xref: /openbmc/linux/ipc/mqueue.c (revision e3d786a3)
1 /*
2  * POSIX message queues filesystem for Linux.
3  *
4  * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
5  *                          Michal Wronski          (michal.wronski@gmail.com)
6  *
7  * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
8  * Lockless receive & send, fd based notify:
9  *			    Manfred Spraul	    (manfred@colorfullife.com)
10  *
11  * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
12  *
13  * This file is released under the GPL.
14  */
15 
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/namei.h>
22 #include <linux/sysctl.h>
23 #include <linux/poll.h>
24 #include <linux/mqueue.h>
25 #include <linux/msg.h>
26 #include <linux/skbuff.h>
27 #include <linux/vmalloc.h>
28 #include <linux/netlink.h>
29 #include <linux/syscalls.h>
30 #include <linux/audit.h>
31 #include <linux/signal.h>
32 #include <linux/mutex.h>
33 #include <linux/nsproxy.h>
34 #include <linux/pid.h>
35 #include <linux/ipc_namespace.h>
36 #include <linux/user_namespace.h>
37 #include <linux/slab.h>
38 #include <linux/sched/wake_q.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/user.h>
41 
42 #include <net/sock.h>
43 #include "util.h"
44 
45 #define MQUEUE_MAGIC	0x19800202
46 #define DIRENT_SIZE	20
47 #define FILENT_SIZE	80
48 
49 #define SEND		0
50 #define RECV		1
51 
52 #define STATE_NONE	0
53 #define STATE_READY	1
54 
55 struct posix_msg_tree_node {
56 	struct rb_node		rb_node;
57 	struct list_head	msg_list;
58 	int			priority;
59 };
60 
61 struct ext_wait_queue {		/* queue of sleeping tasks */
62 	struct task_struct *task;
63 	struct list_head list;
64 	struct msg_msg *msg;	/* ptr of loaded message */
65 	int state;		/* one of STATE_* values */
66 };
67 
68 struct mqueue_inode_info {
69 	spinlock_t lock;
70 	struct inode vfs_inode;
71 	wait_queue_head_t wait_q;
72 
73 	struct rb_root msg_tree;
74 	struct posix_msg_tree_node *node_cache;
75 	struct mq_attr attr;
76 
77 	struct sigevent notify;
78 	struct pid *notify_owner;
79 	struct user_namespace *notify_user_ns;
80 	struct user_struct *user;	/* user who created, for accounting */
81 	struct sock *notify_sock;
82 	struct sk_buff *notify_cookie;
83 
84 	/* for tasks waiting for free space and messages, respectively */
85 	struct ext_wait_queue e_wait_q[2];
86 
87 	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
88 };
89 
90 static const struct inode_operations mqueue_dir_inode_operations;
91 static const struct file_operations mqueue_file_operations;
92 static const struct super_operations mqueue_super_ops;
93 static void remove_notification(struct mqueue_inode_info *info);
94 
95 static struct kmem_cache *mqueue_inode_cachep;
96 
97 static struct ctl_table_header *mq_sysctl_table;
98 
99 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
100 {
101 	return container_of(inode, struct mqueue_inode_info, vfs_inode);
102 }
103 
104 /*
105  * This routine should be called with the mq_lock held.
106  */
107 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
108 {
109 	return get_ipc_ns(inode->i_sb->s_fs_info);
110 }
111 
112 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
113 {
114 	struct ipc_namespace *ns;
115 
116 	spin_lock(&mq_lock);
117 	ns = __get_ns_from_inode(inode);
118 	spin_unlock(&mq_lock);
119 	return ns;
120 }
121 
122 /* Auxiliary functions to manipulate messages' list */
123 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
124 {
125 	struct rb_node **p, *parent = NULL;
126 	struct posix_msg_tree_node *leaf;
127 
128 	p = &info->msg_tree.rb_node;
129 	while (*p) {
130 		parent = *p;
131 		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
132 
133 		if (likely(leaf->priority == msg->m_type))
134 			goto insert_msg;
135 		else if (msg->m_type < leaf->priority)
136 			p = &(*p)->rb_left;
137 		else
138 			p = &(*p)->rb_right;
139 	}
140 	if (info->node_cache) {
141 		leaf = info->node_cache;
142 		info->node_cache = NULL;
143 	} else {
144 		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
145 		if (!leaf)
146 			return -ENOMEM;
147 		INIT_LIST_HEAD(&leaf->msg_list);
148 	}
149 	leaf->priority = msg->m_type;
150 	rb_link_node(&leaf->rb_node, parent, p);
151 	rb_insert_color(&leaf->rb_node, &info->msg_tree);
152 insert_msg:
153 	info->attr.mq_curmsgs++;
154 	info->qsize += msg->m_ts;
155 	list_add_tail(&msg->m_list, &leaf->msg_list);
156 	return 0;
157 }
158 
159 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
160 {
161 	struct rb_node **p, *parent = NULL;
162 	struct posix_msg_tree_node *leaf;
163 	struct msg_msg *msg;
164 
165 try_again:
166 	p = &info->msg_tree.rb_node;
167 	while (*p) {
168 		parent = *p;
169 		/*
170 		 * During insert, low priorities go to the left and high to the
171 		 * right.  On receive, we want the highest priorities first, so
172 		 * walk all the way to the right.
