xref: /openbmc/linux/ipc/mqueue.c (revision dfd4f649)
1 /*
2  * POSIX message queues filesystem for Linux.
3  *
4  * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
5  *                          Michal Wronski          (michal.wronski@gmail.com)
6  *
7  * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
8  * Lockless receive & send, fd based notify:
9  *			    Manfred Spraul	    (manfred@colorfullife.com)
10  *
11  * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
12  *
13  * This file is released under the GPL.
14  */
15 
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/fs_context.h>
22 #include <linux/namei.h>
23 #include <linux/sysctl.h>
24 #include <linux/poll.h>
25 #include <linux/mqueue.h>
26 #include <linux/msg.h>
27 #include <linux/skbuff.h>
28 #include <linux/vmalloc.h>
29 #include <linux/netlink.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32 #include <linux/signal.h>
33 #include <linux/mutex.h>
34 #include <linux/nsproxy.h>
35 #include <linux/pid.h>
36 #include <linux/ipc_namespace.h>
37 #include <linux/user_namespace.h>
38 #include <linux/slab.h>
39 #include <linux/sched/wake_q.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/user.h>
42 
43 #include <net/sock.h>
44 #include "util.h"
45 
46 struct mqueue_fs_context {
47 	struct ipc_namespace	*ipc_ns;
48 };
49 
50 #define MQUEUE_MAGIC	0x19800202
51 #define DIRENT_SIZE	20
52 #define FILENT_SIZE	80
53 
54 #define SEND		0
55 #define RECV		1
56 
57 #define STATE_NONE	0
58 #define STATE_READY	1
59 
60 struct posix_msg_tree_node {
61 	struct rb_node		rb_node;
62 	struct list_head	msg_list;
63 	int			priority;
64 };
65 
66 struct ext_wait_queue {		/* queue of sleeping tasks */
67 	struct task_struct *task;
68 	struct list_head list;
69 	struct msg_msg *msg;	/* ptr of loaded message */
70 	int state;		/* one of STATE_* values */
71 };
72 
73 struct mqueue_inode_info {
74 	spinlock_t lock;
75 	struct inode vfs_inode;
76 	wait_queue_head_t wait_q;
77 
78 	struct rb_root msg_tree;
79 	struct posix_msg_tree_node *node_cache;
80 	struct mq_attr attr;
81 
82 	struct sigevent notify;
83 	struct pid *notify_owner;
84 	struct user_namespace *notify_user_ns;
85 	struct user_struct *user;	/* user who created, for accounting */
86 	struct sock *notify_sock;
87 	struct sk_buff *notify_cookie;
88 
89 	/* for tasks waiting for free space and messages, respectively */
90 	struct ext_wait_queue e_wait_q[2];
91 
92 	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
93 };
94 
95 static struct file_system_type mqueue_fs_type;
96 static const struct inode_operations mqueue_dir_inode_operations;
97 static const struct file_operations mqueue_file_operations;
98 static const struct super_operations mqueue_super_ops;
99 static const struct fs_context_operations mqueue_fs_context_ops;
100 static void remove_notification(struct mqueue_inode_info *info);
101 
102 static struct kmem_cache *mqueue_inode_cachep;
103 
104 static struct ctl_table_header *mq_sysctl_table;
105 
106 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
107 {
108 	return container_of(inode, struct mqueue_inode_info, vfs_inode);
109 }
110 
111 /*
112  * This routine should be called with the mq_lock held.
113  */
114 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
115 {
116 	return get_ipc_ns(inode->i_sb->s_fs_info);
117 }
118 
119 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
120 {
121 	struct ipc_namespace *ns;
122 
123 	spin_lock(&mq_lock);
124 	ns = __get_ns_from_inode(inode);
125 	spin_unlock(&mq_lock);
126 	return ns;
127 }
128 
129 /* Auxiliary functions to manipulate messages' list */
130 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
131 {
132 	struct rb_node **p, *parent = NULL;
133 	struct posix_msg_tree_node *leaf;
134 
135 	p = &info->msg_tree.rb_node;
136 	while (*p) {
137 		parent = *p;
138 		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
139 
140 		if (likely(leaf->priority == msg->m_type))
141 			goto insert_msg;
142 		else if (msg->m_type < leaf->priority)
143 			p = &(*p)->rb_left;
144 		else
145 			p = &(*p)->rb_right;
146 	}
147 	if (info->node_cache) {
148 		leaf = info->node_cache;
149 		info->node_cache = NULL;
150 	} else {
151 		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
152 		if (!leaf)
153 			return -ENOMEM;
154 		INIT_LIST_HEAD(&leaf->msg_list);
155 	}
156 	leaf->priority = msg->m_type;
157 	rb_link_node(&leaf->rb_node, parent, p);
158 	rb_insert_color(&leaf->rb_node, &info->msg_tree);
159 insert_msg:
160 	info->attr.mq_curmsgs++;
161 	info->qsize += msg->m_ts;
162 	list_add_tail(&msg->m_list, &leaf->msg_list);
163 	return 0;
164 }
165 
166 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
167 {
168 	struct rb_node **p, *parent = NULL;
169 	struct posix_msg_tree_node *leaf;
170 	struct msg_msg *msg;
171 
172 try_again:
173 	p = &info->msg_tree.rb_node;
174 	while (*p) {
175 		parent = *p;
176 		/*
177 		 * During insert, low priorities go to the left and high to the
178 		 * right.  On receive, we want the highest priorities first, so
179 		 * walk all the way to the right.
