1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/ipc/sem.c 4 * Copyright (C) 1992 Krishna Balasubramanian 5 * Copyright (C) 1995 Eric Schenk, Bruno Haible 6 * 7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> 8 * 9 * SMP-threaded, sysctl's added 10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com> 11 * Enforced range limit on SEM_UNDO 12 * (c) 2001 Red Hat Inc 13 * Lockless wakeup 14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com> 15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net> 16 * Further wakeup optimizations, documentation 17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com> 18 * 19 * support for audit of ipc object properties and permission changes 20 * Dustin Kirkland <dustin.kirkland@us.ibm.com> 21 * 22 * namespaces support 23 * OpenVZ, SWsoft Inc. 24 * Pavel Emelianov <xemul@openvz.org> 25 * 26 * Implementation notes: (May 2010) 27 * This file implements System V semaphores. 28 * 29 * User space visible behavior: 30 * - FIFO ordering for semop() operations (just FIFO, not starvation 31 * protection) 32 * - multiple semaphore operations that alter the same semaphore in 33 * one semop() are handled. 34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and 35 * SETALL calls. 36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. 37 * - undo adjustments at process exit are limited to 0..SEMVMX. 38 * - namespace are supported. 39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing 40 * to /proc/sys/kernel/sem. 41 * - statistics about the usage are reported in /proc/sysvipc/sem. 42 * 43 * Internals: 44 * - scalability: 45 * - all global variables are read-mostly. 46 * - semop() calls and semctl(RMID) are synchronized by RCU. 47 * - most operations do write operations (actually: spin_lock calls) to 48 * the per-semaphore array structure. 49 * Thus: Perfect SMP scaling between independent semaphore arrays. 50 * If multiple semaphores in one array are used, then cache line 51 * trashing on the semaphore array spinlock will limit the scaling. 52 * - semncnt and semzcnt are calculated on demand in count_semcnt() 53 * - the task that performs a successful semop() scans the list of all 54 * sleeping tasks and completes any pending operations that can be fulfilled. 55 * Semaphores are actively given to waiting tasks (necessary for FIFO). 56 * (see update_queue()) 57 * - To improve the scalability, the actual wake-up calls are performed after 58 * dropping all locks. (see wake_up_sem_queue_prepare()) 59 * - All work is done by the waker, the woken up task does not have to do 60 * anything - not even acquiring a lock or dropping a refcount. 61 * - A woken up task may not even touch the semaphore array anymore, it may 62 * have been destroyed already by a semctl(RMID). 63 * - UNDO values are stored in an array (one per process and per 64 * semaphore array, lazily allocated). For backwards compatibility, multiple 65 * modes for the UNDO variables are supported (per process, per thread) 66 * (see copy_semundo, CLONE_SYSVSEM) 67 * - There are two lists of the pending operations: a per-array list 68 * and per-semaphore list (stored in the array). This allows to achieve FIFO 69 * ordering without always scanning all pending operations. 70 * The worst-case behavior is nevertheless O(N^2) for N wakeups. 71 */ 72 73 #include <linux/compat.h> 74 #include <linux/slab.h> 75 #include <linux/spinlock.h> 76 #include <linux/init.h> 77 #include <linux/proc_fs.h> 78 #include <linux/time.h> 79 #include <linux/security.h> 80 #include <linux/syscalls.h> 81 #include <linux/audit.h> 82 #include <linux/capability.h> 83 #include <linux/seq_file.h> 84 #include <linux/rwsem.h> 85 #include <linux/nsproxy.h> 86 #include <linux/ipc_namespace.h> 87 #include <linux/sched/wake_q.h> 88 #include <linux/nospec.h> 89 #include <linux/rhashtable.h> 90 91 #include <linux/uaccess.h> 92 #include "util.h" 93 94 /* One semaphore structure for each semaphore in the system. */ 95 struct sem { 96 int semval; /* current value */ 97 /* 98 * PID of the process that last modified the semaphore. For 99 * Linux, specifically these are: 100 * - semop 101 * - semctl, via SETVAL and SETALL. 102 * - at task exit when performing undo adjustments (see exit_sem). 103 */ 104 struct pid *sempid; 105 spinlock_t lock; /* spinlock for fine-grained semtimedop */ 106 struct list_head pending_alter; /* pending single-sop operations */ 107 /* that alter the semaphore */ 108 struct list_head pending_const; /* pending single-sop operations */ 109 /* that do not alter the semaphore*/ 110 time64_t sem_otime; /* candidate for sem_otime */ 111 } ____cacheline_aligned_in_smp; 112 113 /* One sem_array data structure for each set of semaphores in the system. */ 114 struct sem_array { 115 struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */ 116 time64_t sem_ctime; /* create/last semctl() time */ 117 struct list_head pending_alter; /* pending operations */ 118 /* that alter the array */ 119 struct list_head pending_const; /* pending complex operations */ 120 /* that do not alter semvals */ 121 struct list_head list_id; /* undo requests on this array */ 122 int sem_nsems; /* no. of semaphores in array */ 123 int complex_count; /* pending complex operations */ 124 unsigned int use_global_lock;/* >0: global lock required */ 125 126 struct sem sems[]; 127 } __randomize_layout; 128 129 /* One queue for each sleeping process in the system. */ 130 struct sem_queue { 131 struct list_head list; /* queue of pending operations */ 132 struct task_struct *sleeper; /* this process */ 133 struct sem_undo *undo; /* undo structure */ 134 struct pid *pid; /* process id of requesting process */ 135 int status; /* completion status of operation */ 136 struct sembuf *sops; /* array of pending operations */ 137 struct sembuf *blocking; /* the operation that blocked */ 138 int nsops; /* number of operations */ 139 bool alter; /* does *sops alter the array? */ 140 bool dupsop; /* sops on more than one sem_num */ 141 }; 142 143 /* Each task has a list of undo requests. They are executed automatically 144 * when the process exits. 145 */ 146 struct sem_undo { 147 struct list_head list_proc; /* per-process list: * 148 * all undos from one process 149 * rcu protected */ 150 struct rcu_head rcu; /* rcu struct for sem_undo */ 151 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */ 152 struct list_head list_id; /* per semaphore array list: 153 * all undos for one array */ 154 int semid; /* semaphore set identifier */ 155 short *semadj; /* array of adjustments */ 156 /* one per semaphore */ 157 }; 158 159 /* sem_undo_list controls shared access to the list of sem_undo structures 160 * that may be shared among all a CLONE_SYSVSEM task group. 161 */ 162 struct sem_undo_list { 163 refcount_t refcnt; 164 spinlock_t lock; 165 struct list_head list_proc; 166 }; 167 168 169 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) 170 171 static int newary(struct ipc_namespace *, struct ipc_params *); 172 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); 173 #ifdef CONFIG_PROC_FS 174 static int sysvipc_sem_proc_show(struct seq_file *s, void *it); 175 #endif 176 177 #define SEMMSL_FAST 256 /* 512 bytes on stack */ 178 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ 179 180 /* 181 * Switching from the mode suitable for simple ops 182 * to the mode for complex ops is costly. Therefore: 183 * use some hysteresis 184 */ 185 #define USE_GLOBAL_LOCK_HYSTERESIS 10 186 187 /* 188 * Locking: 189 * a) global sem_lock() for read/write 190 * sem_undo.id_next, 191 * sem_array.complex_count, 192 * sem_array.pending{_alter,_const}, 193 * sem_array.sem_undo 194 * 195 * b) global or semaphore sem_lock() for read/write: 196 * sem_array.sems[i].pending_{const,alter}: 197 * 198 * c) special: 199 * sem_undo_list.list_proc: 200 * * undo_list->lock for write 201 * * rcu for read 202 * use_global_lock: 203 * * global sem_lock() for write 204 * * either local or global sem_lock() for read. 205 * 206 * Memory ordering: 207 * Most ordering is enforced by using spin_lock() and spin_unlock(). 208 * 209 * Exceptions: 210 * 1) use_global_lock: (SEM_BARRIER_1) 211 * Setting it from non-zero to 0 is a RELEASE, this is ensured by 212 * using smp_store_release(): Immediately after setting it to 0, 213 * a simple op can start. 214 * Testing if it is non-zero is an ACQUIRE, this is ensured by using 215 * smp_load_acquire(). 216 * Setting it from 0 to non-zero must be ordered with regards to 217 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire() 218 * is inside a spin_lock() and after a write from 0 to non-zero a 219 * spin_lock()+spin_unlock() is done. 220 * 221 * 2) queue.status: (SEM_BARRIER_2) 222 * Initialization is done while holding sem_lock(), so no further barrier is 223 * required. 