173 		 */
174 		p = &(*p)->rb_right;
175 	}
176 	if (!parent) {
177 		if (info->attr.mq_curmsgs) {
178 			pr_warn_once("Inconsistency in POSIX message queue, "
179 				     "no tree element, but supposedly messages "
180 				     "should exist!\n");
181 			info->attr.mq_curmsgs = 0;
182 		}
183 		return NULL;
184 	}
185 	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
186 	if (unlikely(list_empty(&leaf->msg_list))) {
187 		pr_warn_once("Inconsistency in POSIX message queue, "
188 			     "empty leaf node but we haven't implemented "
189 			     "lazy leaf delete!\n");
190 		rb_erase(&leaf->rb_node, &info->msg_tree);
191 		if (info->node_cache) {
192 			kfree(leaf);
193 		} else {
194 			info->node_cache = leaf;
195 		}
196 		goto try_again;
197 	} else {
198 		msg = list_first_entry(&leaf->msg_list,
199 				       struct msg_msg, m_list);
200 		list_del(&msg->m_list);
201 		if (list_empty(&leaf->msg_list)) {
202 			rb_erase(&leaf->rb_node, &info->msg_tree);
203 			if (info->node_cache) {
204 				kfree(leaf);
205 			} else {
206 				info->node_cache = leaf;
207 			}
208 		}
209 	}
210 	info->attr.mq_curmsgs--;
211 	info->qsize -= msg->m_ts;
212 	return msg;
213 }
214 
215 static struct inode *mqueue_get_inode(struct super_block *sb,
216 		struct ipc_namespace *ipc_ns, umode_t mode,
217 		struct mq_attr *attr)
218 {
219 	struct user_struct *u = current_user();
220 	struct inode *inode;
221 	int ret = -ENOMEM;
222 
223 	inode = new_inode(sb);
224 	if (!inode)
225 		goto err;
226 
227 	inode->i_ino = get_next_ino();
228 	inode->i_mode = mode;
229 	inode->i_uid = current_fsuid();
230 	inode->i_gid = current_fsgid();
231 	inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
232 
233 	if (S_ISREG(mode)) {
234 		struct mqueue_inode_info *info;
235 		unsigned long mq_bytes, mq_treesize;
236 
237 		inode->i_fop = &mqueue_file_operations;
238 		inode->i_size = FILENT_SIZE;
239 		/* mqueue specific info */
240 		info = MQUEUE_I(inode);
241 		spin_lock_init(&info->lock);
242 		init_waitqueue_head(&info->wait_q);
243 		INIT_LIST_HEAD(&info->e_wait_q[0].list);
244 		INIT_LIST_HEAD(&info->e_wait_q[1].list);
245 		info->notify_owner = NULL;
246 		info->notify_user_ns = NULL;
247 		info->qsize = 0;
248 		info->user = NULL;	/* set when all is ok */
249 		info->msg_tree = RB_ROOT;
250 		info->node_cache = NULL;
251 		memset(&info->attr, 0, sizeof(info->attr));
252 		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
253 					   ipc_ns->mq_msg_default);
254 		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
255 					    ipc_ns->mq_msgsize_default);
256 		if (attr) {
257 			info->attr.mq_maxmsg = attr->mq_maxmsg;
258 			info->attr.mq_msgsize = attr->mq_msgsize;
259 		}
260 		/*
261 		 * We used to allocate a static array of pointers and account
262 		 * the size of that array as well as one msg_msg struct per
263 		 * possible message into the queue size. That's no longer
264 		 * accurate as the queue is now an rbtree and will grow and
265 		 * shrink depending on usage patterns.  We can, however, still
266 		 * account one msg_msg struct per message, but the nodes are
267 		 * allocated depending on priority usage, and most programs
268 		 * only use one, or a handful, of priorities.  However, since
269 		 * this is pinned memory, we need to assume worst case, so
270 		 * that means the min(mq_maxmsg, max_priorities) * struct
271 		 * posix_msg_tree_node.
272 		 */
273 
274 		ret = -EINVAL;
275 		if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
276 			goto out_inode;
277 		if (capable(CAP_SYS_RESOURCE)) {
278 			if (info->attr.mq_maxmsg > HARD_MSGMAX ||
279 			    info->attr.mq_msgsize > HARD_MSGSIZEMAX)
280 				goto out_inode;
281 		} else {
282 			if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
283 					info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
284 				goto out_inode;
285 		}
286 		ret = -EOVERFLOW;
287 		/* check for overflow */
288 		if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
289 			goto out_inode;
290 		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
291 			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
292 			sizeof(struct posix_msg_tree_node);
293 		mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
294 		if (mq_bytes + mq_treesize < mq_bytes)
295 			goto out_inode;
296 		mq_bytes += mq_treesize;
297 		spin_lock(&mq_lock);
298 		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
299 		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
300 			spin_unlock(&mq_lock);
301 			/* mqueue_evict_inode() releases info->messages */
302 			ret = -EMFILE;
303 			goto out_inode;
304 		}
305 		u->mq_bytes += mq_bytes;
306 		spin_unlock(&mq_lock);
307 
308 		/* all is ok */
309 		info->user = get_uid(u);
310 	} else if (S_ISDIR(mode)) {
311 		inc_nlink(inode);
312 		/* Some things misbehave if size == 0 on a directory */
313 		inode->i_size = 2 * DIRENT_SIZE;
314 		inode->i_op = &mqueue_dir_inode_operations;
315 		inode->i_fop = &simple_dir_operations;
316 	}
317 
318 	return inode;
319 out_inode:
320 	iput(inode);
321 err:
322 	return ERR_PTR(ret);
323 }
324 
325 static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
326 {
327 	struct inode *inode;
328 	struct ipc_namespace *ns = sb->s_fs_info;
329 
330 	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
331 	sb->s_blocksize = PAGE_SIZE;
332 	sb->s_blocksize_bits = PAGE_SHIFT;
333 	sb->s_magic = MQUEUE_MAGIC;
334 	sb->s_op = &mqueue_super_ops;
335 
336 	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
337 	if (IS_ERR(inode))
338 		return PTR_ERR(inode);
339 
340 	sb->s_root = d_make_root(inode);
341 	if (!sb->s_root)
342 		return -ENOMEM;
343 	return 0;
344 }
345 
346 static struct dentry *mqueue_mount(struct file_system_type *fs_type,
347 			 int flags, const char *dev_name,
348 			 void *data)
349 {
350 	struct ipc_namespace *ns;
351 	if (flags & SB_KERNMOUNT) {
352 		ns = data;
353 		data = NULL;
354 	} else {
355 		ns = current->nsproxy->ipc_ns;
356 	}
357 	return mount_ns(fs_type, flags, data, ns, ns->user_ns, mqueue_fill_super);
358 }
359 
360 static void init_once(void *foo)
361 {
362 	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
363 
364 	inode_init_once(&p->vfs_inode);
365 }
366 
367 static struct inode *mqueue_alloc_inode(struct super_block *sb)
368 {
369 	struct mqueue_inode_info *ei;
370 
371 	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
372 	if (!ei)
373 		return NULL;
374 	return &ei->vfs_inode;
375 }
376 
377 static void mqueue_i_callback(struct rcu_head *head)
378 {
379 	struct inode *inode = container_of(head, struct inode, i_rcu);
380 	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
381 }
382 
383 static void mqueue_destroy_inode(struct inode *inode)
384 {
385 	call_rcu(&inode->i_rcu, mqueue_i_callback);
386 }
387 
388 static void mqueue_evict_inode(struct inode *inode)
389 {
390 	struct mqueue_inode_info *info;
391 	struct user_struct *user;
392 	unsigned long mq_bytes, mq_treesize;
393 	struct ipc_namespace *ipc_ns;
394 	struct msg_msg *msg;
395 
396 	clear_inode(inode);
397 
398 	if (S_ISDIR(inode->i_mode))
399 		return;
400 
401 	ipc_ns = get_ns_from_inode(inode);
402 	info = MQUEUE_I(inode);
403 	spin_lock(&info->lock);
404 	while ((msg = msg_get(info)) != NULL)
405 		free_msg(msg);
406 	kfree(info->node_cache);
407 	spin_unlock(&info->lock);
408 
409 	/* Total amount of bytes accounted for the mqueue */
410 	mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
411 		min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
412 		sizeof(struct posix_msg_tree_node);
413 
414 	mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
415 				  info->attr.mq_msgsize);
416 
417 	user = info->user;
418 	if (user) {
419 		spin_lock(&mq_lock);
420 		user->mq_bytes -= mq_bytes;
421 		/*
422 		 * get_ns_from_inode() ensures that the
423 		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
424 		 * to which we now hold a reference, or it is NULL.