180 		 */
181 		p = &(*p)->rb_right;
182 	}
183 	if (!parent) {
184 		if (info->attr.mq_curmsgs) {
185 			pr_warn_once("Inconsistency in POSIX message queue, "
186 				     "no tree element, but supposedly messages "
187 				     "should exist!\n");
188 			info->attr.mq_curmsgs = 0;
189 		}
190 		return NULL;
191 	}
192 	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
193 	if (unlikely(list_empty(&leaf->msg_list))) {
194 		pr_warn_once("Inconsistency in POSIX message queue, "
195 			     "empty leaf node but we haven't implemented "
196 			     "lazy leaf delete!\n");
197 		rb_erase(&leaf->rb_node, &info->msg_tree);
198 		if (info->node_cache) {
199 			kfree(leaf);
200 		} else {
201 			info->node_cache = leaf;
202 		}
203 		goto try_again;
204 	} else {
205 		msg = list_first_entry(&leaf->msg_list,
206 				       struct msg_msg, m_list);
207 		list_del(&msg->m_list);
208 		if (list_empty(&leaf->msg_list)) {
209 			rb_erase(&leaf->rb_node, &info->msg_tree);
210 			if (info->node_cache) {
211 				kfree(leaf);
212 			} else {
213 				info->node_cache = leaf;
214 			}
215 		}
216 	}
217 	info->attr.mq_curmsgs--;
218 	info->qsize -= msg->m_ts;
219 	return msg;
220 }
221 
222 static struct inode *mqueue_get_inode(struct super_block *sb,
223 		struct ipc_namespace *ipc_ns, umode_t mode,
224 		struct mq_attr *attr)
225 {
226 	struct user_struct *u = current_user();
227 	struct inode *inode;
228 	int ret = -ENOMEM;
229 
230 	inode = new_inode(sb);
231 	if (!inode)
232 		goto err;
233 
234 	inode->i_ino = get_next_ino();
235 	inode->i_mode = mode;
236 	inode->i_uid = current_fsuid();
237 	inode->i_gid = current_fsgid();
238 	inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
239 
240 	if (S_ISREG(mode)) {
241 		struct mqueue_inode_info *info;
242 		unsigned long mq_bytes, mq_treesize;
243 
244 		inode->i_fop = &mqueue_file_operations;
245 		inode->i_size = FILENT_SIZE;
246 		/* mqueue specific info */
247 		info = MQUEUE_I(inode);
248 		spin_lock_init(&info->lock);
249 		init_waitqueue_head(&info->wait_q);
250 		INIT_LIST_HEAD(&info->e_wait_q[0].list);
251 		INIT_LIST_HEAD(&info->e_wait_q[1].list);
252 		info->notify_owner = NULL;
253 		info->notify_user_ns = NULL;
254 		info->qsize = 0;
255 		info->user = NULL;	/* set when all is ok */
256 		info->msg_tree = RB_ROOT;
257 		info->node_cache = NULL;
258 		memset(&info->attr, 0, sizeof(info->attr));
259 		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
260 					   ipc_ns->mq_msg_default);
261 		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
262 					    ipc_ns->mq_msgsize_default);
263 		if (attr) {
264 			info->attr.mq_maxmsg = attr->mq_maxmsg;
265 			info->attr.mq_msgsize = attr->mq_msgsize;
266 		}
267 		/*
268 		 * We used to allocate a static array of pointers and account
269 		 * the size of that array as well as one msg_msg struct per
270 		 * possible message into the queue size. That's no longer
271 		 * accurate as the queue is now an rbtree and will grow and
272 		 * shrink depending on usage patterns.  We can, however, still
273 		 * account one msg_msg struct per message, but the nodes are
274 		 * allocated depending on priority usage, and most programs
275 		 * only use one, or a handful, of priorities.  However, since
276 		 * this is pinned memory, we need to assume worst case, so
277 		 * that means the min(mq_maxmsg, max_priorities) * struct
278 		 * posix_msg_tree_node.
279 		 */
280 
281 		ret = -EINVAL;
282 		if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
283 			goto out_inode;
284 		if (capable(CAP_SYS_RESOURCE)) {
285 			if (info->attr.mq_maxmsg > HARD_MSGMAX ||
286 			    info->attr.mq_msgsize > HARD_MSGSIZEMAX)
287 				goto out_inode;
288 		} else {
289 			if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
290 					info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
291 				goto out_inode;
292 		}
293 		ret = -EOVERFLOW;
294 		/* check for overflow */
295 		if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
296 			goto out_inode;
297 		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
298 			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
299 			sizeof(struct posix_msg_tree_node);
300 		mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
301 		if (mq_bytes + mq_treesize < mq_bytes)
302 			goto out_inode;
303 		mq_bytes += mq_treesize;
304 		spin_lock(&mq_lock);
305 		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
306 		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
307 			spin_unlock(&mq_lock);
308 			/* mqueue_evict_inode() releases info->messages */
309 			ret = -EMFILE;
310 			goto out_inode;
311 		}
312 		u->mq_bytes += mq_bytes;
313 		spin_unlock(&mq_lock);
314 
315 		/* all is ok */
316 		info->user = get_uid(u);
317 	} else if (S_ISDIR(mode)) {
318 		inc_nlink(inode);
319 		/* Some things misbehave if size == 0 on a directory */
320 		inode->i_size = 2 * DIRENT_SIZE;
321 		inode->i_op = &mqueue_dir_inode_operations;
322 		inode->i_fop = &simple_dir_operations;
323 	}
324 
325 	return inode;
326 out_inode:
327 	iput(inode);
328 err:
329 	return ERR_PTR(ret);
330 }
331 
332 static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
333 {
334 	struct inode *inode;
335 	struct ipc_namespace *ns = sb->s_fs_info;
336 
337 	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
338 	sb->s_blocksize = PAGE_SIZE;
339 	sb->s_blocksize_bits = PAGE_SHIFT;
