xref: /openbmc/linux/ipc/mqueue.c (revision e2f1cf25)
1 /*
2  * POSIX message queues filesystem for Linux.
3  *
4  * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
5  *                          Michal Wronski          (michal.wronski@gmail.com)
6  *
7  * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
8  * Lockless receive & send, fd based notify:
9  *			    Manfred Spraul	    (manfred@colorfullife.com)
10  *
11  * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
12  *
13  * This file is released under the GPL.
14  */
15 
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/namei.h>
22 #include <linux/sysctl.h>
23 #include <linux/poll.h>
24 #include <linux/mqueue.h>
25 #include <linux/msg.h>
26 #include <linux/skbuff.h>
27 #include <linux/vmalloc.h>
28 #include <linux/netlink.h>
29 #include <linux/syscalls.h>
30 #include <linux/audit.h>
31 #include <linux/signal.h>
32 #include <linux/mutex.h>
33 #include <linux/nsproxy.h>
34 #include <linux/pid.h>
35 #include <linux/ipc_namespace.h>
36 #include <linux/user_namespace.h>
37 #include <linux/slab.h>
38 
39 #include <net/sock.h>
40 #include "util.h"
41 
42 #define MQUEUE_MAGIC	0x19800202
43 #define DIRENT_SIZE	20
44 #define FILENT_SIZE	80
45 
46 #define SEND		0
47 #define RECV		1
48 
49 #define STATE_NONE	0
50 #define STATE_READY	1
51 
52 struct posix_msg_tree_node {
53 	struct rb_node		rb_node;
54 	struct list_head	msg_list;
55 	int			priority;
56 };
57 
58 struct ext_wait_queue {		/* queue of sleeping tasks */
59 	struct task_struct *task;
60 	struct list_head list;
61 	struct msg_msg *msg;	/* ptr of loaded message */
62 	int state;		/* one of STATE_* values */
63 };
64 
65 struct mqueue_inode_info {
66 	spinlock_t lock;
67 	struct inode vfs_inode;
68 	wait_queue_head_t wait_q;
69 
70 	struct rb_root msg_tree;
71 	struct posix_msg_tree_node *node_cache;
72 	struct mq_attr attr;
73 
74 	struct sigevent notify;
75 	struct pid *notify_owner;
76 	struct user_namespace *notify_user_ns;
77 	struct user_struct *user;	/* user who created, for accounting */
78 	struct sock *notify_sock;
79 	struct sk_buff *notify_cookie;
80 
81 	/* for tasks waiting for free space and messages, respectively */
82 	struct ext_wait_queue e_wait_q[2];
83 
84 	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
85 };
86 
87 static const struct inode_operations mqueue_dir_inode_operations;
88 static const struct file_operations mqueue_file_operations;
89 static const struct super_operations mqueue_super_ops;
90 static void remove_notification(struct mqueue_inode_info *info);
91 
92 static struct kmem_cache *mqueue_inode_cachep;
93 
94 static struct ctl_table_header *mq_sysctl_table;
95 
96 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
97 {
98 	return container_of(inode, struct mqueue_inode_info, vfs_inode);
99 }
100 
101 /*
102  * This routine should be called with the mq_lock held.
103  */
104 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
105 {
106 	return get_ipc_ns(inode->i_sb->s_fs_info);
107 }
108 
109 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
110 {
111 	struct ipc_namespace *ns;
112 
113 	spin_lock(&mq_lock);
114 	ns = __get_ns_from_inode(inode);
115 	spin_unlock(&mq_lock);
116 	return ns;
117 }
118 
119 /* Auxiliary functions to manipulate messages' list */
120 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
121 {
122 	struct rb_node **p, *parent = NULL;
123 	struct posix_msg_tree_node *leaf;
124 
125 	p = &info->msg_tree.rb_node;
126 	while (*p) {
127 		parent = *p;
128 		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
129 
130 		if (likely(leaf->priority == msg->m_type))
131 			goto insert_msg;
132 		else if (msg->m_type < leaf->priority)
133 			p = &(*p)->rb_left;
134 		else
135 			p = &(*p)->rb_right;
136 	}
137 	if (info->node_cache) {
138 		leaf = info->node_cache;
139 		info->node_cache = NULL;
140 	} else {
141 		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
142 		if (!leaf)
143 			return -ENOMEM;
144 		INIT_LIST_HEAD(&leaf->msg_list);
145 	}
146 	leaf->priority = msg->m_type;
147 	rb_link_node(&leaf->rb_node, parent, p);
148 	rb_insert_color(&leaf->rb_node, &info->msg_tree);
149 insert_msg:
150 	info->attr.mq_curmsgs++;
151 	info->qsize += msg->m_ts;
152 	list_add_tail(&msg->m_list, &leaf->msg_list);
153 	return 0;
154 }
155 
156 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
157 {
158 	struct rb_node **p, *parent = NULL;
159 	struct posix_msg_tree_node *leaf;
160 	struct msg_msg *msg;
161 
162 try_again:
163 	p = &info->msg_tree.rb_node;
164 	while (*p) {
165 		parent = *p;
166 		/*
167 		 * During insert, low priorities go to the left and high to the
168 		 * right.  On receive, we want the highest priorities first, so
169 		 * walk all the way to the right.