224 * Setting it to a result code is a RELEASE, this is ensured by both a 225 * smp_store_release() (for case a) and while holding sem_lock() 226 * (for case b). 227 * The AQUIRE when reading the result code without holding sem_lock() is 228 * achieved by using READ_ONCE() + smp_acquire__after_ctrl_dep(). 229 * (case a above). 230 * Reading the result code while holding sem_lock() needs no further barriers, 231 * the locks inside sem_lock() enforce ordering (case b above) 232 * 233 * 3) current->state: 234 * current->state is set to TASK_INTERRUPTIBLE while holding sem_lock(). 235 * The wakeup is handled using the wake_q infrastructure. wake_q wakeups may 236 * happen immediately after calling wake_q_add. As wake_q_add_safe() is called 237 * when holding sem_lock(), no further barriers are required. 238 * 239 * See also ipc/mqueue.c for more details on the covered races. 240 */ 241 242 #define sc_semmsl sem_ctls[0] 243 #define sc_semmns sem_ctls[1] 244 #define sc_semopm sem_ctls[2] 245 #define sc_semmni sem_ctls[3] 246 247 void sem_init_ns(struct ipc_namespace *ns) 248 { 249 ns->sc_semmsl = SEMMSL; 250 ns->sc_semmns = SEMMNS; 251 ns->sc_semopm = SEMOPM; 252 ns->sc_semmni = SEMMNI; 253 ns->used_sems = 0; 254 ipc_init_ids(&ns->ids[IPC_SEM_IDS]); 255 } 256 257 #ifdef CONFIG_IPC_NS 258 void sem_exit_ns(struct ipc_namespace *ns) 259 { 260 free_ipcs(ns, &sem_ids(ns), freeary); 261 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); 262 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht); 263 } 264 #endif 265 266 void __init sem_init(void) 267 { 268 sem_init_ns(&init_ipc_ns); 269 ipc_init_proc_interface("sysvipc/sem", 270 " key semid perms nsems uid gid cuid cgid otime ctime\n", 271 IPC_SEM_IDS, sysvipc_sem_proc_show); 272 } 273 274 /** 275 * unmerge_queues - unmerge queues, if possible. 276 * @sma: semaphore array 277 * 278 * The function unmerges the wait queues if complex_count is 0. 279 * It must be called prior to dropping the global semaphore array lock. 280 */ 281 static void unmerge_queues(struct sem_array *sma) 282 { 283 struct sem_queue *q, *tq; 284 285 /* complex operations still around? */ 286 if (sma->complex_count) 287 return; 288 /* 289 * We will switch back to simple mode. 290 * Move all pending operation back into the per-semaphore 291 * queues. 292 */ 293 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 294 struct sem *curr; 295 curr = &sma->sems[q->sops[0].sem_num]; 296 297 list_add_tail(&q->list, &curr->pending_alter); 298 } 299 INIT_LIST_HEAD(&sma->pending_alter); 300 } 301 302 /** 303 * merge_queues - merge single semop queues into global queue 304 * @sma: semaphore array 305 * 306 * This function merges all per-semaphore queues into the global queue. 307 * It is necessary to achieve FIFO ordering for the pending single-sop 308 * operations when a multi-semop operation must sleep. 309 * Only the alter operations must be moved, the const operations can stay. 310 */ 311 static void merge_queues(struct sem_array *sma) 312 { 313 int i; 314 for (i = 0; i < sma->sem_nsems; i++) { 315 struct sem *sem = &sma->sems[i]; 316 317 list_splice_init(&sem->pending_alter, &sma->pending_alter); 318 } 319 } 320 321 static void sem_rcu_free(struct rcu_head *head) 322 { 323 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu); 324 struct sem_array *sma = container_of(p, struct sem_array, sem_perm); 325 326 security_sem_free(&sma->sem_perm); 327 kvfree(sma); 328 } 329 330 /* 331 * Enter the mode suitable for non-simple operations: 332 * Caller must own sem_perm.lock. 333 */ 334 static void complexmode_enter(struct sem_array *sma) 335 { 336 int i; 337 struct sem *sem; 338 339 if (sma->use_global_lock > 0) { 340 /* 341 * We are already in global lock mode. 342 * Nothing to do, just reset the 343 * counter until we return to simple mode. 344 */ 345 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; 346 return; 347 } 348 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; 349 350 for (i = 0; i < sma->sem_nsems; i++) { 351 sem = &sma->sems[i]; 352 spin_lock(&sem->lock); 353 spin_unlock(&sem->lock); 354 } 355 } 356 357 /* 358 * Try to leave the mode that disallows simple operations: 359 * Caller must own sem_perm.lock. 360 */ 361 static void complexmode_tryleave(struct sem_array *sma) 362 { 363 if (sma->complex_count) { 364 /* Complex ops are sleeping. 365 * We must stay in complex mode 366 */ 367 return; 368 } 369 if (sma->use_global_lock == 1) { 370 371 /* See SEM_BARRIER_1 for purpose/pairing */ 372 smp_store_release(&sma->use_global_lock, 0); 373 } else { 374 sma->use_global_lock--; 375 } 376 } 377 378 #define SEM_GLOBAL_LOCK (-1) 379 /* 380 * If the request contains only one semaphore operation, and there are 381 * no complex transactions pending, lock only the semaphore involved. 382 * Otherwise, lock the entire semaphore array, since we either have 383 * multiple semaphores in our own semops, or we need to look at 384 * semaphores from other pending complex operations. 385 */ 386 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, 387 int nsops) 388 { 389 struct sem *sem; 390 int idx; 391 392 if (nsops != 1) { 393 /* Complex operation - acquire a full lock */ 394 ipc_lock_object(&sma->sem_perm); 395 396 /* Prevent parallel simple ops */ 397 complexmode_enter(sma); 398 return SEM_GLOBAL_LOCK; 399 } 400 401 /* 402 * Only one semaphore affected - try to optimize locking. 403 * Optimized locking is possible if no complex operation 404 * is either enqueued or processed right now. 405 * 406 * Both facts are tracked by use_global_mode. 407 */ 408 idx = array_index_nospec(sops->sem_num, sma->sem_nsems); 409 sem = &sma->sems[idx]; 410 411 /* 412 * Initial check for use_global_lock. Just an optimization, 413 * no locking, no memory barrier. 414 */ 415 if (!sma->use_global_lock) { 416 /* 417 * It appears that no complex operation is around. 418 * Acquire the per-semaphore lock. 419 */ 420 spin_lock(&sem->lock); 421 422 /* see SEM_BARRIER_1 for purpose/pairing */ 423 if (!smp_load_acquire(&sma->use_global_lock)) { 424 /* fast path successful! */ 425 return sops->sem_num; 426 } 427 spin_unlock(&sem->lock); 428 } 429 430 /* slow path: acquire the full lock */ 431 ipc_lock_object(&sma->sem_perm); 432 433 if (sma->use_global_lock == 0) { 434 /* 435 * The use_global_lock mode ended while we waited for 436 * sma->sem_perm.lock. Thus we must switch to locking 437 * with sem->lock. 438 * Unlike in the fast path, there is no need to recheck 439 * sma->use_global_lock after we have acquired sem->lock: 440 * We own sma->sem_perm.lock, thus use_global_lock cannot 441 * change. 442 */ 443 spin_lock(&sem->lock); 444 445 ipc_unlock_object(&sma->sem_perm); 446 return sops->sem_num; 447 } else { 448 /* 449 * Not a false alarm, thus continue to use the global lock 450 * mode. No need for complexmode_enter(), this was done by 451 * the caller that has set use_global_mode to non-zero. 452 */ 453 return SEM_GLOBAL_LOCK; 454 } 455 } 456 457 static inline void sem_unlock(struct sem_array *sma, int locknum) 458 { 459 if (locknum == SEM_GLOBAL_LOCK) { 460 unmerge_queues(sma); 461 complexmode_tryleave(sma); 462 ipc_unlock_object(&sma->sem_perm); 463 } else { 464 struct sem *sem = &sma->sems[locknum]; 465 spin_unlock(&sem->lock); 466 } 467 } 468 469 /* 470 * sem_lock_(check_) routines are called in the paths where the rwsem 471 * is not held. 472 * 473 * The caller holds the RCU read lock. 474 */ 475 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id) 476 { 477 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); 478 479 if (IS_ERR(ipcp)) 480 return ERR_CAST(ipcp); 481 482 return container_of(ipcp, struct sem_array, sem_perm); 483 } 484 485 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, 486 int id) 487 { 488 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id); 489 490 if (IS_ERR(ipcp)) 491 return ERR_CAST(ipcp); 492 493 return container_of(ipcp, struct sem_array, sem_perm); 494 } 495 496 static inline void sem_lock_and_putref(struct sem_array *sma) 497 { 498 sem_lock(sma, NULL, -1); 499 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 500 } 501 502 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) 503 { 504 ipc_rmid(&sem_ids(ns), &s->sem_perm); 505 } 506 507 static struct sem_array *sem_alloc(size_t nsems) 508 { 509 struct sem_array *sma; 510 511 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0])) 512 return NULL; 513 514 sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL); 515 if (unlikely(!sma)) 516 return NULL; 517 518 return sma; 519 } 520 521 /** 522 * newary - Create a new semaphore set 523 * @ns: namespace 524 * @params: ptr to the structure that contains key, semflg and nsems 525 * 526 * Called with sem_ids.rwsem held (as a writer) 527 */ 528 static int newary(struct ipc_namespace *ns, struct ipc_params *params) 529 { 530 int retval; 531 struct sem_array *sma; 532 key_t key = params->key; 533 int nsems = params->u.nsems; 534 int semflg = params->flg; 535 int i; 536 537 if (!nsems) 538 return -EINVAL; 539 if (ns->used_sems + nsems > ns->sc_semmns) 540 return -ENOSPC; 541 542 sma = sem_alloc(nsems); 543 if (!sma) 544 return -ENOMEM; 545 546 sma->sem_perm.mode = (semflg & S_IRWXUGO); 547 sma->sem_perm.key = key; 548 549 sma->sem_perm.security = NULL; 550 retval = security_sem_alloc(&sma->sem_perm); 551 if (retval) { 552 kvfree(sma); 553 return retval; 554 } 555 556 for (i = 0; i < nsems; i++) { 557 INIT_LIST_HEAD(&sma->sems[i].pending_alter); 558 INIT_LIST_HEAD(&sma->sems[i].pending_const); 559 spin_lock_init(&sma->sems[i].lock); 560 } 561 562 sma->complex_count = 0; 563 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; 564 INIT_LIST_HEAD(&sma->pending_alter); 565 INIT_LIST_HEAD(&sma->pending_const); 566 INIT_LIST_HEAD(&sma->list_id); 567 sma->sem_nsems = nsems; 568 sma->sem_ctime = ktime_get_real_seconds(); 569 570 /* ipc_addid() locks sma upon success. */ 571 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); 572 if (retval < 0) { 573 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 574 return retval; 575 } 576 ns->used_sems += nsems; 577 578 sem_unlock(sma, -1); 579 rcu_read_unlock(); 580 581 return sma->sem_perm.id; 582 } 583 584 585 /* 586 * Called with sem_ids.rwsem and ipcp locked. 