425 		 * We can't put it here under mq_lock, though.
426 		 */
427 		if (ipc_ns)
428 			ipc_ns->mq_queues_count--;
429 		spin_unlock(&mq_lock);
430 		free_uid(user);
431 	}
432 	if (ipc_ns)
433 		put_ipc_ns(ipc_ns);
434 }
435 
436 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
437 {
438 	struct inode *dir = dentry->d_parent->d_inode;
439 	struct inode *inode;
440 	struct mq_attr *attr = arg;
441 	int error;
442 	struct ipc_namespace *ipc_ns;
443 
444 	spin_lock(&mq_lock);
445 	ipc_ns = __get_ns_from_inode(dir);
446 	if (!ipc_ns) {
447 		error = -EACCES;
448 		goto out_unlock;
449 	}
450 
451 	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
452 	    !capable(CAP_SYS_RESOURCE)) {
453 		error = -ENOSPC;
454 		goto out_unlock;
455 	}
456 	ipc_ns->mq_queues_count++;
457 	spin_unlock(&mq_lock);
458 
459 	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
460 	if (IS_ERR(inode)) {
461 		error = PTR_ERR(inode);
462 		spin_lock(&mq_lock);
463 		ipc_ns->mq_queues_count--;
464 		goto out_unlock;
465 	}
466 
467 	put_ipc_ns(ipc_ns);
468 	dir->i_size += DIRENT_SIZE;
469 	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
470 
471 	d_instantiate(dentry, inode);
472 	dget(dentry);
473 	return 0;
474 out_unlock:
475 	spin_unlock(&mq_lock);
476 	if (ipc_ns)
477 		put_ipc_ns(ipc_ns);
478 	return error;
479 }
480 
481 static int mqueue_create(struct inode *dir, struct dentry *dentry,
482 				umode_t mode, bool excl)
483 {
484 	return mqueue_create_attr(dentry, mode, NULL);
485 }
486 
487 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
488 {
489 	struct inode *inode = d_inode(dentry);
490 
491 	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
492 	dir->i_size -= DIRENT_SIZE;
493 	drop_nlink(inode);
494 	dput(dentry);
495 	return 0;
496 }
497 
498 /*
499 *	This is routine for system read from queue file.
500 *	To avoid mess with doing here some sort of mq_receive we allow
501 *	to read only queue size & notification info (the only values
502 *	that are interesting from user point of view and aren't accessible
503 *	through std routines)
504 */
505 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
506 				size_t count, loff_t *off)
507 {
508 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
509 	char buffer[FILENT_SIZE];
510 	ssize_t ret;
511 
512 	spin_lock(&info->lock);
513 	snprintf(buffer, sizeof(buffer),
514 			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
515 			info->qsize,
516 			info->notify_owner ? info->notify.sigev_notify : 0,
517 			(info->notify_owner &&
518 			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
519 				info->notify.sigev_signo : 0,
520 			pid_vnr(info->notify_owner));
521 	spin_unlock(&info->lock);
522 	buffer[sizeof(buffer)-1] = '\0';
523 
524 	ret = simple_read_from_buffer(u_data, count, off, buffer,
525 				strlen(buffer));
526 	if (ret <= 0)
527 		return ret;
528 
529 	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
530 	return ret;
531 }
532 
533 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
534 {
535 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
536 
537 	spin_lock(&info->lock);
538 	if (task_tgid(current) == info->notify_owner)
539 		remove_notification(info);
540 
541 	spin_unlock(&info->lock);
542 	return 0;
543 }
544 
545 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
546 {
547 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
548 	__poll_t retval = 0;
549 
550 	poll_wait(filp, &info->wait_q, poll_tab);
551 
552 	spin_lock(&info->lock);
553 	if (info->attr.mq_curmsgs)
554 		retval = EPOLLIN | EPOLLRDNORM;
555 
556 	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
557 		retval |= EPOLLOUT | EPOLLWRNORM;
558 	spin_unlock(&info->lock);
559 
560 	return retval;
561 }
562 
563 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
564 static void wq_add(struct mqueue_inode_info *info, int sr,
565 			struct ext_wait_queue *ewp)
566 {
567 	struct ext_wait_queue *walk;
568 
569 	ewp->task = current;
570 
571 	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
572 		if (walk->task->prio <= current->prio) {
573 			list_add_tail(&ewp->list, &walk->list);
574 			return;
575 		}
576 	}
577 	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
578 }
579 
580 /*
581  * Puts current task to sleep. Caller must hold queue lock. After return
582  * lock isn't held.
