1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/ipc/sem.c
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 *
7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 *
9 * SMP-threaded, sysctl's added
10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11 * Enforced range limit on SEM_UNDO
12 * (c) 2001 Red Hat Inc
13 * Lockless wakeup
14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16 * Further wakeup optimizations, documentation
17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
18 *
19 * support for audit of ipc object properties and permission changes
20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
21 *
22 * namespaces support
23 * OpenVZ, SWsoft Inc.
24 * Pavel Emelianov <xemul@openvz.org>
25 *
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
28 *
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
31 * protection)
32 * - multiple semaphore operations that alter the same semaphore in
33 * one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35 * SETALL calls.
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtime by writing
40 * to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
42 *
43 * Internals:
44 * - scalability:
45 * - all global variables are read-mostly.
46 * - semop() calls and semctl(RMID) are synchronized by RCU.
47 * - most operations do write operations (actually: spin_lock calls) to
48 * the per-semaphore array structure.
49 * Thus: Perfect SMP scaling between independent semaphore arrays.
50 * If multiple semaphores in one array are used, then cache line
51 * trashing on the semaphore array spinlock will limit the scaling.
52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
53 * - the task that performs a successful semop() scans the list of all
54 * sleeping tasks and completes any pending operations that can be fulfilled.
55 * Semaphores are actively given to waiting tasks (necessary for FIFO).
56 * (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
58 * dropping all locks. (see wake_up_sem_queue_prepare())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - UNDO values are stored in an array (one per process and per
64 * semaphore array, lazily allocated). For backwards compatibility, multiple
65 * modes for the UNDO variables are supported (per process, per thread)
66 * (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 * and per-semaphore list (stored in the array). This allows to achieve FIFO
69 * ordering without always scanning all pending operations.
70 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
71 */
72
73 #include <linux/compat.h>
74 #include <linux/slab.h>
75 #include <linux/spinlock.h>
76 #include <linux/init.h>
77 #include <linux/proc_fs.h>
78 #include <linux/time.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/audit.h>
82 #include <linux/capability.h>
83 #include <linux/seq_file.h>
84 #include <linux/rwsem.h>
85 #include <linux/nsproxy.h>
86 #include <linux/ipc_namespace.h>
87 #include <linux/sched/wake_q.h>
88 #include <linux/nospec.h>
89 #include <linux/rhashtable.h>
90
91 #include <linux/uaccess.h>
92 #include "util.h"
93
94 /* One semaphore structure for each semaphore in the system. */
95 struct sem {
96 int semval; /* current value */
97 /*
98 * PID of the process that last modified the semaphore. For
99 * Linux, specifically these are:
100 * - semop
101 * - semctl, via SETVAL and SETALL.
102 * - at task exit when performing undo adjustments (see exit_sem).
103 */
104 struct pid *sempid;
105 spinlock_t lock; /* spinlock for fine-grained semtimedop */
106 struct list_head pending_alter; /* pending single-sop operations */
107 /* that alter the semaphore */
108 struct list_head pending_const; /* pending single-sop operations */
109 /* that do not alter the semaphore*/
110 time64_t sem_otime; /* candidate for sem_otime */
111 } ____cacheline_aligned_in_smp;
112
113 /* One sem_array data structure for each set of semaphores in the system. */
114 struct sem_array {
115 struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */
116 time64_t sem_ctime; /* create/last semctl() time */
117 struct list_head pending_alter; /* pending operations */
118 /* that alter the array */
119 struct list_head pending_const; /* pending complex operations */
120 /* that do not alter semvals */
121 struct list_head list_id; /* undo requests on this array */
122 int sem_nsems; /* no. of semaphores in array */
123 int complex_count; /* pending complex operations */
124 unsigned int use_global_lock;/* >0: global lock required */
125
126 struct sem sems[];
127 } __randomize_layout;
128
129 /* One queue for each sleeping process in the system. */
130 struct sem_queue {
131 struct list_head list; /* queue of pending operations */
132 struct task_struct *sleeper; /* this process */
133 struct sem_undo *undo; /* undo structure */
134 struct pid *pid; /* process id of requesting process */
135 int status; /* completion status of operation */
136 struct sembuf *sops; /* array of pending operations */
137 struct sembuf *blocking; /* the operation that blocked */
138 int nsops; /* number of operations */
139 bool alter; /* does *sops alter the array? */
140 bool dupsop; /* sops on more than one sem_num */
141 };
142
143 /* Each task has a list of undo requests. They are executed automatically
144 * when the process exits.
145 */
146 struct sem_undo {
147 struct list_head list_proc; /* per-process list: *
148 * all undos from one process
149 * rcu protected */
150 struct rcu_head rcu; /* rcu struct for sem_undo */
151 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
152 struct list_head list_id; /* per semaphore array list:
153 * all undos for one array */
154 int semid; /* semaphore set identifier */
155 short semadj[]; /* array of adjustments */
156 /* one per semaphore */
157 };
158
159 /* sem_undo_list controls shared access to the list of sem_undo structures
160 * that may be shared among all a CLONE_SYSVSEM task group.
161 */
162 struct sem_undo_list {
163 refcount_t refcnt;
164 spinlock_t lock;
165 struct list_head list_proc;
166 };
167
168
169 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
170
171 static int newary(struct ipc_namespace *, struct ipc_params *);
172 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
173 #ifdef CONFIG_PROC_FS
174 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
175 #endif
176
177 #define SEMMSL_FAST 256 /* 512 bytes on stack */
178 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
179
180 /*
181 * Switching from the mode suitable for simple ops
182 * to the mode for complex ops is costly. Therefore:
183 * use some hysteresis
184 */
185 #define USE_GLOBAL_LOCK_HYSTERESIS 10
186
187 /*
188 * Locking:
189 * a) global sem_lock() for read/write
190 * sem_undo.id_next,
191 * sem_array.complex_count,
192 * sem_array.pending{_alter,_const},
193 * sem_array.sem_undo
194 *
195 * b) global or semaphore sem_lock() for read/write:
196 * sem_array.sems[i].pending_{const,alter}:
197 *
198 * c) special:
199 * sem_undo_list.list_proc:
200 * * undo_list->lock for write
201 * * rcu for read
202 * use_global_lock:
203 * * global sem_lock() for write
204 * * either local or global sem_lock() for read.
205 *
206 * Memory ordering:
207 * Most ordering is enforced by using spin_lock() and spin_unlock().
208 *
209 * Exceptions:
210 * 1) use_global_lock: (SEM_BARRIER_1)
211 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
212 * using smp_store_release(): Immediately after setting it to 0,
213 * a simple op can start.
214 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
215 * smp_load_acquire().
216 * Setting it from 0 to non-zero must be ordered with regards to
217 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
218 * is inside a spin_lock() and after a write from 0 to non-zero a
219 * spin_lock()+spin_unlock() is done.
220 * To prevent the compiler/cpu temporarily writing 0 to use_global_lock,
221 * READ_ONCE()/WRITE_ONCE() is used.
222 *
223 * 2) queue.status: (SEM_BARRIER_2)
224 * Initialization is done while holding sem_lock(), so no further barrier is
225 * required.
226 * Setting it to a result code is a RELEASE, this is ensured by both a
227 * smp_store_release() (for case a) and while holding sem_lock()
228 * (for case b).
229 * The ACQUIRE when reading the result code without holding sem_lock() is
230 * achieved by using READ_ONCE() + smp_acquire__after_ctrl_dep().
231 * (case a above).
232 * Reading the result code while holding sem_lock() needs no further barriers,
233 * the locks inside sem_lock() enforce ordering (case b above)
234 *
235 * 3) current->state:
236 * current->state is set to TASK_INTERRUPTIBLE while holding sem_lock().
237 * The wakeup is handled using the wake_q infrastructure. wake_q wakeups may
238 * happen immediately after calling wake_q_add. As wake_q_add_safe() is called
239 * when holding sem_lock(), no further barriers are required.
240 *
241 * See also ipc/mqueue.c for more details on the covered races.
242 */
243
244 #define sc_semmsl sem_ctls[0]
245 #define sc_semmns sem_ctls[1]
246 #define sc_semopm sem_ctls[2]
247 #define sc_semmni sem_ctls[3]
248
sem_init_ns(struct ipc_namespace * ns)249 void sem_init_ns(struct ipc_namespace *ns)
250 {
251 ns->sc_semmsl = SEMMSL;
252 ns->sc_semmns = SEMMNS;
253 ns->sc_semopm = SEMOPM;
254 ns->sc_semmni = SEMMNI;
255 ns->used_sems = 0;
256 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
257 }
258
259 #ifdef CONFIG_IPC_NS
sem_exit_ns(struct ipc_namespace * ns)260 void sem_exit_ns(struct ipc_namespace *ns)
261 {
262 free_ipcs(ns, &sem_ids(ns), freeary);
263 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
264 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
265 }
266 #endif
267
sem_init(void)268 void __init sem_init(void)
269 {
270 sem_init_ns(&init_ipc_ns);
271 ipc_init_proc_interface("sysvipc/sem",
272 " key semid perms nsems uid gid cuid cgid otime ctime\n",
273 IPC_SEM_IDS, sysvipc_sem_proc_show);
274 }
275
276 /**
277 * unmerge_queues - unmerge queues, if possible.
278 * @sma: semaphore array
279 *
280 * The function unmerges the wait queues if complex_count is 0.
281 * It must be called prior to dropping the global semaphore array lock.
282 */
unmerge_queues(struct sem_array * sma)283 static void unmerge_queues(struct sem_array *sma)
284 {
285 struct sem_queue *q, *tq;
286
287 /* complex operations still around? */
288 if (sma->complex_count)
289 return;
290 /*
291 * We will switch back to simple mode.
292 * Move all pending operation back into the per-semaphore
293 * queues.
294 */
295 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
296 struct sem *curr;
297 curr = &sma->sems[q->sops[0].sem_num];
298
299 list_add_tail(&q->list, &curr->pending_alter);
300 }
301 INIT_LIST_HEAD(&sma->pending_alter);
302 }
303
304 /**
305 * merge_queues - merge single semop queues into global queue
306 * @sma: semaphore array
307 *
308 * This function merges all per-semaphore queues into the global queue.
309 * It is necessary to achieve FIFO ordering for the pending single-sop
310 * operations when a multi-semop operation must sleep.
