xref: /openbmc/linux/ipc/mqueue.c (revision e5c86679)
1 /*
2  * POSIX message queues filesystem for Linux.
3  *
4  * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
5  *                          Michal Wronski          (michal.wronski@gmail.com)
6  *
7  * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
8  * Lockless receive & send, fd based notify:
9  *			    Manfred Spraul	    (manfred@colorfullife.com)
10  *
11  * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
12  *
13  * This file is released under the GPL.
14  */
15 
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/namei.h>
22 #include <linux/sysctl.h>
23 #include <linux/poll.h>
24 #include <linux/mqueue.h>
25 #include <linux/msg.h>
26 #include <linux/skbuff.h>
27 #include <linux/vmalloc.h>
28 #include <linux/netlink.h>
29 #include <linux/syscalls.h>
30 #include <linux/audit.h>
31 #include <linux/signal.h>
32 #include <linux/mutex.h>
33 #include <linux/nsproxy.h>
34 #include <linux/pid.h>
35 #include <linux/ipc_namespace.h>
36 #include <linux/user_namespace.h>
37 #include <linux/slab.h>
38 #include <linux/sched/wake_q.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/user.h>
41 
42 #include <net/sock.h>
43 #include "util.h"
44 
45 #define MQUEUE_MAGIC	0x19800202
46 #define DIRENT_SIZE	20
47 #define FILENT_SIZE	80
48 
49 #define SEND		0
50 #define RECV		1
51 
52 #define STATE_NONE	0
53 #define STATE_READY	1
54 
55 struct posix_msg_tree_node {
56 	struct rb_node		rb_node;
57 	struct list_head	msg_list;
58 	int			priority;
59 };
60 
61 struct ext_wait_queue {		/* queue of sleeping tasks */
62 	struct task_struct *task;
63 	struct list_head list;
64 	struct msg_msg *msg;	/* ptr of loaded message */
65 	int state;		/* one of STATE_* values */
66 };
67 
68 struct mqueue_inode_info {
69 	spinlock_t lock;
70 	struct inode vfs_inode;
71 	wait_queue_head_t wait_q;
72 
73 	struct rb_root msg_tree;
74 	struct posix_msg_tree_node *node_cache;
75 	struct mq_attr attr;
76 
77 	struct sigevent notify;
78 	struct pid *notify_owner;
79 	struct user_namespace *notify_user_ns;
80 	struct user_struct *user;	/* user who created, for accounting */
81 	struct sock *notify_sock;
82 	struct sk_buff *notify_cookie;
83 
84 	/* for tasks waiting for free space and messages, respectively */
85 	struct ext_wait_queue e_wait_q[2];
86 
87 	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
88 };
89 
90 static const struct inode_operations mqueue_dir_inode_operations;
91 static const struct file_operations mqueue_file_operations;
92 static const struct super_operations mqueue_super_ops;
93 static void remove_notification(struct mqueue_inode_info *info);
94 
95 static struct kmem_cache *mqueue_inode_cachep;
96 
97 static struct ctl_table_header *mq_sysctl_table;
98 
99 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
100 {
101 	return container_of(inode, struct mqueue_inode_info, vfs_inode);
102 }
103 
104 /*
105  * This routine should be called with the mq_lock held.
106  */
107 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
108 {
109 	return get_ipc_ns(inode->i_sb->s_fs_info);
110 }
111 
112 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
113 {
114 	struct ipc_namespace *ns;
115 
116 	spin_lock(&mq_lock);
117 	ns = __get_ns_from_inode(inode);
118 	spin_unlock(&mq_lock);
119 	return ns;
120 }
121 
122 /* Auxiliary functions to manipulate messages' list */
123 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
124 {
125 	struct rb_node **p, *parent = NULL;
126 	struct posix_msg_tree_node *leaf;
127 
128 	p = &info->msg_tree.rb_node;
129 	while (*p) {
130 		parent = *p;
131 		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
132 
133 		if (likely(leaf->priority == msg->m_type))
134 			goto insert_msg;
135 		else if (msg->m_type < leaf->priority)
136 			p = &(*p)->rb_left;
137 		else
138 			p = &(*p)->rb_right;
139 	}
140 	if (info->node_cache) {
141 		leaf = info->node_cache;
142 		info->node_cache = NULL;
143 	} else {
144 		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
145 		if (!leaf)
146 			return -ENOMEM;
147 		INIT_LIST_HEAD(&leaf->msg_list);
148 	}
149 	leaf->priority = msg->m_type;
150 	rb_link_node(&leaf->rb_node, parent, p);
151 	rb_insert_color(&leaf->rb_node, &info->msg_tree);
152 insert_msg:
153 	info->attr.mq_curmsgs++;
154 	info->qsize += msg->m_ts;
155 	list_add_tail(&msg->m_list, &leaf->msg_list);
156 	return 0;
157 }
158 
159 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
160 {
161 	struct rb_node **p, *parent = NULL;
162 	struct posix_msg_tree_node *leaf;
163 	struct msg_msg *msg;
164 
165 try_again:
166 	p = &info->msg_tree.rb_node;
167 	while (*p) {
168 		parent = *p;
169 		/*
170 		 * During insert, low priorities go to the left and high to the
171 		 * right.  On receive, we want the highest priorities first, so
172 		 * walk all the way to the right.