170 		 */
171 		p = &(*p)->rb_right;
172 	}
173 	if (!parent) {
174 		if (info->attr.mq_curmsgs) {
175 			pr_warn_once("Inconsistency in POSIX message queue, "
176 				     "no tree element, but supposedly messages "
177 				     "should exist!\n");
178 			info->attr.mq_curmsgs = 0;
179 		}
180 		return NULL;
181 	}
182 	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
183 	if (unlikely(list_empty(&leaf->msg_list))) {
184 		pr_warn_once("Inconsistency in POSIX message queue, "
185 			     "empty leaf node but we haven't implemented "
186 			     "lazy leaf delete!\n");
187 		rb_erase(&leaf->rb_node, &info->msg_tree);
188 		if (info->node_cache) {
189 			kfree(leaf);
190 		} else {
191 			info->node_cache = leaf;
192 		}
193 		goto try_again;
194 	} else {
195 		msg = list_first_entry(&leaf->msg_list,
196 				       struct msg_msg, m_list);
197 		list_del(&msg->m_list);
198 		if (list_empty(&leaf->msg_list)) {
199 			rb_erase(&leaf->rb_node, &info->msg_tree);
200 			if (info->node_cache) {
201 				kfree(leaf);
202 			} else {
203 				info->node_cache = leaf;
204 			}
205 		}
206 	}
207 	info->attr.mq_curmsgs--;
208 	info->qsize -= msg->m_ts;
209 	return msg;
210 }
211 
212 static struct inode *mqueue_get_inode(struct super_block *sb,
213 		struct ipc_namespace *ipc_ns, umode_t mode,
214 		struct mq_attr *attr)
215 {
216 	struct user_struct *u = current_user();
217 	struct inode *inode;
218 	int ret = -ENOMEM;
219 
220 	inode = new_inode(sb);
221 	if (!inode)
222 		goto err;
223 
224 	inode->i_ino = get_next_ino();
225 	inode->i_mode = mode;
226 	inode->i_uid = current_fsuid();
227 	inode->i_gid = current_fsgid();
228 	inode->i_mtime = inode->i_ctime = inode->i_atime = CURRENT_TIME;
229 
230 	if (S_ISREG(mode)) {
231 		struct mqueue_inode_info *info;
232 		unsigned long mq_bytes, mq_treesize;
233 
234 		inode->i_fop = &mqueue_file_operations;
235 		inode->i_size = FILENT_SIZE;
236 		/* mqueue specific info */
237 		info = MQUEUE_I(inode);
238 		spin_lock_init(&info->lock);
239 		init_waitqueue_head(&info->wait_q);
240 		INIT_LIST_HEAD(&info->e_wait_q[0].list);
241 		INIT_LIST_HEAD(&info->e_wait_q[1].list);
242 		info->notify_owner = NULL;
243 		info->notify_user_ns = NULL;
244 		info->qsize = 0;
245 		info->user = NULL;	/* set when all is ok */
246 		info->msg_tree = RB_ROOT;
247 		info->node_cache = NULL;
248 		memset(&info->attr, 0, sizeof(info->attr));
249 		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
250 					   ipc_ns->mq_msg_default);
251 		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
252 					    ipc_ns->mq_msgsize_default);
253 		if (attr) {
254 			info->attr.mq_maxmsg = attr->mq_maxmsg;
255 			info->attr.mq_msgsize = attr->mq_msgsize;
256 		}
257 		/*
258 		 * We used to allocate a static array of pointers and account
259 		 * the size of that array as well as one msg_msg struct per
260 		 * possible message into the queue size. That's no longer
261 		 * accurate as the queue is now an rbtree and will grow and
262 		 * shrink depending on usage patterns.  We can, however, still
263 		 * account one msg_msg struct per message, but the nodes are
264 		 * allocated depending on priority usage, and most programs
265 		 * only use one, or a handful, of priorities.  However, since
266 		 * this is pinned memory, we need to assume worst case, so
267 		 * that means the min(mq_maxmsg, max_priorities) * struct
268 		 * posix_msg_tree_node.
269 		 */
270 		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
271 			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
272 			sizeof(struct posix_msg_tree_node);
273 
274 		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
275 					  info->attr.mq_msgsize);
276 
277 		spin_lock(&mq_lock);
278 		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
279 		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
280 			spin_unlock(&mq_lock);
281 			/* mqueue_evict_inode() releases info->messages */
282 			ret = -EMFILE;
283 			goto out_inode;
284 		}
285 		u->mq_bytes += mq_bytes;
286 		spin_unlock(&mq_lock);
287 
288 		/* all is ok */
289 		info->user = get_uid(u);
290 	} else if (S_ISDIR(mode)) {
291 		inc_nlink(inode);
292 		/* Some things misbehave if size == 0 on a directory */
293 		inode->i_size = 2 * DIRENT_SIZE;
294 		inode->i_op = &mqueue_dir_inode_operations;
295 		inode->i_fop = &simple_dir_operations;
296 	}
297 
298 	return inode;
299 out_inode:
300 	iput(inode);
301 err:
302 	return ERR_PTR(ret);
303 }
304 
305 static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
306 {
307 	struct inode *inode;
308 	struct ipc_namespace *ns = data;
309 
310 	sb->s_blocksize = PAGE_CACHE_SIZE;
311 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
312 	sb->s_magic = MQUEUE_MAGIC;
313 	sb->s_op = &mqueue_super_ops;
314 
315 	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
316 	if (IS_ERR(inode))
317 		return PTR_ERR(inode);
318 
319 	sb->s_root = d_make_root(inode);
320 	if (!sb->s_root)
321 		return -ENOMEM;
322 	return 0;
323 }
324 
325 static struct dentry *mqueue_mount(struct file_system_type *fs_type,
326 			 int flags, const char *dev_name,
327 			 void *data)
328 {
329 	if (!(flags & MS_KERNMOUNT)) {
330 		struct ipc_namespace *ns = current->nsproxy->ipc_ns;
331 		/* Don't allow mounting unless the caller has CAP_SYS_ADMIN
332 		 * over the ipc namespace.