311 * Only the alter operations must be moved, the const operations can stay.
312 */
merge_queues(struct sem_array * sma)313 static void merge_queues(struct sem_array *sma)
314 {
315 int i;
316 for (i = 0; i < sma->sem_nsems; i++) {
317 struct sem *sem = &sma->sems[i];
318
319 list_splice_init(&sem->pending_alter, &sma->pending_alter);
320 }
321 }
322
sem_rcu_free(struct rcu_head * head)323 static void sem_rcu_free(struct rcu_head *head)
324 {
325 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
326 struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
327
328 security_sem_free(&sma->sem_perm);
329 kvfree(sma);
330 }
331
332 /*
333 * Enter the mode suitable for non-simple operations:
334 * Caller must own sem_perm.lock.
335 */
complexmode_enter(struct sem_array * sma)336 static void complexmode_enter(struct sem_array *sma)
337 {
338 int i;
339 struct sem *sem;
340
341 if (sma->use_global_lock > 0) {
342 /*
343 * We are already in global lock mode.
344 * Nothing to do, just reset the
345 * counter until we return to simple mode.
346 */
347 WRITE_ONCE(sma->use_global_lock, USE_GLOBAL_LOCK_HYSTERESIS);
348 return;
349 }
350 WRITE_ONCE(sma->use_global_lock, USE_GLOBAL_LOCK_HYSTERESIS);
351
352 for (i = 0; i < sma->sem_nsems; i++) {
353 sem = &sma->sems[i];
354 spin_lock(&sem->lock);
355 spin_unlock(&sem->lock);
356 }
357 }
358
359 /*
360 * Try to leave the mode that disallows simple operations:
361 * Caller must own sem_perm.lock.
362 */
complexmode_tryleave(struct sem_array * sma)363 static void complexmode_tryleave(struct sem_array *sma)
364 {
365 if (sma->complex_count) {
366 /* Complex ops are sleeping.
367 * We must stay in complex mode
368 */
369 return;
370 }
371 if (sma->use_global_lock == 1) {
372
373 /* See SEM_BARRIER_1 for purpose/pairing */
374 smp_store_release(&sma->use_global_lock, 0);
375 } else {
376 WRITE_ONCE(sma->use_global_lock,
377 sma->use_global_lock-1);
378 }
379 }
380
381 #define SEM_GLOBAL_LOCK (-1)
382 /*
383 * If the request contains only one semaphore operation, and there are
384 * no complex transactions pending, lock only the semaphore involved.
385 * Otherwise, lock the entire semaphore array, since we either have
386 * multiple semaphores in our own semops, or we need to look at
387 * semaphores from other pending complex operations.
388 */
sem_lock(struct sem_array * sma,struct sembuf * sops,int nsops)389 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
390 int nsops)
391 {
392 struct sem *sem;
393 int idx;
394
395 if (nsops != 1) {
396 /* Complex operation - acquire a full lock */
397 ipc_lock_object(&sma->sem_perm);
398
399 /* Prevent parallel simple ops */
400 complexmode_enter(sma);
401 return SEM_GLOBAL_LOCK;
402 }
403
404 /*
405 * Only one semaphore affected - try to optimize locking.
406 * Optimized locking is possible if no complex operation
407 * is either enqueued or processed right now.
408 *
409 * Both facts are tracked by use_global_mode.
410 */
411 idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
412 sem = &sma->sems[idx];
413
414 /*
415 * Initial check for use_global_lock. Just an optimization,
416 * no locking, no memory barrier.
417 */
418 if (!READ_ONCE(sma->use_global_lock)) {
419 /*
420 * It appears that no complex operation is around.
421 * Acquire the per-semaphore lock.
422 */
423 spin_lock(&sem->lock);
424
425 /* see SEM_BARRIER_1 for purpose/pairing */
426 if (!smp_load_acquire(&sma->use_global_lock)) {
427 /* fast path successful! */
428 return sops->sem_num;
429 }
430 spin_unlock(&sem->lock);
431 }
432
433 /* slow path: acquire the full lock */
434 ipc_lock_object(&sma->sem_perm);
435
436 if (sma->use_global_lock == 0) {
437 /*
438 * The use_global_lock mode ended while we waited for
439 * sma->sem_perm.lock. Thus we must switch to locking
440 * with sem->lock.
441 * Unlike in the fast path, there is no need to recheck
442 * sma->use_global_lock after we have acquired sem->lock:
443 * We own sma->sem_perm.lock, thus use_global_lock cannot
444 * change.
445 */
446 spin_lock(&sem->lock);
447
448 ipc_unlock_object(&sma->sem_perm);
449 return sops->sem_num;
450 } else {
451 /*
452 * Not a false alarm, thus continue to use the global lock
453 * mode. No need for complexmode_enter(), this was done by
454 * the caller that has set use_global_mode to non-zero.
455 */
456 return SEM_GLOBAL_LOCK;
457 }
458 }
459
sem_unlock(struct sem_array * sma,int locknum)460 static inline void sem_unlock(struct sem_array *sma, int locknum)
461 {
462 if (locknum == SEM_GLOBAL_LOCK) {
463 unmerge_queues(sma);
464 complexmode_tryleave(sma);
465 ipc_unlock_object(&sma->sem_perm);
466 } else {
467 struct sem *sem = &sma->sems[locknum];
468 spin_unlock(&sem->lock);
469 }
470 }
471
472 /*
473 * sem_lock_(check_) routines are called in the paths where the rwsem
474 * is not held.
475 *
476 * The caller holds the RCU read lock.
477 */
sem_obtain_object(struct ipc_namespace * ns,int id)478 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
479 {
480 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
481
482 if (IS_ERR(ipcp))
483 return ERR_CAST(ipcp);
484
485 return container_of(ipcp, struct sem_array, sem_perm);
486 }
487
sem_obtain_object_check(struct ipc_namespace * ns,int id)488 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
489 int id)
490 {
491 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
492
493 if (IS_ERR(ipcp))
494 return ERR_CAST(ipcp);
495
496 return container_of(ipcp, struct sem_array, sem_perm);
497 }
498
sem_lock_and_putref(struct sem_array * sma)499 static inline void sem_lock_and_putref(struct sem_array *sma)
500 {
501 sem_lock(sma, NULL, -1);
502 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
503 }
504
sem_rmid(struct ipc_namespace * ns,struct sem_array * s)505 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
506 {
507 ipc_rmid(&sem_ids(ns), &s->sem_perm);
508 }
509
sem_alloc(size_t nsems)510 static struct sem_array *sem_alloc(size_t nsems)
511 {
512 struct sem_array *sma;
513
514 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
515 return NULL;
516
517 sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL_ACCOUNT);
518 if (unlikely(!sma))
519 return NULL;
520
521 return sma;
522 }
523
524 /**
525 * newary - Create a new semaphore set
526 * @ns: namespace
527 * @params: ptr to the structure that contains key, semflg and nsems
528 *
529 * Called with sem_ids.rwsem held (as a writer)
530 */
newary(struct ipc_namespace * ns,struct ipc_params * params)531 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
532 {
533 int retval;
534 struct sem_array *sma;
535 key_t key = params->key;
536 int nsems = params->u.nsems;
537 int semflg = params->flg;
538 int i;
539
540 if (!nsems)
541 return -EINVAL;
542 if (ns->used_sems + nsems > ns->sc_semmns)
543 return -ENOSPC;
544
545 sma = sem_alloc(nsems);
546 if (!sma)
547 return -ENOMEM;
548
549 sma->sem_perm.mode = (semflg & S_IRWXUGO);
550 sma->sem_perm.key = key;
551
552 sma->sem_perm.security = NULL;
553 retval = security_sem_alloc(&sma->sem_perm);
554 if (retval) {
555 kvfree(sma);
556 return retval;
557 }
558
559 for (i = 0; i < nsems; i++) {
560 INIT_LIST_HEAD(&sma->sems[i].pending_alter);
561 INIT_LIST_HEAD(&sma->sems[i].pending_const);
562 spin_lock_init(&sma->sems[i].lock);
563 }
564
565 sma->complex_count = 0;
566 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
567 INIT_LIST_HEAD(&sma->pending_alter);
568 INIT_LIST_HEAD(&sma->pending_const);
569 INIT_LIST_HEAD(&sma->list_id);
570 sma->sem_nsems = nsems;
571 sma->sem_ctime = ktime_get_real_seconds();
572
573 /* ipc_addid() locks sma upon success. */
574 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
575 if (retval < 0) {
576 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
577 return retval;
578 }
579 ns->used_sems += nsems;
580
581 sem_unlock(sma, -1);
582 rcu_read_unlock();
583
584 return sma->sem_perm.id;
585 }
586
587
588 /*
589 * Called with sem_ids.rwsem and ipcp locked.
590 */
sem_more_checks(struct kern_ipc_perm * ipcp,struct ipc_params * params)591 static int sem_more_checks(struct kern_ipc_perm *ipcp, struct ipc_params *params)
592 {
593 struct sem_array *sma;
594
595 sma = container_of(ipcp, struct sem_array, sem_perm);
596 if (params->u.nsems > sma->sem_nsems)
597 return -EINVAL;
598
599 return 0;
600 }
601
ksys_semget(key_t key,int nsems,int semflg)602 long ksys_semget(key_t key, int nsems, int semflg)
603 {
604 struct ipc_namespace *ns;
605 static const struct ipc_ops sem_ops = {
606 .getnew = newary,
607 .associate = security_sem_associate,
608 .more_checks = sem_more_checks,
609 };
610 struct ipc_params sem_params;
611
612 ns = current->nsproxy->ipc_ns;
613
614 if (nsems < 0 || nsems > ns->sc_semmsl)
615 return -EINVAL;
616
617 sem_params.key = key;
618 sem_params.flg = semflg;
619 sem_params.u.nsems = nsems;
620
621 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
622 }
623
SYSCALL_DEFINE3(semget,key_t,key,int,nsems,int,semflg)624 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
625 {
626 return ksys_semget(key, nsems, semflg);
627 }
628
629 /**
630 * perform_atomic_semop[_slow] - Attempt to perform semaphore
631 * operations on a given array.