173 		 */
174 		p = &(*p)->rb_right;
175 	}
176 	if (!parent) {
177 		if (info->attr.mq_curmsgs) {
178 			pr_warn_once("Inconsistency in POSIX message queue, "
179 				     "no tree element, but supposedly messages "
180 				     "should exist!\n");
181 			info->attr.mq_curmsgs = 0;
182 		}
183 		return NULL;
184 	}
185 	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
186 	if (unlikely(list_empty(&leaf->msg_list))) {
187 		pr_warn_once("Inconsistency in POSIX message queue, "
188 			     "empty leaf node but we haven't implemented "
189 			     "lazy leaf delete!\n");
190 		rb_erase(&leaf->rb_node, &info->msg_tree);
191 		if (info->node_cache) {
192 			kfree(leaf);
193 		} else {
194 			info->node_cache = leaf;
195 		}
196 		goto try_again;
197 	} else {
198 		msg = list_first_entry(&leaf->msg_list,
199 				       struct msg_msg, m_list);
200 		list_del(&msg->m_list);
201 		if (list_empty(&leaf->msg_list)) {
202 			rb_erase(&leaf->rb_node, &info->msg_tree);
203 			if (info->node_cache) {
204 				kfree(leaf);
205 			} else {
206 				info->node_cache = leaf;
207 			}
208 		}
209 	}
210 	info->attr.mq_curmsgs--;
211 	info->qsize -= msg->m_ts;
212 	return msg;
213 }
214 
215 static struct inode *mqueue_get_inode(struct super_block *sb,
216 		struct ipc_namespace *ipc_ns, umode_t mode,
217 		struct mq_attr *attr)
218 {
219 	struct user_struct *u = current_user();
220 	struct inode *inode;
221 	int ret = -ENOMEM;
222 
223 	inode = new_inode(sb);
224 	if (!inode)
225 		goto err;
226 
227 	inode->i_ino = get_next_ino();
228 	inode->i_mode = mode;
229 	inode->i_uid = current_fsuid();
230 	inode->i_gid = current_fsgid();
231 	inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
232 
233 	if (S_ISREG(mode)) {
234 		struct mqueue_inode_info *info;
235 		unsigned long mq_bytes, mq_treesize;
236 
237 		inode->i_fop = &mqueue_file_operations;
238 		inode->i_size = FILENT_SIZE;
239 		/* mqueue specific info */
240 		info = MQUEUE_I(inode);
241 		spin_lock_init(&info->lock);
242 		init_waitqueue_head(&info->wait_q);
243 		INIT_LIST_HEAD(&info->e_wait_q[0].list);
244 		INIT_LIST_HEAD(&info->e_wait_q[1].list);
245 		info->notify_owner = NULL;
246 		info->notify_user_ns = NULL;
247 		info->qsize = 0;
248 		info->user = NULL;	/* set when all is ok */
249 		info->msg_tree = RB_ROOT;
250 		info->node_cache = NULL;
251 		memset(&info->attr, 0, sizeof(info->attr));
252 		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
253 					   ipc_ns->mq_msg_default);
254 		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
255 					    ipc_ns->mq_msgsize_default);
256 		if (attr) {
257 			info->attr.mq_maxmsg = attr->mq_maxmsg;
258 			info->attr.mq_msgsize = attr->mq_msgsize;
259 		}
260 		/*
261 		 * We used to allocate a static array of pointers and account
262 		 * the size of that array as well as one msg_msg struct per
263 		 * possible message into the queue size. That's no longer
264 		 * accurate as the queue is now an rbtree and will grow and
265 		 * shrink depending on usage patterns.  We can, however, still
266 		 * account one msg_msg struct per message, but the nodes are
267 		 * allocated depending on priority usage, and most programs
268 		 * only use one, or a handful, of priorities.  However, since
269 		 * this is pinned memory, we need to assume worst case, so
270 		 * that means the min(mq_maxmsg, max_priorities) * struct
271 		 * posix_msg_tree_node.
272 		 */
273 		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
274 			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
275 			sizeof(struct posix_msg_tree_node);
276 
277 		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
278 					  info->attr.mq_msgsize);
279 
280 		spin_lock(&mq_lock);
281 		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
282 		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
283 			spin_unlock(&mq_lock);
284 			/* mqueue_evict_inode() releases info->messages */
285 			ret = -EMFILE;
286 			goto out_inode;
287 		}
288 		u->mq_bytes += mq_bytes;
289 		spin_unlock(&mq_lock);
290 
291 		/* all is ok */
292 		info->user = get_uid(u);
293 	} else if (S_ISDIR(mode)) {
294 		inc_nlink(inode);
295 		/* Some things misbehave if size == 0 on a directory */
296 		inode->i_size = 2 * DIRENT_SIZE;
297 		inode->i_op = &mqueue_dir_inode_operations;
298 		inode->i_fop = &simple_dir_operations;
299 	}
300 
301 	return inode;
302 out_inode:
303 	iput(inode);
304 err:
305 	return ERR_PTR(ret);
306 }
307 
308 static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
309 {
310 	struct inode *inode;
311 	struct ipc_namespace *ns = sb->s_fs_info;
312 
313 	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
314 	sb->s_blocksize = PAGE_SIZE;
315 	sb->s_blocksize_bits = PAGE_SHIFT;
316 	sb->s_magic = MQUEUE_MAGIC;
317 	sb->s_op = &mqueue_super_ops;
318 
319 	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
320 	if (IS_ERR(inode))
321 		return PTR_ERR(inode);
322 
323 	sb->s_root = d_make_root(inode);
324 	if (!sb->s_root)
325 		return -ENOMEM;
326 	return 0;
327 }
328 
329 static struct dentry *mqueue_mount(struct file_system_type *fs_type,
330 			 int flags, const char *dev_name,
331 			 void *data)
332 {
333 	struct ipc_namespace *ns;
334 	if (flags & MS_KERNMOUNT) {
335 		ns = data;
336 		data = NULL;
337 	} else {
338 		ns = current->nsproxy->ipc_ns;
339 	}
340 	return mount_ns(fs_type, flags, data, ns, ns->user_ns, mqueue_fill_super);
341 }
342 
343 static void init_once(void *foo)
344 {
345 	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
346 
347 	inode_init_once(&p->vfs_inode);
348 }
349 
350 static struct inode *mqueue_alloc_inode(struct super_block *sb)
351 {
352 	struct mqueue_inode_info *ei;
353 
354 	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
355 	if (!ei)
356 		return NULL;
357 	return &ei->vfs_inode;
358 }
359 
360 static void mqueue_i_callback(struct rcu_head *head)
361 {
362 	struct inode *inode = container_of(head, struct inode, i_rcu);
363 	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
364 }
365 
366 static void mqueue_destroy_inode(struct inode *inode)
367 {
368 	call_rcu(&inode->i_rcu, mqueue_i_callback);
369 }
370 
371 static void mqueue_evict_inode(struct inode *inode)
372 {
373 	struct mqueue_inode_info *info;
374 	struct user_struct *user;
375 	unsigned long mq_bytes, mq_treesize;
376 	struct ipc_namespace *ipc_ns;
377 	struct msg_msg *msg;
378 
379 	clear_inode(inode);
380 
381 	if (S_ISDIR(inode->i_mode))
382 		return;
383 
384 	ipc_ns = get_ns_from_inode(inode);
385 	info = MQUEUE_I(inode);
386 	spin_lock(&info->lock);
387 	while ((msg = msg_get(info)) != NULL)
388 		free_msg(msg);
389 	kfree(info->node_cache);
390 	spin_unlock(&info->lock);
391 
392 	/* Total amount of bytes accounted for the mqueue */
393 	mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
394 		min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
395 		sizeof(struct posix_msg_tree_node);
396 
397 	mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
398 				  info->attr.mq_msgsize);
399 
400 	user = info->user;
401 	if (user) {
402 		spin_lock(&mq_lock);
403 		user->mq_bytes -= mq_bytes;
404 		/*
405 		 * get_ns_from_inode() ensures that the
406 		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
407 		 * to which we now hold a reference, or it is NULL.