333 		 */
334 		if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN))
335 			return ERR_PTR(-EPERM);
336 
337 		data = ns;
338 	}
339 	return mount_ns(fs_type, flags, data, mqueue_fill_super);
340 }
341 
342 static void init_once(void *foo)
343 {
344 	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
345 
346 	inode_init_once(&p->vfs_inode);
347 }
348 
349 static struct inode *mqueue_alloc_inode(struct super_block *sb)
350 {
351 	struct mqueue_inode_info *ei;
352 
353 	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
354 	if (!ei)
355 		return NULL;
356 	return &ei->vfs_inode;
357 }
358 
359 static void mqueue_i_callback(struct rcu_head *head)
360 {
361 	struct inode *inode = container_of(head, struct inode, i_rcu);
362 	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
363 }
364 
365 static void mqueue_destroy_inode(struct inode *inode)
366 {
367 	call_rcu(&inode->i_rcu, mqueue_i_callback);
368 }
369 
370 static void mqueue_evict_inode(struct inode *inode)
371 {
372 	struct mqueue_inode_info *info;
373 	struct user_struct *user;
374 	unsigned long mq_bytes, mq_treesize;
375 	struct ipc_namespace *ipc_ns;
376 	struct msg_msg *msg;
377 
378 	clear_inode(inode);
379 
380 	if (S_ISDIR(inode->i_mode))
381 		return;
382 
383 	ipc_ns = get_ns_from_inode(inode);
384 	info = MQUEUE_I(inode);
385 	spin_lock(&info->lock);
386 	while ((msg = msg_get(info)) != NULL)
387 		free_msg(msg);
388 	kfree(info->node_cache);
389 	spin_unlock(&info->lock);
390 
391 	/* Total amount of bytes accounted for the mqueue */
392 	mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
393 		min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
394 		sizeof(struct posix_msg_tree_node);
395 
396 	mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
397 				  info->attr.mq_msgsize);
398 
399 	user = info->user;
400 	if (user) {
401 		spin_lock(&mq_lock);
402 		user->mq_bytes -= mq_bytes;
403 		/*
404 		 * get_ns_from_inode() ensures that the
405 		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
406 		 * to which we now hold a reference, or it is NULL.
407 		 * We can't put it here under mq_lock, though.
408 		 */
409 		if (ipc_ns)
410 			ipc_ns->mq_queues_count--;
411 		spin_unlock(&mq_lock);
412 		free_uid(user);
413 	}
414 	if (ipc_ns)
415 		put_ipc_ns(ipc_ns);
416 }
417 
418 static int mqueue_create(struct inode *dir, struct dentry *dentry,
419 				umode_t mode, bool excl)
420 {
421 	struct inode *inode;
422 	struct mq_attr *attr = dentry->d_fsdata;
423 	int error;
424 	struct ipc_namespace *ipc_ns;
425 
426 	spin_lock(&mq_lock);
427 	ipc_ns = __get_ns_from_inode(dir);
428 	if (!ipc_ns) {
429 		error = -EACCES;
430 		goto out_unlock;
431 	}
432 
433 	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
434 	    !capable(CAP_SYS_RESOURCE)) {
435 		error = -ENOSPC;
436 		goto out_unlock;
437 	}
438 	ipc_ns->mq_queues_count++;
439 	spin_unlock(&mq_lock);
440 
441 	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
442 	if (IS_ERR(inode)) {
443 		error = PTR_ERR(inode);
444 		spin_lock(&mq_lock);
445 		ipc_ns->mq_queues_count--;
446 		goto out_unlock;
447 	}
448 
449 	put_ipc_ns(ipc_ns);
450 	dir->i_size += DIRENT_SIZE;
451 	dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
452 
453 	d_instantiate(dentry, inode);
454 	dget(dentry);
455 	return 0;
456 out_unlock:
457 	spin_unlock(&mq_lock);
458 	if (ipc_ns)
459 		put_ipc_ns(ipc_ns);
460 	return error;
461 }
462 
463 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
464 {
465 	struct inode *inode = d_inode(dentry);
466 
467 	dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
468 	dir->i_size -= DIRENT_SIZE;
469 	drop_nlink(inode);
470 	dput(dentry);
471 	return 0;
472 }
473 
474 /*
475 *	This is routine for system read from queue file.
476 *	To avoid mess with doing here some sort of mq_receive we allow
477 *	to read only queue size & notification info (the only values
478 *	that are interesting from user point of view and aren't accessible
479 *	through std routines)
480 */
481 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
482 				size_t count, loff_t *off)
483 {
484 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
485 	char buffer[FILENT_SIZE];
486 	ssize_t ret;
487 
488 	spin_lock(&info->lock);
489 	snprintf(buffer, sizeof(buffer),
490 			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
491 			info->qsize,
492 			info->notify_owner ? info->notify.sigev_notify : 0,
493 			(info->notify_owner &&
494 			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
495 				info->notify.sigev_signo : 0,
496 			pid_vnr(info->notify_owner));
497 	spin_unlock(&info->lock);
498 	buffer[sizeof(buffer)-1] = '\0';
499 
500 	ret = simple_read_from_buffer(u_data, count, off, buffer,
501 				strlen(buffer));
502 	if (ret <= 0)
503 		return ret;
504 
505 	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = CURRENT_TIME;
506 	return ret;
507 }
508 
509 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
510 {
511 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
512 
513 	spin_lock(&info->lock);
514 	if (task_tgid(current) == info->notify_owner)
515 		remove_notification(info);
516 
517 	spin_unlock(&info->lock);
518 	return 0;
519 }
520 
521 static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
522 {
523 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
524 	int retval = 0;
525 
526 	poll_wait(filp, &info->wait_q, poll_tab);
527 
528 	spin_lock(&info->lock);
529 	if (info->attr.mq_curmsgs)
530 		retval = POLLIN | POLLRDNORM;
531 
532 	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
533 		retval |= POLLOUT | POLLWRNORM;
534 	spin_unlock(&info->lock);
535 
536 	return retval;
537 }
538 
539 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
540 static void wq_add(struct mqueue_inode_info *info, int sr,
541 			struct ext_wait_queue *ewp)
542 {
543 	struct ext_wait_queue *walk;
544 
545 	ewp->task = current;
546 
547 	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
548 		if (walk->task->static_prio <= current->static_prio) {
549 			list_add_tail(&ewp->list, &walk->list);
550 			return;
551 		}
552 	}
553 	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
554 }
555 
556 /*
557  * Puts current task to sleep. Caller must hold queue lock. After return
558  * lock isn't held.