632 * @sma: semaphore array
633 * @q: struct sem_queue that describes the operation
634 *
635 * Caller blocking are as follows, based the value
636 * indicated by the semaphore operation (sem_op):
637 *
638 * (1) >0 never blocks.
639 * (2) 0 (wait-for-zero operation): semval is non-zero.
640 * (3) <0 attempting to decrement semval to a value smaller than zero.
641 *
642 * Returns 0 if the operation was possible.
643 * Returns 1 if the operation is impossible, the caller must sleep.
644 * Returns <0 for error codes.
645 */
perform_atomic_semop_slow(struct sem_array * sma,struct sem_queue * q)646 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
647 {
648 int result, sem_op, nsops;
649 struct pid *pid;
650 struct sembuf *sop;
651 struct sem *curr;
652 struct sembuf *sops;
653 struct sem_undo *un;
654
655 sops = q->sops;
656 nsops = q->nsops;
657 un = q->undo;
658
659 for (sop = sops; sop < sops + nsops; sop++) {
660 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
661 curr = &sma->sems[idx];
662 sem_op = sop->sem_op;
663 result = curr->semval;
664
665 if (!sem_op && result)
666 goto would_block;
667
668 result += sem_op;
669 if (result < 0)
670 goto would_block;
671 if (result > SEMVMX)
672 goto out_of_range;
673
674 if (sop->sem_flg & SEM_UNDO) {
675 int undo = un->semadj[sop->sem_num] - sem_op;
676 /* Exceeding the undo range is an error. */
677 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
678 goto out_of_range;
679 un->semadj[sop->sem_num] = undo;
680 }
681
682 curr->semval = result;
683 }
684
685 sop--;
686 pid = q->pid;
687 while (sop >= sops) {
688 ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
689 sop--;
690 }
691
692 return 0;
693
694 out_of_range:
695 result = -ERANGE;
696 goto undo;
697
698 would_block:
699 q->blocking = sop;
700
701 if (sop->sem_flg & IPC_NOWAIT)
702 result = -EAGAIN;
703 else
704 result = 1;
705
706 undo:
707 sop--;
708 while (sop >= sops) {
709 sem_op = sop->sem_op;
710 sma->sems[sop->sem_num].semval -= sem_op;
711 if (sop->sem_flg & SEM_UNDO)
712 un->semadj[sop->sem_num] += sem_op;
713 sop--;
714 }
715
716 return result;
717 }
718
perform_atomic_semop(struct sem_array * sma,struct sem_queue * q)719 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
720 {
721 int result, sem_op, nsops;
722 struct sembuf *sop;
723 struct sem *curr;
724 struct sembuf *sops;
725 struct sem_undo *un;
726
727 sops = q->sops;
728 nsops = q->nsops;
729 un = q->undo;
730
731 if (unlikely(q->dupsop))
732 return perform_atomic_semop_slow(sma, q);
733
734 /*
735 * We scan the semaphore set twice, first to ensure that the entire
736 * operation can succeed, therefore avoiding any pointless writes
737 * to shared memory and having to undo such changes in order to block
738 * until the operations can go through.
739 */
740 for (sop = sops; sop < sops + nsops; sop++) {
741 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
742
743 curr = &sma->sems[idx];
744 sem_op = sop->sem_op;
745 result = curr->semval;
746
747 if (!sem_op && result)
748 goto would_block; /* wait-for-zero */
749
750 result += sem_op;
751 if (result < 0)
752 goto would_block;
753
754 if (result > SEMVMX)
755 return -ERANGE;
756
757 if (sop->sem_flg & SEM_UNDO) {
758 int undo = un->semadj[sop->sem_num] - sem_op;
759
760 /* Exceeding the undo range is an error. */
761 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
762 return -ERANGE;
763 }
764 }
765
766 for (sop = sops; sop < sops + nsops; sop++) {
767 curr = &sma->sems[sop->sem_num];
768 sem_op = sop->sem_op;
769
770 if (sop->sem_flg & SEM_UNDO) {
771 int undo = un->semadj[sop->sem_num] - sem_op;
772
773 un->semadj[sop->sem_num] = undo;
774 }
775 curr->semval += sem_op;
776 ipc_update_pid(&curr->sempid, q->pid);
777 }
778
779 return 0;
780
781 would_block:
782 q->blocking = sop;
783 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
784 }
785
wake_up_sem_queue_prepare(struct sem_queue * q,int error,struct wake_q_head * wake_q)786 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
787 struct wake_q_head *wake_q)
788 {
789 struct task_struct *sleeper;
790
791 sleeper = get_task_struct(q->sleeper);
792
793 /* see SEM_BARRIER_2 for purpose/pairing */
794 smp_store_release(&q->status, error);
795
796 wake_q_add_safe(wake_q, sleeper);
797 }
798
unlink_queue(struct sem_array * sma,struct sem_queue * q)799 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
800 {
801 list_del(&q->list);
802 if (q->nsops > 1)
803 sma->complex_count--;
804 }
805
806 /** check_restart(sma, q)
807 * @sma: semaphore array
808 * @q: the operation that just completed
809 *
810 * update_queue is O(N^2) when it restarts scanning the whole queue of
811 * waiting operations. Therefore this function checks if the restart is
812 * really necessary. It is called after a previously waiting operation
813 * modified the array.
814 * Note that wait-for-zero operations are handled without restart.
815 */
check_restart(struct sem_array * sma,struct sem_queue * q)816 static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
817 {
818 /* pending complex alter operations are too difficult to analyse */
819 if (!list_empty(&sma->pending_alter))
820 return 1;
821
822 /* we were a sleeping complex operation. Too difficult */
823 if (q->nsops > 1)
824 return 1;
825
826 /* It is impossible that someone waits for the new value:
827 * - complex operations always restart.
828 * - wait-for-zero are handled separately.
829 * - q is a previously sleeping simple operation that
830 * altered the array. It must be a decrement, because
831 * simple increments never sleep.
832 * - If there are older (higher priority) decrements
833 * in the queue, then they have observed the original
834 * semval value and couldn't proceed. The operation
835 * decremented to value - thus they won't proceed either.
836 */
837 return 0;
838 }
839
840 /**
841 * wake_const_ops - wake up non-alter tasks
842 * @sma: semaphore array.
843 * @semnum: semaphore that was modified.
844 * @wake_q: lockless wake-queue head.
845 *
846 * wake_const_ops must be called after a semaphore in a semaphore array
847 * was set to 0. If complex const operations are pending, wake_const_ops must
848 * be called with semnum = -1, as well as with the number of each modified
849 * semaphore.
850 * The tasks that must be woken up are added to @wake_q. The return code
851 * is stored in q->pid.
852 * The function returns 1 if at least one operation was completed successfully.
853 */
wake_const_ops(struct sem_array * sma,int semnum,struct wake_q_head * wake_q)854 static int wake_const_ops(struct sem_array *sma, int semnum,
855 struct wake_q_head *wake_q)
856 {
857 struct sem_queue *q, *tmp;
858 struct list_head *pending_list;
859 int semop_completed = 0;
860
861 if (semnum == -1)
862 pending_list = &sma->pending_const;
863 else
864 pending_list = &sma->sems[semnum].pending_const;
865
866 list_for_each_entry_safe(q, tmp, pending_list, list) {
867 int error = perform_atomic_semop(sma, q);
868
869 if (error > 0)
870 continue;
871 /* operation completed, remove from queue & wakeup */
872 unlink_queue(sma, q);
873
874 wake_up_sem_queue_prepare(q, error, wake_q);
875 if (error == 0)
876 semop_completed = 1;
877 }
878
879 return semop_completed;
880 }
881
882 /**
883 * do_smart_wakeup_zero - wakeup all wait for zero tasks
884 * @sma: semaphore array
885 * @sops: operations that were performed
886 * @nsops: number of operations
887 * @wake_q: lockless wake-queue head
888 *
889 * Checks all required queue for wait-for-zero operations, based
890 * on the actual changes that were performed on the semaphore array.
891 * The function returns 1 if at least one operation was completed successfully.
892 */
do_smart_wakeup_zero(struct sem_array * sma,struct sembuf * sops,int nsops,struct wake_q_head * wake_q)893 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
894 int nsops, struct wake_q_head *wake_q)
895 {
896 int i;
897 int semop_completed = 0;
898 int got_zero = 0;
899
900 /* first: the per-semaphore queues, if known */
901 if (sops) {
902 for (i = 0; i < nsops; i++) {
903 int num = sops[i].sem_num;
904
905 if (sma->sems[num].semval == 0) {
906 got_zero = 1;
907 semop_completed |= wake_const_ops(sma, num, wake_q);
908 }
909 }
910 } else {
911 /*
912 * No sops means modified semaphores not known.
913 * Assume all were changed.
914 */
915 for (i = 0; i < sma->sem_nsems; i++) {
916 if (sma->sems[i].semval == 0) {
917 got_zero = 1;
918 semop_completed |= wake_const_ops(sma, i, wake_q);
919 }
920 }
921 }
922 /*
923 * If one of the modified semaphores got 0,
924 * then check the global queue, too.
925 */
926 if (got_zero)
927 semop_completed |= wake_const_ops(sma, -1, wake_q);
928
929 return semop_completed;
930 }
931
932
933 /**
934 * update_queue - look for tasks that can be completed.
935 * @sma: semaphore array.
936 * @semnum: semaphore that was modified.
937 * @wake_q: lockless wake-queue head.
938 *
939 * update_queue must be called after a semaphore in a semaphore array
940 * was modified. If multiple semaphores were modified, update_queue must
941 * be called with semnum = -1, as well as with the number of each modified
942 * semaphore.
943 * The tasks that must be woken up are added to @wake_q. The return code
944 * is stored in q->pid.
945 * The function internally checks if const operations can now succeed.
946 *
947 * The function return 1 if at least one semop was completed successfully.
948 */
update_queue(struct sem_array * sma,int semnum,struct wake_q_head * wake_q)949 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
950 {
951 struct sem_queue *q, *tmp;
952 struct list_head *pending_list;
953 int semop_completed = 0;
954
955 if (semnum == -1)
956 pending_list = &sma->pending_alter;
957 else
958 pending_list = &sma->sems[semnum].pending_alter;
959
960 again:
961 list_for_each_entry_safe(q, tmp, pending_list, list) {
962 int error, restart;
963
964 /* If we are scanning the single sop, per-semaphore list of
965 * one semaphore and that semaphore is 0, then it is not
966 * necessary to scan further: simple increments
967 * that affect only one entry succeed immediately and cannot
968 * be in the per semaphore pending queue, and decrements
969 * cannot be successful if the value is already 0.