408 		 * We can't put it here under mq_lock, though.
409 		 */
410 		if (ipc_ns)
411 			ipc_ns->mq_queues_count--;
412 		spin_unlock(&mq_lock);
413 		free_uid(user);
414 	}
415 	if (ipc_ns)
416 		put_ipc_ns(ipc_ns);
417 }
418 
419 static int mqueue_create(struct inode *dir, struct dentry *dentry,
420 				umode_t mode, bool excl)
421 {
422 	struct inode *inode;
423 	struct mq_attr *attr = dentry->d_fsdata;
424 	int error;
425 	struct ipc_namespace *ipc_ns;
426 
427 	spin_lock(&mq_lock);
428 	ipc_ns = __get_ns_from_inode(dir);
429 	if (!ipc_ns) {
430 		error = -EACCES;
431 		goto out_unlock;
432 	}
433 
434 	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
435 	    !capable(CAP_SYS_RESOURCE)) {
436 		error = -ENOSPC;
437 		goto out_unlock;
438 	}
439 	ipc_ns->mq_queues_count++;
440 	spin_unlock(&mq_lock);
441 
442 	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
443 	if (IS_ERR(inode)) {
444 		error = PTR_ERR(inode);
445 		spin_lock(&mq_lock);
446 		ipc_ns->mq_queues_count--;
447 		goto out_unlock;
448 	}
449 
450 	put_ipc_ns(ipc_ns);
451 	dir->i_size += DIRENT_SIZE;
452 	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
453 
454 	d_instantiate(dentry, inode);
455 	dget(dentry);
456 	return 0;
457 out_unlock:
458 	spin_unlock(&mq_lock);
459 	if (ipc_ns)
460 		put_ipc_ns(ipc_ns);
461 	return error;
462 }
463 
464 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
465 {
466 	struct inode *inode = d_inode(dentry);
467 
468 	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
469 	dir->i_size -= DIRENT_SIZE;
470 	drop_nlink(inode);
471 	dput(dentry);
472 	return 0;
473 }
474 
475 /*
476 *	This is routine for system read from queue file.
477 *	To avoid mess with doing here some sort of mq_receive we allow
478 *	to read only queue size & notification info (the only values
479 *	that are interesting from user point of view and aren't accessible
480 *	through std routines)
481 */
482 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
483 				size_t count, loff_t *off)
484 {
485 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
486 	char buffer[FILENT_SIZE];
487 	ssize_t ret;
488 
489 	spin_lock(&info->lock);
490 	snprintf(buffer, sizeof(buffer),
491 			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
492 			info->qsize,
493 			info->notify_owner ? info->notify.sigev_notify : 0,
494 			(info->notify_owner &&
495 			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
496 				info->notify.sigev_signo : 0,
497 			pid_vnr(info->notify_owner));
498 	spin_unlock(&info->lock);
499 	buffer[sizeof(buffer)-1] = '\0';
500 
501 	ret = simple_read_from_buffer(u_data, count, off, buffer,
502 				strlen(buffer));
503 	if (ret <= 0)
504 		return ret;
505 
506 	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
507 	return ret;
508 }
509 
510 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
511 {
512 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
513 
514 	spin_lock(&info->lock);
515 	if (task_tgid(current) == info->notify_owner)
516 		remove_notification(info);
517 
518 	spin_unlock(&info->lock);
519 	return 0;
520 }
521 
522 static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
523 {
524 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
525 	int retval = 0;
526 
527 	poll_wait(filp, &info->wait_q, poll_tab);
528 
529 	spin_lock(&info->lock);
530 	if (info->attr.mq_curmsgs)
531 		retval = POLLIN | POLLRDNORM;
532 
533 	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
534 		retval |= POLLOUT | POLLWRNORM;
535 	spin_unlock(&info->lock);
536 
537 	return retval;
538 }
539 
540 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
541 static void wq_add(struct mqueue_inode_info *info, int sr,
542 			struct ext_wait_queue *ewp)
543 {
544 	struct ext_wait_queue *walk;
545 
546 	ewp->task = current;
547 
548 	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
549 		if (walk->task->static_prio <= current->static_prio) {
550 			list_add_tail(&ewp->list, &walk->list);
551 			return;
552 		}
553 	}
554 	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
555 }
556 
557 /*
558  * Puts current task to sleep. Caller must hold queue lock. After return
559  * lock isn't held.