587 */ 588 static inline int sem_more_checks(struct kern_ipc_perm *ipcp, 589 struct ipc_params *params) 590 { 591 struct sem_array *sma; 592 593 sma = container_of(ipcp, struct sem_array, sem_perm); 594 if (params->u.nsems > sma->sem_nsems) 595 return -EINVAL; 596 597 return 0; 598 } 599 600 long ksys_semget(key_t key, int nsems, int semflg) 601 { 602 struct ipc_namespace *ns; 603 static const struct ipc_ops sem_ops = { 604 .getnew = newary, 605 .associate = security_sem_associate, 606 .more_checks = sem_more_checks, 607 }; 608 struct ipc_params sem_params; 609 610 ns = current->nsproxy->ipc_ns; 611 612 if (nsems < 0 || nsems > ns->sc_semmsl) 613 return -EINVAL; 614 615 sem_params.key = key; 616 sem_params.flg = semflg; 617 sem_params.u.nsems = nsems; 618 619 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); 620 } 621 622 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) 623 { 624 return ksys_semget(key, nsems, semflg); 625 } 626 627 /** 628 * perform_atomic_semop[_slow] - Attempt to perform semaphore 629 * operations on a given array. 630 * @sma: semaphore array 631 * @q: struct sem_queue that describes the operation 632 * 633 * Caller blocking are as follows, based the value 634 * indicated by the semaphore operation (sem_op): 635 * 636 * (1) >0 never blocks. 637 * (2) 0 (wait-for-zero operation): semval is non-zero. 638 * (3) <0 attempting to decrement semval to a value smaller than zero. 639 * 640 * Returns 0 if the operation was possible. 641 * Returns 1 if the operation is impossible, the caller must sleep. 642 * Returns <0 for error codes. 643 */ 644 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q) 645 { 646 int result, sem_op, nsops; 647 struct pid *pid; 648 struct sembuf *sop; 649 struct sem *curr; 650 struct sembuf *sops; 651 struct sem_undo *un; 652 653 sops = q->sops; 654 nsops = q->nsops; 655 un = q->undo; 656 657 for (sop = sops; sop < sops + nsops; sop++) { 658 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems); 659 curr = &sma->sems[idx]; 660 sem_op = sop->sem_op; 661 result = curr->semval; 662 663 if (!sem_op && result) 664 goto would_block; 665 666 result += sem_op; 667 if (result < 0) 668 goto would_block; 669 if (result > SEMVMX) 670 goto out_of_range; 671 672 if (sop->sem_flg & SEM_UNDO) { 673 int undo = un->semadj[sop->sem_num] - sem_op; 674 /* Exceeding the undo range is an error. */ 675 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 676 goto out_of_range; 677 un->semadj[sop->sem_num] = undo; 678 } 679 680 curr->semval = result; 681 } 682 683 sop--; 684 pid = q->pid; 685 while (sop >= sops) { 686 ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid); 687 sop--; 688 } 689 690 return 0; 691 692 out_of_range: 693 result = -ERANGE; 694 goto undo; 695 696 would_block: 697 q->blocking = sop; 698 699 if (sop->sem_flg & IPC_NOWAIT) 700 result = -EAGAIN; 701 else 702 result = 1; 703 704 undo: 705 sop--; 706 while (sop >= sops) { 707 sem_op = sop->sem_op; 708 sma->sems[sop->sem_num].semval -= sem_op; 709 if (sop->sem_flg & SEM_UNDO) 710 un->semadj[sop->sem_num] += sem_op; 711 sop--; 712 } 713 714 return result; 715 } 716 717 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q) 718 { 719 int result, sem_op, nsops; 720 struct sembuf *sop; 721 struct sem *curr; 722 struct sembuf *sops; 723 struct sem_undo *un; 724 725 sops = q->sops; 726 nsops = q->nsops; 727 un = q->undo; 728 729 if (unlikely(q->dupsop)) 730 return perform_atomic_semop_slow(sma, q); 731 732 /* 733 * We scan the semaphore set twice, first to ensure that the entire 734 * operation can succeed, therefore avoiding any pointless writes 735 * to shared memory and having to undo such changes in order to block 736 * until the operations can go through. 737 */ 738 for (sop = sops; sop < sops + nsops; sop++) { 739 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems); 740 741 curr = &sma->sems[idx]; 742 sem_op = sop->sem_op; 743 result = curr->semval; 744 745 if (!sem_op && result) 746 goto would_block; /* wait-for-zero */ 747 748 result += sem_op; 749 if (result < 0) 750 goto would_block; 751 752 if (result > SEMVMX) 753 return -ERANGE; 754 755 if (sop->sem_flg & SEM_UNDO) { 756 int undo = un->semadj[sop->sem_num] - sem_op; 757 758 /* Exceeding the undo range is an error. */ 759 if (undo < (-SEMAEM - 1) || undo > SEMAEM) 760 return -ERANGE; 761 } 762 } 763 764 for (sop = sops; sop < sops + nsops; sop++) { 765 curr = &sma->sems[sop->sem_num]; 766 sem_op = sop->sem_op; 767 result = curr->semval; 768 769 if (sop->sem_flg & SEM_UNDO) { 770 int undo = un->semadj[sop->sem_num] - sem_op; 771 772 un->semadj[sop->sem_num] = undo; 773 } 774 curr->semval += sem_op; 775 ipc_update_pid(&curr->sempid, q->pid); 776 } 777 778 return 0; 779 780 would_block: 781 q->blocking = sop; 782 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1; 783 } 784 785 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error, 786 struct wake_q_head *wake_q) 787 { 788 get_task_struct(q->sleeper); 789 790 /* see SEM_BARRIER_2 for purpuse/pairing */ 791 smp_store_release(&q->status, error); 792 793 wake_q_add_safe(wake_q, q->sleeper); 794 } 795 796 static void unlink_queue(struct sem_array *sma, struct sem_queue *q) 797 { 798 list_del(&q->list); 799 if (q->nsops > 1) 800 sma->complex_count--; 801 } 802 803 /** check_restart(sma, q) 804 * @sma: semaphore array 805 * @q: the operation that just completed 806 * 807 * update_queue is O(N^2) when it restarts scanning the whole queue of 808 * waiting operations. Therefore this function checks if the restart is 809 * really necessary. It is called after a previously waiting operation 810 * modified the array. 811 * Note that wait-for-zero operations are handled without restart. 812 */ 813 static inline int check_restart(struct sem_array *sma, struct sem_queue *q) 814 { 815 /* pending complex alter operations are too difficult to analyse */ 816 if (!list_empty(&sma->pending_alter)) 817 return 1; 818 819 /* we were a sleeping complex operation. Too difficult */ 820 if (q->nsops > 1) 821 return 1; 822 823 /* It is impossible that someone waits for the new value: 824 * - complex operations always restart. 825 * - wait-for-zero are handled seperately. 826 * - q is a previously sleeping simple operation that 827 * altered the array. It must be a decrement, because 828 * simple increments never sleep. 829 * - If there are older (higher priority) decrements 830 * in the queue, then they have observed the original 831 * semval value and couldn't proceed. The operation 832 * decremented to value - thus they won't proceed either. 833 */ 834 return 0; 835 } 836 837 /** 838 * wake_const_ops - wake up non-alter tasks 839 * @sma: semaphore array. 840 * @semnum: semaphore that was modified. 841 * @wake_q: lockless wake-queue head. 842 * 843 * wake_const_ops must be called after a semaphore in a semaphore array 844 * was set to 0. If complex const operations are pending, wake_const_ops must 845 * be called with semnum = -1, as well as with the number of each modified 846 * semaphore. 847 * The tasks that must be woken up are added to @wake_q. The return code 848 * is stored in q->pid. 849 * The function returns 1 if at least one operation was completed successfully. 