583  * sr: SEND or RECV
584  */
585 static int wq_sleep(struct mqueue_inode_info *info, int sr,
586 		    ktime_t *timeout, struct ext_wait_queue *ewp)
587 	__releases(&info->lock)
588 {
589 	int retval;
590 	signed long time;
591 
592 	wq_add(info, sr, ewp);
593 
594 	for (;;) {
595 		__set_current_state(TASK_INTERRUPTIBLE);
596 
597 		spin_unlock(&info->lock);
598 		time = schedule_hrtimeout_range_clock(timeout, 0,
599 			HRTIMER_MODE_ABS, CLOCK_REALTIME);
600 
601 		if (ewp->state == STATE_READY) {
602 			retval = 0;
603 			goto out;
604 		}
605 		spin_lock(&info->lock);
606 		if (ewp->state == STATE_READY) {
607 			retval = 0;
608 			goto out_unlock;
609 		}
610 		if (signal_pending(current)) {
611 			retval = -ERESTARTSYS;
612 			break;
613 		}
614 		if (time == 0) {
615 			retval = -ETIMEDOUT;
616 			break;
617 		}
618 	}
619 	list_del(&ewp->list);
620 out_unlock:
621 	spin_unlock(&info->lock);
622 out:
623 	return retval;
624 }
625 
626 /*
627  * Returns waiting task that should be serviced first or NULL if none exists
628  */
629 static struct ext_wait_queue *wq_get_first_waiter(
630 		struct mqueue_inode_info *info, int sr)
631 {
632 	struct list_head *ptr;
633 
634 	ptr = info->e_wait_q[sr].list.prev;
635 	if (ptr == &info->e_wait_q[sr].list)
636 		return NULL;
637 	return list_entry(ptr, struct ext_wait_queue, list);
638 }
639 
640 
641 static inline void set_cookie(struct sk_buff *skb, char code)
642 {
643 	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
644 }
645 
646 /*
647  * The next function is only to split too long sys_mq_timedsend
648  */
649 static void __do_notify(struct mqueue_inode_info *info)
650 {
651 	/* notification
652 	 * invoked when there is registered process and there isn't process
653 	 * waiting synchronously for message AND state of queue changed from
654 	 * empty to not empty. Here we are sure that no one is waiting
655 	 * synchronously. */
656 	if (info->notify_owner &&
657 	    info->attr.mq_curmsgs == 1) {
658 		struct kernel_siginfo sig_i;
659 		switch (info->notify.sigev_notify) {
660 		case SIGEV_NONE:
661 			break;
662 		case SIGEV_SIGNAL:
663 			/* sends signal */
664 
665 			clear_siginfo(&sig_i);
666 			sig_i.si_signo = info->notify.sigev_signo;
667 			sig_i.si_errno = 0;
668 			sig_i.si_code = SI_MESGQ;
669 			sig_i.si_value = info->notify.sigev_value;
670 			/* map current pid/uid into info->owner's namespaces */
671 			rcu_read_lock();
672 			sig_i.si_pid = task_tgid_nr_ns(current,
673 						ns_of_pid(info->notify_owner));
674 			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
675 			rcu_read_unlock();
676 
677 			kill_pid_info(info->notify.sigev_signo,
678 				      &sig_i, info->notify_owner);
679 			break;
680 		case SIGEV_THREAD:
681 			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
682 			netlink_sendskb(info->notify_sock, info->notify_cookie);
683 			break;
684 		}
685 		/* after notification unregisters process */
686 		put_pid(info->notify_owner);
687 		put_user_ns(info->notify_user_ns);
688 		info->notify_owner = NULL;
689 		info->notify_user_ns = NULL;
690 	}
691 	wake_up(&info->wait_q);
692 }
693 
694 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
695 			   struct timespec64 *ts)
696 {
697 	if (get_timespec64(ts, u_abs_timeout))
698 		return -EFAULT;
699 	if (!timespec64_valid(ts))
700 		return -EINVAL;
701 	return 0;
702 }
703 
704 static void remove_notification(struct mqueue_inode_info *info)
705 {
706 	if (info->notify_owner != NULL &&
707 	    info->notify.sigev_notify == SIGEV_THREAD) {
708 		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
709 		netlink_sendskb(info->notify_sock, info->notify_cookie);
710 	}
711 	put_pid(info->notify_owner);
712 	put_user_ns(info->notify_user_ns);
713 	info->notify_owner = NULL;
714 	info->notify_user_ns = NULL;
715 }
716 
717 static int prepare_open(struct dentry *dentry, int oflag, int ro,
718 			umode_t mode, struct filename *name,
719 			struct mq_attr *attr)
720 {
721 	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
722 						  MAY_READ | MAY_WRITE };
723 	int acc;
724 
725 	if (d_really_is_negative(dentry)) {
726 		if (!(oflag & O_CREAT))
727 			return -ENOENT;
728 		if (ro)
729 			return ro;
730 		audit_inode_parent_hidden(name, dentry->d_parent);
731 		return vfs_mkobj(dentry, mode & ~current_umask(),
732 				  mqueue_create_attr, attr);
733 	}
734 	/* it already existed */
735 	audit_inode(name, dentry, 0);
736 	if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
737 		return -EEXIST;
738 	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
739 		return -EINVAL;
740 	acc = oflag2acc[oflag & O_ACCMODE];
741 	return inode_permission(d_inode(dentry), acc);
742 }
743 
744 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
745 		      struct mq_attr *attr)
746 {
747 	struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
748 	struct dentry *root = mnt->mnt_root;
749 	struct filename *name;
750 	struct path path;
751 	int fd, error;
752 	int ro;
753 
754 	audit_mq_open(oflag, mode, attr);
755 
756 	if (IS_ERR(name = getname(u_name)))
757 		return PTR_ERR(name);
758 
759 	fd = get_unused_fd_flags(O_CLOEXEC);
760 	if (fd < 0)
761 		goto out_putname;
762 
763 	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
764 	inode_lock(d_inode(root));
765 	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
766 	if (IS_ERR(path.dentry)) {
767 		error = PTR_ERR(path.dentry);
768 		goto out_putfd;
769 	}
770 	path.mnt = mntget(mnt);
771 	error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
772 	if (!error) {
773 		struct file *file = dentry_open(&path, oflag, current_cred());
774 		if (!IS_ERR(file))
775 			fd_install(fd, file);
776 		else
777 			error = PTR_ERR(file);
778 	}
779 	path_put(&path);
780 out_putfd:
781 	if (error) {
782 		put_unused_fd(fd);
783 		fd = error;
784 	}
785 	inode_unlock(d_inode(root));
786 	if (!ro)
787 		mnt_drop_write(mnt);
788 out_putname:
789 	putname(name);
790 	return fd;
791 }
792 
793 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
794 		struct mq_attr __user *, u_attr)
795 {
796 	struct mq_attr attr;
797 	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
798 		return -EFAULT;
799 
800 	return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
801 }
802 
803 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
804 {
805 	int err;
806 	struct filename *name;
807 	struct dentry *dentry;
808 	struct inode *inode = NULL;
809 	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
810 	struct vfsmount *mnt = ipc_ns->mq_mnt;
811 
812 	name = getname(u_name);
813 	if (IS_ERR(name))
814 		return PTR_ERR(name);
815 
816 	audit_inode_parent_hidden(name, mnt->mnt_root);
817 	err = mnt_want_write(mnt);
818 	if (err)
819 		goto out_name;
820 	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
821 	dentry = lookup_one_len(name->name, mnt->mnt_root,
822 				strlen(name->name));
823 	if (IS_ERR(dentry)) {
824 		err = PTR_ERR(dentry);
825 		goto out_unlock;
826 	}
827 
828 	inode = d_inode(dentry);
829 	if (!inode) {
830 		err = -ENOENT;
831 	} else {
832 		ihold(inode);
833 		err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
834 	}
835 	dput(dentry);
836 
837 out_unlock:
838 	inode_unlock(d_inode(mnt->mnt_root));
839 	if (inode)
840 		iput(inode);
841 	mnt_drop_write(mnt);
842 out_name:
843 	putname(name);
844 
845 	return err;
846 }
847 
848 /* Pipelined send and receive functions.