560  * sr: SEND or RECV
561  */
562 static int wq_sleep(struct mqueue_inode_info *info, int sr,
563 		    ktime_t *timeout, struct ext_wait_queue *ewp)
564 	__releases(&info->lock)
565 {
566 	int retval;
567 	signed long time;
568 
569 	wq_add(info, sr, ewp);
570 
571 	for (;;) {
572 		__set_current_state(TASK_INTERRUPTIBLE);
573 
574 		spin_unlock(&info->lock);
575 		time = schedule_hrtimeout_range_clock(timeout, 0,
576 			HRTIMER_MODE_ABS, CLOCK_REALTIME);
577 
578 		if (ewp->state == STATE_READY) {
579 			retval = 0;
580 			goto out;
581 		}
582 		spin_lock(&info->lock);
583 		if (ewp->state == STATE_READY) {
584 			retval = 0;
585 			goto out_unlock;
586 		}
587 		if (signal_pending(current)) {
588 			retval = -ERESTARTSYS;
589 			break;
590 		}
591 		if (time == 0) {
592 			retval = -ETIMEDOUT;
593 			break;
594 		}
595 	}
596 	list_del(&ewp->list);
597 out_unlock:
598 	spin_unlock(&info->lock);
599 out:
600 	return retval;
601 }
602 
603 /*
604  * Returns waiting task that should be serviced first or NULL if none exists
605  */
606 static struct ext_wait_queue *wq_get_first_waiter(
607 		struct mqueue_inode_info *info, int sr)
608 {
609 	struct list_head *ptr;
610 
611 	ptr = info->e_wait_q[sr].list.prev;
612 	if (ptr == &info->e_wait_q[sr].list)
613 		return NULL;
614 	return list_entry(ptr, struct ext_wait_queue, list);
615 }
616 
617 
618 static inline void set_cookie(struct sk_buff *skb, char code)
619 {
620 	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
621 }
622 
623 /*
624  * The next function is only to split too long sys_mq_timedsend
625  */
626 static void __do_notify(struct mqueue_inode_info *info)
627 {
628 	/* notification
629 	 * invoked when there is registered process and there isn't process
630 	 * waiting synchronously for message AND state of queue changed from
631 	 * empty to not empty. Here we are sure that no one is waiting
632 	 * synchronously. */
633 	if (info->notify_owner &&
634 	    info->attr.mq_curmsgs == 1) {
635 		struct siginfo sig_i;
636 		switch (info->notify.sigev_notify) {
637 		case SIGEV_NONE:
638 			break;
639 		case SIGEV_SIGNAL:
640 			/* sends signal */
641 
642 			sig_i.si_signo = info->notify.sigev_signo;
643 			sig_i.si_errno = 0;
644 			sig_i.si_code = SI_MESGQ;
645 			sig_i.si_value = info->notify.sigev_value;
646 			/* map current pid/uid into info->owner's namespaces */
647 			rcu_read_lock();
648 			sig_i.si_pid = task_tgid_nr_ns(current,
649 						ns_of_pid(info->notify_owner));
650 			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
651 			rcu_read_unlock();
652 
653 			kill_pid_info(info->notify.sigev_signo,
654 				      &sig_i, info->notify_owner);
655 			break;
656 		case SIGEV_THREAD:
657 			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
658 			netlink_sendskb(info->notify_sock, info->notify_cookie);
659 			break;
660 		}
661 		/* after notification unregisters process */
662 		put_pid(info->notify_owner);
663 		put_user_ns(info->notify_user_ns);
664 		info->notify_owner = NULL;
665 		info->notify_user_ns = NULL;
666 	}
667 	wake_up(&info->wait_q);
668 }
669 
670 static int prepare_timeout(const struct timespec __user *u_abs_timeout,
671 			   ktime_t *expires, struct timespec *ts)
672 {
673 	if (copy_from_user(ts, u_abs_timeout, sizeof(struct timespec)))
674 		return -EFAULT;
675 	if (!timespec_valid(ts))
676 		return -EINVAL;
677 
678 	*expires = timespec_to_ktime(*ts);
679 	return 0;
680 }
681 
682 static void remove_notification(struct mqueue_inode_info *info)
683 {
684 	if (info->notify_owner != NULL &&
685 	    info->notify.sigev_notify == SIGEV_THREAD) {
686 		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
687 		netlink_sendskb(info->notify_sock, info->notify_cookie);
688 	}
689 	put_pid(info->notify_owner);
690 	put_user_ns(info->notify_user_ns);
691 	info->notify_owner = NULL;
692 	info->notify_user_ns = NULL;
693 }
694 
695 static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
696 {
697 	int mq_treesize;
698 	unsigned long total_size;
699 
700 	if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
701 		return -EINVAL;
702 	if (capable(CAP_SYS_RESOURCE)) {
703 		if (attr->mq_maxmsg > HARD_MSGMAX ||
704 		    attr->mq_msgsize > HARD_MSGSIZEMAX)
705 			return -EINVAL;
706 	} else {
707 		if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
708 				attr->mq_msgsize > ipc_ns->mq_msgsize_max)
709 			return -EINVAL;
710 	}
711 	/* check for overflow */
712 	if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
713 		return -EOVERFLOW;
714 	mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
715 		min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
716 		sizeof(struct posix_msg_tree_node);
717 	total_size = attr->mq_maxmsg * attr->mq_msgsize;
718 	if (total_size + mq_treesize < total_size)
719 		return -EOVERFLOW;
720 	return 0;
721 }
722 
723 /*
724  * Invoked when creating a new queue via sys_mq_open
725  */
726 static struct file *do_create(struct ipc_namespace *ipc_ns, struct inode *dir,
727 			struct path *path, int oflag, umode_t mode,
728 			struct mq_attr *attr)
729 {
730 	const struct cred *cred = current_cred();
731 	int ret;
732 
733 	if (attr) {
734 		ret = mq_attr_ok(ipc_ns, attr);
735 		if (ret)
736 			return ERR_PTR(ret);
737 		/* store for use during create */
738 		path->dentry->d_fsdata = attr;
739 	} else {
740 		struct mq_attr def_attr;
741 
742 		def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
743 					 ipc_ns->mq_msg_default);
744 		def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
745 					  ipc_ns->mq_msgsize_default);
746 		ret = mq_attr_ok(ipc_ns, &def_attr);
747 		if (ret)
748 			return ERR_PTR(ret);