340 	sb->s_magic = MQUEUE_MAGIC;
341 	sb->s_op = &mqueue_super_ops;
342 
343 	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
344 	if (IS_ERR(inode))
345 		return PTR_ERR(inode);
346 
347 	sb->s_root = d_make_root(inode);
348 	if (!sb->s_root)
349 		return -ENOMEM;
350 	return 0;
351 }
352 
353 static int mqueue_get_tree(struct fs_context *fc)
354 {
355 	struct mqueue_fs_context *ctx = fc->fs_private;
356 
357 	put_user_ns(fc->user_ns);
358 	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
359 	fc->s_fs_info = ctx->ipc_ns;
360 	return vfs_get_super(fc, vfs_get_keyed_super, mqueue_fill_super);
361 }
362 
363 static void mqueue_fs_context_free(struct fs_context *fc)
364 {
365 	struct mqueue_fs_context *ctx = fc->fs_private;
366 
367 	if (ctx->ipc_ns)
368 		put_ipc_ns(ctx->ipc_ns);
369 	kfree(ctx);
370 }
371 
372 static int mqueue_init_fs_context(struct fs_context *fc)
373 {
374 	struct mqueue_fs_context *ctx;
375 
376 	ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
377 	if (!ctx)
378 		return -ENOMEM;
379 
380 	ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
381 	fc->fs_private = ctx;
382 	fc->ops = &mqueue_fs_context_ops;
383 	return 0;
384 }
385 
386 static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
387 {
388 	struct mqueue_fs_context *ctx;
389 	struct fs_context *fc;
390 	struct vfsmount *mnt;
391 
392 	fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
393 	if (IS_ERR(fc))
394 		return ERR_CAST(fc);
395 
396 	ctx = fc->fs_private;
397 	put_ipc_ns(ctx->ipc_ns);
398 	ctx->ipc_ns = get_ipc_ns(ns);
399 
400 	mnt = fc_mount(fc);
401 	put_fs_context(fc);
402 	return mnt;
403 }
404 
405 static void init_once(void *foo)
406 {
407 	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
408 
409 	inode_init_once(&p->vfs_inode);
410 }
411 
412 static struct inode *mqueue_alloc_inode(struct super_block *sb)
413 {
414 	struct mqueue_inode_info *ei;
415 
416 	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
417 	if (!ei)
418 		return NULL;
419 	return &ei->vfs_inode;
420 }
421 
422 static void mqueue_i_callback(struct rcu_head *head)
423 {
424 	struct inode *inode = container_of(head, struct inode, i_rcu);
425 	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
426 }
427 
428 static void mqueue_destroy_inode(struct inode *inode)
429 {
430 	call_rcu(&inode->i_rcu, mqueue_i_callback);
431 }
432 
433 static void mqueue_evict_inode(struct inode *inode)
434 {
435 	struct mqueue_inode_info *info;
436 	struct user_struct *user;
437 	unsigned long mq_bytes, mq_treesize;
438 	struct ipc_namespace *ipc_ns;
439 	struct msg_msg *msg;
440 
441 	clear_inode(inode);
442 
443 	if (S_ISDIR(inode->i_mode))
444 		return;
445 
446 	ipc_ns = get_ns_from_inode(inode);
447 	info = MQUEUE_I(inode);
448 	spin_lock(&info->lock);
449 	while ((msg = msg_get(info)) != NULL)
450 		free_msg(msg);
451 	kfree(info->node_cache);
452 	spin_unlock(&info->lock);
453 
454 	/* Total amount of bytes accounted for the mqueue */
455 	mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
456 		min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
457 		sizeof(struct posix_msg_tree_node);
458 
459 	mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
460 				  info->attr.mq_msgsize);
461 
462 	user = info->user;
463 	if (user) {
464 		spin_lock(&mq_lock);
465 		user->mq_bytes -= mq_bytes;
466 		/*
467 		 * get_ns_from_inode() ensures that the
468 		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
469 		 * to which we now hold a reference, or it is NULL.
470 		 * We can't put it here under mq_lock, though.
471 		 */
472 		if (ipc_ns)
473 			ipc_ns->mq_queues_count--;
474 		spin_unlock(&mq_lock);
475 		free_uid(user);
476 	}
477 	if (ipc_ns)
478 		put_ipc_ns(ipc_ns);
479 }
480 
481 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
482 {
483 	struct inode *dir = dentry->d_parent->d_inode;
484 	struct inode *inode;
485 	struct mq_attr *attr = arg;
486 	int error;
487 	struct ipc_namespace *ipc_ns;
488 
489 	spin_lock(&mq_lock);
490 	ipc_ns = __get_ns_from_inode(dir);
491 	if (!ipc_ns) {
492 		error = -EACCES;
493 		goto out_unlock;
494 	}
495 
496 	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
497 	    !capable(CAP_SYS_RESOURCE)) {
498 		error = -ENOSPC;
499 		goto out_unlock;
500 	}
501 	ipc_ns->mq_queues_count++;
502 	spin_unlock(&mq_lock);
503 
504 	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
505 	if (IS_ERR(inode)) {
506 		error = PTR_ERR(inode);
507 		spin_lock(&mq_lock);
508 		ipc_ns->mq_queues_count--;
509 		goto out_unlock;
510 	}
511 
512 	put_ipc_ns(ipc_ns);
513 	dir->i_size += DIRENT_SIZE;
514 	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
515 
516 	d_instantiate(dentry, inode);
517 	dget(dentry);
518 	return 0;
519 out_unlock:
520 	spin_unlock(&mq_lock);
521 	if (ipc_ns)
522 		put_ipc_ns(ipc_ns);
523 	return error;
524 }
525 
526 static int mqueue_create(struct inode *dir, struct dentry *dentry,
527 				umode_t mode, bool excl)
528 {
529 	return mqueue_create_attr(dentry, mode, NULL);
530 }
531 
532 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
533 {
534 	struct inode *inode = d_inode(dentry);
535 
536 	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
537 	dir->i_size -= DIRENT_SIZE;
538 	drop_nlink(inode);
539 	dput(dentry);
540 	return 0;
541 }
542 
543 /*
544 *	This is routine for system read from queue file.