849  *
850  * If a receiver finds no waiting message, then it registers itself in the
851  * list of waiting receivers. A sender checks that list before adding the new
852  * message into the message array. If there is a waiting receiver, then it
853  * bypasses the message array and directly hands the message over to the
854  * receiver. The receiver accepts the message and returns without grabbing the
855  * queue spinlock:
856  *
857  * - Set pointer to message.
858  * - Queue the receiver task for later wakeup (without the info->lock).
859  * - Update its state to STATE_READY. Now the receiver can continue.
860  * - Wake up the process after the lock is dropped. Should the process wake up
861  *   before this wakeup (due to a timeout or a signal) it will either see
862  *   STATE_READY and continue or acquire the lock to check the state again.
863  *
864  * The same algorithm is used for senders.
865  */
866 
867 /* pipelined_send() - send a message directly to the task waiting in
868  * sys_mq_timedreceive() (without inserting message into a queue).
869  */
870 static inline void pipelined_send(struct wake_q_head *wake_q,
871 				  struct mqueue_inode_info *info,
872 				  struct msg_msg *message,
873 				  struct ext_wait_queue *receiver)
874 {
875 	receiver->msg = message;
876 	list_del(&receiver->list);
877 	wake_q_add(wake_q, receiver->task);
878 	/*
879 	 * Rely on the implicit cmpxchg barrier from wake_q_add such
880 	 * that we can ensure that updating receiver->state is the last
881 	 * write operation: As once set, the receiver can continue,
882 	 * and if we don't have the reference count from the wake_q,
883 	 * yet, at that point we can later have a use-after-free
884 	 * condition and bogus wakeup.
885 	 */
886 	receiver->state = STATE_READY;
887 }
888 
889 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
890  * gets its message and put to the queue (we have one free place for sure). */
891 static inline void pipelined_receive(struct wake_q_head *wake_q,
892 				     struct mqueue_inode_info *info)
893 {
894 	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
895 
896 	if (!sender) {
897 		/* for poll */
898 		wake_up_interruptible(&info->wait_q);
899 		return;
900 	}
901 	if (msg_insert(sender->msg, info))
902 		return;
903 
904 	list_del(&sender->list);
905 	wake_q_add(wake_q, sender->task);
906 	sender->state = STATE_READY;
907 }
908 
909 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
910 		size_t msg_len, unsigned int msg_prio,
911 		struct timespec64 *ts)
912 {
913 	struct fd f;
914 	struct inode *inode;
915 	struct ext_wait_queue wait;
916 	struct ext_wait_queue *receiver;
917 	struct msg_msg *msg_ptr;
918 	struct mqueue_inode_info *info;
919 	ktime_t expires, *timeout = NULL;
920 	struct posix_msg_tree_node *new_leaf = NULL;
921 	int ret = 0;
922 	DEFINE_WAKE_Q(wake_q);
923 
924 	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
925 		return -EINVAL;
926 
927 	if (ts) {
928 		expires = timespec64_to_ktime(*ts);
929 		timeout = &expires;
930 	}
931 
932 	audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
933 
934 	f = fdget(mqdes);
935 	if (unlikely(!f.file)) {
936 		ret = -EBADF;
937 		goto out;
938 	}
939 
940 	inode = file_inode(f.file);
941 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
942 		ret = -EBADF;
943 		goto out_fput;
944 	}
945 	info = MQUEUE_I(inode);
946 	audit_file(f.file);
947 
948 	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
949 		ret = -EBADF;
950 		goto out_fput;
951 	}
952 
953 	if (unlikely(msg_len > info->attr.mq_msgsize)) {
954 		ret = -EMSGSIZE;
955 		goto out_fput;
956 	}
957 
958 	/* First try to allocate memory, before doing anything with
959 	 * existing queues. */
960 	msg_ptr = load_msg(u_msg_ptr, msg_len);
961 	if (IS_ERR(msg_ptr)) {
962 		ret = PTR_ERR(msg_ptr);
963 		goto out_fput;
964 	}
965 	msg_ptr->m_ts = msg_len;
966 	msg_ptr->m_type = msg_prio;
967 
968 	/*
969 	 * msg_insert really wants us to have a valid, spare node struct so
970 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
971 	 * fall back to that if necessary.