749 	}
750 
751 	mode &= ~current_umask();
752 	ret = vfs_create(dir, path->dentry, mode, true);
753 	path->dentry->d_fsdata = NULL;
754 	if (ret)
755 		return ERR_PTR(ret);
756 	return dentry_open(path, oflag, cred);
757 }
758 
759 /* Opens existing queue */
760 static struct file *do_open(struct path *path, int oflag)
761 {
762 	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
763 						  MAY_READ | MAY_WRITE };
764 	int acc;
765 	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
766 		return ERR_PTR(-EINVAL);
767 	acc = oflag2acc[oflag & O_ACCMODE];
768 	if (inode_permission(d_inode(path->dentry), acc))
769 		return ERR_PTR(-EACCES);
770 	return dentry_open(path, oflag, current_cred());
771 }
772 
773 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
774 		struct mq_attr __user *, u_attr)
775 {
776 	struct path path;
777 	struct file *filp;
778 	struct filename *name;
779 	struct mq_attr attr;
780 	int fd, error;
781 	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
782 	struct vfsmount *mnt = ipc_ns->mq_mnt;
783 	struct dentry *root = mnt->mnt_root;
784 	int ro;
785 
786 	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
787 		return -EFAULT;
788 
789 	audit_mq_open(oflag, mode, u_attr ? &attr : NULL);
790 
791 	if (IS_ERR(name = getname(u_name)))
792 		return PTR_ERR(name);
793 
794 	fd = get_unused_fd_flags(O_CLOEXEC);
795 	if (fd < 0)
796 		goto out_putname;
797 
798 	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
799 	error = 0;
800 	inode_lock(d_inode(root));
801 	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
802 	if (IS_ERR(path.dentry)) {
803 		error = PTR_ERR(path.dentry);
804 		goto out_putfd;
805 	}
806 	path.mnt = mntget(mnt);
807 
808 	if (oflag & O_CREAT) {
809 		if (d_really_is_positive(path.dentry)) {	/* entry already exists */
810 			audit_inode(name, path.dentry, 0);
811 			if (oflag & O_EXCL) {
812 				error = -EEXIST;
813 				goto out;
814 			}
815 			filp = do_open(&path, oflag);
816 		} else {
817 			if (ro) {
818 				error = ro;
819 				goto out;
820 			}
821 			audit_inode_parent_hidden(name, root);
822 			filp = do_create(ipc_ns, d_inode(root),
823 						&path, oflag, mode,
824 						u_attr ? &attr : NULL);
825 		}
826 	} else {
827 		if (d_really_is_negative(path.dentry)) {
828 			error = -ENOENT;
829 			goto out;
830 		}
831 		audit_inode(name, path.dentry, 0);
832 		filp = do_open(&path, oflag);
833 	}
834 
835 	if (!IS_ERR(filp))
836 		fd_install(fd, filp);
837 	else
838 		error = PTR_ERR(filp);
839 out:
840 	path_put(&path);
841 out_putfd:
842 	if (error) {
843 		put_unused_fd(fd);
844 		fd = error;
845 	}
846 	inode_unlock(d_inode(root));
847 	if (!ro)
848 		mnt_drop_write(mnt);
849 out_putname:
850 	putname(name);
851 	return fd;
852 }
853 
854 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
855 {
856 	int err;
857 	struct filename *name;
858 	struct dentry *dentry;
859 	struct inode *inode = NULL;
860 	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
861 	struct vfsmount *mnt = ipc_ns->mq_mnt;
862 
863 	name = getname(u_name);
864 	if (IS_ERR(name))
865 		return PTR_ERR(name);
866 
867 	audit_inode_parent_hidden(name, mnt->mnt_root);
868 	err = mnt_want_write(mnt);
869 	if (err)
870 		goto out_name;
871 	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
872 	dentry = lookup_one_len(name->name, mnt->mnt_root,
873 				strlen(name->name));
874 	if (IS_ERR(dentry)) {
875 		err = PTR_ERR(dentry);
876 		goto out_unlock;
877 	}
878 
879 	inode = d_inode(dentry);
880 	if (!inode) {
881 		err = -ENOENT;
882 	} else {
883 		ihold(inode);
884 		err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
885 	}
886 	dput(dentry);
887 
888 out_unlock:
889 	inode_unlock(d_inode(mnt->mnt_root));
890 	if (inode)
891 		iput(inode);
892 	mnt_drop_write(mnt);
893 out_name:
894 	putname(name);
895 
896 	return err;
897 }
898 
899 /* Pipelined send and receive functions.
900  *
901  * If a receiver finds no waiting message, then it registers itself in the
902  * list of waiting receivers. A sender checks that list before adding the new
903  * message into the message array. If there is a waiting receiver, then it
904  * bypasses the message array and directly hands the message over to the
905  * receiver. The receiver accepts the message and returns without grabbing the
906  * queue spinlock:
907  *
908  * - Set pointer to message.
909  * - Queue the receiver task for later wakeup (without the info->lock).
910  * - Update its state to STATE_READY. Now the receiver can continue.
911  * - Wake up the process after the lock is dropped. Should the process wake up
912  *   before this wakeup (due to a timeout or a signal) it will either see
913  *   STATE_READY and continue or acquire the lock to check the state again.
914  *
915  * The same algorithm is used for senders.
916  */
917 
918 /* pipelined_send() - send a message directly to the task waiting in
919  * sys_mq_timedreceive() (without inserting message into a queue).
920  */
921 static inline void pipelined_send(struct wake_q_head *wake_q,
922 				  struct mqueue_inode_info *info,
923 				  struct msg_msg *message,
924 				  struct ext_wait_queue *receiver)
925 {
926 	receiver->msg = message;
927 	list_del(&receiver->list);
928 	wake_q_add(wake_q, receiver->task);
929 	/*
930 	 * Rely on the implicit cmpxchg barrier from wake_q_add such
931 	 * that we can ensure that updating receiver->state is the last
932 	 * write operation: As once set, the receiver can continue,
933 	 * and if we don't have the reference count from the wake_q,
934 	 * yet, at that point we can later have a use-after-free
935 	 * condition and bogus wakeup.