850 */ 851 static int wake_const_ops(struct sem_array *sma, int semnum, 852 struct wake_q_head *wake_q) 853 { 854 struct sem_queue *q, *tmp; 855 struct list_head *pending_list; 856 int semop_completed = 0; 857 858 if (semnum == -1) 859 pending_list = &sma->pending_const; 860 else 861 pending_list = &sma->sems[semnum].pending_const; 862 863 list_for_each_entry_safe(q, tmp, pending_list, list) { 864 int error = perform_atomic_semop(sma, q); 865 866 if (error > 0) 867 continue; 868 /* operation completed, remove from queue & wakeup */ 869 unlink_queue(sma, q); 870 871 wake_up_sem_queue_prepare(q, error, wake_q); 872 if (error == 0) 873 semop_completed = 1; 874 } 875 876 return semop_completed; 877 } 878 879 /** 880 * do_smart_wakeup_zero - wakeup all wait for zero tasks 881 * @sma: semaphore array 882 * @sops: operations that were performed 883 * @nsops: number of operations 884 * @wake_q: lockless wake-queue head 885 * 886 * Checks all required queue for wait-for-zero operations, based 887 * on the actual changes that were performed on the semaphore array. 888 * The function returns 1 if at least one operation was completed successfully. 889 */ 890 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops, 891 int nsops, struct wake_q_head *wake_q) 892 { 893 int i; 894 int semop_completed = 0; 895 int got_zero = 0; 896 897 /* first: the per-semaphore queues, if known */ 898 if (sops) { 899 for (i = 0; i < nsops; i++) { 900 int num = sops[i].sem_num; 901 902 if (sma->sems[num].semval == 0) { 903 got_zero = 1; 904 semop_completed |= wake_const_ops(sma, num, wake_q); 905 } 906 } 907 } else { 908 /* 909 * No sops means modified semaphores not known. 910 * Assume all were changed. 911 */ 912 for (i = 0; i < sma->sem_nsems; i++) { 913 if (sma->sems[i].semval == 0) { 914 got_zero = 1; 915 semop_completed |= wake_const_ops(sma, i, wake_q); 916 } 917 } 918 } 919 /* 920 * If one of the modified semaphores got 0, 921 * then check the global queue, too. 922 */ 923 if (got_zero) 924 semop_completed |= wake_const_ops(sma, -1, wake_q); 925 926 return semop_completed; 927 } 928 929 930 /** 931 * update_queue - look for tasks that can be completed. 932 * @sma: semaphore array. 933 * @semnum: semaphore that was modified. 934 * @wake_q: lockless wake-queue head. 935 * 936 * update_queue must be called after a semaphore in a semaphore array 937 * was modified. If multiple semaphores were modified, update_queue must 938 * be called with semnum = -1, as well as with the number of each modified 939 * semaphore. 940 * The tasks that must be woken up are added to @wake_q. The return code 941 * is stored in q->pid. 942 * The function internally checks if const operations can now succeed. 943 * 944 * The function return 1 if at least one semop was completed successfully. 945 */ 946 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q) 947 { 948 struct sem_queue *q, *tmp; 949 struct list_head *pending_list; 950 int semop_completed = 0; 951 952 if (semnum == -1) 953 pending_list = &sma->pending_alter; 954 else 955 pending_list = &sma->sems[semnum].pending_alter; 956 957 again: 958 list_for_each_entry_safe(q, tmp, pending_list, list) { 959 int error, restart; 960 961 /* If we are scanning the single sop, per-semaphore list of 962 * one semaphore and that semaphore is 0, then it is not 963 * necessary to scan further: simple increments 964 * that affect only one entry succeed immediately and cannot 965 * be in the per semaphore pending queue, and decrements 966 * cannot be successful if the value is already 0. 967 */ 968 if (semnum != -1 && sma->sems[semnum].semval == 0) 969 break; 970 971 error = perform_atomic_semop(sma, q); 972 973 /* Does q->sleeper still need to sleep? */ 974 if (error > 0) 975 continue; 976 977 unlink_queue(sma, q); 978 979 if (error) { 980 restart = 0; 981 } else { 982 semop_completed = 1; 983 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q); 984 restart = check_restart(sma, q); 985 } 986 987 wake_up_sem_queue_prepare(q, error, wake_q); 988 if (restart) 989 goto again; 990 } 991 return semop_completed; 992 } 993 994 /** 995 * set_semotime - set sem_otime 996 * @sma: semaphore array 997 * @sops: operations that modified the array, may be NULL 998 * 999 * sem_otime is replicated to avoid cache line trashing. 1000 * This function sets one instance to the current time. 1001 */ 1002 static void set_semotime(struct sem_array *sma, struct sembuf *sops) 1003 { 1004 if (sops == NULL) { 1005 sma->sems[0].sem_otime = ktime_get_real_seconds(); 1006 } else { 1007 sma->sems[sops[0].sem_num].sem_otime = 1008 ktime_get_real_seconds(); 1009 } 1010 } 1011 1012 /** 1013 * do_smart_update - optimized update_queue 1014 * @sma: semaphore array 1015 * @sops: operations that were performed 1016 * @nsops: number of operations 1017 * @otime: force setting otime 1018 * @wake_q: lockless wake-queue head 1019 * 1020 * do_smart_update() does the required calls to update_queue and wakeup_zero, 1021 * based on the actual changes that were performed on the semaphore array. 1022 * Note that the function does not do the actual wake-up: the caller is 1023 * responsible for calling wake_up_q(). 1024 * It is safe to perform this call after dropping all locks. 1025 */ 1026 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, 1027 int otime, struct wake_q_head *wake_q) 1028 { 1029 int i; 1030 1031 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q); 1032 1033 if (!list_empty(&sma->pending_alter)) { 1034 /* semaphore array uses the global queue - just process it. */ 1035 otime |= update_queue(sma, -1, wake_q); 1036 } else { 1037 if (!sops) { 1038 /* 1039 * No sops, thus the modified semaphores are not 1040 * known. Check all. 1041 */ 1042 for (i = 0; i < sma->sem_nsems; i++) 1043 otime |= update_queue(sma, i, wake_q); 1044 } else { 1045 /* 1046 * Check the semaphores that were increased: 1047 * - No complex ops, thus all sleeping ops are 1048 * decrease. 1049 * - if we decreased the value, then any sleeping 1050 * semaphore ops wont be able to run: If the 1051 * previous value was too small, then the new 1052 * value will be too small, too. 1053 */ 1054 for (i = 0; i < nsops; i++) { 1055 if (sops[i].sem_op > 0) { 1056 otime |= update_queue(sma, 1057 sops[i].sem_num, wake_q); 1058 } 1059 } 1060 } 1061 } 1062 if (otime) 1063 set_semotime(sma, sops); 1064 } 1065 1066 /* 1067 * check_qop: Test if a queued operation sleeps on the semaphore semnum 1068 */ 1069 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q, 1070 bool count_zero) 1071 { 1072 struct sembuf *sop = q->blocking; 1073 1074 /* 1075 * Linux always (since 0.99.10) reported a task as sleeping on all 1076 * semaphores. This violates SUS, therefore it was changed to the 1077 * standard compliant behavior. 1078 * Give the administrators a chance to notice that an application 1079 * might misbehave because it relies on the Linux behavior. 1080 */ 1081 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n" 1082 "The task %s (%d) triggered the difference, watch for misbehavior.\n", 1083 current->comm, task_pid_nr(current)); 1084 1085 if (sop->sem_num != semnum) 1086 return 0; 1087 1088 if (count_zero && sop->sem_op == 0) 1089 return 1; 1090 if (!count_zero && sop->sem_op < 0) 1091 return 1; 1092 1093 return 0; 1094 } 1095 1096 /* The following counts are associated to each semaphore: 1097 * semncnt number of tasks waiting on semval being nonzero 1098 * semzcnt number of tasks waiting on semval being zero 1099 * 1100 * Per definition, a task waits only on the semaphore of the first semop 1101 * that cannot proceed, even if additional operation would block, too. 1102 */ 1103 static int count_semcnt(struct sem_array *sma, ushort semnum, 1104 bool count_zero) 1105 { 1106 struct list_head *l; 1107 struct sem_queue *q; 1108 int semcnt; 1109 1110 semcnt = 0; 1111 /* First: check the simple operations. They are easy to evaluate */ 1112 if (count_zero) 1113 l = &sma->sems[semnum].pending_const; 1114 else 1115 l = &sma->sems[semnum].pending_alter; 1116 1117 list_for_each_entry(q, l, list) { 1118 /* all task on a per-semaphore list sleep on exactly 1119 * that semaphore 1120 */ 1121 semcnt++; 1122 } 1123 1124 /* Then: check the complex operations. */ 1125 list_for_each_entry(q, &sma->pending_alter, list) { 1126 semcnt += check_qop(sma, semnum, q, count_zero); 1127 } 1128 if (count_zero) { 1129 list_for_each_entry(q, &sma->pending_const, list) { 1130 semcnt += check_qop(sma, semnum, q, count_zero); 1131 } 1132 } 1133 return semcnt; 1134 } 1135 1136 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked 1137 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem 1138 * remains locked on exit. 1139 */ 1140 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) 1141 { 1142 struct sem_undo *un, *tu; 1143 struct sem_queue *q, *tq; 1144 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 1145 int i; 1146 DEFINE_WAKE_Q(wake_q); 1147 1148 /* Free the existing undo structures for this semaphore set. */ 1149 ipc_assert_locked_object(&sma->sem_perm); 1150 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { 1151 list_del(&un->list_id); 1152 spin_lock(&un->ulp->lock); 1153 un->semid = -1; 1154 list_del_rcu(&un->list_proc); 