545 *	To avoid mess with doing here some sort of mq_receive we allow
546 *	to read only queue size & notification info (the only values
547 *	that are interesting from user point of view and aren't accessible
548 *	through std routines)
549 */
550 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
551 				size_t count, loff_t *off)
552 {
553 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
554 	char buffer[FILENT_SIZE];
555 	ssize_t ret;
556 
557 	spin_lock(&info->lock);
558 	snprintf(buffer, sizeof(buffer),
559 			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
560 			info->qsize,
561 			info->notify_owner ? info->notify.sigev_notify : 0,
562 			(info->notify_owner &&
563 			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
564 				info->notify.sigev_signo : 0,
565 			pid_vnr(info->notify_owner));
566 	spin_unlock(&info->lock);
567 	buffer[sizeof(buffer)-1] = '\0';
568 
569 	ret = simple_read_from_buffer(u_data, count, off, buffer,
570 				strlen(buffer));
571 	if (ret <= 0)
572 		return ret;
573 
574 	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
575 	return ret;
576 }
577 
578 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
579 {
580 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
581 
582 	spin_lock(&info->lock);
583 	if (task_tgid(current) == info->notify_owner)
584 		remove_notification(info);
585 
586 	spin_unlock(&info->lock);
587 	return 0;
588 }
589 
590 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
591 {
592 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
593 	__poll_t retval = 0;
594 
595 	poll_wait(filp, &info->wait_q, poll_tab);
596 
597 	spin_lock(&info->lock);
598 	if (info->attr.mq_curmsgs)
599 		retval = EPOLLIN | EPOLLRDNORM;
600 
601 	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
602 		retval |= EPOLLOUT | EPOLLWRNORM;
603 	spin_unlock(&info->lock);
604 
605 	return retval;
606 }
607 
608 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
609 static void wq_add(struct mqueue_inode_info *info, int sr,
610 			struct ext_wait_queue *ewp)
611 {
612 	struct ext_wait_queue *walk;
613 
614 	ewp->task = current;
615 
616 	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
617 		if (walk->task->prio <= current->prio) {
618 			list_add_tail(&ewp->list, &walk->list);
619 			return;
620 		}
621 	}
622 	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
623 }
624 
625 /*
626  * Puts current task to sleep. Caller must hold queue lock. After return
627  * lock isn't held.
628  * sr: SEND or RECV
629  */
630 static int wq_sleep(struct mqueue_inode_info *info, int sr,
631 		    ktime_t *timeout, struct ext_wait_queue *ewp)
632 	__releases(&info->lock)
633 {
634 	int retval;
635 	signed long time;
636 
637 	wq_add(info, sr, ewp);
638 
639 	for (;;) {
640 		__set_current_state(TASK_INTERRUPTIBLE);
641 
642 		spin_unlock(&info->lock);
643 		time = schedule_hrtimeout_range_clock(timeout, 0,
644 			HRTIMER_MODE_ABS, CLOCK_REALTIME);
645 
646 		if (ewp->state == STATE_READY) {
647 			retval = 0;
648 			goto out;
649 		}
650 		spin_lock(&info->lock);
651 		if (ewp->state == STATE_READY) {
652 			retval = 0;
653 			goto out_unlock;
654 		}
655 		if (signal_pending(current)) {
656 			retval = -ERESTARTSYS;
657 			break;
658 		}
659 		if (time == 0) {
660 			retval = -ETIMEDOUT;
661 			break;
662 		}
663 	}
664 	list_del(&ewp->list);
665 out_unlock:
666 	spin_unlock(&info->lock);
667 out:
668 	return retval;
669 }
670 
671 /*
672  * Returns waiting task that should be serviced first or NULL if none exists
673  */
674 static struct ext_wait_queue *wq_get_first_waiter(
675 		struct mqueue_inode_info *info, int sr)
676 {
677 	struct list_head *ptr;
678 
679 	ptr = info->e_wait_q[sr].list.prev;
680 	if (ptr == &info->e_wait_q[sr].list)
681 		return NULL;
682 	return list_entry(ptr, struct ext_wait_queue, list);
683 }
684 
685 
686 static inline void set_cookie(struct sk_buff *skb, char code)
687 {
688 	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
689 }
690 
691 /*
692  * The next function is only to split too long sys_mq_timedsend
693  */
694 static void __do_notify(struct mqueue_inode_info *info)
695 {
696 	/* notification
697 	 * invoked when there is registered process and there isn't process
698 	 * waiting synchronously for message AND state of queue changed from
699 	 * empty to not empty. Here we are sure that no one is waiting
700 	 * synchronously. */
701 	if (info->notify_owner &&
702 	    info->attr.mq_curmsgs == 1) {
703 		struct kernel_siginfo sig_i;
704 		switch (info->notify.sigev_notify) {
705 		case SIGEV_NONE:
706 			break;
707 		case SIGEV_SIGNAL:
708 			/* sends signal */
709 
710 			clear_siginfo(&sig_i);
711 			sig_i.si_signo = info->notify.sigev_signo;
712 			sig_i.si_errno = 0;
713 			sig_i.si_code = SI_MESGQ;
714 			sig_i.si_value = info->notify.sigev_value;
715 			/* map current pid/uid into info->owner's namespaces */
716 			rcu_read_lock();
717 			sig_i.si_pid = task_tgid_nr_ns(current,
718 						ns_of_pid(info->notify_owner));
719 			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
720 			rcu_read_unlock();
721 
722 			kill_pid_info(info->notify.sigev_signo,
723 				      &sig_i, info->notify_owner);
724 			break;
725 		case SIGEV_THREAD:
726 			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
727 			netlink_sendskb(info->notify_sock, info->notify_cookie);
728 			break;
729 		}
730 		/* after notification unregisters process */
731 		put_pid(info->notify_owner);
732 		put_user_ns(info->notify_user_ns);
733 		info->notify_owner = NULL;
734 		info->notify_user_ns = NULL;
735 	}
736 	wake_up(&info->wait_q);
737 }
738 
739 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
740 			   struct timespec64 *ts)
741 {
742 	if (get_timespec64(ts, u_abs_timeout))
743 		return -EFAULT;
744 	if (!timespec64_valid(ts))