936 	 */
937 	receiver->state = STATE_READY;
938 }
939 
940 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
941  * gets its message and put to the queue (we have one free place for sure). */
942 static inline void pipelined_receive(struct wake_q_head *wake_q,
943 				     struct mqueue_inode_info *info)
944 {
945 	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
946 
947 	if (!sender) {
948 		/* for poll */
949 		wake_up_interruptible(&info->wait_q);
950 		return;
951 	}
952 	if (msg_insert(sender->msg, info))
953 		return;
954 
955 	list_del(&sender->list);
956 	wake_q_add(wake_q, sender->task);
957 	sender->state = STATE_READY;
958 }
959 
960 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
961 		size_t, msg_len, unsigned int, msg_prio,
962 		const struct timespec __user *, u_abs_timeout)
963 {
964 	struct fd f;
965 	struct inode *inode;
966 	struct ext_wait_queue wait;
967 	struct ext_wait_queue *receiver;
968 	struct msg_msg *msg_ptr;
969 	struct mqueue_inode_info *info;
970 	ktime_t expires, *timeout = NULL;
971 	struct timespec ts;
972 	struct posix_msg_tree_node *new_leaf = NULL;
973 	int ret = 0;
974 	DEFINE_WAKE_Q(wake_q);
975 
976 	if (u_abs_timeout) {
977 		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
978 		if (res)
979 			return res;
980 		timeout = &expires;
981 	}
982 
983 	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
984 		return -EINVAL;
985 
986 	audit_mq_sendrecv(mqdes, msg_len, msg_prio, timeout ? &ts : NULL);
987 
988 	f = fdget(mqdes);
989 	if (unlikely(!f.file)) {
990 		ret = -EBADF;
991 		goto out;
992 	}
993 
994 	inode = file_inode(f.file);
995 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
996 		ret = -EBADF;
997 		goto out_fput;
998 	}
999 	info = MQUEUE_I(inode);
1000 	audit_file(f.file);
1001 
1002 	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1003 		ret = -EBADF;
1004 		goto out_fput;
1005 	}
1006 
1007 	if (unlikely(msg_len > info->attr.mq_msgsize)) {
1008 		ret = -EMSGSIZE;
1009 		goto out_fput;
1010 	}
1011 
1012 	/* First try to allocate memory, before doing anything with
1013 	 * existing queues. */
1014 	msg_ptr = load_msg(u_msg_ptr, msg_len);
1015 	if (IS_ERR(msg_ptr)) {
1016 		ret = PTR_ERR(msg_ptr);
1017 		goto out_fput;
1018 	}
1019 	msg_ptr->m_ts = msg_len;
1020 	msg_ptr->m_type = msg_prio;
1021 
1022 	/*
1023 	 * msg_insert really wants us to have a valid, spare node struct so
1024 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1025 	 * fall back to that if necessary.
1026 	 */
1027 	if (!info->node_cache)
1028 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1029 
1030 	spin_lock(&info->lock);
1031 
1032 	if (!info->node_cache && new_leaf) {
1033 		/* Save our speculative allocation into the cache */
1034 		INIT_LIST_HEAD(&new_leaf->msg_list);
1035 		info->node_cache = new_leaf;
1036 		new_leaf = NULL;
1037 	} else {
1038 		kfree(new_leaf);
1039 	}
1040 
1041 	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1042 		if (f.file->f_flags & O_NONBLOCK) {
1043 			ret = -EAGAIN;
1044 		} else {
1045 			wait.task = current;
1046 			wait.msg = (void *) msg_ptr;
1047 			wait.state = STATE_NONE;
1048 			ret = wq_sleep(info, SEND, timeout, &wait);
1049 			/*
1050 			 * wq_sleep must be called with info->lock held, and
1051 			 * returns with the lock released
1052 			 */
1053 			goto out_free;
1054 		}
1055 	} else {
1056 		receiver = wq_get_first_waiter(info, RECV);
1057 		if (receiver) {
1058 			pipelined_send(&wake_q, info, msg_ptr, receiver);
1059 		} else {
1060 			/* adds message to the queue */
1061 			ret = msg_insert(msg_ptr, info);
1062 			if (ret)
1063 				goto out_unlock;
1064 			__do_notify(info);
1065 		}
1066 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1067 				current_time(inode);
1068 	}
1069 out_unlock:
1070 	spin_unlock(&info->lock);
1071 	wake_up_q(&wake_q);
1072 out_free:
1073 	if (ret)
1074 		free_msg(msg_ptr);
1075 out_fput:
1076 	fdput(f);
1077 out:
1078 	return ret;
1079 }
1080 
1081 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1082 		size_t, msg_len, unsigned int __user *, u_msg_prio,
1083 		const struct timespec __user *, u_abs_timeout)
1084 {
1085 	ssize_t ret;
1086 	struct msg_msg *msg_ptr;
1087 	struct fd f;
1088 	struct inode *inode;
1089 	struct mqueue_inode_info *info;
1090 	struct ext_wait_queue wait;
1091 	ktime_t expires, *timeout = NULL;
1092 	struct timespec ts;
1093 	struct posix_msg_tree_node *new_leaf = NULL;
1094 
1095 	if (u_abs_timeout) {
1096 		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
1097 		if (res)
1098 			return res;
1099 		timeout = &expires;
1100 	}
1101 
1102 	audit_mq_sendrecv(mqdes, msg_len, 0, timeout ? &ts : NULL);
1103 
1104 	f = fdget(mqdes);
1105 	if (unlikely(!f.file)) {
1106 		ret = -EBADF;
1107 		goto out;
1108 	}
1109 
1110 	inode = file_inode(f.file);
1111 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1112 		ret = -EBADF;
1113 		goto out_fput;
1114 	}
1115 	info = MQUEUE_I(inode);
1116 	audit_file(f.file);
1117 
1118 	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1119 		ret = -EBADF;
1120 		goto out_fput;
1121 	}
1122 
1123 	/* checks if buffer is big enough */
1124 	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1125 		ret = -EMSGSIZE;
1126 		goto out_fput;
1127 	}
1128 
1129 	/*
1130 	 * msg_insert really wants us to have a valid, spare node struct so
1131 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1132 	 * fall back to that if necessary.