559  * sr: SEND or RECV
560  */
561 static int wq_sleep(struct mqueue_inode_info *info, int sr,
562 		    ktime_t *timeout, struct ext_wait_queue *ewp)
563 {
564 	int retval;
565 	signed long time;
566 
567 	wq_add(info, sr, ewp);
568 
569 	for (;;) {
570 		__set_current_state(TASK_INTERRUPTIBLE);
571 
572 		spin_unlock(&info->lock);
573 		time = schedule_hrtimeout_range_clock(timeout, 0,
574 			HRTIMER_MODE_ABS, CLOCK_REALTIME);
575 
576 		if (ewp->state == STATE_READY) {
577 			retval = 0;
578 			goto out;
579 		}
580 		spin_lock(&info->lock);
581 		if (ewp->state == STATE_READY) {
582 			retval = 0;
583 			goto out_unlock;
584 		}
585 		if (signal_pending(current)) {
586 			retval = -ERESTARTSYS;
587 			break;
588 		}
589 		if (time == 0) {
590 			retval = -ETIMEDOUT;
591 			break;
592 		}
593 	}
594 	list_del(&ewp->list);
595 out_unlock:
596 	spin_unlock(&info->lock);
597 out:
598 	return retval;
599 }
600 
601 /*
602  * Returns waiting task that should be serviced first or NULL if none exists
603  */
604 static struct ext_wait_queue *wq_get_first_waiter(
605 		struct mqueue_inode_info *info, int sr)
606 {
607 	struct list_head *ptr;
608 
609 	ptr = info->e_wait_q[sr].list.prev;
610 	if (ptr == &info->e_wait_q[sr].list)
611 		return NULL;
612 	return list_entry(ptr, struct ext_wait_queue, list);
613 }
614 
615 
616 static inline void set_cookie(struct sk_buff *skb, char code)
617 {
618 	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
619 }
620 
621 /*
622  * The next function is only to split too long sys_mq_timedsend
623  */
624 static void __do_notify(struct mqueue_inode_info *info)
625 {
626 	/* notification
627 	 * invoked when there is registered process and there isn't process
628 	 * waiting synchronously for message AND state of queue changed from
629 	 * empty to not empty. Here we are sure that no one is waiting
630 	 * synchronously. */
631 	if (info->notify_owner &&
632 	    info->attr.mq_curmsgs == 1) {
633 		struct siginfo sig_i;
634 		switch (info->notify.sigev_notify) {
635 		case SIGEV_NONE:
636 			break;
637 		case SIGEV_SIGNAL:
638 			/* sends signal */
639 
640 			sig_i.si_signo = info->notify.sigev_signo;
641 			sig_i.si_errno = 0;
642 			sig_i.si_code = SI_MESGQ;
643 			sig_i.si_value = info->notify.sigev_value;
644 			/* map current pid/uid into info->owner's namespaces */
645 			rcu_read_lock();
646 			sig_i.si_pid = task_tgid_nr_ns(current,
647 						ns_of_pid(info->notify_owner));
648 			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
649 			rcu_read_unlock();
650 
651 			kill_pid_info(info->notify.sigev_signo,
652 				      &sig_i, info->notify_owner);
653 			break;
654 		case SIGEV_THREAD:
655 			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
656 			netlink_sendskb(info->notify_sock, info->notify_cookie);
657 			break;
658 		}
659 		/* after notification unregisters process */
660 		put_pid(info->notify_owner);
661 		put_user_ns(info->notify_user_ns);
662 		info->notify_owner = NULL;
663 		info->notify_user_ns = NULL;
664 	}
665 	wake_up(&info->wait_q);
666 }
667 
668 static int prepare_timeout(const struct timespec __user *u_abs_timeout,
669 			   ktime_t *expires, struct timespec *ts)
670 {
671 	if (copy_from_user(ts, u_abs_timeout, sizeof(struct timespec)))
672 		return -EFAULT;
673 	if (!timespec_valid(ts))
674 		return -EINVAL;
675 
676 	*expires = timespec_to_ktime(*ts);
677 	return 0;
678 }
679 
680 static void remove_notification(struct mqueue_inode_info *info)
681 {
682 	if (info->notify_owner != NULL &&
683 	    info->notify.sigev_notify == SIGEV_THREAD) {
684 		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
685 		netlink_sendskb(info->notify_sock, info->notify_cookie);
686 	}
687 	put_pid(info->notify_owner);
688 	put_user_ns(info->notify_user_ns);
689 	info->notify_owner = NULL;
690 	info->notify_user_ns = NULL;
691 }
692 
693 static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
694 {
695 	int mq_treesize;
696 	unsigned long total_size;
697 
698 	if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
699 		return -EINVAL;
700 	if (capable(CAP_SYS_RESOURCE)) {
701 		if (attr->mq_maxmsg > HARD_MSGMAX ||
702 		    attr->mq_msgsize > HARD_MSGSIZEMAX)
703 			return -EINVAL;
704 	} else {
705 		if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
706 				attr->mq_msgsize > ipc_ns->mq_msgsize_max)
707 			return -EINVAL;
708 	}
709 	/* check for overflow */
710 	if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
711 		return -EOVERFLOW;
712 	mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
713 		min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
714 		sizeof(struct posix_msg_tree_node);
715 	total_size = attr->mq_maxmsg * attr->mq_msgsize;
716 	if (total_size + mq_treesize < total_size)
717 		return -EOVERFLOW;
718 	return 0;
719 }
720 
721 /*
722  * Invoked when creating a new queue via sys_mq_open
723  */
724 static struct file *do_create(struct ipc_namespace *ipc_ns, struct inode *dir,
725 			struct path *path, int oflag, umode_t mode,
726 			struct mq_attr *attr)
727 {
728 	const struct cred *cred = current_cred();
729 	int ret;
730 
731 	if (attr) {
732 		ret = mq_attr_ok(ipc_ns, attr);
733 		if (ret)
734 			return ERR_PTR(ret);
735 		/* store for use during create */
736 		path->dentry->d_fsdata = attr;
737 	} else {
738 		struct mq_attr def_attr;
739 
740 		def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
741 					 ipc_ns->mq_msg_default);
742 		def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
743 					  ipc_ns->mq_msgsize_default);
744 		ret = mq_attr_ok(ipc_ns, &def_attr);
745 		if (ret)
746 			return ERR_PTR(ret);
747 	}
748 
749 	mode &= ~current_umask();