972 	 */
973 	if (!info->node_cache)
974 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
975 
976 	spin_lock(&info->lock);
977 
978 	if (!info->node_cache && new_leaf) {
979 		/* Save our speculative allocation into the cache */
980 		INIT_LIST_HEAD(&new_leaf->msg_list);
981 		info->node_cache = new_leaf;
982 		new_leaf = NULL;
983 	} else {
984 		kfree(new_leaf);
985 	}
986 
987 	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
988 		if (f.file->f_flags & O_NONBLOCK) {
989 			ret = -EAGAIN;
990 		} else {
991 			wait.task = current;
992 			wait.msg = (void *) msg_ptr;
993 			wait.state = STATE_NONE;
994 			ret = wq_sleep(info, SEND, timeout, &wait);
995 			/*
996 			 * wq_sleep must be called with info->lock held, and
997 			 * returns with the lock released
998 			 */
999 			goto out_free;
1000 		}
1001 	} else {
1002 		receiver = wq_get_first_waiter(info, RECV);
1003 		if (receiver) {
1004 			pipelined_send(&wake_q, info, msg_ptr, receiver);
1005 		} else {
1006 			/* adds message to the queue */
1007 			ret = msg_insert(msg_ptr, info);
1008 			if (ret)
1009 				goto out_unlock;
1010 			__do_notify(info);
1011 		}
1012 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1013 				current_time(inode);
1014 	}
1015 out_unlock:
1016 	spin_unlock(&info->lock);
1017 	wake_up_q(&wake_q);
1018 out_free:
1019 	if (ret)
1020 		free_msg(msg_ptr);
1021 out_fput:
1022 	fdput(f);
1023 out:
1024 	return ret;
1025 }
1026 
1027 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1028 		size_t msg_len, unsigned int __user *u_msg_prio,
1029 		struct timespec64 *ts)
1030 {
1031 	ssize_t ret;
1032 	struct msg_msg *msg_ptr;
1033 	struct fd f;
1034 	struct inode *inode;
1035 	struct mqueue_inode_info *info;
1036 	struct ext_wait_queue wait;
1037 	ktime_t expires, *timeout = NULL;
1038 	struct posix_msg_tree_node *new_leaf = NULL;
1039 
1040 	if (ts) {
1041 		expires = timespec64_to_ktime(*ts);
1042 		timeout = &expires;
1043 	}
1044 
1045 	audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1046 
1047 	f = fdget(mqdes);
1048 	if (unlikely(!f.file)) {
1049 		ret = -EBADF;
1050 		goto out;
1051 	}
1052 
1053 	inode = file_inode(f.file);
1054 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1055 		ret = -EBADF;
1056 		goto out_fput;
1057 	}
1058 	info = MQUEUE_I(inode);
1059 	audit_file(f.file);
1060 
1061 	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1062 		ret = -EBADF;
1063 		goto out_fput;
1064 	}
1065 
1066 	/* checks if buffer is big enough */
1067 	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1068 		ret = -EMSGSIZE;
1069 		goto out_fput;
1070 	}
1071 
1072 	/*
1073 	 * msg_insert really wants us to have a valid, spare node struct so
1074 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1075 	 * fall back to that if necessary.
1076 	 */
1077 	if (!info->node_cache)
1078 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1079 
1080 	spin_lock(&info->lock);
1081 
1082 	if (!info->node_cache && new_leaf) {
1083 		/* Save our speculative allocation into the cache */
1084 		INIT_LIST_HEAD(&new_leaf->msg_list);
1085 		info->node_cache = new_leaf;
1086 	} else {
1087 		kfree(new_leaf);
1088 	}
1089 
1090 	if (info->attr.mq_curmsgs == 0) {
1091 		if (f.file->f_flags & O_NONBLOCK) {
1092 			spin_unlock(&info->lock);
1093 			ret = -EAGAIN;
1094 		} else {
1095 			wait.task = current;
1096 			wait.state = STATE_NONE;
1097 			ret = wq_sleep(info, RECV, timeout, &wait);
1098 			msg_ptr = wait.msg;
1099 		}
1100 	} else {
1101 		DEFINE_WAKE_Q(wake_q);
1102 
1103 		msg_ptr = msg_get(info);
1104 
1105 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1106 				current_time(inode);
1107 
1108 		/* There is now free space in queue. */
1109 		pipelined_receive(&wake_q, info);
1110 		spin_unlock(&info->lock);
1111 		wake_up_q(&wake_q);
1112 		ret = 0;
1113 	}
1114 	if (ret == 0) {
1115 		ret = msg_ptr->m_ts;
1116 
1117 		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1118 			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1119 			ret = -EFAULT;
1120 		}
1121 		free_msg(msg_ptr);
1122 	}
1123 out_fput:
1124 	fdput(f);
1125 out:
1126 	return ret;
1127 }
1128 
1129 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1130 		size_t, msg_len, unsigned int, msg_prio,
1131 		const struct __kernel_timespec __user *, u_abs_timeout)
1132 {
1133 	struct timespec64 ts, *p = NULL;
1134 	if (u_abs_timeout) {
1135 		int res = prepare_timeout(u_abs_timeout, &ts);
1136 		if (res)
1137 			return res;
1138 		p = &ts;
1139 	}
1140 	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1141 }
1142 
1143 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1144 		size_t, msg_len, unsigned int __user *, u_msg_prio,
1145 		const struct __kernel_timespec __user *, u_abs_timeout)
1146 {
1147 	struct timespec64 ts, *p = NULL;
1148 	if (u_abs_timeout) {
1149 		int res = prepare_timeout(u_abs_timeout, &ts);
1150 		if (res)
1151 			return res;
1152 		p = &ts;
1153 	}
1154 	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1155 }
1156 
1157 /*
1158  * Notes: the case when user wants us to deregister (with NULL as pointer)
1159  * and he isn't currently owner of notification, will be silently discarded.
1160  * It isn't explicitly defined in the POSIX.