1133 	 */
1134 	if (!info->node_cache)
1135 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1136 
1137 	spin_lock(&info->lock);
1138 
1139 	if (!info->node_cache && new_leaf) {
1140 		/* Save our speculative allocation into the cache */
1141 		INIT_LIST_HEAD(&new_leaf->msg_list);
1142 		info->node_cache = new_leaf;
1143 	} else {
1144 		kfree(new_leaf);
1145 	}
1146 
1147 	if (info->attr.mq_curmsgs == 0) {
1148 		if (f.file->f_flags & O_NONBLOCK) {
1149 			spin_unlock(&info->lock);
1150 			ret = -EAGAIN;
1151 		} else {
1152 			wait.task = current;
1153 			wait.state = STATE_NONE;
1154 			ret = wq_sleep(info, RECV, timeout, &wait);
1155 			msg_ptr = wait.msg;
1156 		}
1157 	} else {
1158 		DEFINE_WAKE_Q(wake_q);
1159 
1160 		msg_ptr = msg_get(info);
1161 
1162 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1163 				current_time(inode);
1164 
1165 		/* There is now free space in queue. */
1166 		pipelined_receive(&wake_q, info);
1167 		spin_unlock(&info->lock);
1168 		wake_up_q(&wake_q);
1169 		ret = 0;
1170 	}
1171 	if (ret == 0) {
1172 		ret = msg_ptr->m_ts;
1173 
1174 		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1175 			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1176 			ret = -EFAULT;
1177 		}
1178 		free_msg(msg_ptr);
1179 	}
1180 out_fput:
1181 	fdput(f);
1182 out:
1183 	return ret;
1184 }
1185 
1186 /*
1187  * Notes: the case when user wants us to deregister (with NULL as pointer)
1188  * and he isn't currently owner of notification, will be silently discarded.
1189  * It isn't explicitly defined in the POSIX.
1190  */
1191 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1192 		const struct sigevent __user *, u_notification)
1193 {
1194 	int ret;
1195 	struct fd f;
1196 	struct sock *sock;
1197 	struct inode *inode;
1198 	struct sigevent notification;
1199 	struct mqueue_inode_info *info;
1200 	struct sk_buff *nc;
1201 
1202 	if (u_notification) {
1203 		if (copy_from_user(&notification, u_notification,
1204 					sizeof(struct sigevent)))
1205 			return -EFAULT;
1206 	}
1207 
1208 	audit_mq_notify(mqdes, u_notification ? &notification : NULL);
1209 
1210 	nc = NULL;
1211 	sock = NULL;
1212 	if (u_notification != NULL) {
1213 		if (unlikely(notification.sigev_notify != SIGEV_NONE &&
1214 			     notification.sigev_notify != SIGEV_SIGNAL &&
1215 			     notification.sigev_notify != SIGEV_THREAD))
1216 			return -EINVAL;
1217 		if (notification.sigev_notify == SIGEV_SIGNAL &&
1218 			!valid_signal(notification.sigev_signo)) {
1219 			return -EINVAL;
1220 		}
1221 		if (notification.sigev_notify == SIGEV_THREAD) {
1222 			long timeo;
1223 
1224 			/* create the notify skb */
1225 			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1226 			if (!nc) {
1227 				ret = -ENOMEM;
1228 				goto out;
1229 			}
1230 			if (copy_from_user(nc->data,
1231 					notification.sigev_value.sival_ptr,
1232 					NOTIFY_COOKIE_LEN)) {
1233 				ret = -EFAULT;
1234 				goto out;
1235 			}
1236 
1237 			/* TODO: add a header? */
1238 			skb_put(nc, NOTIFY_COOKIE_LEN);
1239 			/* and attach it to the socket */
1240 retry:
1241 			f = fdget(notification.sigev_signo);
1242 			if (!f.file) {
1243 				ret = -EBADF;
1244 				goto out;
1245 			}
1246 			sock = netlink_getsockbyfilp(f.file);
1247 			fdput(f);
1248 			if (IS_ERR(sock)) {
1249 				ret = PTR_ERR(sock);
1250 				sock = NULL;
1251 				goto out;
1252 			}
1253 
1254 			timeo = MAX_SCHEDULE_TIMEOUT;
1255 			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1256 			if (ret == 1)
1257 				goto retry;
1258 			if (ret) {
1259 				sock = NULL;
1260 				nc = NULL;
1261 				goto out;
1262 			}
1263 		}
1264 	}
1265 
1266 	f = fdget(mqdes);
1267 	if (!f.file) {
1268 		ret = -EBADF;
1269 		goto out;
1270 	}
1271 
1272 	inode = file_inode(f.file);
1273 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1274 		ret = -EBADF;
1275 		goto out_fput;
1276 	}
1277 	info = MQUEUE_I(inode);
1278 
1279 	ret = 0;
1280 	spin_lock(&info->lock);
1281 	if (u_notification == NULL) {
1282 		if (info->notify_owner == task_tgid(current)) {
1283 			remove_notification(info);
1284 			inode->i_atime = inode->i_ctime = current_time(inode);
1285 		}
1286 	} else if (info->notify_owner != NULL) {
1287 		ret = -EBUSY;
1288 	} else {
1289 		switch (notification.sigev_notify) {
1290 		case SIGEV_NONE:
1291 			info->notify.sigev_notify = SIGEV_NONE;
1292 			break;
1293 		case SIGEV_THREAD:
1294 			info->notify_sock = sock;
1295 			info->notify_cookie = nc;
1296 			sock = NULL;
1297 			nc = NULL;
1298 			info->notify.sigev_notify = SIGEV_THREAD;
1299 			break;
1300 		case SIGEV_SIGNAL:
1301 			info->notify.sigev_signo = notification.sigev_signo;
1302 			info->notify.sigev_value = notification.sigev_value;
1303 			info->notify.sigev_notify = SIGEV_SIGNAL;
1304 			break;
1305 		}
1306 
1307 		info->notify_owner = get_pid(task_tgid(current));
1308 		info->notify_user_ns = get_user_ns(current_user_ns());
1309 		inode->i_atime = inode->i_ctime = current_time(inode);
1310 	}
1311 	spin_unlock(&info->lock);
1312 out_fput:
1313 	fdput(f);
1314 out:
1315 	if (sock)
1316 		netlink_detachskb(sock, nc);
1317 	else if (nc)
1318 		dev_kfree_skb(nc);
1319 
1320 	return ret;
1321 }
1322 
1323 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1324 		const struct mq_attr __user *, u_mqstat,
1325 		struct mq_attr __user *, u_omqstat)
1326 {
1327 	int ret;
1328 	struct mq_attr mqstat, omqstat;
1329 	struct fd f;
1330 	struct inode *inode;
1331 	struct mqueue_inode_info *info;
1332 
1333 	if (u_mqstat != NULL) {
1334 		if (copy_from_user(&mqstat, u_mqstat, sizeof(struct mq_attr)))
1335 			return -EFAULT;
1336 		if (mqstat.mq_flags & (~O_NONBLOCK))
1337 			return -EINVAL;
1338 	}
1339 
1340 	f = fdget(mqdes);
1341 	if (!f.file) {
1342 		ret = -EBADF;
1343 		goto out;
1344 	}
1345 
1346 	inode = file_inode(f.file);
1347 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1348 		ret = -EBADF;
1349 		goto out_fput;
1350 	}
1351 	info = MQUEUE_I(inode);
1352 
1353 	spin_lock(&info->lock);
1354 
1355 	omqstat = info->attr;
1356 	omqstat.mq_flags = f.file->f_flags & O_NONBLOCK;
1357 	if (u_mqstat) {
1358 		audit_mq_getsetattr(mqdes, &mqstat);
1359 		spin_lock(&f.file->f_lock);
1360 		if (mqstat.mq_flags & O_NONBLOCK)
1361 			f.file->f_flags |= O_NONBLOCK;
1362 		else
1363 			f.file->f_flags &= ~O_NONBLOCK;
1364 		spin_unlock(&f.file->f_lock);
1365 
1366 		inode->i_atime = inode->i_ctime = current_time(inode);
1367 	}
1368 
1369 	spin_unlock(&info->lock);
1370 
1371 	ret = 0;
1372 	if (u_omqstat != NULL && copy_to_user(u_omqstat, &omqstat,
1373 						sizeof(struct mq_attr)))
1374 		ret = -EFAULT;
1375 
1376 out_fput:
1377 	fdput(f);
1378 out:
1379 	return ret;
1380 }
1381 
1382 static const struct inode_operations mqueue_dir_inode_operations = {
1383 	.lookup = simple_lookup,
1384 	.create = mqueue_create,
1385 	.unlink = mqueue_unlink,
1386 };
1387 
1388 static const struct file_operations mqueue_file_operations = {
1389 	.flush = mqueue_flush_file,
1390 	.poll = mqueue_poll_file,
1391 	.read = mqueue_read_file,
1392 	.llseek = default_llseek,
1393 };
1394 
1395 static const struct super_operations mqueue_super_ops = {
1396 	.alloc_inode = mqueue_alloc_inode,
1397 	.destroy_inode = mqueue_destroy_inode,
1398 	.evict_inode = mqueue_evict_inode,
1399 	.statfs = simple_statfs,
1400 };
1401 
1402 static struct file_system_type mqueue_fs_type = {
1403 	.name = "mqueue",
1404 	.mount = mqueue_mount,
1405 	.kill_sb = kill_litter_super,
1406 	.fs_flags = FS_USERNS_MOUNT,
1407 };
1408 
1409 int mq_init_ns(struct ipc_namespace *ns)
1410 {
1411 	ns->mq_queues_count  = 0;
1412 	ns->mq_queues_max    = DFLT_QUEUESMAX;
1413 	ns->mq_msg_max       = DFLT_MSGMAX;
1414 	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1415 	ns->mq_msg_default   = DFLT_MSG;
1416 	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1417 
1418 	ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1419 	if (IS_ERR(ns->mq_mnt)) {
1420 		int err = PTR_ERR(ns->mq_mnt);
1421 		ns->mq_mnt = NULL;
1422 		return err;
1423 	}
1424 	return 0;
1425 }
1426 
1427 void mq_clear_sbinfo(struct ipc_namespace *ns)
1428 {
1429 	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1430 }
1431 
1432 void mq_put_mnt(struct ipc_namespace *ns)
1433 {
1434 	kern_unmount(ns->mq_mnt);
1435 }
1436 
1437 static int __init init_mqueue_fs(void)
1438 {
1439 	int error;
1440 
1441 	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1442 				sizeof(struct mqueue_inode_info), 0,
1443 				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1444 	if (mqueue_inode_cachep == NULL)
1445 		return -ENOMEM;
1446 
1447 	/* ignore failures - they are not fatal */
1448 	mq_sysctl_table = mq_register_sysctl_table();
1449 
1450 	error = register_filesystem(&mqueue_fs_type);
1451 	if (error)
1452 		goto out_sysctl;
1453 
1454 	spin_lock_init(&mq_lock);
1455 
1456 	error = mq_init_ns(&init_ipc_ns);
1457 	if (error)
1458 		goto out_filesystem;
1459 
1460 	return 0;
1461 
1462 out_filesystem:
1463 	unregister_filesystem(&mqueue_fs_type);
1464 out_sysctl:
1465 	if (mq_sysctl_table)
1466 		unregister_sysctl_table(mq_sysctl_table);
1467 	kmem_cache_destroy(mqueue_inode_cachep);
1468 	return error;
1469 }
1470 
1471 device_initcall(init_mqueue_fs);
1472