1155 spin_unlock(&un->ulp->lock); 1156 kfree_rcu(un, rcu); 1157 } 1158 1159 /* Wake up all pending processes and let them fail with EIDRM. */ 1160 list_for_each_entry_safe(q, tq, &sma->pending_const, list) { 1161 unlink_queue(sma, q); 1162 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1163 } 1164 1165 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { 1166 unlink_queue(sma, q); 1167 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1168 } 1169 for (i = 0; i < sma->sem_nsems; i++) { 1170 struct sem *sem = &sma->sems[i]; 1171 list_for_each_entry_safe(q, tq, &sem->pending_const, list) { 1172 unlink_queue(sma, q); 1173 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1174 } 1175 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) { 1176 unlink_queue(sma, q); 1177 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); 1178 } 1179 ipc_update_pid(&sem->sempid, NULL); 1180 } 1181 1182 /* Remove the semaphore set from the IDR */ 1183 sem_rmid(ns, sma); 1184 sem_unlock(sma, -1); 1185 rcu_read_unlock(); 1186 1187 wake_up_q(&wake_q); 1188 ns->used_sems -= sma->sem_nsems; 1189 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1190 } 1191 1192 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) 1193 { 1194 switch (version) { 1195 case IPC_64: 1196 return copy_to_user(buf, in, sizeof(*in)); 1197 case IPC_OLD: 1198 { 1199 struct semid_ds out; 1200 1201 memset(&out, 0, sizeof(out)); 1202 1203 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); 1204 1205 out.sem_otime = in->sem_otime; 1206 out.sem_ctime = in->sem_ctime; 1207 out.sem_nsems = in->sem_nsems; 1208 1209 return copy_to_user(buf, &out, sizeof(out)); 1210 } 1211 default: 1212 return -EINVAL; 1213 } 1214 } 1215 1216 static time64_t get_semotime(struct sem_array *sma) 1217 { 1218 int i; 1219 time64_t res; 1220 1221 res = sma->sems[0].sem_otime; 1222 for (i = 1; i < sma->sem_nsems; i++) { 1223 time64_t to = sma->sems[i].sem_otime; 1224 1225 if (to > res) 1226 res = to; 1227 } 1228 return res; 1229 } 1230 1231 static int semctl_stat(struct ipc_namespace *ns, int semid, 1232 int cmd, struct semid64_ds *semid64) 1233 { 1234 struct sem_array *sma; 1235 time64_t semotime; 1236 int err; 1237 1238 memset(semid64, 0, sizeof(*semid64)); 1239 1240 rcu_read_lock(); 1241 if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) { 1242 sma = sem_obtain_object(ns, semid); 1243 if (IS_ERR(sma)) { 1244 err = PTR_ERR(sma); 1245 goto out_unlock; 1246 } 1247 } else { /* IPC_STAT */ 1248 sma = sem_obtain_object_check(ns, semid); 1249 if (IS_ERR(sma)) { 1250 err = PTR_ERR(sma); 1251 goto out_unlock; 1252 } 1253 } 1254 1255 /* see comment for SHM_STAT_ANY */ 1256 if (cmd == SEM_STAT_ANY) 1257 audit_ipc_obj(&sma->sem_perm); 1258 else { 1259 err = -EACCES; 1260 if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) 1261 goto out_unlock; 1262 } 1263 1264 err = security_sem_semctl(&sma->sem_perm, cmd); 1265 if (err) 1266 goto out_unlock; 1267 1268 ipc_lock_object(&sma->sem_perm); 1269 1270 if (!ipc_valid_object(&sma->sem_perm)) { 1271 ipc_unlock_object(&sma->sem_perm); 1272 err = -EIDRM; 1273 goto out_unlock; 1274 } 1275 1276 kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm); 1277 semotime = get_semotime(sma); 1278 semid64->sem_otime = semotime; 1279 semid64->sem_ctime = sma->sem_ctime; 1280 #ifndef CONFIG_64BIT 1281 semid64->sem_otime_high = semotime >> 32; 1282 semid64->sem_ctime_high = sma->sem_ctime >> 32; 1283 #endif 1284 semid64->sem_nsems = sma->sem_nsems; 1285 1286 if (cmd == IPC_STAT) { 1287 /* 1288 * As defined in SUS: 1289 * Return 0 on success 1290 */ 1291 err = 0; 1292 } else { 1293 /* 1294 * SEM_STAT and SEM_STAT_ANY (both Linux specific) 1295 * Return the full id, including the sequence number 1296 */ 1297 err = sma->sem_perm.id; 1298 } 1299 ipc_unlock_object(&sma->sem_perm); 1300 out_unlock: 1301 rcu_read_unlock(); 1302 return err; 1303 } 1304 1305 static int semctl_info(struct ipc_namespace *ns, int semid, 1306 int cmd, void __user *p) 1307 { 1308 struct seminfo seminfo; 1309 int max_idx; 1310 int err; 1311 1312 err = security_sem_semctl(NULL, cmd); 1313 if (err) 1314 return err; 1315 1316 memset(&seminfo, 0, sizeof(seminfo)); 1317 seminfo.semmni = ns->sc_semmni; 1318 seminfo.semmns = ns->sc_semmns; 1319 seminfo.semmsl = ns->sc_semmsl; 1320 seminfo.semopm = ns->sc_semopm; 1321 seminfo.semvmx = SEMVMX; 1322 seminfo.semmnu = SEMMNU; 1323 seminfo.semmap = SEMMAP; 1324 seminfo.semume = SEMUME; 1325 down_read(&sem_ids(ns).rwsem); 1326 if (cmd == SEM_INFO) { 1327 seminfo.semusz = sem_ids(ns).in_use; 1328 seminfo.semaem = ns->used_sems; 1329 } else { 1330 seminfo.semusz = SEMUSZ; 1331 seminfo.semaem = SEMAEM; 1332 } 1333 max_idx = ipc_get_maxidx(&sem_ids(ns)); 1334 up_read(&sem_ids(ns).rwsem); 1335 if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) 1336 return -EFAULT; 1337 return (max_idx < 0) ? 0 : max_idx; 1338 } 1339 1340 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, 1341 int val) 1342 { 1343 struct sem_undo *un; 1344 struct sem_array *sma; 1345 struct sem *curr; 1346 int err; 1347 DEFINE_WAKE_Q(wake_q); 1348 1349 if (val > SEMVMX || val < 0) 1350 return -ERANGE; 1351 1352 rcu_read_lock(); 1353 sma = sem_obtain_object_check(ns, semid); 1354 if (IS_ERR(sma)) { 1355 rcu_read_unlock(); 1356 return PTR_ERR(sma); 1357 } 1358 1359 if (semnum < 0 || semnum >= sma->sem_nsems) { 1360 rcu_read_unlock(); 1361 return -EINVAL; 1362 } 1363 1364 1365 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) { 1366 rcu_read_unlock(); 1367 return -EACCES; 1368 } 1369 1370 err = security_sem_semctl(&sma->sem_perm, SETVAL); 1371 if (err) { 1372 rcu_read_unlock(); 1373 return -EACCES; 1374 } 1375 1376 sem_lock(sma, NULL, -1); 1377 1378 if (!ipc_valid_object(&sma->sem_perm)) { 1379 sem_unlock(sma, -1); 1380 rcu_read_unlock(); 1381 return -EIDRM; 1382 } 1383 1384 semnum = array_index_nospec(semnum, sma->sem_nsems); 1385 curr = &sma->sems[semnum]; 1386 1387 ipc_assert_locked_object(&sma->sem_perm); 1388 list_for_each_entry(un, &sma->list_id, list_id) 1389 un->semadj[semnum] = 0; 1390 1391 curr->semval = val; 1392 ipc_update_pid(&curr->sempid, task_tgid(current)); 1393 sma->sem_ctime = ktime_get_real_seconds(); 1394 /* maybe some queued-up processes were waiting for this */ 1395 do_smart_update(sma, NULL, 0, 0, &wake_q); 1396 sem_unlock(sma, -1); 1397 rcu_read_unlock(); 1398 wake_up_q(&wake_q); 1399 return 0; 1400 } 1401 1402 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, 1403 int cmd, void __user *p) 1404 { 1405 struct sem_array *sma; 1406 struct sem *curr; 1407 int err, nsems; 1408 ushort fast_sem_io[SEMMSL_FAST]; 1409 ushort *sem_io = fast_sem_io; 1410 DEFINE_WAKE_Q(wake_q); 1411 1412 rcu_read_lock(); 1413 sma = sem_obtain_object_check(ns, semid); 1414 if (IS_ERR(sma)) { 1415 rcu_read_unlock(); 1416 return PTR_ERR(sma); 1417 } 1418 1419 nsems = sma->sem_nsems; 1420 1421 err = -EACCES; 1422 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO)) 1423 goto out_rcu_wakeup; 1424 1425 err = security_sem_semctl(&sma->sem_perm, cmd); 1426 if (err) 1427 goto out_rcu_wakeup; 1428 1429 err = -EACCES; 1430 switch (cmd) { 1431 case GETALL: 1432 { 1433 ushort __user *array = p; 1434 int i; 1435 1436 sem_lock(sma, NULL, -1); 1437 if (!ipc_valid_object(&sma->sem_perm)) { 1438 err = -EIDRM; 1439 goto out_unlock; 1440 } 1441 if (nsems > SEMMSL_FAST) { 1442 if (!ipc_rcu_getref(&sma->sem_perm)) { 1443 err = -EIDRM; 1444 goto out_unlock; 1445 } 1446 sem_unlock(sma, -1); 1447 rcu_read_unlock(); 1448 sem_io = kvmalloc_array(nsems, sizeof(ushort), 1449 GFP_KERNEL); 1450 if (sem_io == NULL) { 1451 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1452 return -ENOMEM; 1453 } 1454 1455 rcu_read_lock(); 1456 sem_lock_and_putref(sma); 1457 if (!ipc_valid_object(&sma->sem_perm)) { 1458 err = -EIDRM; 1459 goto out_unlock; 1460 } 1461 } 1462 for (i = 0; i < sma->sem_nsems; i++) 1463 sem_io[i] = sma->sems[i].semval; 1464 sem_unlock(sma, -1); 1465 rcu_read_unlock(); 1466 err = 0; 1467 if (copy_to_user(array, sem_io, nsems*sizeof(ushort))) 1468 err = -EFAULT; 1469 goto out_free; 1470 } 1471 case SETALL: 1472 { 1473 int i; 1474 struct sem_undo *un; 1475 1476 if (!ipc_rcu_getref(&sma->sem_perm)) { 1477 err = -EIDRM; 1478 goto out_rcu_wakeup; 1479 } 1480 rcu_read_unlock(); 1481 1482 if (nsems > SEMMSL_FAST) { 1483 sem_io = kvmalloc_array(nsems, sizeof(ushort), 1484 GFP_KERNEL); 1485 if (sem_io == NULL) { 1486 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1487 return -ENOMEM; 1488 } 1489 } 1490 1491 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) { 1492 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1493 err = -EFAULT; 1494 goto out_free; 1495 } 1496 1497 for (i = 0; i < nsems; i++) { 1498 if (sem_io[i] > SEMVMX) { 1499 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1500 err = -ERANGE; 1501 goto out_free; 1502 } 1503 } 1504 