1161  */
1162 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1163 {
1164 	int ret;
1165 	struct fd f;
1166 	struct sock *sock;
1167 	struct inode *inode;
1168 	struct mqueue_inode_info *info;
1169 	struct sk_buff *nc;
1170 
1171 	audit_mq_notify(mqdes, notification);
1172 
1173 	nc = NULL;
1174 	sock = NULL;
1175 	if (notification != NULL) {
1176 		if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1177 			     notification->sigev_notify != SIGEV_SIGNAL &&
1178 			     notification->sigev_notify != SIGEV_THREAD))
1179 			return -EINVAL;
1180 		if (notification->sigev_notify == SIGEV_SIGNAL &&
1181 			!valid_signal(notification->sigev_signo)) {
1182 			return -EINVAL;
1183 		}
1184 		if (notification->sigev_notify == SIGEV_THREAD) {
1185 			long timeo;
1186 
1187 			/* create the notify skb */
1188 			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1189 			if (!nc) {
1190 				ret = -ENOMEM;
1191 				goto out;
1192 			}
1193 			if (copy_from_user(nc->data,
1194 					notification->sigev_value.sival_ptr,
1195 					NOTIFY_COOKIE_LEN)) {
1196 				ret = -EFAULT;
1197 				goto out;
1198 			}
1199 
1200 			/* TODO: add a header? */
1201 			skb_put(nc, NOTIFY_COOKIE_LEN);
1202 			/* and attach it to the socket */
1203 retry:
1204 			f = fdget(notification->sigev_signo);
1205 			if (!f.file) {
1206 				ret = -EBADF;
1207 				goto out;
1208 			}
1209 			sock = netlink_getsockbyfilp(f.file);
1210 			fdput(f);
1211 			if (IS_ERR(sock)) {
1212 				ret = PTR_ERR(sock);
1213 				sock = NULL;
1214 				goto out;
1215 			}
1216 
1217 			timeo = MAX_SCHEDULE_TIMEOUT;
1218 			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1219 			if (ret == 1) {
1220 				sock = NULL;
1221 				goto retry;
1222 			}
1223 			if (ret) {
1224 				sock = NULL;
1225 				nc = NULL;
1226 				goto out;
1227 			}
1228 		}
1229 	}
1230 
1231 	f = fdget(mqdes);
1232 	if (!f.file) {
1233 		ret = -EBADF;
1234 		goto out;
1235 	}
1236 
1237 	inode = file_inode(f.file);
1238 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1239 		ret = -EBADF;
1240 		goto out_fput;
1241 	}
1242 	info = MQUEUE_I(inode);
1243 
1244 	ret = 0;
1245 	spin_lock(&info->lock);
1246 	if (notification == NULL) {
1247 		if (info->notify_owner == task_tgid(current)) {
1248 			remove_notification(info);
1249 			inode->i_atime = inode->i_ctime = current_time(inode);
1250 		}
1251 	} else if (info->notify_owner != NULL) {
1252 		ret = -EBUSY;
1253 	} else {
1254 		switch (notification->sigev_notify) {
1255 		case SIGEV_NONE:
1256 			info->notify.sigev_notify = SIGEV_NONE;
1257 			break;
1258 		case SIGEV_THREAD:
1259 			info->notify_sock = sock;
1260 			info->notify_cookie = nc;
1261 			sock = NULL;
1262 			nc = NULL;
1263 			info->notify.sigev_notify = SIGEV_THREAD;
1264 			break;
1265 		case SIGEV_SIGNAL:
1266 			info->notify.sigev_signo = notification->sigev_signo;
1267 			info->notify.sigev_value = notification->sigev_value;
1268 			info->notify.sigev_notify = SIGEV_SIGNAL;
1269 			break;
1270 		}
1271 
1272 		info->notify_owner = get_pid(task_tgid(current));
1273 		info->notify_user_ns = get_user_ns(current_user_ns());
1274 		inode->i_atime = inode->i_ctime = current_time(inode);
1275 	}
1276 	spin_unlock(&info->lock);
1277 out_fput:
1278 	fdput(f);
1279 out:
1280 	if (sock)
1281 		netlink_detachskb(sock, nc);
1282 	else if (nc)
1283 		dev_kfree_skb(nc);
1284 
1285 	return ret;
1286 }
1287 
1288 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1289 		const struct sigevent __user *, u_notification)
1290 {
1291 	struct sigevent n, *p = NULL;
1292 	if (u_notification) {
1293 		if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1294 			return -EFAULT;
1295 		p = &n;
1296 	}
1297 	return do_mq_notify(mqdes, p);
1298 }
1299 
1300 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1301 {
1302 	struct fd f;
1303 	struct inode *inode;
1304 	struct mqueue_inode_info *info;
1305 
1306 	if (new && (new->mq_flags & (~O_NONBLOCK)))
1307 		return -EINVAL;
1308 
1309 	f = fdget(mqdes);
1310 	if (!f.file)
1311 		return -EBADF;
1312 
1313 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1314 		fdput(f);
1315 		return -EBADF;
1316 	}
1317 
1318 	inode = file_inode(f.file);
1319 	info = MQUEUE_I(inode);
1320 
1321 	spin_lock(&info->lock);
1322 
1323 	if (old) {
1324 		*old = info->attr;
1325 		old->mq_flags = f.file->f_flags & O_NONBLOCK;
1326 	}
1327 	if (new) {
1328 		audit_mq_getsetattr(mqdes, new);
1329 		spin_lock(&f.file->f_lock);
1330 		if (new->mq_flags & O_NONBLOCK)
1331 			f.file->f_flags |= O_NONBLOCK;
1332 		else
1333 			f.file->f_flags &= ~O_NONBLOCK;
1334 		spin_unlock(&f.file->f_lock);
1335 
1336 		inode->i_atime = inode->i_ctime = current_time(inode);
1337 	}
1338 
1339 	spin_unlock(&info->lock);
1340 	fdput(f);
1341 	return 0;
1342 }
1343 
1344 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1345 		const struct mq_attr __user *, u_mqstat,
1346 		struct mq_attr __user *, u_omqstat)
1347 {
1348 	int ret;
1349 	struct mq_attr mqstat, omqstat;
1350 	struct mq_attr *new = NULL, *old = NULL;
1351 
1352 	if (u_mqstat) {
1353 		new = &mqstat;
1354 		if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1355 			return -EFAULT;
1356 	}
1357 	if (u_omqstat)
1358 		old = &omqstat;
1359 
1360 	ret = do_mq_getsetattr(mqdes, new, old);
1361 	if (ret || !old)
1362 		return ret;
1363 
1364 	if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1365 		return -EFAULT;
1366 	return 0;
1367 }
1368 
1369 #ifdef CONFIG_COMPAT
1370 
1371 struct compat_mq_attr {
1372 	compat_long_t mq_flags;      /* message queue flags		     */
1373 	compat_long_t mq_maxmsg;     /* maximum number of messages	     */
1374 	compat_long_t mq_msgsize;    /* maximum message size		     */
1375 	compat_long_t mq_curmsgs;    /* number of messages currently queued  */
1376 	compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1377 };
1378 
1379 static inline int get_compat_mq_attr(struct mq_attr *attr,
1380 			const struct compat_mq_attr __user *uattr)
1381 {
1382 	struct compat_mq_attr v;
1383 
1384 	if (copy_from_user(&v, uattr, sizeof(*uattr)))