970 */
971 if (semnum != -1 && sma->sems[semnum].semval == 0)
972 break;
973
974 error = perform_atomic_semop(sma, q);
975
976 /* Does q->sleeper still need to sleep? */
977 if (error > 0)
978 continue;
979
980 unlink_queue(sma, q);
981
982 if (error) {
983 restart = 0;
984 } else {
985 semop_completed = 1;
986 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
987 restart = check_restart(sma, q);
988 }
989
990 wake_up_sem_queue_prepare(q, error, wake_q);
991 if (restart)
992 goto again;
993 }
994 return semop_completed;
995 }
996
997 /**
998 * set_semotime - set sem_otime
999 * @sma: semaphore array
1000 * @sops: operations that modified the array, may be NULL
1001 *
1002 * sem_otime is replicated to avoid cache line trashing.
1003 * This function sets one instance to the current time.
1004 */
set_semotime(struct sem_array * sma,struct sembuf * sops)1005 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
1006 {
1007 if (sops == NULL) {
1008 sma->sems[0].sem_otime = ktime_get_real_seconds();
1009 } else {
1010 sma->sems[sops[0].sem_num].sem_otime =
1011 ktime_get_real_seconds();
1012 }
1013 }
1014
1015 /**
1016 * do_smart_update - optimized update_queue
1017 * @sma: semaphore array
1018 * @sops: operations that were performed
1019 * @nsops: number of operations
1020 * @otime: force setting otime
1021 * @wake_q: lockless wake-queue head
1022 *
1023 * do_smart_update() does the required calls to update_queue and wakeup_zero,
1024 * based on the actual changes that were performed on the semaphore array.
1025 * Note that the function does not do the actual wake-up: the caller is
1026 * responsible for calling wake_up_q().
1027 * It is safe to perform this call after dropping all locks.
1028 */
do_smart_update(struct sem_array * sma,struct sembuf * sops,int nsops,int otime,struct wake_q_head * wake_q)1029 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
1030 int otime, struct wake_q_head *wake_q)
1031 {
1032 int i;
1033
1034 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1035
1036 if (!list_empty(&sma->pending_alter)) {
1037 /* semaphore array uses the global queue - just process it. */
1038 otime |= update_queue(sma, -1, wake_q);
1039 } else {
1040 if (!sops) {
1041 /*
1042 * No sops, thus the modified semaphores are not
1043 * known. Check all.
1044 */
1045 for (i = 0; i < sma->sem_nsems; i++)
1046 otime |= update_queue(sma, i, wake_q);
1047 } else {
1048 /*
1049 * Check the semaphores that were increased:
1050 * - No complex ops, thus all sleeping ops are
1051 * decrease.
1052 * - if we decreased the value, then any sleeping
1053 * semaphore ops won't be able to run: If the
1054 * previous value was too small, then the new
1055 * value will be too small, too.
1056 */
1057 for (i = 0; i < nsops; i++) {
1058 if (sops[i].sem_op > 0) {
1059 otime |= update_queue(sma,
1060 sops[i].sem_num, wake_q);
1061 }
1062 }
1063 }
1064 }
1065 if (otime)
1066 set_semotime(sma, sops);
1067 }
1068
1069 /*
1070 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1071 */
check_qop(struct sem_array * sma,int semnum,struct sem_queue * q,bool count_zero)1072 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1073 bool count_zero)
1074 {
1075 struct sembuf *sop = q->blocking;
1076
1077 /*
1078 * Linux always (since 0.99.10) reported a task as sleeping on all
1079 * semaphores. This violates SUS, therefore it was changed to the
1080 * standard compliant behavior.
1081 * Give the administrators a chance to notice that an application
1082 * might misbehave because it relies on the Linux behavior.
1083 */
1084 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1085 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1086 current->comm, task_pid_nr(current));
1087
1088 if (sop->sem_num != semnum)
1089 return 0;
1090
1091 if (count_zero && sop->sem_op == 0)
1092 return 1;
1093 if (!count_zero && sop->sem_op < 0)
1094 return 1;
1095
1096 return 0;
1097 }
1098
1099 /* The following counts are associated to each semaphore:
1100 * semncnt number of tasks waiting on semval being nonzero
1101 * semzcnt number of tasks waiting on semval being zero
1102 *
1103 * Per definition, a task waits only on the semaphore of the first semop
1104 * that cannot proceed, even if additional operation would block, too.
1105 */
count_semcnt(struct sem_array * sma,ushort semnum,bool count_zero)1106 static int count_semcnt(struct sem_array *sma, ushort semnum,
1107 bool count_zero)
1108 {
1109 struct list_head *l;
1110 struct sem_queue *q;
1111 int semcnt;
1112
1113 semcnt = 0;
1114 /* First: check the simple operations. They are easy to evaluate */
1115 if (count_zero)
1116 l = &sma->sems[semnum].pending_const;
1117 else
1118 l = &sma->sems[semnum].pending_alter;
1119
1120 list_for_each_entry(q, l, list) {
1121 /* all task on a per-semaphore list sleep on exactly
1122 * that semaphore
1123 */
1124 semcnt++;
1125 }
1126
1127 /* Then: check the complex operations. */
1128 list_for_each_entry(q, &sma->pending_alter, list) {
1129 semcnt += check_qop(sma, semnum, q, count_zero);
1130 }
1131 if (count_zero) {
1132 list_for_each_entry(q, &sma->pending_const, list) {
1133 semcnt += check_qop(sma, semnum, q, count_zero);
1134 }
1135 }
1136 return semcnt;
1137 }
1138
1139 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1140 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1141 * remains locked on exit.
1142 */
freeary(struct ipc_namespace * ns,struct kern_ipc_perm * ipcp)1143 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1144 {
1145 struct sem_undo *un, *tu;
1146 struct sem_queue *q, *tq;
1147 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1148 int i;
1149 DEFINE_WAKE_Q(wake_q);
1150
1151 /* Free the existing undo structures for this semaphore set. */
1152 ipc_assert_locked_object(&sma->sem_perm);
1153 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1154 list_del(&un->list_id);
1155 spin_lock(&un->ulp->lock);
1156 un->semid = -1;
1157 list_del_rcu(&un->list_proc);
1158 spin_unlock(&un->ulp->lock);
1159 kvfree_rcu(un, rcu);
1160 }
1161
1162 /* Wake up all pending processes and let them fail with EIDRM. */
1163 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1164 unlink_queue(sma, q);
1165 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1166 }
1167
1168 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1169 unlink_queue(sma, q);
1170 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1171 }
1172 for (i = 0; i < sma->sem_nsems; i++) {
1173 struct sem *sem = &sma->sems[i];
1174 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1175 unlink_queue(sma, q);
1176 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1177 }
1178 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1179 unlink_queue(sma, q);
1180 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1181 }
1182 ipc_update_pid(&sem->sempid, NULL);
1183 }
1184
1185 /* Remove the semaphore set from the IDR */
1186 sem_rmid(ns, sma);
1187 sem_unlock(sma, -1);
1188 rcu_read_unlock();
1189
1190 wake_up_q(&wake_q);
1191 ns->used_sems -= sma->sem_nsems;
1192 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1193 }
1194
copy_semid_to_user(void __user * buf,struct semid64_ds * in,int version)1195 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1196 {
1197 switch (version) {
1198 case IPC_64:
1199 return copy_to_user(buf, in, sizeof(*in));
1200 case IPC_OLD:
1201 {
1202 struct semid_ds out;
1203
1204 memset(&out, 0, sizeof(out));
1205
1206 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1207
1208 out.sem_otime = in->sem_otime;
1209 out.sem_ctime = in->sem_ctime;
1210 out.sem_nsems = in->sem_nsems;
1211
1212 return copy_to_user(buf, &out, sizeof(out));
1213 }
1214 default:
1215 return -EINVAL;
1216 }
1217 }
1218
get_semotime(struct sem_array * sma)1219 static time64_t get_semotime(struct sem_array *sma)
1220 {
1221 int i;
1222 time64_t res;
1223
1224 res = sma->sems[0].sem_otime;
1225 for (i = 1; i < sma->sem_nsems; i++) {
1226 time64_t to = sma->sems[i].sem_otime;
1227
1228 if (to > res)
1229 res = to;
1230 }
1231 return res;
1232 }
1233
semctl_stat(struct ipc_namespace * ns,int semid,int cmd,struct semid64_ds * semid64)1234 static int semctl_stat(struct ipc_namespace *ns, int semid,
1235 int cmd, struct semid64_ds *semid64)
1236 {
1237 struct sem_array *sma;
1238 time64_t semotime;
1239 int err;
1240
1241 memset(semid64, 0, sizeof(*semid64));
1242
1243 rcu_read_lock();
1244 if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
1245 sma = sem_obtain_object(ns, semid);
1246 if (IS_ERR(sma)) {
1247 err = PTR_ERR(sma);
1248 goto out_unlock;
1249 }
1250 } else { /* IPC_STAT */
1251 sma = sem_obtain_object_check(ns, semid);
1252 if (IS_ERR(sma)) {
1253 err = PTR_ERR(sma);
1254 goto out_unlock;
1255 }
1256 }
1257
1258 /* see comment for SHM_STAT_ANY */
1259 if (cmd == SEM_STAT_ANY)