745 		return -EINVAL;
746 	return 0;
747 }
748 
749 static void remove_notification(struct mqueue_inode_info *info)
750 {
751 	if (info->notify_owner != NULL &&
752 	    info->notify.sigev_notify == SIGEV_THREAD) {
753 		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
754 		netlink_sendskb(info->notify_sock, info->notify_cookie);
755 	}
756 	put_pid(info->notify_owner);
757 	put_user_ns(info->notify_user_ns);
758 	info->notify_owner = NULL;
759 	info->notify_user_ns = NULL;
760 }
761 
762 static int prepare_open(struct dentry *dentry, int oflag, int ro,
763 			umode_t mode, struct filename *name,
764 			struct mq_attr *attr)
765 {
766 	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
767 						  MAY_READ | MAY_WRITE };
768 	int acc;
769 
770 	if (d_really_is_negative(dentry)) {
771 		if (!(oflag & O_CREAT))
772 			return -ENOENT;
773 		if (ro)
774 			return ro;
775 		audit_inode_parent_hidden(name, dentry->d_parent);
776 		return vfs_mkobj(dentry, mode & ~current_umask(),
777 				  mqueue_create_attr, attr);
778 	}
779 	/* it already existed */
780 	audit_inode(name, dentry, 0);
781 	if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
782 		return -EEXIST;
783 	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
784 		return -EINVAL;
785 	acc = oflag2acc[oflag & O_ACCMODE];
786 	return inode_permission(d_inode(dentry), acc);
787 }
788 
789 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
790 		      struct mq_attr *attr)
791 {
792 	struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
793 	struct dentry *root = mnt->mnt_root;
794 	struct filename *name;
795 	struct path path;
796 	int fd, error;
797 	int ro;
798 
799 	audit_mq_open(oflag, mode, attr);
800 
801 	if (IS_ERR(name = getname(u_name)))
802 		return PTR_ERR(name);
803 
804 	fd = get_unused_fd_flags(O_CLOEXEC);
805 	if (fd < 0)
806 		goto out_putname;
807 
808 	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
809 	inode_lock(d_inode(root));
810 	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
811 	if (IS_ERR(path.dentry)) {
812 		error = PTR_ERR(path.dentry);
813 		goto out_putfd;
814 	}
815 	path.mnt = mntget(mnt);
816 	error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
817 	if (!error) {
818 		struct file *file = dentry_open(&path, oflag, current_cred());
819 		if (!IS_ERR(file))
820 			fd_install(fd, file);
821 		else
822 			error = PTR_ERR(file);
823 	}
824 	path_put(&path);
825 out_putfd:
826 	if (error) {
827 		put_unused_fd(fd);
828 		fd = error;
829 	}
830 	inode_unlock(d_inode(root));
831 	if (!ro)
832 		mnt_drop_write(mnt);
833 out_putname:
834 	putname(name);
835 	return fd;
836 }
837 
838 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
839 		struct mq_attr __user *, u_attr)
840 {
841 	struct mq_attr attr;
842 	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
843 		return -EFAULT;
844 
845 	return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
846 }
847 
848 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
849 {
850 	int err;
851 	struct filename *name;
852 	struct dentry *dentry;
853 	struct inode *inode = NULL;
854 	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
855 	struct vfsmount *mnt = ipc_ns->mq_mnt;
856 
857 	name = getname(u_name);
858 	if (IS_ERR(name))
859 		return PTR_ERR(name);
860 
861 	audit_inode_parent_hidden(name, mnt->mnt_root);
862 	err = mnt_want_write(mnt);
863 	if (err)
864 		goto out_name;
865 	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
866 	dentry = lookup_one_len(name->name, mnt->mnt_root,
867 				strlen(name->name));
868 	if (IS_ERR(dentry)) {
869 		err = PTR_ERR(dentry);
870 		goto out_unlock;
871 	}
872 
873 	inode = d_inode(dentry);
874 	if (!inode) {
875 		err = -ENOENT;
876 	} else {
877 		ihold(inode);
878 		err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
879 	}
880 	dput(dentry);
881 
882 out_unlock:
883 	inode_unlock(d_inode(mnt->mnt_root));
884 	if (inode)
885 		iput(inode);
886 	mnt_drop_write(mnt);
887 out_name:
888 	putname(name);
889 
890 	return err;
891 }
892 
893 /* Pipelined send and receive functions.
894  *
895  * If a receiver finds no waiting message, then it registers itself in the
896  * list of waiting receivers. A sender checks that list before adding the new
897  * message into the message array. If there is a waiting receiver, then it
898  * bypasses the message array and directly hands the message over to the
899  * receiver. The receiver accepts the message and returns without grabbing the
900  * queue spinlock:
901  *
902  * - Set pointer to message.
903  * - Queue the receiver task for later wakeup (without the info->lock).
904  * - Update its state to STATE_READY. Now the receiver can continue.
905  * - Wake up the process after the lock is dropped. Should the process wake up
906  *   before this wakeup (due to a timeout or a signal) it will either see
907  *   STATE_READY and continue or acquire the lock to check the state again.
908  *
909  * The same algorithm is used for senders.
910  */
911 
912 /* pipelined_send() - send a message directly to the task waiting in
913  * sys_mq_timedreceive() (without inserting message into a queue).
914  */
915 static inline void pipelined_send(struct wake_q_head *wake_q,
916 				  struct mqueue_inode_info *info,
917 				  struct msg_msg *message,
918 				  struct ext_wait_queue *receiver)
919 {
920 	receiver->msg = message;
921 	list_del(&receiver->list);
922 	wake_q_add(wake_q, receiver->task);
923 	/*
924 	 * Rely on the implicit cmpxchg barrier from wake_q_add such
925 	 * that we can ensure that updating receiver->state is the last
926 	 * write operation: As once set, the receiver can continue,
927 	 * and if we don't have the reference count from the wake_q,
928 	 * yet, at that point we can later have a use-after-free
929 	 * condition and bogus wakeup.