rcu_read_lock(); 1505 sem_lock_and_putref(sma); 1506 if (!ipc_valid_object(&sma->sem_perm)) { 1507 err = -EIDRM; 1508 goto out_unlock; 1509 } 1510 1511 for (i = 0; i < nsems; i++) { 1512 sma->sems[i].semval = sem_io[i]; 1513 ipc_update_pid(&sma->sems[i].sempid, task_tgid(current)); 1514 } 1515 1516 ipc_assert_locked_object(&sma->sem_perm); 1517 list_for_each_entry(un, &sma->list_id, list_id) { 1518 for (i = 0; i < nsems; i++) 1519 un->semadj[i] = 0; 1520 } 1521 sma->sem_ctime = ktime_get_real_seconds(); 1522 /* maybe some queued-up processes were waiting for this */ 1523 do_smart_update(sma, NULL, 0, 0, &wake_q); 1524 err = 0; 1525 goto out_unlock; 1526 } 1527 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */ 1528 } 1529 err = -EINVAL; 1530 if (semnum < 0 || semnum >= nsems) 1531 goto out_rcu_wakeup; 1532 1533 sem_lock(sma, NULL, -1); 1534 if (!ipc_valid_object(&sma->sem_perm)) { 1535 err = -EIDRM; 1536 goto out_unlock; 1537 } 1538 1539 semnum = array_index_nospec(semnum, nsems); 1540 curr = &sma->sems[semnum]; 1541 1542 switch (cmd) { 1543 case GETVAL: 1544 err = curr->semval; 1545 goto out_unlock; 1546 case GETPID: 1547 err = pid_vnr(curr->sempid); 1548 goto out_unlock; 1549 case GETNCNT: 1550 err = count_semcnt(sma, semnum, 0); 1551 goto out_unlock; 1552 case GETZCNT: 1553 err = count_semcnt(sma, semnum, 1); 1554 goto out_unlock; 1555 } 1556 1557 out_unlock: 1558 sem_unlock(sma, -1); 1559 out_rcu_wakeup: 1560 rcu_read_unlock(); 1561 wake_up_q(&wake_q); 1562 out_free: 1563 if (sem_io != fast_sem_io) 1564 kvfree(sem_io); 1565 return err; 1566 } 1567 1568 static inline unsigned long 1569 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) 1570 { 1571 switch (version) { 1572 case IPC_64: 1573 if (copy_from_user(out, buf, sizeof(*out))) 1574 return -EFAULT; 1575 return 0; 1576 case IPC_OLD: 1577 { 1578 struct semid_ds tbuf_old; 1579 1580 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) 1581 return -EFAULT; 1582 1583 out->sem_perm.uid = tbuf_old.sem_perm.uid; 1584 out->sem_perm.gid = tbuf_old.sem_perm.gid; 1585 out->sem_perm.mode = tbuf_old.sem_perm.mode; 1586 1587 return 0; 1588 } 1589 default: 1590 return -EINVAL; 1591 } 1592 } 1593 1594 /* 1595 * This function handles some semctl commands which require the rwsem 1596 * to be held in write mode. 1597 * NOTE: no locks must be held, the rwsem is taken inside this function. 1598 */ 1599 static int semctl_down(struct ipc_namespace *ns, int semid, 1600 int cmd, struct semid64_ds *semid64) 1601 { 1602 struct sem_array *sma; 1603 int err; 1604 struct kern_ipc_perm *ipcp; 1605 1606 down_write(&sem_ids(ns).rwsem); 1607 rcu_read_lock(); 1608 1609 ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd, 1610 &semid64->sem_perm, 0); 1611 if (IS_ERR(ipcp)) { 1612 err = PTR_ERR(ipcp); 1613 goto out_unlock1; 1614 } 1615 1616 sma = container_of(ipcp, struct sem_array, sem_perm); 1617 1618 err = security_sem_semctl(&sma->sem_perm, cmd); 1619 if (err) 1620 goto out_unlock1; 1621 1622 switch (cmd) { 1623 case IPC_RMID: 1624 sem_lock(sma, NULL, -1); 1625 /* freeary unlocks the ipc object and rcu */ 1626 freeary(ns, ipcp); 1627 goto out_up; 1628 case IPC_SET: 1629 sem_lock(sma, NULL, -1); 1630 err = ipc_update_perm(&semid64->sem_perm, ipcp); 1631 if (err) 1632 goto out_unlock0; 1633 sma->sem_ctime = ktime_get_real_seconds(); 1634 break; 1635 default: 1636 err = -EINVAL; 1637 goto out_unlock1; 1638 } 1639 1640 out_unlock0: 1641 sem_unlock(sma, -1); 1642 out_unlock1: 1643 rcu_read_unlock(); 1644 out_up: 1645 up_write(&sem_ids(ns).rwsem); 1646 return err; 1647 } 1648 1649 static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version) 1650 { 1651 struct ipc_namespace *ns; 1652 void __user *p = (void __user *)arg; 1653 struct semid64_ds semid64; 1654 int err; 1655 1656 if (semid < 0) 1657 return -EINVAL; 1658 1659 ns = current->nsproxy->ipc_ns; 1660 1661 switch (cmd) { 1662 case IPC_INFO: 1663 case SEM_INFO: 1664 return semctl_info(ns, semid, cmd, p); 1665 case IPC_STAT: 1666 case SEM_STAT: 1667 case SEM_STAT_ANY: 1668 err = semctl_stat(ns, semid, cmd, &semid64); 1669 if (err < 0) 1670 return err; 1671 if (copy_semid_to_user(p, &semid64, version)) 1672 err = -EFAULT; 1673 return err; 1674 case GETALL: 1675 case GETVAL: 1676 case GETPID: 1677 case GETNCNT: 1678 case GETZCNT: 1679 case SETALL: 1680 return semctl_main(ns, semid, semnum, cmd, p); 1681 case SETVAL: { 1682 int val; 1683 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) 1684 /* big-endian 64bit */ 1685 val = arg >> 32; 1686 #else 1687 /* 32bit or little-endian 64bit */ 1688 val = arg; 1689 #endif 1690 return semctl_setval(ns, semid, semnum, val); 1691 } 1692 case IPC_SET: 1693 if (copy_semid_from_user(&semid64, p, version)) 1694 return -EFAULT; 1695 /* fall through */ 1696 case IPC_RMID: 1697 return semctl_down(ns, semid, cmd, &semid64); 1698 default: 1699 return -EINVAL; 1700 } 1701 } 1702 1703 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) 1704 { 1705 return ksys_semctl(semid, semnum, cmd, arg, IPC_64); 1706 } 1707 1708 #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION 1709 long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg) 1710 { 1711 int version = ipc_parse_version(&cmd); 1712 1713 return ksys_semctl(semid, semnum, cmd, arg, version); 1714 } 1715 1716 SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) 1717 { 1718 return ksys_old_semctl(semid, semnum, cmd, arg); 1719 } 1720 #endif 1721 1722 #ifdef CONFIG_COMPAT 1723 1724 struct compat_semid_ds { 1725 struct compat_ipc_perm sem_perm; 1726 old_time32_t sem_otime; 1727 old_time32_t sem_ctime; 1728 compat_uptr_t sem_base; 1729 compat_uptr_t sem_pending; 1730 compat_uptr_t sem_pending_last; 1731 compat_uptr_t undo; 1732 unsigned short sem_nsems; 1733 }; 1734 1735 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf, 1736 int version) 1737 { 1738 memset(out, 0, sizeof(*out)); 1739 if (version == IPC_64) { 1740 struct compat_semid64_ds __user *p = buf; 1741 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm); 1742 } else { 1743 struct compat_semid_ds __user *p = buf; 1744 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm); 1745 } 1746 } 1747 1748 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in, 1749 int version) 1750 { 1751 if (version == IPC_64) { 1752 struct compat_semid64_ds v; 1753 memset(&v, 0, sizeof(v)); 1754 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm); 1755 v.sem_otime = lower_32_bits(in->sem_otime); 1756 v.sem_otime_high = upper_32_bits(in->sem_otime); 1757 v.sem_ctime = lower_32_bits(in->sem_ctime); 1758 v.sem_ctime_high = upper_32_bits(in->sem_ctime); 1759 v.sem_nsems = in->sem_nsems; 1760 return copy_to_user(buf, &v, sizeof(v)); 1761 } else { 1762 struct compat_semid_ds v; 1763 memset(&v, 0, sizeof(v)); 1764 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm); 1765 v.sem_otime = in->sem_otime; 1766 v.sem_ctime = in->sem_ctime; 1767 v.sem_nsems = in->sem_nsems; 1768 return copy_to_user(buf, &v, sizeof(v)); 1769 } 1770 } 1771 1772 static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version) 1773 { 1774 void __user *p = compat_ptr(arg); 1775 struct ipc_namespace *ns; 1776 struct semid64_ds semid64; 1777 int err; 1778 1779 ns = current->nsproxy->ipc_ns; 1780 1781 if (semid < 0) 1782 return -EINVAL; 1783 1784 switch (cmd & (~IPC_64)) { 1785 case IPC_INFO: 1786 case SEM_INFO: 1787 return semctl_info(ns, semid, cmd, p); 1788 case IPC_STAT: 1789 case SEM_STAT: 1790 case SEM_STAT_ANY: 1791 err = semctl_stat(ns, semid, cmd, &semid64); 1792 if (err < 0) 1793 return err; 1794 if (copy_compat_semid_to_user(p, &semid64, version)) 1795 err = -EFAULT; 1796 return err; 1797 case GETVAL: 1798 case GETPID: 1799 case GETNCNT: 1800 case GETZCNT: 1801 case GETALL: 1802 case SETALL: 1803 return semctl_main(ns, semid, semnum, cmd, p); 1804 case SETVAL: 1805 return semctl_setval(ns, semid, semnum, arg); 1806 case IPC_SET: 1807 if (copy_compat_semid_from_user(&semid64, p, version)) 1808 return -EFAULT; 1809 /* fallthru */ 1810 case IPC_RMID: 1811 return semctl_down(ns, semid, cmd, &semid64); 1812 default: 1813 return -EINVAL; 1814 } 1815 } 1816 1817 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg) 1818 { 1819 return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64); 1820 } 1821 1822 #ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION 1823 long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg) 1824 { 1825 int version = compat_ipc_parse_version(&cmd); 1826 1827 return compat_ksys_semctl(semid, semnum, cmd, arg, version); 1828 } 1829 1830 COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg) 1831 { 1832 return compat_ksys_old_semctl(semid, semnum, cmd, arg); 1833 } 1834 #endif 1835 #endif 1836 1837 /* If the task doesn't already have a undo_list, then allocate one 1838 * here. We guarantee there is only one thread using this undo list, 1839 * and current is THE ONE 1840 * 1841 * If this allocation and assignment succeeds, but later 1842 * portions of this code fail, there is no need to free the sem_undo_list. 1843 * Just let it stay associated with the task, and it'll be freed later 1844 * at exit time. 1845 * 1846 * This can block, so callers must hold no locks. 