1260 audit_ipc_obj(&sma->sem_perm);
1261 else {
1262 err = -EACCES;
1263 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1264 goto out_unlock;
1265 }
1266
1267 err = security_sem_semctl(&sma->sem_perm, cmd);
1268 if (err)
1269 goto out_unlock;
1270
1271 ipc_lock_object(&sma->sem_perm);
1272
1273 if (!ipc_valid_object(&sma->sem_perm)) {
1274 ipc_unlock_object(&sma->sem_perm);
1275 err = -EIDRM;
1276 goto out_unlock;
1277 }
1278
1279 kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1280 semotime = get_semotime(sma);
1281 semid64->sem_otime = semotime;
1282 semid64->sem_ctime = sma->sem_ctime;
1283 #ifndef CONFIG_64BIT
1284 semid64->sem_otime_high = semotime >> 32;
1285 semid64->sem_ctime_high = sma->sem_ctime >> 32;
1286 #endif
1287 semid64->sem_nsems = sma->sem_nsems;
1288
1289 if (cmd == IPC_STAT) {
1290 /*
1291 * As defined in SUS:
1292 * Return 0 on success
1293 */
1294 err = 0;
1295 } else {
1296 /*
1297 * SEM_STAT and SEM_STAT_ANY (both Linux specific)
1298 * Return the full id, including the sequence number
1299 */
1300 err = sma->sem_perm.id;
1301 }
1302 ipc_unlock_object(&sma->sem_perm);
1303 out_unlock:
1304 rcu_read_unlock();
1305 return err;
1306 }
1307
semctl_info(struct ipc_namespace * ns,int semid,int cmd,void __user * p)1308 static int semctl_info(struct ipc_namespace *ns, int semid,
1309 int cmd, void __user *p)
1310 {
1311 struct seminfo seminfo;
1312 int max_idx;
1313 int err;
1314
1315 err = security_sem_semctl(NULL, cmd);
1316 if (err)
1317 return err;
1318
1319 memset(&seminfo, 0, sizeof(seminfo));
1320 seminfo.semmni = ns->sc_semmni;
1321 seminfo.semmns = ns->sc_semmns;
1322 seminfo.semmsl = ns->sc_semmsl;
1323 seminfo.semopm = ns->sc_semopm;
1324 seminfo.semvmx = SEMVMX;
1325 seminfo.semmnu = SEMMNU;
1326 seminfo.semmap = SEMMAP;
1327 seminfo.semume = SEMUME;
1328 down_read(&sem_ids(ns).rwsem);
1329 if (cmd == SEM_INFO) {
1330 seminfo.semusz = sem_ids(ns).in_use;
1331 seminfo.semaem = ns->used_sems;
1332 } else {
1333 seminfo.semusz = SEMUSZ;
1334 seminfo.semaem = SEMAEM;
1335 }
1336 max_idx = ipc_get_maxidx(&sem_ids(ns));
1337 up_read(&sem_ids(ns).rwsem);
1338 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1339 return -EFAULT;
1340 return (max_idx < 0) ? 0 : max_idx;
1341 }
1342
semctl_setval(struct ipc_namespace * ns,int semid,int semnum,int val)1343 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1344 int val)
1345 {
1346 struct sem_undo *un;
1347 struct sem_array *sma;
1348 struct sem *curr;
1349 int err;
1350 DEFINE_WAKE_Q(wake_q);
1351
1352 if (val > SEMVMX || val < 0)
1353 return -ERANGE;
1354
1355 rcu_read_lock();
1356 sma = sem_obtain_object_check(ns, semid);
1357 if (IS_ERR(sma)) {
1358 rcu_read_unlock();
1359 return PTR_ERR(sma);
1360 }
1361
1362 if (semnum < 0 || semnum >= sma->sem_nsems) {
1363 rcu_read_unlock();
1364 return -EINVAL;
1365 }
1366
1367
1368 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1369 rcu_read_unlock();
1370 return -EACCES;
1371 }
1372
1373 err = security_sem_semctl(&sma->sem_perm, SETVAL);
1374 if (err) {
1375 rcu_read_unlock();
1376 return -EACCES;
1377 }
1378
1379 sem_lock(sma, NULL, -1);
1380
1381 if (!ipc_valid_object(&sma->sem_perm)) {
1382 sem_unlock(sma, -1);
1383 rcu_read_unlock();
1384 return -EIDRM;
1385 }
1386
1387 semnum = array_index_nospec(semnum, sma->sem_nsems);
1388 curr = &sma->sems[semnum];
1389
1390 ipc_assert_locked_object(&sma->sem_perm);
1391 list_for_each_entry(un, &sma->list_id, list_id)
1392 un->semadj[semnum] = 0;
1393
1394 curr->semval = val;
1395 ipc_update_pid(&curr->sempid, task_tgid(current));
1396 sma->sem_ctime = ktime_get_real_seconds();
1397 /* maybe some queued-up processes were waiting for this */
1398 do_smart_update(sma, NULL, 0, 0, &wake_q);
1399 sem_unlock(sma, -1);
1400 rcu_read_unlock();
1401 wake_up_q(&wake_q);
1402 return 0;
1403 }
1404
semctl_main(struct ipc_namespace * ns,int semid,int semnum,int cmd,void __user * p)1405 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1406 int cmd, void __user *p)
1407 {
1408 struct sem_array *sma;
1409 struct sem *curr;
1410 int err, nsems;
1411 ushort fast_sem_io[SEMMSL_FAST];
1412 ushort *sem_io = fast_sem_io;
1413 DEFINE_WAKE_Q(wake_q);
1414
1415 rcu_read_lock();
1416 sma = sem_obtain_object_check(ns, semid);
1417 if (IS_ERR(sma)) {
1418 rcu_read_unlock();
1419 return PTR_ERR(sma);
1420 }
1421
1422 nsems = sma->sem_nsems;
1423
1424 err = -EACCES;
1425 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1426 goto out_rcu_wakeup;
1427
1428 err = security_sem_semctl(&sma->sem_perm, cmd);
1429 if (err)
1430 goto out_rcu_wakeup;
1431
1432 switch (cmd) {
1433 case GETALL:
1434 {
1435 ushort __user *array = p;
1436 int i;
1437
1438 sem_lock(sma, NULL, -1);
1439 if (!ipc_valid_object(&sma->sem_perm)) {
1440 err = -EIDRM;
1441 goto out_unlock;
1442 }
1443 if (nsems > SEMMSL_FAST) {
1444 if (!ipc_rcu_getref(&sma->sem_perm)) {
1445 err = -EIDRM;
1446 goto out_unlock;
1447 }
1448 sem_unlock(sma, -1);
1449 rcu_read_unlock();
1450 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1451 GFP_KERNEL);
1452 if (sem_io == NULL) {
1453 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1454 return -ENOMEM;
1455 }
1456
1457 rcu_read_lock();
1458 sem_lock_and_putref(sma);
1459 if (!ipc_valid_object(&sma->sem_perm)) {
1460 err = -EIDRM;
1461 goto out_unlock;
1462 }
1463 }
1464 for (i = 0; i < sma->sem_nsems; i++)
1465 sem_io[i] = sma->sems[i].semval;
1466 sem_unlock(sma, -1);
1467 rcu_read_unlock();
1468 err = 0;
1469 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1470 err = -EFAULT;
1471 goto out_free;
1472 }
1473 case SETALL:
1474 {
1475 int i;
1476 struct sem_undo *un;
1477
1478 if (!ipc_rcu_getref(&sma->sem_perm)) {
1479 err = -EIDRM;
1480 goto out_rcu_wakeup;
1481 }
1482 rcu_read_unlock();
1483
1484 if (nsems > SEMMSL_FAST) {
1485 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1486 GFP_KERNEL);
1487 if (sem_io == NULL) {
1488 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1489 return -ENOMEM;
1490 }
1491 }
1492
1493 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1494 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1495 err = -EFAULT;
1496 goto out_free;
1497 }
1498
1499 for (i = 0; i < nsems; i++) {
1500 if (sem_io[i] > SEMVMX) {
1501 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1502 err = -ERANGE;
1503 goto out_free;
1504 }
1505 }
1506 rcu_read_lock();
1507 sem_lock_and_putref(sma);
1508 if (!ipc_valid_object(&sma->sem_perm)) {
1509 err = -EIDRM;
1510 goto out_unlock;
1511 }
1512
1513 for (i = 0; i < nsems; i++) {
1514 sma->sems[i].semval = sem_io[i];
1515 ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
1516 }
1517
1518 ipc_assert_locked_object(&sma->sem_perm);
1519 list_for_each_entry(un, &sma->list_id, list_id) {
1520 for (i = 0; i < nsems; i++)
1521 un->semadj[i] = 0;
1522 }
1523 sma->sem_ctime = ktime_get_real_seconds();
1524 /* maybe some queued-up processes were waiting for this */
1525 do_smart_update(sma, NULL, 0, 0, &wake_q);
1526 err = 0;
1527 goto out_unlock;
1528 }
1529 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1530 }
1531 err = -EINVAL;
1532 if (semnum < 0 || semnum >= nsems)
1533 goto out_rcu_wakeup;
1534
1535 sem_lock(sma, NULL, -1);
1536 if (!ipc_valid_object(&sma->sem_perm)) {
1537 err = -EIDRM;
1538 goto out_unlock;
1539 }
1540
1541 semnum = array_index_nospec(semnum, nsems);
1542 curr = &sma->sems[semnum];
1543
1544 switch (cmd) {
1545 case GETVAL:
1546 err = curr->semval;
1547 goto out_unlock;
1548 case GETPID:
1549 err = pid_vnr(curr->sempid);
1550 goto out_unlock;
1551 case GETNCNT:
1552 err = count_semcnt(sma, semnum, 0);
1553 goto out_unlock;
1554 case GETZCNT:
1555 err = count_semcnt(sma, semnum, 1);
1556 goto out_unlock;
1557 }
1558
1559 out_unlock:
1560 sem_unlock(sma, -1);
1561 out_rcu_wakeup:
1562 rcu_read_unlock();
1563 wake_up_q(&wake_q);
1564 out_free:
1565 if (sem_io != fast_sem_io)
1566 kvfree(sem_io);
1567 return err;
1568 }
1569
1570 static inline unsigned long
copy_semid_from_user(struct semid64_ds * out,void __user * buf,int version)1571 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1572 {
1573 switch (version) {
1574 case IPC_64:
1575 if (copy_from_user(out, buf, sizeof(*out)))
1576 return -EFAULT;
1577 return 0;
1578 case IPC_OLD:
1579 {
1580 struct semid_ds tbuf_old;
1581
1582 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1583 return -EFAULT;
1584
1585 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1586 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1587 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1588
1589 return 0;
1590 }
1591 default:
1592 return -EINVAL;
1593 }
1594 }
1595
1596 /*
1597 * This function handles some semctl commands which require the rwsem
1598 * to be held in write mode.
1599 * NOTE: no locks must be held, the rwsem is taken inside this function.