930 	 */
931 	receiver->state = STATE_READY;
932 }
933 
934 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
935  * gets its message and put to the queue (we have one free place for sure). */
936 static inline void pipelined_receive(struct wake_q_head *wake_q,
937 				     struct mqueue_inode_info *info)
938 {
939 	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
940 
941 	if (!sender) {
942 		/* for poll */
943 		wake_up_interruptible(&info->wait_q);
944 		return;
945 	}
946 	if (msg_insert(sender->msg, info))
947 		return;
948 
949 	list_del(&sender->list);
950 	wake_q_add(wake_q, sender->task);
951 	sender->state = STATE_READY;
952 }
953 
954 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
955 		size_t msg_len, unsigned int msg_prio,
956 		struct timespec64 *ts)
957 {
958 	struct fd f;
959 	struct inode *inode;
960 	struct ext_wait_queue wait;
961 	struct ext_wait_queue *receiver;
962 	struct msg_msg *msg_ptr;
963 	struct mqueue_inode_info *info;
964 	ktime_t expires, *timeout = NULL;
965 	struct posix_msg_tree_node *new_leaf = NULL;
966 	int ret = 0;
967 	DEFINE_WAKE_Q(wake_q);
968 
969 	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
970 		return -EINVAL;
971 
972 	if (ts) {
973 		expires = timespec64_to_ktime(*ts);
974 		timeout = &expires;
975 	}
976 
977 	audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
978 
979 	f = fdget(mqdes);
980 	if (unlikely(!f.file)) {
981 		ret = -EBADF;
982 		goto out;
983 	}
984 
985 	inode = file_inode(f.file);
986 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
987 		ret = -EBADF;
988 		goto out_fput;
989 	}
990 	info = MQUEUE_I(inode);
991 	audit_file(f.file);
992 
993 	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
994 		ret = -EBADF;
995 		goto out_fput;
996 	}
997 
998 	if (unlikely(msg_len > info->attr.mq_msgsize)) {
999 		ret = -EMSGSIZE;
1000 		goto out_fput;
1001 	}
1002 
1003 	/* First try to allocate memory, before doing anything with
1004 	 * existing queues. */
1005 	msg_ptr = load_msg(u_msg_ptr, msg_len);
1006 	if (IS_ERR(msg_ptr)) {
1007 		ret = PTR_ERR(msg_ptr);
1008 		goto out_fput;
1009 	}
1010 	msg_ptr->m_ts = msg_len;
1011 	msg_ptr->m_type = msg_prio;
1012 
1013 	/*
1014 	 * msg_insert really wants us to have a valid, spare node struct so
1015 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1016 	 * fall back to that if necessary.
1017 	 */
1018 	if (!info->node_cache)
1019 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1020 
1021 	spin_lock(&info->lock);
1022 
1023 	if (!info->node_cache && new_leaf) {
1024 		/* Save our speculative allocation into the cache */
1025 		INIT_LIST_HEAD(&new_leaf->msg_list);
1026 		info->node_cache = new_leaf;
1027 		new_leaf = NULL;
1028 	} else {
1029 		kfree(new_leaf);
1030 	}
1031 
1032 	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1033 		if (f.file->f_flags & O_NONBLOCK) {
1034 			ret = -EAGAIN;
1035 		} else {
1036 			wait.task = current;
1037 			wait.msg = (void *) msg_ptr;
1038 			wait.state = STATE_NONE;
1039 			ret = wq_sleep(info, SEND, timeout, &wait);
1040 			/*
1041 			 * wq_sleep must be called with info->lock held, and
1042 			 * returns with the lock released
1043 			 */
1044 			goto out_free;
1045 		}
1046 	} else {
1047 		receiver = wq_get_first_waiter(info, RECV);
1048 		if (receiver) {
1049 			pipelined_send(&wake_q, info, msg_ptr, receiver);
1050 		} else {
1051 			/* adds message to the queue */
1052 			ret = msg_insert(msg_ptr, info);
1053 			if (ret)
1054 				goto out_unlock;
1055 			__do_notify(info);
1056 		}
1057 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1058 				current_time(inode);
1059 	}
1060 out_unlock:
1061 	spin_unlock(&info->lock);
1062 	wake_up_q(&wake_q);
1063 out_free:
1064 	if (ret)
1065 		free_msg(msg_ptr);
1066 out_fput:
1067 	fdput(f);
1068 out:
1069 	return ret;
1070 }
1071 
1072 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1073 		size_t msg_len, unsigned int __user *u_msg_prio,
1074 		struct timespec64 *ts)
1075 {
1076 	ssize_t ret;
1077 	struct msg_msg *msg_ptr;
1078 	struct fd f;
1079 	struct inode *inode;
1080 	struct mqueue_inode_info *info;
1081 	struct ext_wait_queue wait;
1082 	ktime_t expires, *timeout = NULL;
1083 	struct posix_msg_tree_node *new_leaf = NULL;
1084 
1085 	if (ts) {
1086 		expires = timespec64_to_ktime(*ts);
1087 		timeout = &expires;
1088 	}
1089 
1090 	audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1091 
1092 	f = fdget(mqdes);
1093 	if (unlikely(!f.file)) {
1094 		ret = -EBADF;
1095 		goto out;
1096 	}
1097 
1098 	inode = file_inode(f.file);
1099 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1100 		ret = -EBADF;
1101 		goto out_fput;
1102 	}
1103 	info = MQUEUE_I(inode);
1104 	audit_file(f.file);
1105 
1106 	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1107 		ret = -EBADF;
1108 		goto out_fput;
1109 	}
1110 
1111 	/* checks if buffer is big enough */
1112 	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1113 		ret = -EMSGSIZE;
1114 		goto out_fput;
1115 	}
1116 
1117 	/*
1118 	 * msg_insert really wants us to have a valid, spare node struct so
1119 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1120 	 * fall back to that if necessary.
