		tsk->sysvsem.undo_list = NULL;
1947 
1948 	return 0;
1949 }
1950 
1951 /*
1952  * add semadj values to semaphores, free undo structures.
1953  * undo structures are not freed when semaphore arrays are destroyed
1954  * so some of them may be out of date.
1955  * IMPLEMENTATION NOTE: There is some confusion over whether the
1956  * set of adjustments that needs to be done should be done in an atomic
1957  * manner or not. That is, if we are attempting to decrement the semval
1958  * should we queue up and wait until we can do so legally?
1959  * The original implementation attempted to do this (queue and wait).
1960  * The current implementation does not do so. The POSIX standard
1961  * and SVID should be consulted to determine what behavior is mandated.
1962  */
1963 void exit_sem(struct task_struct *tsk)
1964 {
1965 	struct sem_undo_list *ulp;
1966 
1967 	ulp = tsk->sysvsem.undo_list;
1968 	if (!ulp)
1969 		return;
1970 	tsk->sysvsem.undo_list = NULL;
1971 
1972 	if (!atomic_dec_and_test(&ulp->refcnt))
1973 		return;
1974 
1975 	for (;;) {
1976 		struct sem_array *sma;
1977 		struct sem_undo *un;
1978 		struct list_head tasks;
1979 		int semid, i;
1980 
1981 		rcu_read_lock();
1982 		un = list_entry_rcu(ulp->list_proc.next,
1983 				    struct sem_undo, list_proc);
1984 		if (&un->list_proc == &ulp->list_proc)
1985 			semid = -1;
1986 		 else
1987 			semid = un->semid;
1988 
1989 		if (semid == -1) {
1990 			rcu_read_unlock();
1991 			break;
1992 		}
1993 
1994 		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid);
1995 		/* exit_sem raced with IPC_RMID, nothing to do */
1996 		if (IS_ERR(sma)) {
1997 			rcu_read_unlock();
1998 			continue;
1999 		}
2000 
2001 		sem_lock(sma, NULL, -1);
2002 		un = __lookup_undo(ulp, semid);
2003 		if (un == NULL) {
2004 			/* exit_sem raced with IPC_RMID+semget() that created
2005 			 * exactly the same semid. Nothing to do.
2006 			 */
2007 			sem_unlock(sma, -1);
2008 			rcu_read_unlock();
2009 			continue;
2010 		}
2011 
2012 		/* remove un from the linked lists */
2013 		ipc_assert_locked_object(&sma->sem_perm);
2014 		list_del(&un->list_id);
2015 
2016 		spin_lock(&ulp->lock);
2017 		list_del_rcu(&un->list_proc);
2018 		spin_unlock(&ulp->lock);
2019 
2020 		/* perform adjustments registered in un */
2021 		for (i = 0; i < sma->sem_nsems; i++) {
2022 			struct sem * semaphore = &sma->sem_base[i];
2023 			if (un->semadj[i]) {
2024 				semaphore->semval += un->semadj[i];
2025 				/*
2026 				 * Range checks of the new semaphore value,
2027 				 * not defined by sus:
2028 				 * - Some unices ignore the undo entirely
2029 				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2030 				 * - some cap the value (e.g. FreeBSD caps
2031 				 *   at 0, but doesn't enforce SEMVMX)
2032 				 *
2033 				 * Linux caps the semaphore value, both at 0
2034 				 * and at SEMVMX.
2035 				 *
2036 				 * 	Manfred <manfred@colorfullife.com>
2037 				 */
2038 				if (semaphore->semval < 0)
2039 					semaphore->semval = 0;
2040 				if (semaphore->semval > SEMVMX)
2041 					semaphore->semval = SEMVMX;
2042 				semaphore->sempid = task_tgid_vnr(current);
2043 			}
2044 		}
2045 		/* maybe some queued-up processes were waiting for this */
2046 		INIT_LIST_HEAD(&tasks);
2047 		do_smart_update(sma, NULL, 0, 1, &tasks);
2048 		sem_unlock(sma, -1);
2049 		rcu_read_unlock();
2050 		wake_up_sem_queue_do(&tasks);
2051 
2052 		kfree_rcu(un, rcu);
2053 	}
2054 	kfree(ulp);
2055 }
2056 
2057 #ifdef CONFIG_PROC_FS
2058 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2059 {
2060 	struct user_namespace *user_ns = seq_user_ns(s);
2061 	struct sem_array *sma = it;
2062 	time_t sem_otime;
2063 
2064 	sem_otime = get_semotime(sma);
2065 
2066 	return seq_printf(s,
2067 			  "%10d %10d  %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2068 			  sma->sem_perm.key,
2069 			  sma->sem_perm.id,
2070 			  sma->sem_perm.mode,
2071 			  sma->sem_nsems,
2072 			  from_kuid_munged(user_ns, sma->sem_perm.uid),
2073 			  from_kgid_munged(user_ns, sma->sem_perm.gid),
2074 			  from_kuid_munged(user_ns, sma->sem_perm.cuid),
2075 			  from_kgid_munged(user_ns, sma->sem_perm.cgid),
2076 			  sem_otime,
2077 			  sma->sem_ctime);
2078 }
2079 #endif
2080