1600 */
semctl_down(struct ipc_namespace * ns,int semid,int cmd,struct semid64_ds * semid64)1601 static int semctl_down(struct ipc_namespace *ns, int semid,
1602 int cmd, struct semid64_ds *semid64)
1603 {
1604 struct sem_array *sma;
1605 int err;
1606 struct kern_ipc_perm *ipcp;
1607
1608 down_write(&sem_ids(ns).rwsem);
1609 rcu_read_lock();
1610
1611 ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd,
1612 &semid64->sem_perm, 0);
1613 if (IS_ERR(ipcp)) {
1614 err = PTR_ERR(ipcp);
1615 goto out_unlock1;
1616 }
1617
1618 sma = container_of(ipcp, struct sem_array, sem_perm);
1619
1620 err = security_sem_semctl(&sma->sem_perm, cmd);
1621 if (err)
1622 goto out_unlock1;
1623
1624 switch (cmd) {
1625 case IPC_RMID:
1626 sem_lock(sma, NULL, -1);
1627 /* freeary unlocks the ipc object and rcu */
1628 freeary(ns, ipcp);
1629 goto out_up;
1630 case IPC_SET:
1631 sem_lock(sma, NULL, -1);
1632 err = ipc_update_perm(&semid64->sem_perm, ipcp);
1633 if (err)
1634 goto out_unlock0;
1635 sma->sem_ctime = ktime_get_real_seconds();
1636 break;
1637 default:
1638 err = -EINVAL;
1639 goto out_unlock1;
1640 }
1641
1642 out_unlock0:
1643 sem_unlock(sma, -1);
1644 out_unlock1:
1645 rcu_read_unlock();
1646 out_up:
1647 up_write(&sem_ids(ns).rwsem);
1648 return err;
1649 }
1650
ksys_semctl(int semid,int semnum,int cmd,unsigned long arg,int version)1651 static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version)
1652 {
1653 struct ipc_namespace *ns;
1654 void __user *p = (void __user *)arg;
1655 struct semid64_ds semid64;
1656 int err;
1657
1658 if (semid < 0)
1659 return -EINVAL;
1660
1661 ns = current->nsproxy->ipc_ns;
1662
1663 switch (cmd) {
1664 case IPC_INFO:
1665 case SEM_INFO:
1666 return semctl_info(ns, semid, cmd, p);
1667 case IPC_STAT:
1668 case SEM_STAT:
1669 case SEM_STAT_ANY:
1670 err = semctl_stat(ns, semid, cmd, &semid64);
1671 if (err < 0)
1672 return err;
1673 if (copy_semid_to_user(p, &semid64, version))
1674 err = -EFAULT;
1675 return err;
1676 case GETALL:
1677 case GETVAL:
1678 case GETPID:
1679 case GETNCNT:
1680 case GETZCNT:
1681 case SETALL:
1682 return semctl_main(ns, semid, semnum, cmd, p);
1683 case SETVAL: {
1684 int val;
1685 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1686 /* big-endian 64bit */
1687 val = arg >> 32;
1688 #else
1689 /* 32bit or little-endian 64bit */
1690 val = arg;
1691 #endif
1692 return semctl_setval(ns, semid, semnum, val);
1693 }
1694 case IPC_SET:
1695 if (copy_semid_from_user(&semid64, p, version))
1696 return -EFAULT;
1697 fallthrough;
1698 case IPC_RMID:
1699 return semctl_down(ns, semid, cmd, &semid64);
1700 default:
1701 return -EINVAL;
1702 }
1703 }
1704
SYSCALL_DEFINE4(semctl,int,semid,int,semnum,int,cmd,unsigned long,arg)1705 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1706 {
1707 return ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1708 }
1709
1710 #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION
ksys_old_semctl(int semid,int semnum,int cmd,unsigned long arg)1711 long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg)
1712 {
1713 int version = ipc_parse_version(&cmd);
1714
1715 return ksys_semctl(semid, semnum, cmd, arg, version);
1716 }
1717
SYSCALL_DEFINE4(old_semctl,int,semid,int,semnum,int,cmd,unsigned long,arg)1718 SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1719 {
1720 return ksys_old_semctl(semid, semnum, cmd, arg);
1721 }
1722 #endif
1723
1724 #ifdef CONFIG_COMPAT
1725
1726 struct compat_semid_ds {
1727 struct compat_ipc_perm sem_perm;
1728 old_time32_t sem_otime;
1729 old_time32_t sem_ctime;
1730 compat_uptr_t sem_base;
1731 compat_uptr_t sem_pending;
1732 compat_uptr_t sem_pending_last;
1733 compat_uptr_t undo;
1734 unsigned short sem_nsems;
1735 };
1736
copy_compat_semid_from_user(struct semid64_ds * out,void __user * buf,int version)1737 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1738 int version)
1739 {
1740 memset(out, 0, sizeof(*out));
1741 if (version == IPC_64) {
1742 struct compat_semid64_ds __user *p = buf;
1743 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1744 } else {
1745 struct compat_semid_ds __user *p = buf;
1746 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1747 }
1748 }
1749
copy_compat_semid_to_user(void __user * buf,struct semid64_ds * in,int version)1750 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1751 int version)
1752 {
1753 if (version == IPC_64) {
1754 struct compat_semid64_ds v;
1755 memset(&v, 0, sizeof(v));
1756 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1757 v.sem_otime = lower_32_bits(in->sem_otime);
1758 v.sem_otime_high = upper_32_bits(in->sem_otime);
1759 v.sem_ctime = lower_32_bits(in->sem_ctime);
1760 v.sem_ctime_high = upper_32_bits(in->sem_ctime);
1761 v.sem_nsems = in->sem_nsems;
1762 return copy_to_user(buf, &v, sizeof(v));
1763 } else {
1764 struct compat_semid_ds v;
1765 memset(&v, 0, sizeof(v));
1766 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1767 v.sem_otime = in->sem_otime;
1768 v.sem_ctime = in->sem_ctime;
1769 v.sem_nsems = in->sem_nsems;
1770 return copy_to_user(buf, &v, sizeof(v));
1771 }
1772 }
1773
compat_ksys_semctl(int semid,int semnum,int cmd,int arg,int version)1774 static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version)
1775 {
1776 void __user *p = compat_ptr(arg);
1777 struct ipc_namespace *ns;
1778 struct semid64_ds semid64;
1779 int err;
1780
1781 ns = current->nsproxy->ipc_ns;
1782
1783 if (semid < 0)
1784 return -EINVAL;
1785
1786 switch (cmd & (~IPC_64)) {
1787 case IPC_INFO:
1788 case SEM_INFO:
1789 return semctl_info(ns, semid, cmd, p);
1790 case IPC_STAT:
1791 case SEM_STAT:
1792 case SEM_STAT_ANY:
1793 err = semctl_stat(ns, semid, cmd, &semid64);
1794 if (err < 0)
1795 return err;
1796 if (copy_compat_semid_to_user(p, &semid64, version))
1797 err = -EFAULT;
1798 return err;
1799 case GETVAL:
1800 case GETPID:
1801 case GETNCNT:
1802 case GETZCNT:
1803 case GETALL:
1804 case SETALL:
1805 return semctl_main(ns, semid, semnum, cmd, p);
1806 case SETVAL:
1807 return semctl_setval(ns, semid, semnum, arg);
1808 case IPC_SET:
1809 if (copy_compat_semid_from_user(&semid64, p, version))
1810 return -EFAULT;
1811 fallthrough;
1812 case IPC_RMID:
1813 return semctl_down(ns, semid, cmd, &semid64);
1814 default:
1815 return -EINVAL;
1816 }
1817 }
1818
COMPAT_SYSCALL_DEFINE4(semctl,int,semid,int,semnum,int,cmd,int,arg)1819 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1820 {
1821 return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1822 }
1823
1824 #ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION
compat_ksys_old_semctl(int semid,int semnum,int cmd,int arg)1825 long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg)
1826 {
1827 int version = compat_ipc_parse_version(&cmd);
1828
1829 return compat_ksys_semctl(semid, semnum, cmd, arg, version);
1830 }
1831
COMPAT_SYSCALL_DEFINE4(old_semctl,int,semid,int,semnum,int,cmd,int,arg)1832 COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg)
1833 {
1834 return compat_ksys_old_semctl(semid, semnum, cmd, arg);
1835 }
1836 #endif
1837 #endif
1838
1839 /* If the task doesn't already have a undo_list, then allocate one
1840 * here. We guarantee there is only one thread using this undo list,
1841 * and current is THE ONE
1842 *
1843 * If this allocation and assignment succeeds, but later
1844 * portions of this code fail, there is no need to free the sem_undo_list.
1845 * Just let it stay associated with the task, and it'll be freed later
1846 * at exit time.
1847 *
1848 * This can block, so callers must hold no locks.
1849 */
get_undo_list(struct sem_undo_list ** undo_listp)1850 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1851 {
1852 struct sem_undo_list *undo_list;
1853
1854 undo_list = current->sysvsem.undo_list;
1855 if (!undo_list) {
1856 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL_ACCOUNT);
1857 if (undo_list == NULL)
1858 return -ENOMEM;
1859 spin_lock_init(&undo_list->lock);
1860 refcount_set(&undo_list->refcnt, 1);
1861 INIT_LIST_HEAD(&undo_list->list_proc);
1862
1863 current->sysvsem.undo_list = undo_list;
1864 }
1865 *undo_listp = undo_list;
1866 return 0;
1867 }
1868
__lookup_undo(struct sem_undo_list * ulp,int semid)1869 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1870 {
1871 struct sem_undo *un;
1872
1873 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc,
1874 spin_is_locked(&ulp->lock)) {
1875 if (un->semid == semid)
1876 return un;
1877 }
1878 return NULL;
1879 }
1880
lookup_undo(struct sem_undo_list * ulp,int semid)1881 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1882 {
1883 struct sem_undo *un;
1884
1885 assert_spin_locked(&ulp->lock);
1886
1887 un = __lookup_undo(ulp, semid);
1888 if (un) {
1889 list_del_rcu(&un->list_proc);
1890 list_add_rcu(&un->list_proc, &ulp->list_proc);
1891 }
1892 return un;
1893 }
1894
1895 /**
1896 * find_alloc_undo - lookup (and if not present create) undo array
1897 * @ns: namespace
1898 * @semid: semaphore array id
1899 *
1900 * The function looks up (and if not present creates) the undo structure.