750 	ret = vfs_create(dir, path->dentry, mode, true);
751 	path->dentry->d_fsdata = NULL;
752 	if (ret)
753 		return ERR_PTR(ret);
754 	return dentry_open(path, oflag, cred);
755 }
756 
757 /* Opens existing queue */
758 static struct file *do_open(struct path *path, int oflag)
759 {
760 	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
761 						  MAY_READ | MAY_WRITE };
762 	int acc;
763 	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
764 		return ERR_PTR(-EINVAL);
765 	acc = oflag2acc[oflag & O_ACCMODE];
766 	if (inode_permission(d_inode(path->dentry), acc))
767 		return ERR_PTR(-EACCES);
768 	return dentry_open(path, oflag, current_cred());
769 }
770 
771 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
772 		struct mq_attr __user *, u_attr)
773 {
774 	struct path path;
775 	struct file *filp;
776 	struct filename *name;
777 	struct mq_attr attr;
778 	int fd, error;
779 	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
780 	struct vfsmount *mnt = ipc_ns->mq_mnt;
781 	struct dentry *root = mnt->mnt_root;
782 	int ro;
783 
784 	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
785 		return -EFAULT;
786 
787 	audit_mq_open(oflag, mode, u_attr ? &attr : NULL);
788 
789 	if (IS_ERR(name = getname(u_name)))
790 		return PTR_ERR(name);
791 
792 	fd = get_unused_fd_flags(O_CLOEXEC);
793 	if (fd < 0)
794 		goto out_putname;
795 
796 	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
797 	error = 0;
798 	mutex_lock(&d_inode(root)->i_mutex);
799 	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
800 	if (IS_ERR(path.dentry)) {
801 		error = PTR_ERR(path.dentry);
802 		goto out_putfd;
803 	}
804 	path.mnt = mntget(mnt);
805 
806 	if (oflag & O_CREAT) {
807 		if (d_really_is_positive(path.dentry)) {	/* entry already exists */
808 			audit_inode(name, path.dentry, 0);
809 			if (oflag & O_EXCL) {
810 				error = -EEXIST;
811 				goto out;
812 			}
813 			filp = do_open(&path, oflag);
814 		} else {
815 			if (ro) {
816 				error = ro;
817 				goto out;
818 			}
819 			audit_inode_parent_hidden(name, root);
820 			filp = do_create(ipc_ns, d_inode(root),
821 						&path, oflag, mode,
822 						u_attr ? &attr : NULL);
823 		}
824 	} else {
825 		if (d_really_is_negative(path.dentry)) {
826 			error = -ENOENT;
827 			goto out;
828 		}
829 		audit_inode(name, path.dentry, 0);
830 		filp = do_open(&path, oflag);
831 	}
832 
833 	if (!IS_ERR(filp))
834 		fd_install(fd, filp);
835 	else
836 		error = PTR_ERR(filp);
837 out:
838 	path_put(&path);
839 out_putfd:
840 	if (error) {
841 		put_unused_fd(fd);
842 		fd = error;
843 	}
844 	mutex_unlock(&d_inode(root)->i_mutex);
845 	if (!ro)
846 		mnt_drop_write(mnt);
847 out_putname:
848 	putname(name);
849 	return fd;
850 }
851 
852 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
853 {
854 	int err;
855 	struct filename *name;
856 	struct dentry *dentry;
857 	struct inode *inode = NULL;
858 	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
859 	struct vfsmount *mnt = ipc_ns->mq_mnt;
860 
861 	name = getname(u_name);
862 	if (IS_ERR(name))
863 		return PTR_ERR(name);
864 
865 	audit_inode_parent_hidden(name, mnt->mnt_root);
866 	err = mnt_want_write(mnt);
867 	if (err)
868 		goto out_name;
869 	mutex_lock_nested(&d_inode(mnt->mnt_root)->i_mutex, I_MUTEX_PARENT);
870 	dentry = lookup_one_len(name->name, mnt->mnt_root,
871 				strlen(name->name));
872 	if (IS_ERR(dentry)) {
873 		err = PTR_ERR(dentry);
874 		goto out_unlock;
875 	}
876 
877 	inode = d_inode(dentry);
878 	if (!inode) {
879 		err = -ENOENT;
880 	} else {
881 		ihold(inode);
882 		err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
883 	}
884 	dput(dentry);
885 
886 out_unlock:
887 	mutex_unlock(&d_inode(mnt->mnt_root)->i_mutex);
888 	if (inode)
889 		iput(inode);
890 	mnt_drop_write(mnt);
891 out_name:
892 	putname(name);
893 
894 	return err;
895 }
896 
897 /* Pipelined send and receive functions.
898  *
899  * If a receiver finds no waiting message, then it registers itself in the
900  * list of waiting receivers. A sender checks that list before adding the new
901  * message into the message array. If there is a waiting receiver, then it
902  * bypasses the message array and directly hands the message over to the
903  * receiver. The receiver accepts the message and returns without grabbing the
904  * queue spinlock:
905  *
906  * - Set pointer to message.
907  * - Queue the receiver task for later wakeup (without the info->lock).
908  * - Update its state to STATE_READY. Now the receiver can continue.
909  * - Wake up the process after the lock is dropped. Should the process wake up
910  *   before this wakeup (due to a timeout or a signal) it will either see
911  *   STATE_READY and continue or acquire the lock to check the state again.
912  *
913  * The same algorithm is used for senders.
914  */
915 
916 /* pipelined_send() - send a message directly to the task waiting in
917  * sys_mq_timedreceive() (without inserting message into a queue).
918  */
919 static inline void pipelined_send(struct wake_q_head *wake_q,
920 				  struct mqueue_inode_info *info,
921 				  struct msg_msg *message,
922 				  struct ext_wait_queue *receiver)
923 {
924 	receiver->msg = message;
925 	list_del(&receiver->list);
926 	wake_q_add(wake_q, receiver->task);
927 	/*
928 	 * Rely on the implicit cmpxchg barrier from wake_q_add such
929 	 * that we can ensure that updating receiver->state is the last
930 	 * write operation: As once set, the receiver can continue,
931 	 * and if we don't have the reference count from the wake_q,
932 	 * yet, at that point we can later have a use-after-free
933 	 * condition and bogus wakeup.