1121 	 */
1122 	if (!info->node_cache)
1123 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1124 
1125 	spin_lock(&info->lock);
1126 
1127 	if (!info->node_cache && new_leaf) {
1128 		/* Save our speculative allocation into the cache */
1129 		INIT_LIST_HEAD(&new_leaf->msg_list);
1130 		info->node_cache = new_leaf;
1131 	} else {
1132 		kfree(new_leaf);
1133 	}
1134 
1135 	if (info->attr.mq_curmsgs == 0) {
1136 		if (f.file->f_flags & O_NONBLOCK) {
1137 			spin_unlock(&info->lock);
1138 			ret = -EAGAIN;
1139 		} else {
1140 			wait.task = current;
1141 			wait.state = STATE_NONE;
1142 			ret = wq_sleep(info, RECV, timeout, &wait);
1143 			msg_ptr = wait.msg;
1144 		}
1145 	} else {
1146 		DEFINE_WAKE_Q(wake_q);
1147 
1148 		msg_ptr = msg_get(info);
1149 
1150 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1151 				current_time(inode);
1152 
1153 		/* There is now free space in queue. */
1154 		pipelined_receive(&wake_q, info);
1155 		spin_unlock(&info->lock);
1156 		wake_up_q(&wake_q);
1157 		ret = 0;
1158 	}
1159 	if (ret == 0) {
1160 		ret = msg_ptr->m_ts;
1161 
1162 		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1163 			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1164 			ret = -EFAULT;
1165 		}
1166 		free_msg(msg_ptr);
1167 	}
1168 out_fput:
1169 	fdput(f);
1170 out:
1171 	return ret;
1172 }
1173 
1174 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1175 		size_t, msg_len, unsigned int, msg_prio,
1176 		const struct __kernel_timespec __user *, u_abs_timeout)
1177 {
1178 	struct timespec64 ts, *p = NULL;
1179 	if (u_abs_timeout) {
1180 		int res = prepare_timeout(u_abs_timeout, &ts);
1181 		if (res)
1182 			return res;
1183 		p = &ts;
1184 	}
1185 	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1186 }
1187 
1188 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1189 		size_t, msg_len, unsigned int __user *, u_msg_prio,
1190 		const struct __kernel_timespec __user *, u_abs_timeout)
1191 {
1192 	struct timespec64 ts, *p = NULL;
1193 	if (u_abs_timeout) {
1194 		int res = prepare_timeout(u_abs_timeout, &ts);
1195 		if (res)
1196 			return res;
1197 		p = &ts;
1198 	}
1199 	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1200 }
1201 
1202 /*
1203  * Notes: the case when user wants us to deregister (with NULL as pointer)
1204  * and he isn't currently owner of notification, will be silently discarded.
1205  * It isn't explicitly defined in the POSIX.
1206  */
1207 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1208 {
1209 	int ret;
1210 	struct fd f;
1211 	struct sock *sock;
1212 	struct inode *inode;
1213 	struct mqueue_inode_info *info;
1214 	struct sk_buff *nc;
1215 
1216 	audit_mq_notify(mqdes, notification);
1217 
1218 	nc = NULL;
1219 	sock = NULL;
1220 	if (notification != NULL) {
1221 		if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1222 			     notification->sigev_notify != SIGEV_SIGNAL &&
1223 			     notification->sigev_notify != SIGEV_THREAD))
1224 			return -EINVAL;
1225 		if (notification->sigev_notify == SIGEV_SIGNAL &&
1226 			!valid_signal(notification->sigev_signo)) {
1227 			return -EINVAL;
1228 		}
1229 		if (notification->sigev_notify == SIGEV_THREAD) {
1230 			long timeo;
1231 
1232 			/* create the notify skb */
1233 			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1234 			if (!nc) {
1235 				ret = -ENOMEM;
1236 				goto out;
1237 			}
1238 			if (copy_from_user(nc->data,
1239 					notification->sigev_value.sival_ptr,
1240 					NOTIFY_COOKIE_LEN)) {
1241 				ret = -EFAULT;
1242 				goto out;
1243 			}
1244 
1245 			/* TODO: add a header? */
1246 			skb_put(nc, NOTIFY_COOKIE_LEN);
1247 			/* and attach it to the socket */
1248 retry:
1249 			f = fdget(notification->sigev_signo);
1250 			if (!f.file) {
1251 				ret = -EBADF;
1252 				goto out;
1253 			}
1254 			sock = netlink_getsockbyfilp(f.file);
1255 			fdput(f);
1256 			if (IS_ERR(sock)) {
1257 				ret = PTR_ERR(sock);
1258 				sock = NULL;
1259 				goto out;
1260 			}
1261 
1262 			timeo = MAX_SCHEDULE_TIMEOUT;
1263 			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1264 			if (ret == 1) {
1265 				sock = NULL;
1266 				goto retry;
1267 			}
1268 			if (ret) {
1269 				sock = NULL;
1270 				nc = NULL;
1271 				goto out;
1272 			}
1273 		}
1274 	}
1275 
1276 	f = fdget(mqdes);
1277 	if (!f.file) {
1278 		ret = -EBADF;
1279 		goto out;
1280 	}
1281 
1282 	inode = file_inode(f.file);
1283 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1284 		ret = -EBADF;
1285 		goto out_fput;
1286 	}
1287 	info = MQUEUE_I(inode);
1288 
1289 	ret = 0;
1290 	spin_lock(&info->lock);
1291 	if (notification == NULL) {
1292 		if (info->notify_owner == task_tgid(current)) {
1293 			remove_notification(info);
1294 			inode->i_atime = inode->i_ctime = current_time(inode);
1295 		}
1296 	} else if (info->notify_owner != NULL) {
1297 		ret = -EBUSY;
1298 	} else {
1299 		switch (notification->sigev_notify) {
1300 		case SIGEV_NONE:
1301 			info->notify.sigev_notify = SIGEV_NONE;
1302 			break;
1303 		case SIGEV_THREAD:
1304 			info->notify_sock = sock;
1305 			info->notify_cookie = nc;
1306 			sock = NULL;
1307 			nc = NULL;
1308 			info->notify.sigev_notify = SIGEV_THREAD;
1309 			break;
1310 		case SIGEV_SIGNAL:
1311 			info->notify.sigev_signo = notification->sigev_signo;
1312 			info->notify.sigev_value = notification->sigev_value;
1313 			info->notify.sigev_notify = SIGEV_SIGNAL;
1314 			break;
1315 		}
1316 
1317 		info->notify_owner = get_pid(task_tgid(current));