1901 * The size of the undo structure depends on the size of the semaphore
1902 * array, thus the alloc path is not that straightforward.
1903 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1904 * performs a rcu_read_lock().
1905 */
find_alloc_undo(struct ipc_namespace * ns,int semid)1906 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1907 {
1908 struct sem_array *sma;
1909 struct sem_undo_list *ulp;
1910 struct sem_undo *un, *new;
1911 int nsems, error;
1912
1913 error = get_undo_list(&ulp);
1914 if (error)
1915 return ERR_PTR(error);
1916
1917 rcu_read_lock();
1918 spin_lock(&ulp->lock);
1919 un = lookup_undo(ulp, semid);
1920 spin_unlock(&ulp->lock);
1921 if (likely(un != NULL))
1922 goto out;
1923
1924 /* no undo structure around - allocate one. */
1925 /* step 1: figure out the size of the semaphore array */
1926 sma = sem_obtain_object_check(ns, semid);
1927 if (IS_ERR(sma)) {
1928 rcu_read_unlock();
1929 return ERR_CAST(sma);
1930 }
1931
1932 nsems = sma->sem_nsems;
1933 if (!ipc_rcu_getref(&sma->sem_perm)) {
1934 rcu_read_unlock();
1935 un = ERR_PTR(-EIDRM);
1936 goto out;
1937 }
1938 rcu_read_unlock();
1939
1940 /* step 2: allocate new undo structure */
1941 new = kvzalloc(struct_size(new, semadj, nsems), GFP_KERNEL_ACCOUNT);
1942 if (!new) {
1943 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1944 return ERR_PTR(-ENOMEM);
1945 }
1946
1947 /* step 3: Acquire the lock on semaphore array */
1948 rcu_read_lock();
1949 sem_lock_and_putref(sma);
1950 if (!ipc_valid_object(&sma->sem_perm)) {
1951 sem_unlock(sma, -1);
1952 rcu_read_unlock();
1953 kvfree(new);
1954 un = ERR_PTR(-EIDRM);
1955 goto out;
1956 }
1957 spin_lock(&ulp->lock);
1958
1959 /*
1960 * step 4: check for races: did someone else allocate the undo struct?
1961 */
1962 un = lookup_undo(ulp, semid);
1963 if (un) {
1964 spin_unlock(&ulp->lock);
1965 kvfree(new);
1966 goto success;
1967 }
1968 /* step 5: initialize & link new undo structure */
1969 new->ulp = ulp;
1970 new->semid = semid;
1971 assert_spin_locked(&ulp->lock);
1972 list_add_rcu(&new->list_proc, &ulp->list_proc);
1973 ipc_assert_locked_object(&sma->sem_perm);
1974 list_add(&new->list_id, &sma->list_id);
1975 un = new;
1976 spin_unlock(&ulp->lock);
1977 success:
1978 sem_unlock(sma, -1);
1979 out:
1980 return un;
1981 }
1982
__do_semtimedop(int semid,struct sembuf * sops,unsigned nsops,const struct timespec64 * timeout,struct ipc_namespace * ns)1983 long __do_semtimedop(int semid, struct sembuf *sops,
1984 unsigned nsops, const struct timespec64 *timeout,
1985 struct ipc_namespace *ns)
1986 {
1987 int error = -EINVAL;
1988 struct sem_array *sma;
1989 struct sembuf *sop;
1990 struct sem_undo *un;
1991 int max, locknum;
1992 bool undos = false, alter = false, dupsop = false;
1993 struct sem_queue queue;
1994 unsigned long dup = 0;
1995 ktime_t expires, *exp = NULL;
1996 bool timed_out = false;
1997
1998 if (nsops < 1 || semid < 0)
1999 return -EINVAL;
2000 if (nsops > ns->sc_semopm)
2001 return -E2BIG;
2002
2003 if (timeout) {
2004 if (!timespec64_valid(timeout))
2005 return -EINVAL;
2006 expires = ktime_add_safe(ktime_get(),
2007 timespec64_to_ktime(*timeout));
2008 exp = &expires;
2009 }
2010
2011
2012 max = 0;
2013 for (sop = sops; sop < sops + nsops; sop++) {
2014 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
2015
2016 if (sop->sem_num >= max)
2017 max = sop->sem_num;
2018 if (sop->sem_flg & SEM_UNDO)
2019 undos = true;
2020 if (dup & mask) {
2021 /*
2022 * There was a previous alter access that appears
2023 * to have accessed the same semaphore, thus use
2024 * the dupsop logic. "appears", because the detection
2025 * can only check % BITS_PER_LONG.
2026 */
2027 dupsop = true;
2028 }
2029 if (sop->sem_op != 0) {
2030 alter = true;
2031 dup |= mask;
2032 }
2033 }
2034
2035 if (undos) {
2036 /* On success, find_alloc_undo takes the rcu_read_lock */
2037 un = find_alloc_undo(ns, semid);
2038 if (IS_ERR(un)) {
2039 error = PTR_ERR(un);
2040 goto out;
2041 }
2042 } else {
2043 un = NULL;
2044 rcu_read_lock();
2045 }
2046
2047 sma = sem_obtain_object_check(ns, semid);
2048 if (IS_ERR(sma)) {
2049 rcu_read_unlock();
2050 error = PTR_ERR(sma);
2051 goto out;
2052 }
2053
2054 error = -EFBIG;
2055 if (max >= sma->sem_nsems) {
2056 rcu_read_unlock();
2057 goto out;
2058 }
2059
2060 error = -EACCES;
2061 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2062 rcu_read_unlock();
2063 goto out;
2064 }
2065
2066 error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
2067 if (error) {
2068 rcu_read_unlock();
2069 goto out;
2070 }
2071
2072 error = -EIDRM;
2073 locknum = sem_lock(sma, sops, nsops);
2074 /*
2075 * We eventually might perform the following check in a lockless
2076 * fashion, considering ipc_valid_object() locking constraints.
2077 * If nsops == 1 and there is no contention for sem_perm.lock, then
2078 * only a per-semaphore lock is held and it's OK to proceed with the
2079 * check below. More details on the fine grained locking scheme
2080 * entangled here and why it's RMID race safe on comments at sem_lock()
2081 */
2082 if (!ipc_valid_object(&sma->sem_perm))
2083 goto out_unlock;
2084 /*
2085 * semid identifiers are not unique - find_alloc_undo may have
2086 * allocated an undo structure, it was invalidated by an RMID
2087 * and now a new array with received the same id. Check and fail.
2088 * This case can be detected checking un->semid. The existence of
2089 * "un" itself is guaranteed by rcu.
2090 */
2091 if (un && un->semid == -1)
2092 goto out_unlock;
2093
2094 queue.sops = sops;
2095 queue.nsops = nsops;
2096 queue.undo = un;
2097 queue.pid = task_tgid(current);
2098 queue.alter = alter;
2099 queue.dupsop = dupsop;
2100
2101 error = perform_atomic_semop(sma, &queue);
2102 if (error == 0) { /* non-blocking successful path */
2103 DEFINE_WAKE_Q(wake_q);
2104
2105 /*
2106 * If the operation was successful, then do
2107 * the required updates.
2108 */
2109 if (alter)
2110 do_smart_update(sma, sops, nsops, 1, &wake_q);
2111 else
2112 set_semotime(sma, sops);
2113
2114 sem_unlock(sma, locknum);
2115 rcu_read_unlock();
2116 wake_up_q(&wake_q);
2117
2118 goto out;
2119 }
2120 if (error < 0) /* non-blocking error path */
2121 goto out_unlock;
2122
2123 /*
2124 * We need to sleep on this operation, so we put the current
2125 * task into the pending queue and go to sleep.
2126 */
2127 if (nsops == 1) {
2128 struct sem *curr;
2129 int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
2130 curr = &sma->sems[idx];
2131
2132 if (alter) {
2133 if (sma->complex_count) {
2134 list_add_tail(&queue.list,
2135 &sma->pending_alter);
2136 } else {
2137
2138 list_add_tail(&queue.list,
2139 &curr->pending_alter);
2140 }
2141 } else {
2142 list_add_tail(&queue.list, &curr->pending_const);
2143 }
2144 } else {
2145 if (!sma->complex_count)
2146 merge_queues(sma);
2147
2148 if (alter)
2149 list_add_tail(&queue.list, &sma->pending_alter);
2150 else
2151 list_add_tail(&queue.list, &sma->pending_const);
2152
2153 sma->complex_count++;
2154 }
2155
2156 do {
2157 /* memory ordering ensured by the lock in sem_lock() */
2158 WRITE_ONCE(queue.status, -EINTR);
2159 queue.sleeper = current;
2160
2161 /* memory ordering is ensured by the lock in sem_lock() */
2162 __set_current_state(TASK_INTERRUPTIBLE);
2163 sem_unlock(sma, locknum);
2164 rcu_read_unlock();
2165
2166 timed_out = !schedule_hrtimeout_range(exp,
2167 current->timer_slack_ns, HRTIMER_MODE_ABS);
2168
2169 /*
2170 * fastpath: the semop has completed, either successfully or
2171 * not, from the syscall pov, is quite irrelevant to us at this
2172 * point; we're done.
2173 *
2174 * We _do_ care, nonetheless, about being awoken by a signal or
2175 * spuriously. The queue.status is checked again in the
2176 * slowpath (aka after taking sem_lock), such that we can detect
2177 * scenarios where we were awakened externally, during the
2178 * window between wake_q_add() and wake_up_q().
2179 */
2180 rcu_read_lock();
2181 error = READ_ONCE(queue.status);
2182 if (error != -EINTR) {
2183 /* see SEM_BARRIER_2 for purpose/pairing */
2184 smp_acquire__after_ctrl_dep();
2185 rcu_read_unlock();
2186 goto out;
2187 }
2188
2189 locknum = sem_lock(sma, sops, nsops);
2190
2191 if (!ipc_valid_object(&sma->sem_perm))
2192 goto out_unlock;
2193
2194 /*
2195 * No necessity for any barrier: We are protect by sem_lock()
2196 */
2197 error = READ_ONCE(queue.status);
2198
2199 /*
2200 * If queue.status != -EINTR we are woken up by another process.
2201 * Leave without unlink_queue(), but with sem_unlock().