1847 */ 1848 static inline int get_undo_list(struct sem_undo_list **undo_listp) 1849 { 1850 struct sem_undo_list *undo_list; 1851 1852 undo_list = current->sysvsem.undo_list; 1853 if (!undo_list) { 1854 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); 1855 if (undo_list == NULL) 1856 return -ENOMEM; 1857 spin_lock_init(&undo_list->lock); 1858 refcount_set(&undo_list->refcnt, 1); 1859 INIT_LIST_HEAD(&undo_list->list_proc); 1860 1861 current->sysvsem.undo_list = undo_list; 1862 } 1863 *undo_listp = undo_list; 1864 return 0; 1865 } 1866 1867 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) 1868 { 1869 struct sem_undo *un; 1870 1871 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc, 1872 spin_is_locked(&ulp->lock)) { 1873 if (un->semid == semid) 1874 return un; 1875 } 1876 return NULL; 1877 } 1878 1879 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) 1880 { 1881 struct sem_undo *un; 1882 1883 assert_spin_locked(&ulp->lock); 1884 1885 un = __lookup_undo(ulp, semid); 1886 if (un) { 1887 list_del_rcu(&un->list_proc); 1888 list_add_rcu(&un->list_proc, &ulp->list_proc); 1889 } 1890 return un; 1891 } 1892 1893 /** 1894 * find_alloc_undo - lookup (and if not present create) undo array 1895 * @ns: namespace 1896 * @semid: semaphore array id 1897 * 1898 * The function looks up (and if not present creates) the undo structure. 1899 * The size of the undo structure depends on the size of the semaphore 1900 * array, thus the alloc path is not that straightforward. 1901 * Lifetime-rules: sem_undo is rcu-protected, on success, the function 1902 * performs a rcu_read_lock(). 1903 */ 1904 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) 1905 { 1906 struct sem_array *sma; 1907 struct sem_undo_list *ulp; 1908 struct sem_undo *un, *new; 1909 int nsems, error; 1910 1911 error = get_undo_list(&ulp); 1912 if (error) 1913 return ERR_PTR(error); 1914 1915 rcu_read_lock(); 1916 spin_lock(&ulp->lock); 1917 un = lookup_undo(ulp, semid); 1918 spin_unlock(&ulp->lock); 1919 if (likely(un != NULL)) 1920 goto out; 1921 1922 /* no undo structure around - allocate one. */ 1923 /* step 1: figure out the size of the semaphore array */ 1924 sma = sem_obtain_object_check(ns, semid); 1925 if (IS_ERR(sma)) { 1926 rcu_read_unlock(); 1927 return ERR_CAST(sma); 1928 } 1929 1930 nsems = sma->sem_nsems; 1931 if (!ipc_rcu_getref(&sma->sem_perm)) { 1932 rcu_read_unlock(); 1933 un = ERR_PTR(-EIDRM); 1934 goto out; 1935 } 1936 rcu_read_unlock(); 1937 1938 /* step 2: allocate new undo structure */ 1939 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); 1940 if (!new) { 1941 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); 1942 return ERR_PTR(-ENOMEM); 1943 } 1944 1945 /* step 3: Acquire the lock on semaphore array */ 1946 rcu_read_lock(); 1947 sem_lock_and_putref(sma); 1948 if (!ipc_valid_object(&sma->sem_perm)) { 1949 sem_unlock(sma, -1); 1950 rcu_read_unlock(); 1951 kfree(new); 1952 un = ERR_PTR(-EIDRM); 1953 goto out; 1954 } 1955 spin_lock(&ulp->lock); 1956 1957 /* 1958 * step 4: check for races: did someone else allocate the undo struct? 1959 */ 1960 un = lookup_undo(ulp, semid); 1961 if (un) { 1962 kfree(new); 1963 goto success; 1964 } 1965 /* step 5: initialize & link new undo structure */ 1966 new->semadj = (short *) &new[1]; 1967 new->ulp = ulp; 1968 new->semid = semid; 1969 assert_spin_locked(&ulp->lock); 1970 list_add_rcu(&new->list_proc, &ulp->list_proc); 1971 ipc_assert_locked_object(&sma->sem_perm); 1972 list_add(&new->list_id, &sma->list_id); 1973 un = new; 1974 1975 success: 1976 spin_unlock(&ulp->lock); 1977 sem_unlock(sma, -1); 1978 out: 1979 return un; 1980 } 1981 1982 static long do_semtimedop(int semid, struct sembuf __user *tsops, 1983 unsigned nsops, const struct timespec64 *timeout) 1984 { 1985 int error = -EINVAL; 1986 struct sem_array *sma; 1987 struct sembuf fast_sops[SEMOPM_FAST]; 1988 struct sembuf *sops = fast_sops, *sop; 1989 struct sem_undo *un; 1990 int max, locknum; 1991 bool undos = false, alter = false, dupsop = false; 1992 struct sem_queue queue; 1993 unsigned long dup = 0, jiffies_left = 0; 1994 struct ipc_namespace *ns; 1995 1996 ns = current->nsproxy->ipc_ns; 1997 1998 if (nsops < 1 || semid < 0) 1999 return -EINVAL; 2000 if (nsops > ns->sc_semopm) 2001 return -E2BIG; 2002 if (nsops > SEMOPM_FAST) { 2003 sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL); 2004 if (sops == NULL) 2005 return -ENOMEM; 2006 } 2007 2008 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) { 2009 error = -EFAULT; 2010 goto out_free; 2011 } 2012 2013 if (timeout) { 2014 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 || 2015 timeout->tv_nsec >= 1000000000L) { 2016 error = -EINVAL; 2017 goto out_free; 2018 } 2019 jiffies_left = timespec64_to_jiffies(timeout); 2020 } 2021 2022 max = 0; 2023 for (sop = sops; sop < sops + nsops; sop++) { 2024 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG); 2025 2026 if (sop->sem_num >= max) 2027 max = sop->sem_num; 2028 if (sop->sem_flg & SEM_UNDO) 2029 undos = true; 2030 if (dup & mask) { 2031 /* 2032 * There was a previous alter access that appears 2033 * to have accessed the same semaphore, thus use 2034 * the dupsop logic. "appears", because the detection 2035 * can only check % BITS_PER_LONG. 2036 */ 2037 dupsop = true; 2038 } 2039 if (sop->sem_op != 0) { 2040 alter = true; 2041 dup |= mask; 2042 } 2043 } 2044 2045 if (undos) { 2046 /* On success, find_alloc_undo takes the rcu_read_lock */ 2047 un = find_alloc_undo(ns, semid); 2048 if (IS_ERR(un)) { 2049 error = PTR_ERR(un); 2050 goto out_free; 2051 } 2052 } else { 2053 un = NULL; 2054 rcu_read_lock(); 2055 } 2056 2057 sma = sem_obtain_object_check(ns, semid); 2058 if (IS_ERR(sma)) { 2059 rcu_read_unlock(); 2060 error = PTR_ERR(sma); 2061 goto out_free; 2062 } 2063 2064 error = -EFBIG; 2065 if (max >= sma->sem_nsems) { 2066 rcu_read_unlock(); 2067 goto out_free; 2068 } 2069 2070 error = -EACCES; 2071 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) { 2072 rcu_read_unlock(); 2073 goto out_free; 2074 } 2075 2076 error = security_sem_semop(&sma->sem_perm, sops, nsops, alter); 2077 if (error) { 2078 rcu_read_unlock(); 2079 goto out_free; 2080 } 2081 2082 error = -EIDRM; 2083 locknum = sem_lock(sma, sops, nsops); 2084 /* 2085 * We eventually might perform the following check in a lockless 2086 * fashion, considering ipc_valid_object() locking constraints. 2087 * If nsops == 1 and there is no contention for sem_perm.lock, then 2088 * only a per-semaphore lock is held and it's OK to proceed with the 2089 * check below. More details on the fine grained locking scheme 2090 * entangled here and why it's RMID race safe on comments at sem_lock() 2091 */ 2092 if (!ipc_valid_object(&sma->sem_perm)) 2093 goto out_unlock_free; 2094 /* 2095 * semid identifiers are not unique - find_alloc_undo may have 2096 * allocated an undo structure, it was invalidated by an RMID 2097 * and now a new array with received the same id. Check and fail. 2098 * This case can be detected checking un->semid. The existence of 2099 * "un" itself is guaranteed by rcu. 2100 */ 2101 if (un && un->semid == -1) 2102 goto out_unlock_free; 2103 2104 queue.sops = sops; 2105 queue.nsops = nsops; 2106 queue.undo = un; 2107 queue.pid = task_tgid(current); 2108 queue.alter = alter; 2109 queue.dupsop = dupsop; 2110 2111 error = perform_atomic_semop(sma, &queue); 2112 if (error == 0) { /* non-blocking succesfull path */ 2113 DEFINE_WAKE_Q(wake_q); 2114 2115 /* 2116 * If the operation was successful, then do 2117 * the required updates. 2118 */ 2119 if (alter) 2120 do_smart_update(sma, sops, nsops, 1, &wake_q); 2121 else 2122 set_semotime(sma, sops); 2123 2124 sem_unlock(sma, locknum); 2125 rcu_read_unlock(); 2126 wake_up_q(&wake_q); 2127 2128 goto out_free; 2129 } 2130 if (error < 0) /* non-blocking error path */ 2131 goto out_unlock_free; 2132 2133 /* 2134 * We need to sleep on this operation, so we put the current 2135 * task into the pending queue and go to sleep. 