1385 		return -EFAULT;
1386 
1387 	memset(attr, 0, sizeof(*attr));
1388 	attr->mq_flags = v.mq_flags;
1389 	attr->mq_maxmsg = v.mq_maxmsg;
1390 	attr->mq_msgsize = v.mq_msgsize;
1391 	attr->mq_curmsgs = v.mq_curmsgs;
1392 	return 0;
1393 }
1394 
1395 static inline int put_compat_mq_attr(const struct mq_attr *attr,
1396 			struct compat_mq_attr __user *uattr)
1397 {
1398 	struct compat_mq_attr v;
1399 
1400 	memset(&v, 0, sizeof(v));
1401 	v.mq_flags = attr->mq_flags;
1402 	v.mq_maxmsg = attr->mq_maxmsg;
1403 	v.mq_msgsize = attr->mq_msgsize;
1404 	v.mq_curmsgs = attr->mq_curmsgs;
1405 	if (copy_to_user(uattr, &v, sizeof(*uattr)))
1406 		return -EFAULT;
1407 	return 0;
1408 }
1409 
1410 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1411 		       int, oflag, compat_mode_t, mode,
1412 		       struct compat_mq_attr __user *, u_attr)
1413 {
1414 	struct mq_attr attr, *p = NULL;
1415 	if (u_attr && oflag & O_CREAT) {
1416 		p = &attr;
1417 		if (get_compat_mq_attr(&attr, u_attr))
1418 			return -EFAULT;
1419 	}
1420 	return do_mq_open(u_name, oflag, mode, p);
1421 }
1422 
1423 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1424 		       const struct compat_sigevent __user *, u_notification)
1425 {
1426 	struct sigevent n, *p = NULL;
1427 	if (u_notification) {
1428 		if (get_compat_sigevent(&n, u_notification))
1429 			return -EFAULT;
1430 		if (n.sigev_notify == SIGEV_THREAD)
1431 			n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1432 		p = &n;
1433 	}
1434 	return do_mq_notify(mqdes, p);
1435 }
1436 
1437 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1438 		       const struct compat_mq_attr __user *, u_mqstat,
1439 		       struct compat_mq_attr __user *, u_omqstat)
1440 {
1441 	int ret;
1442 	struct mq_attr mqstat, omqstat;
1443 	struct mq_attr *new = NULL, *old = NULL;
1444 
1445 	if (u_mqstat) {
1446 		new = &mqstat;
1447 		if (get_compat_mq_attr(new, u_mqstat))
1448 			return -EFAULT;
1449 	}
1450 	if (u_omqstat)
1451 		old = &omqstat;
1452 
1453 	ret = do_mq_getsetattr(mqdes, new, old);
1454 	if (ret || !old)
1455 		return ret;
1456 
1457 	if (put_compat_mq_attr(old, u_omqstat))
1458 		return -EFAULT;
1459 	return 0;
1460 }
1461 #endif
1462 
1463 #ifdef CONFIG_COMPAT_32BIT_TIME
1464 static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1465 				   struct timespec64 *ts)
1466 {
1467 	if (get_old_timespec32(ts, p))
1468 		return -EFAULT;
1469 	if (!timespec64_valid(ts))
1470 		return -EINVAL;
1471 	return 0;
1472 }
1473 
1474 COMPAT_SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes,
1475 		       const char __user *, u_msg_ptr,
1476 		       compat_size_t, msg_len, unsigned int, msg_prio,
1477 		       const struct old_timespec32 __user *, u_abs_timeout)
1478 {
1479 	struct timespec64 ts, *p = NULL;
1480 	if (u_abs_timeout) {
1481 		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1482 		if (res)
1483 			return res;
1484 		p = &ts;
1485 	}
1486 	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1487 }
1488 
1489 COMPAT_SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes,
1490 		       char __user *, u_msg_ptr,
1491 		       compat_size_t, msg_len, unsigned int __user *, u_msg_prio,
1492 		       const struct old_timespec32 __user *, u_abs_timeout)
1493 {
1494 	struct timespec64 ts, *p = NULL;
1495 	if (u_abs_timeout) {
1496 		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1497 		if (res)
1498 			return res;
1499 		p = &ts;
1500 	}
1501 	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1502 }
1503 #endif
1504 
1505 static const struct inode_operations mqueue_dir_inode_operations = {
1506 	.lookup = simple_lookup,
1507 	.create = mqueue_create,
1508 	.unlink = mqueue_unlink,
1509 };
1510 
1511 static const struct file_operations mqueue_file_operations = {
1512 	.flush = mqueue_flush_file,
1513 	.poll = mqueue_poll_file,
1514 	.read = mqueue_read_file,
1515 	.llseek = default_llseek,
1516 };
1517 
1518 static const struct super_operations mqueue_super_ops = {
1519 	.alloc_inode = mqueue_alloc_inode,
1520 	.destroy_inode = mqueue_destroy_inode,
1521 	.evict_inode = mqueue_evict_inode,
1522 	.statfs = simple_statfs,
1523 };
1524 
1525 static struct file_system_type mqueue_fs_type = {
1526 	.name = "mqueue",
1527 	.mount = mqueue_mount,
1528 	.kill_sb = kill_litter_super,
1529 	.fs_flags = FS_USERNS_MOUNT,
1530 };
1531 
1532 int mq_init_ns(struct ipc_namespace *ns)
1533 {
1534 	ns->mq_queues_count  = 0;
1535 	ns->mq_queues_max    = DFLT_QUEUESMAX;
1536 	ns->mq_msg_max       = DFLT_MSGMAX;
1537 	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1538 	ns->mq_msg_default   = DFLT_MSG;
1539 	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1540 
1541 	ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1542 	if (IS_ERR(ns->mq_mnt)) {
1543 		int err = PTR_ERR(ns->mq_mnt);
1544 		ns->mq_mnt = NULL;
1545 		return err;
1546 	}
1547 	return 0;
1548 }
1549 
1550 void mq_clear_sbinfo(struct ipc_namespace *ns)
1551 {
1552 	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1553 }
1554 
1555 void mq_put_mnt(struct ipc_namespace *ns)
1556 {
1557 	kern_unmount(ns->mq_mnt);
1558 }
1559 
1560 static int __init init_mqueue_fs(void)
1561 {
1562 	int error;
1563 
1564 	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1565 				sizeof(struct mqueue_inode_info), 0,
1566 				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1567 	if (mqueue_inode_cachep == NULL)
1568 		return -ENOMEM;
1569 
1570 	/* ignore failures - they are not fatal */
1571 	mq_sysctl_table = mq_register_sysctl_table();
1572 
1573 	error = register_filesystem(&mqueue_fs_type);
1574 	if (error)
1575 		goto out_sysctl;
1576 
1577 	spin_lock_init(&mq_lock);
1578 
1579 	error = mq_init_ns(&init_ipc_ns);
1580 	if (error)
1581 		goto out_filesystem;
1582 
1583 	return 0;
1584 
1585 out_filesystem:
1586 	unregister_filesystem(&mqueue_fs_type);
1587 out_sysctl:
1588 	if (mq_sysctl_table)
1589 		unregister_sysctl_table(mq_sysctl_table);
1590 	kmem_cache_destroy(mqueue_inode_cachep);
1591 	return error;
1592 }
1593 
1594 device_initcall(init_mqueue_fs);
1595