2202 */
2203 if (error != -EINTR)
2204 goto out_unlock;
2205
2206 /*
2207 * If an interrupt occurred we have to clean up the queue.
2208 */
2209 if (timed_out)
2210 error = -EAGAIN;
2211 } while (error == -EINTR && !signal_pending(current)); /* spurious */
2212
2213 unlink_queue(sma, &queue);
2214
2215 out_unlock:
2216 sem_unlock(sma, locknum);
2217 rcu_read_unlock();
2218 out:
2219 return error;
2220 }
2221
do_semtimedop(int semid,struct sembuf __user * tsops,unsigned nsops,const struct timespec64 * timeout)2222 static long do_semtimedop(int semid, struct sembuf __user *tsops,
2223 unsigned nsops, const struct timespec64 *timeout)
2224 {
2225 struct sembuf fast_sops[SEMOPM_FAST];
2226 struct sembuf *sops = fast_sops;
2227 struct ipc_namespace *ns;
2228 int ret;
2229
2230 ns = current->nsproxy->ipc_ns;
2231 if (nsops > ns->sc_semopm)
2232 return -E2BIG;
2233 if (nsops < 1)
2234 return -EINVAL;
2235
2236 if (nsops > SEMOPM_FAST) {
2237 sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL);
2238 if (sops == NULL)
2239 return -ENOMEM;
2240 }
2241
2242 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
2243 ret = -EFAULT;
2244 goto out_free;
2245 }
2246
2247 ret = __do_semtimedop(semid, sops, nsops, timeout, ns);
2248
2249 out_free:
2250 if (sops != fast_sops)
2251 kvfree(sops);
2252
2253 return ret;
2254 }
2255
ksys_semtimedop(int semid,struct sembuf __user * tsops,unsigned int nsops,const struct __kernel_timespec __user * timeout)2256 long ksys_semtimedop(int semid, struct sembuf __user *tsops,
2257 unsigned int nsops, const struct __kernel_timespec __user *timeout)
2258 {
2259 if (timeout) {
2260 struct timespec64 ts;
2261 if (get_timespec64(&ts, timeout))
2262 return -EFAULT;
2263 return do_semtimedop(semid, tsops, nsops, &ts);
2264 }
2265 return do_semtimedop(semid, tsops, nsops, NULL);
2266 }
2267
SYSCALL_DEFINE4(semtimedop,int,semid,struct sembuf __user *,tsops,unsigned int,nsops,const struct __kernel_timespec __user *,timeout)2268 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2269 unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
2270 {
2271 return ksys_semtimedop(semid, tsops, nsops, timeout);
2272 }
2273
2274 #ifdef CONFIG_COMPAT_32BIT_TIME
compat_ksys_semtimedop(int semid,struct sembuf __user * tsems,unsigned int nsops,const struct old_timespec32 __user * timeout)2275 long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2276 unsigned int nsops,
2277 const struct old_timespec32 __user *timeout)
2278 {
2279 if (timeout) {
2280 struct timespec64 ts;
2281 if (get_old_timespec32(&ts, timeout))
2282 return -EFAULT;
2283 return do_semtimedop(semid, tsems, nsops, &ts);
2284 }
2285 return do_semtimedop(semid, tsems, nsops, NULL);
2286 }
2287
SYSCALL_DEFINE4(semtimedop_time32,int,semid,struct sembuf __user *,tsems,unsigned int,nsops,const struct old_timespec32 __user *,timeout)2288 SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems,
2289 unsigned int, nsops,
2290 const struct old_timespec32 __user *, timeout)
2291 {
2292 return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2293 }
2294 #endif
2295
SYSCALL_DEFINE3(semop,int,semid,struct sembuf __user *,tsops,unsigned,nsops)2296 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2297 unsigned, nsops)
2298 {
2299 return do_semtimedop(semid, tsops, nsops, NULL);
2300 }
2301
2302 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2303 * parent and child tasks.
2304 */
2305
copy_semundo(unsigned long clone_flags,struct task_struct * tsk)2306 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2307 {
2308 struct sem_undo_list *undo_list;
2309 int error;
2310
2311 if (clone_flags & CLONE_SYSVSEM) {
2312 error = get_undo_list(&undo_list);
2313 if (error)
2314 return error;
2315 refcount_inc(&undo_list->refcnt);
2316 tsk->sysvsem.undo_list = undo_list;
2317 } else
2318 tsk->sysvsem.undo_list = NULL;
2319
2320 return 0;
2321 }
2322
2323 /*
2324 * add semadj values to semaphores, free undo structures.
2325 * undo structures are not freed when semaphore arrays are destroyed
2326 * so some of them may be out of date.
2327 * IMPLEMENTATION NOTE: There is some confusion over whether the
2328 * set of adjustments that needs to be done should be done in an atomic
2329 * manner or not. That is, if we are attempting to decrement the semval
2330 * should we queue up and wait until we can do so legally?
2331 * The original implementation attempted to do this (queue and wait).
2332 * The current implementation does not do so. The POSIX standard
2333 * and SVID should be consulted to determine what behavior is mandated.
2334 */
exit_sem(struct task_struct * tsk)2335 void exit_sem(struct task_struct *tsk)
2336 {
2337 struct sem_undo_list *ulp;
2338
2339 ulp = tsk->sysvsem.undo_list;
2340 if (!ulp)
2341 return;
2342 tsk->sysvsem.undo_list = NULL;
2343
2344 if (!refcount_dec_and_test(&ulp->refcnt))
2345 return;
2346
2347 for (;;) {
2348 struct sem_array *sma;
2349 struct sem_undo *un;
2350 int semid, i;
2351 DEFINE_WAKE_Q(wake_q);
2352
2353 cond_resched();
2354
2355 rcu_read_lock();
2356 un = list_entry_rcu(ulp->list_proc.next,
2357 struct sem_undo, list_proc);
2358 if (&un->list_proc == &ulp->list_proc) {
2359 /*
2360 * We must wait for freeary() before freeing this ulp,
2361 * in case we raced with last sem_undo. There is a small
2362 * possibility where we exit while freeary() didn't
2363 * finish unlocking sem_undo_list.
2364 */
2365 spin_lock(&ulp->lock);
2366 spin_unlock(&ulp->lock);
2367 rcu_read_unlock();
2368 break;
2369 }
2370 spin_lock(&ulp->lock);
2371 semid = un->semid;
2372 spin_unlock(&ulp->lock);
2373
2374 /* exit_sem raced with IPC_RMID, nothing to do */
2375 if (semid == -1) {
2376 rcu_read_unlock();
2377 continue;
2378 }
2379
2380 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2381 /* exit_sem raced with IPC_RMID, nothing to do */
2382 if (IS_ERR(sma)) {
2383 rcu_read_unlock();
2384 continue;
2385 }
2386
2387 sem_lock(sma, NULL, -1);
2388 /* exit_sem raced with IPC_RMID, nothing to do */
2389 if (!ipc_valid_object(&sma->sem_perm)) {
2390 sem_unlock(sma, -1);
2391 rcu_read_unlock();
2392 continue;
2393 }
2394 un = __lookup_undo(ulp, semid);
2395 if (un == NULL) {
2396 /* exit_sem raced with IPC_RMID+semget() that created
2397 * exactly the same semid. Nothing to do.
2398 */
2399 sem_unlock(sma, -1);
2400 rcu_read_unlock();
2401 continue;
2402 }
2403
2404 /* remove un from the linked lists */
2405 ipc_assert_locked_object(&sma->sem_perm);
2406 list_del(&un->list_id);
2407
2408 spin_lock(&ulp->lock);
2409 list_del_rcu(&un->list_proc);
2410 spin_unlock(&ulp->lock);
2411
2412 /* perform adjustments registered in un */
2413 for (i = 0; i < sma->sem_nsems; i++) {
2414 struct sem *semaphore = &sma->sems[i];
2415 if (un->semadj[i]) {
2416 semaphore->semval += un->semadj[i];
2417 /*
2418 * Range checks of the new semaphore value,
2419 * not defined by sus:
2420 * - Some unices ignore the undo entirely
2421 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2422 * - some cap the value (e.g. FreeBSD caps
2423 * at 0, but doesn't enforce SEMVMX)
2424 *
2425 * Linux caps the semaphore value, both at 0
2426 * and at SEMVMX.
2427 *
2428 * Manfred <manfred@colorfullife.com>
2429 */
2430 if (semaphore->semval < 0)
2431 semaphore->semval = 0;
2432 if (semaphore->semval > SEMVMX)
2433 semaphore->semval = SEMVMX;
2434 ipc_update_pid(&semaphore->sempid, task_tgid(current));
2435 }
2436 }
2437 /* maybe some queued-up processes were waiting for this */
2438 do_smart_update(sma, NULL, 0, 1, &wake_q);
2439 sem_unlock(sma, -1);
2440 rcu_read_unlock();
2441 wake_up_q(&wake_q);
2442
2443 kvfree_rcu(un, rcu);
2444 }
2445 kfree(ulp);
2446 }
2447
2448 #ifdef CONFIG_PROC_FS
sysvipc_sem_proc_show(struct seq_file * s,void * it)2449 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2450 {
2451 struct user_namespace *user_ns = seq_user_ns(s);
2452 struct kern_ipc_perm *ipcp = it;
2453 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2454 time64_t sem_otime;
2455
2456 /*
2457 * The proc interface isn't aware of sem_lock(), it calls
2458 * ipc_lock_object(), i.e. spin_lock(&sma->sem_perm.lock).
2459 * (in sysvipc_find_ipc)
2460 * In order to stay compatible with sem_lock(), we must
2461 * enter / leave complex_mode.
2462 */
2463 complexmode_enter(sma);
2464
2465 sem_otime = get_semotime(sma);
2466
2467 seq_printf(s,
2468 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2469 sma->sem_perm.key,
2470 sma->sem_perm.id,
2471 sma->sem_perm.mode,
2472 sma->sem_nsems,
2473 from_kuid_munged(user_ns, sma->sem_perm.uid),
2474 from_kgid_munged(user_ns, sma->sem_perm.gid),
2475 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2476 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2477 sem_otime,
2478 sma->sem_ctime);
2479
2480 complexmode_tryleave(sma);
2481
2482 return 0;
2483 }
2484 #endif
2485