2136 */ 2137 if (nsops == 1) { 2138 struct sem *curr; 2139 int idx = array_index_nospec(sops->sem_num, sma->sem_nsems); 2140 curr = &sma->sems[idx]; 2141 2142 if (alter) { 2143 if (sma->complex_count) { 2144 list_add_tail(&queue.list, 2145 &sma->pending_alter); 2146 } else { 2147 2148 list_add_tail(&queue.list, 2149 &curr->pending_alter); 2150 } 2151 } else { 2152 list_add_tail(&queue.list, &curr->pending_const); 2153 } 2154 } else { 2155 if (!sma->complex_count) 2156 merge_queues(sma); 2157 2158 if (alter) 2159 list_add_tail(&queue.list, &sma->pending_alter); 2160 else 2161 list_add_tail(&queue.list, &sma->pending_const); 2162 2163 sma->complex_count++; 2164 } 2165 2166 do { 2167 /* memory ordering ensured by the lock in sem_lock() */ 2168 WRITE_ONCE(queue.status, -EINTR); 2169 queue.sleeper = current; 2170 2171 /* memory ordering is ensured by the lock in sem_lock() */ 2172 __set_current_state(TASK_INTERRUPTIBLE); 2173 sem_unlock(sma, locknum); 2174 rcu_read_unlock(); 2175 2176 if (timeout) 2177 jiffies_left = schedule_timeout(jiffies_left); 2178 else 2179 schedule(); 2180 2181 /* 2182 * fastpath: the semop has completed, either successfully or 2183 * not, from the syscall pov, is quite irrelevant to us at this 2184 * point; we're done. 2185 * 2186 * We _do_ care, nonetheless, about being awoken by a signal or 2187 * spuriously. The queue.status is checked again in the 2188 * slowpath (aka after taking sem_lock), such that we can detect 2189 * scenarios where we were awakened externally, during the 2190 * window between wake_q_add() and wake_up_q(). 2191 */ 2192 error = READ_ONCE(queue.status); 2193 if (error != -EINTR) { 2194 /* see SEM_BARRIER_2 for purpose/pairing */ 2195 smp_acquire__after_ctrl_dep(); 2196 goto out_free; 2197 } 2198 2199 rcu_read_lock(); 2200 locknum = sem_lock(sma, sops, nsops); 2201 2202 if (!ipc_valid_object(&sma->sem_perm)) 2203 goto out_unlock_free; 2204 2205 /* 2206 * No necessity for any barrier: We are protect by sem_lock() 2207 */ 2208 error = READ_ONCE(queue.status); 2209 2210 /* 2211 * If queue.status != -EINTR we are woken up by another process. 2212 * Leave without unlink_queue(), but with sem_unlock(). 2213 */ 2214 if (error != -EINTR) 2215 goto out_unlock_free; 2216 2217 /* 2218 * If an interrupt occurred we have to clean up the queue. 2219 */ 2220 if (timeout && jiffies_left == 0) 2221 error = -EAGAIN; 2222 } while (error == -EINTR && !signal_pending(current)); /* spurious */ 2223 2224 unlink_queue(sma, &queue); 2225 2226 out_unlock_free: 2227 sem_unlock(sma, locknum); 2228 rcu_read_unlock(); 2229 out_free: 2230 if (sops != fast_sops) 2231 kvfree(sops); 2232 return error; 2233 } 2234 2235 long ksys_semtimedop(int semid, struct sembuf __user *tsops, 2236 unsigned int nsops, const struct __kernel_timespec __user *timeout) 2237 { 2238 if (timeout) { 2239 struct timespec64 ts; 2240 if (get_timespec64(&ts, timeout)) 2241 return -EFAULT; 2242 return do_semtimedop(semid, tsops, nsops, &ts); 2243 } 2244 return do_semtimedop(semid, tsops, nsops, NULL); 2245 } 2246 2247 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, 2248 unsigned int, nsops, const struct __kernel_timespec __user *, timeout) 2249 { 2250 return ksys_semtimedop(semid, tsops, nsops, timeout); 2251 } 2252 2253 #ifdef CONFIG_COMPAT_32BIT_TIME 2254 long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems, 2255 unsigned int nsops, 2256 const struct old_timespec32 __user *timeout) 2257 { 2258 if (timeout) { 2259 struct timespec64 ts; 2260 if (get_old_timespec32(&ts, timeout)) 2261 return -EFAULT; 2262 return do_semtimedop(semid, tsems, nsops, &ts); 2263 } 2264 return do_semtimedop(semid, tsems, nsops, NULL); 2265 } 2266 2267 SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems, 2268 unsigned int, nsops, 2269 const struct old_timespec32 __user *, timeout) 2270 { 2271 return compat_ksys_semtimedop(semid, tsems, nsops, timeout); 2272 } 2273 #endif 2274 2275 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, 2276 unsigned, nsops) 2277 { 2278 return do_semtimedop(semid, tsops, nsops, NULL); 2279 } 2280 2281 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between 2282 * parent and child tasks. 2283 */ 2284 2285 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) 2286 { 2287 struct sem_undo_list *undo_list; 2288 int error; 2289 2290 if (clone_flags & CLONE_SYSVSEM) { 2291 error = get_undo_list(&undo_list); 2292 if (error) 2293 return error; 2294 refcount_inc(&undo_list->refcnt); 2295 tsk->sysvsem.undo_list = undo_list; 2296 } else 2297 tsk->sysvsem.undo_list = NULL; 2298 2299 return 0; 2300 } 2301 2302 /* 2303 * add semadj values to semaphores, free undo structures. 2304 * undo structures are not freed when semaphore arrays are destroyed 2305 * so some of them may be out of date. 2306 * IMPLEMENTATION NOTE: There is some confusion over whether the 2307 * set of adjustments that needs to be done should be done in an atomic 2308 * manner or not. That is, if we are attempting to decrement the semval 2309 * should we queue up and wait until we can do so legally? 2310 * The original implementation attempted to do this (queue and wait). 2311 * The current implementation does not do so. The POSIX standard 2312 * and SVID should be consulted to determine what behavior is mandated. 2313 */ 2314 void exit_sem(struct task_struct *tsk) 2315 { 2316 struct sem_undo_list *ulp; 2317 2318 ulp = tsk->sysvsem.undo_list; 2319 if (!ulp) 2320 return; 2321 tsk->sysvsem.undo_list = NULL; 2322 2323 if (!refcount_dec_and_test(&ulp->refcnt)) 2324 return; 2325 2326 for (;;) { 2327 struct sem_array *sma; 2328 struct sem_undo *un; 2329 int semid, i; 2330 DEFINE_WAKE_Q(wake_q); 2331 2332 cond_resched(); 2333 2334 rcu_read_lock(); 2335 un = list_entry_rcu(ulp->list_proc.next, 2336 struct sem_undo, list_proc); 2337 if (&un->list_proc == &ulp->list_proc) { 2338 /* 2339 * We must wait for freeary() before freeing this ulp, 2340 * in case we raced with last sem_undo. There is a small 2341 * possibility where we exit while freeary() didn't 2342 * finish unlocking sem_undo_list. 2343 */ 2344 spin_lock(&ulp->lock); 2345 spin_unlock(&ulp->lock); 2346 rcu_read_unlock(); 2347 break; 2348 } 2349 spin_lock(&ulp->lock); 2350 semid = un->semid; 2351 spin_unlock(&ulp->lock); 2352 2353 /* exit_sem raced with IPC_RMID, nothing to do */ 2354 if (semid == -1) { 2355 rcu_read_unlock(); 2356 continue; 2357 } 2358 2359 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid); 2360 /* exit_sem raced with IPC_RMID, nothing to do */ 2361 if (IS_ERR(sma)) { 2362 rcu_read_unlock(); 2363 continue; 2364 } 2365 2366 sem_lock(sma, NULL, -1); 2367 /* exit_sem raced with IPC_RMID, nothing to do */ 2368 if (!ipc_valid_object(&sma->sem_perm)) { 2369 sem_unlock(sma, -1); 2370 rcu_read_unlock(); 2371 continue; 2372 } 2373 un = __lookup_undo(ulp, semid); 2374 if (un == NULL) { 2375 /* exit_sem raced with IPC_RMID+semget() that created 2376 * exactly the same semid. Nothing to do. 2377 */ 2378 sem_unlock(sma, -1); 2379 rcu_read_unlock(); 2380 continue; 2381 } 2382 2383 /* remove un from the linked lists */ 2384 ipc_assert_locked_object(&sma->sem_perm); 2385 list_del(&un->list_id); 2386 2387 spin_lock(&ulp->lock); 2388 list_del_rcu(&un->list_proc); 2389 spin_unlock(&ulp->lock); 2390 2391 /* perform adjustments registered in un */ 2392 for (i = 0; i < sma->sem_nsems; i++) { 2393 struct sem *semaphore = &sma->sems[i]; 2394 if (un->semadj[i]) { 2395 semaphore->semval += un->semadj[i]; 2396 /* 2397 * Range checks of the new semaphore value, 2398 * not defined by sus: 2399 * - Some unices ignore the undo entirely 2400 * (e.g. HP UX 11i 11.22, Tru64 V5.1) 2401 * - some cap the value (e.g. FreeBSD caps 2402 * at 0, but doesn't enforce SEMVMX) 2403 * 2404 * Linux caps the semaphore value, both at 0 2405 * and at SEMVMX. 2406 * 2407 * Manfred <manfred@colorfullife.com> 2408 */ 2409 if (semaphore->semval < 0) 2410 semaphore->semval = 0; 2411 if (semaphore->semval > SEMVMX) 2412 semaphore->semval = SEMVMX; 2413 ipc_update_pid(&semaphore->sempid, task_tgid(current)); 2414 } 2415 } 2416 /* maybe some queued-up processes were waiting for this */ 2417 do_smart_update(sma, NULL, 0, 1, &wake_q); 2418 sem_unlock(sma, -1); 2419 rcu_read_unlock(); 2420 wake_up_q(&wake_q); 2421 2422 kfree_rcu(un, rcu); 2423 } 2424 kfree(ulp); 2425 } 2426 2427 #ifdef CONFIG_PROC_FS 2428 static int sysvipc_sem_proc_show(struct seq_file *s, void *it) 2429 { 2430 struct user_namespace *user_ns = seq_user_ns(s); 2431 struct kern_ipc_perm *ipcp = it; 2432 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); 2433 time64_t sem_otime; 2434 2435 /* 2436 * The proc interface isn't aware of sem_lock(), it calls 2437 * ipc_lock_object() directly (in sysvipc_find_ipc). 2438 * In order to stay compatible with sem_lock(), we must 2439 * enter / leave complex_mode. 2440 */ 2441 complexmode_enter(sma); 2442 2443 sem_otime = get_semotime(sma); 2444 2445 seq_printf(s, 2446 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n", 2447 sma->sem_perm.key, 2448 sma->sem_perm.id, 2449 sma->sem_perm.mode, 2450 sma->sem_nsems, 2451 from_kuid_munged(user_ns, sma->sem_perm.uid), 2452 from_kgid_munged(user_ns, sma->sem_perm.gid), 2453 from_kuid_munged(user_ns, sma->sem_perm.cuid), 2454 from_kgid_munged(user_ns, sma->sem_perm.cgid), 2455 sem_otime, 2456 sma->sem_ctime); 2457 2458 complexmode_tryleave(sma); 2459 2460 return 0; 2461 } 2462 #endif 2463