934 	 */
935 	receiver->state = STATE_READY;
936 }
937 
938 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
939  * gets its message and put to the queue (we have one free place for sure). */
940 static inline void pipelined_receive(struct wake_q_head *wake_q,
941 				     struct mqueue_inode_info *info)
942 {
943 	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
944 
945 	if (!sender) {
946 		/* for poll */
947 		wake_up_interruptible(&info->wait_q);
948 		return;
949 	}
950 	if (msg_insert(sender->msg, info))
951 		return;
952 
953 	list_del(&sender->list);
954 	wake_q_add(wake_q, sender->task);
955 	sender->state = STATE_READY;
956 }
957 
958 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
959 		size_t, msg_len, unsigned int, msg_prio,
960 		const struct timespec __user *, u_abs_timeout)
961 {
962 	struct fd f;
963 	struct inode *inode;
964 	struct ext_wait_queue wait;
965 	struct ext_wait_queue *receiver;
966 	struct msg_msg *msg_ptr;
967 	struct mqueue_inode_info *info;
968 	ktime_t expires, *timeout = NULL;
969 	struct timespec ts;
970 	struct posix_msg_tree_node *new_leaf = NULL;
971 	int ret = 0;
972 	WAKE_Q(wake_q);
973 
974 	if (u_abs_timeout) {
975 		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
976 		if (res)
977 			return res;
978 		timeout = &expires;
979 	}
980 
981 	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
982 		return -EINVAL;
983 
984 	audit_mq_sendrecv(mqdes, msg_len, msg_prio, timeout ? &ts : NULL);
985 
986 	f = fdget(mqdes);
987 	if (unlikely(!f.file)) {
988 		ret = -EBADF;
989 		goto out;
990 	}
991 
992 	inode = file_inode(f.file);
993 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
994 		ret = -EBADF;
995 		goto out_fput;
996 	}
997 	info = MQUEUE_I(inode);
998 	audit_file(f.file);
999 
1000 	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1001 		ret = -EBADF;
1002 		goto out_fput;
1003 	}
1004 
1005 	if (unlikely(msg_len > info->attr.mq_msgsize)) {
1006 		ret = -EMSGSIZE;
1007 		goto out_fput;
1008 	}
1009 
1010 	/* First try to allocate memory, before doing anything with
1011 	 * existing queues. */
1012 	msg_ptr = load_msg(u_msg_ptr, msg_len);
1013 	if (IS_ERR(msg_ptr)) {
1014 		ret = PTR_ERR(msg_ptr);
1015 		goto out_fput;
1016 	}
1017 	msg_ptr->m_ts = msg_len;
1018 	msg_ptr->m_type = msg_prio;
1019 
1020 	/*
1021 	 * msg_insert really wants us to have a valid, spare node struct so
1022 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1023 	 * fall back to that if necessary.
1024 	 */
1025 	if (!info->node_cache)
1026 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1027 
1028 	spin_lock(&info->lock);
1029 
1030 	if (!info->node_cache && new_leaf) {
1031 		/* Save our speculative allocation into the cache */
1032 		INIT_LIST_HEAD(&new_leaf->msg_list);
1033 		info->node_cache = new_leaf;
1034 		new_leaf = NULL;
1035 	} else {
1036 		kfree(new_leaf);
1037 	}
1038 
1039 	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1040 		if (f.file->f_flags & O_NONBLOCK) {
1041 			ret = -EAGAIN;
1042 		} else {
1043 			wait.task = current;
1044 			wait.msg = (void *) msg_ptr;
1045 			wait.state = STATE_NONE;
1046 			ret = wq_sleep(info, SEND, timeout, &wait);
1047 			/*
1048 			 * wq_sleep must be called with info->lock held, and
1049 			 * returns with the lock released
1050 			 */
1051 			goto out_free;
1052 		}
1053 	} else {
1054 		receiver = wq_get_first_waiter(info, RECV);
1055 		if (receiver) {
1056 			pipelined_send(&wake_q, info, msg_ptr, receiver);
1057 		} else {
1058 			/* adds message to the queue */
1059 			ret = msg_insert(msg_ptr, info);
1060 			if (ret)
1061 				goto out_unlock;
1062 			__do_notify(info);
1063 		}
1064 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1065 				CURRENT_TIME;
1066 	}
1067 out_unlock:
1068 	spin_unlock(&info->lock);
1069 	wake_up_q(&wake_q);
1070 out_free:
1071 	if (ret)
1072 		free_msg(msg_ptr);
1073 out_fput:
1074 	fdput(f);
1075 out:
1076 	return ret;
1077 }
1078 
1079 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1080 		size_t, msg_len, unsigned int __user *, u_msg_prio,
1081 		const struct timespec __user *, u_abs_timeout)
1082 {
1083 	ssize_t ret;
1084 	struct msg_msg *msg_ptr;
1085 	struct fd f;
1086 	struct inode *inode;
1087 	struct mqueue_inode_info *info;
1088 	struct ext_wait_queue wait;
1089 	ktime_t expires, *timeout = NULL;
1090 	struct timespec ts;
1091 	struct posix_msg_tree_node *new_leaf = NULL;
1092 
1093 	if (u_abs_timeout) {
1094 		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
1095 		if (res)
1096 			return res;
1097 		timeout = &expires;
1098 	}
1099 
1100 	audit_mq_sendrecv(mqdes, msg_len, 0, timeout ? &ts : NULL);
1101 
1102 	f = fdget(mqdes);
1103 	if (unlikely(!f.file)) {
1104 		ret = -EBADF;
1105 		goto out;
1106 	}
1107 
1108 	inode = file_inode(f.file);
1109 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1110 		ret = -EBADF;
1111 		goto out_fput;
1112 	}
1113 	info = MQUEUE_I(inode);
1114 	audit_file(f.file);
1115 
1116 	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1117 		ret = -EBADF;
1118 		goto out_fput;
1119 	}
1120 
1121 	/* checks if buffer is big enough */
1122 	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1123 		ret = -EMSGSIZE;
1124 		goto out_fput;
1125 	}
1126 
1127 	/*
1128 	 * msg_insert really wants us to have a valid, spare node struct so
1129 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1130 	 * fall back to that if necessary.
1131 	 */
1132 	if (!info->node_cache)
1133 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1134 
1135 	spin_lock(&info->lock);
1136 
1137 	if (!info->node_cache && new_leaf) {
1138 		/* Save our speculative allocation into the cache */
1139 		INIT_LIST_HEAD(&new_leaf->msg_list);
1140 		info->node_cache = new_leaf;
1141 	} else {
1142 		kfree(new_leaf);
1143 	}
1144 
1145 	if (info->attr.mq_curmsgs == 0) {
1146 		if (f.file->f_flags & O_NONBLOCK) {
1147 			spin_unlock(&info->lock);
1148 			ret = -EAGAIN;
1149 		} else {
1150 			wait.task = current;
1151 			wait.state = STATE_NONE;
1152 			ret = wq_sleep(info, RECV, timeout, &wait);
1153 			msg_ptr = wait.msg;
1154 		}
1155 	} else {
1156 		WAKE_Q(wake_q);
1157 
1158 		msg_ptr = msg_get(info);
1159 
1160 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1161 				CURRENT_TIME;
1162 
1163 		/* There is now free space in queue. */
1164 		pipelined_receive(&wake_q, info);
1165 		spin_unlock(&info->lock);
1166 		wake_up_q(&wake_q);
1167 		ret = 0;
1168 	}
1169 	if (ret == 0) {
1170 		ret = msg_ptr->m_ts;
1171 
1172 		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1173 			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1174 			ret = -EFAULT;
1175 		}
1176 		free_msg(msg_ptr);
1177 	}
1178 out_fput:
1179 	fdput(f);
1180 out:
1181 	return ret;
1182 }
1183 
1184 /*
1185  * Notes: the case when user wants us to deregister (with NULL as pointer)
1186  * and he isn't currently owner of notification, will be silently discarded.
1187  * It isn't explicitly defined in the POSIX.
1188  */
1189 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1190 		const struct sigevent __user *, u_notification)
1191 {
1192 	int ret;
1193 	struct fd f;
1194 	struct sock *sock;
1195 	struct inode *inode;
1196 	struct sigevent notification;
1197 	struct mqueue_inode_info *info;
1198 	struct sk_buff *nc;
1199 
1200 	if (u_notification) {
1201 		if (copy_from_user(&notification, u_notification,
1202 					sizeof(struct sigevent)))
1203 			return -EFAULT;
1204 	}
1205 
1206 	audit_mq_notify(mqdes, u_notification ? &notification : NULL);
1207 
1208 	nc = NULL;
1209 	sock = NULL;
1210 	if (u_notification != NULL) {
1211 		if (unlikely(notification.sigev_notify != SIGEV_NONE &&
1212 			     notification.sigev_notify != SIGEV_SIGNAL &&
1213 			     notification.sigev_notify != SIGEV_THREAD))
1214 			return -EINVAL;
1215 		if (notification.sigev_notify == SIGEV_SIGNAL &&
1216 			!valid_signal(notification.sigev_signo)) {
1217 			return -EINVAL;
1218 		}
1219 		if (notification.sigev_notify == SIGEV_THREAD) {
1220 			long timeo;
1221 
1222 			/* create the notify skb */
1223 			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1224 			if (!nc) {
1225 				ret = -ENOMEM;
1226 				goto out;
1227 			}
1228 			if (copy_from_user(nc->data,
1229 					notification.sigev_value.sival_ptr,
1230 					NOTIFY_COOKIE_LEN)) {
1231 				ret = -EFAULT;
1232 				goto out;
1233 			}
1234 
1235 			/* TODO: add a header? */
1236 			skb_put(nc, NOTIFY_COOKIE_LEN);
1237 			/* and attach it to the socket */
1238 retry:
1239 			f = fdget(notification.sigev_signo);
1240 			if (!f.file) {
1241 				ret = -EBADF;
1242 				goto out;
1243 			}
1244 			sock = netlink_getsockbyfilp(f.file);
1245 			fdput(f);
1246 			if (IS_ERR(sock)) {
1247 				ret = PTR_ERR(sock);
1248 				sock = NULL;
1249 				goto out;
1250 			}
1251 
1252 			timeo = MAX_SCHEDULE_TIMEOUT;
1253 			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1254 			if (ret == 1)
1255 				goto retry;
1256 			if (ret) {
1257 				sock = NULL;
1258 				nc = NULL;
1259 				goto out;
1260 			}
1261 		}
1262 	}
1263 
1264 	f = fdget(mqdes);
1265 	if (!f.file) {
1266 		ret = -EBADF;
1267 		goto out;
1268 	}
1269 
1270 	inode = file_inode(f.file);
1271 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1272 		ret = -EBADF;
1273 		goto out_fput;
1274 	}
1275 	info = MQUEUE_I(inode);
1276 
1277 	ret = 0;
1278 	spin_lock(&info->lock);
1279 	if (u_notification == NULL) {
1280 		if (info->notify_owner == task_tgid(current)) {
1281 			remove_notification(info);
1282 			inode->i_atime = inode->i_ctime = CURRENT_TIME;
1283 		}
1284 	} else if (info->notify_owner != NULL) {
1285 		ret = -EBUSY;
1286 	} else {
1287 		switch (notification.sigev_notify) {
1288 		case SIGEV_NONE:
1289 			info->notify.sigev_notify = SIGEV_NONE;
1290 			break;
1291 		case SIGEV_THREAD:
1292 			info->notify_sock = sock;
1293 			info->notify_cookie = nc;
1294 			sock = NULL;
1295 			nc = NULL;
1296 			info->notify.sigev_notify = SIGEV_THREAD;
1297 			break;
1298 		case SIGEV_SIGNAL:
1299 			info->notify.sigev_signo = notification.sigev_signo;
1300 			info->notify.sigev_value = notification.sigev_value;
1301 			info->notify.sigev_notify = SIGEV_SIGNAL;
1302 			break;
1303 		}
1304 
1305 		info->notify_owner = get_pid(task_tgid(current));
1306 		info->notify_user_ns = get_user_ns(current_user_ns());
1307 		inode->i_atime = inode->i_ctime = CURRENT_TIME;
1308 	}
1309 	spin_unlock(&info->lock);
1310 out_fput:
1311 	fdput(f);
1312 out:
1313 	if (sock)
1314 		netlink_detachskb(sock, nc);
1315 	else if (nc)
1316 		dev_kfree_skb(nc);
1317 
1318 	return ret;
1319 }
1320 
1321 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1322 		const struct mq_attr __user *, u_mqstat,
1323 		struct mq_attr __user *, u_omqstat)
1324 {
1325 	int ret;
1326 	struct mq_attr mqstat, omqstat;
1327 	struct fd f;
1328 	struct inode *inode;
1329 	struct mqueue_inode_info *info;
1330 
1331 	if (u_mqstat != NULL) {
1332 		if (copy_from_user(&mqstat, u_mqstat, sizeof(struct mq_attr)))
1333 			return -EFAULT;
1334 		if (mqstat.mq_flags & (~O_NONBLOCK))
1335 			return -EINVAL;
1336 	}
1337 
1338 	f = fdget(mqdes);
1339 	if (!f.file) {
1340 		ret = -EBADF;
1341 		goto out;
1342 	}
1343 
1344 	inode = file_inode(f.file);
1345 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1346 		ret = -EBADF;
1347 		goto out_fput;
1348 	}
1349 	info = MQUEUE_I(inode);
1350 
1351 	spin_lock(&info->lock);
1352 
1353 	omqstat = info->attr;
1354 	omqstat.mq_flags = f.file->f_flags & O_NONBLOCK;
1355 	if (u_mqstat) {
1356 		audit_mq_getsetattr(mqdes, &mqstat);
1357 		spin_lock(&f.file->f_lock);
1358 		if (mqstat.mq_flags & O_NONBLOCK)
1359 			f.file->f_flags |= O_NONBLOCK;
1360 		else
1361 			f.file->f_flags &= ~O_NONBLOCK;
1362 		spin_unlock(&f.file->f_lock);
1363 
1364 		inode->i_atime = inode->i_ctime = CURRENT_TIME;
1365 	}
1366 
1367 	spin_unlock(&info->lock);
1368 
1369 	ret = 0;
1370 	if (u_omqstat != NULL && copy_to_user(u_omqstat, &omqstat,
1371 						sizeof(struct mq_attr)))
1372 		ret = -EFAULT;
1373 
1374 out_fput:
1375 	fdput(f);
1376 out:
1377 	return ret;
1378 }
1379 
1380 static const struct inode_operations mqueue_dir_inode_operations = {
1381 	.lookup = simple_lookup,
1382 	.create = mqueue_create,
1383 	.unlink = mqueue_unlink,
1384 };
1385 
1386 static const struct file_operations mqueue_file_operations = {
1387 	.flush = mqueue_flush_file,
1388 	.poll = mqueue_poll_file,
1389 	.read = mqueue_read_file,
1390 	.llseek = default_llseek,
1391 };
1392 
1393 static const struct super_operations mqueue_super_ops = {
1394 	.alloc_inode = mqueue_alloc_inode,
1395 	.destroy_inode = mqueue_destroy_inode,
1396 	.evict_inode = mqueue_evict_inode,
1397 	.statfs = simple_statfs,
1398 };
1399 
1400 static struct file_system_type mqueue_fs_type = {
1401 	.name = "mqueue",
1402 	.mount = mqueue_mount,
1403 	.kill_sb = kill_litter_super,
1404 	.fs_flags = FS_USERNS_MOUNT,
1405 };
1406 
1407 int mq_init_ns(struct ipc_namespace *ns)
1408 {
1409 	ns->mq_queues_count  = 0;
1410 	ns->mq_queues_max    = DFLT_QUEUESMAX;
1411 	ns->mq_msg_max       = DFLT_MSGMAX;
1412 	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1413 	ns->mq_msg_default   = DFLT_MSG;
1414 	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1415 
1416 	ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1417 	if (IS_ERR(ns->mq_mnt)) {
1418 		int err = PTR_ERR(ns->mq_mnt);
1419 		ns->mq_mnt = NULL;
1420 		return err;
1421 	}
1422 	return 0;
1423 }
1424 
1425 void mq_clear_sbinfo(struct ipc_namespace *ns)
1426 {
1427 	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1428 }
1429 
1430 void mq_put_mnt(struct ipc_namespace *ns)
1431 {
1432 	kern_unmount(ns->mq_mnt);
1433 }
1434 
1435 static int __init init_mqueue_fs(void)
1436 {
1437 	int error;
1438 
1439 	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1440 				sizeof(struct mqueue_inode_info), 0,
1441 				SLAB_HWCACHE_ALIGN, init_once);
1442 	if (mqueue_inode_cachep == NULL)
1443 		return -ENOMEM;
1444 
1445 	/* ignore failures - they are not fatal */
1446 	mq_sysctl_table = mq_register_sysctl_table();
1447 
1448 	error = register_filesystem(&mqueue_fs_type);
1449 	if (error)
1450 		goto out_sysctl;
1451 
1452 	spin_lock_init(&mq_lock);
1453 
1454 	error = mq_init_ns(&init_ipc_ns);
1455 	if (error)
1456 		goto out_filesystem;
1457 
1458 	return 0;
1459 
1460 out_filesystem:
1461 	unregister_filesystem(&mqueue_fs_type);
1462 out_sysctl:
1463 	if (mq_sysctl_table)
1464 		unregister_sysctl_table(mq_sysctl_table);
1465 	kmem_cache_destroy(mqueue_inode_cachep);
1466 	return error;
1467 }
1468 
1469 device_initcall(init_mqueue_fs);
1470