1318 		info->notify_user_ns = get_user_ns(current_user_ns());
1319 		inode->i_atime = inode->i_ctime = current_time(inode);
1320 	}
1321 	spin_unlock(&info->lock);
1322 out_fput:
1323 	fdput(f);
1324 out:
1325 	if (sock)
1326 		netlink_detachskb(sock, nc);
1327 	else if (nc)
1328 		dev_kfree_skb(nc);
1329 
1330 	return ret;
1331 }
1332 
1333 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1334 		const struct sigevent __user *, u_notification)
1335 {
1336 	struct sigevent n, *p = NULL;
1337 	if (u_notification) {
1338 		if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1339 			return -EFAULT;
1340 		p = &n;
1341 	}
1342 	return do_mq_notify(mqdes, p);
1343 }
1344 
1345 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1346 {
1347 	struct fd f;
1348 	struct inode *inode;
1349 	struct mqueue_inode_info *info;
1350 
1351 	if (new && (new->mq_flags & (~O_NONBLOCK)))
1352 		return -EINVAL;
1353 
1354 	f = fdget(mqdes);
1355 	if (!f.file)
1356 		return -EBADF;
1357 
1358 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1359 		fdput(f);
1360 		return -EBADF;
1361 	}
1362 
1363 	inode = file_inode(f.file);
1364 	info = MQUEUE_I(inode);
1365 
1366 	spin_lock(&info->lock);
1367 
1368 	if (old) {
1369 		*old = info->attr;
1370 		old->mq_flags = f.file->f_flags & O_NONBLOCK;
1371 	}
1372 	if (new) {
1373 		audit_mq_getsetattr(mqdes, new);
1374 		spin_lock(&f.file->f_lock);
1375 		if (new->mq_flags & O_NONBLOCK)
1376 			f.file->f_flags |= O_NONBLOCK;
1377 		else
1378 			f.file->f_flags &= ~O_NONBLOCK;
1379 		spin_unlock(&f.file->f_lock);
1380 
1381 		inode->i_atime = inode->i_ctime = current_time(inode);
1382 	}
1383 
1384 	spin_unlock(&info->lock);
1385 	fdput(f);
1386 	return 0;
1387 }
1388 
1389 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1390 		const struct mq_attr __user *, u_mqstat,
1391 		struct mq_attr __user *, u_omqstat)
1392 {
1393 	int ret;
1394 	struct mq_attr mqstat, omqstat;
1395 	struct mq_attr *new = NULL, *old = NULL;
1396 
1397 	if (u_mqstat) {
1398 		new = &mqstat;
1399 		if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1400 			return -EFAULT;
1401 	}
1402 	if (u_omqstat)
1403 		old = &omqstat;
1404 
1405 	ret = do_mq_getsetattr(mqdes, new, old);
1406 	if (ret || !old)
1407 		return ret;
1408 
1409 	if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1410 		return -EFAULT;
1411 	return 0;
1412 }
1413 
1414 #ifdef CONFIG_COMPAT
1415 
1416 struct compat_mq_attr {
1417 	compat_long_t mq_flags;      /* message queue flags		     */
1418 	compat_long_t mq_maxmsg;     /* maximum number of messages	     */
1419 	compat_long_t mq_msgsize;    /* maximum message size		     */
1420 	compat_long_t mq_curmsgs;    /* number of messages currently queued  */
1421 	compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1422 };
1423 
1424 static inline int get_compat_mq_attr(struct mq_attr *attr,
1425 			const struct compat_mq_attr __user *uattr)
1426 {
1427 	struct compat_mq_attr v;
1428 
1429 	if (copy_from_user(&v, uattr, sizeof(*uattr)))
1430 		return -EFAULT;
1431 
1432 	memset(attr, 0, sizeof(*attr));
1433 	attr->mq_flags = v.mq_flags;
1434 	attr->mq_maxmsg = v.mq_maxmsg;
1435 	attr->mq_msgsize = v.mq_msgsize;
1436 	attr->mq_curmsgs = v.mq_curmsgs;
1437 	return 0;
1438 }
1439 
1440 static inline int put_compat_mq_attr(const struct mq_attr *attr,
1441 			struct compat_mq_attr __user *uattr)
1442 {
1443 	struct compat_mq_attr v;
1444 
1445 	memset(&v, 0, sizeof(v));
1446 	v.mq_flags = attr->mq_flags;
1447 	v.mq_maxmsg = attr->mq_maxmsg;
1448 	v.mq_msgsize = attr->mq_msgsize;
1449 	v.mq_curmsgs = attr->mq_curmsgs;
1450 	if (copy_to_user(uattr, &v, sizeof(*uattr)))
1451 		return -EFAULT;
1452 	return 0;
1453 }
1454 
1455 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1456 		       int, oflag, compat_mode_t, mode,
1457 		       struct compat_mq_attr __user *, u_attr)
1458 {
1459 	struct mq_attr attr, *p = NULL;
1460 	if (u_attr && oflag & O_CREAT) {
1461 		p = &attr;
1462 		if (get_compat_mq_attr(&attr, u_attr))
1463 			return -EFAULT;
1464 	}
1465 	return do_mq_open(u_name, oflag, mode, p);
1466 }
1467 
1468 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1469 		       const struct compat_sigevent __user *, u_notification)
1470 {
1471 	struct sigevent n, *p = NULL;
1472 	if (u_notification) {
1473 		if (get_compat_sigevent(&n, u_notification))
1474 			return -EFAULT;
1475 		if (n.sigev_notify == SIGEV_THREAD)
1476 			n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1477 		p = &n;
1478 	}
1479 	return do_mq_notify(mqdes, p);
1480 }
1481 
1482 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1483 		       const struct compat_mq_attr __user *, u_mqstat,
1484 		       struct compat_mq_attr __user *, u_omqstat)
1485 {
1486 	int ret;
1487 	struct mq_attr mqstat, omqstat;
1488 	struct mq_attr *new = NULL, *old = NULL;
1489 
1490 	if (u_mqstat) {
1491 		new = &mqstat;
1492 		if (get_compat_mq_attr(new, u_mqstat))
1493 			return -EFAULT;
1494 	}
1495 	if (u_omqstat)
1496 		old = &omqstat;
1497 
1498 	ret = do_mq_getsetattr(mqdes, new, old);
1499 	if (ret || !old)
1500 		return ret;
1501 
1502 	if (put_compat_mq_attr(old, u_omqstat))
1503 		return -EFAULT;
1504 	return 0;
1505 }
1506 #endif
1507 
1508 #ifdef CONFIG_COMPAT_32BIT_TIME
1509 static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1510 				   struct timespec64 *ts)
1511 {
1512 	if (get_old_timespec32(ts, p))
1513 		return -EFAULT;
1514 	if (!timespec64_valid(ts))
1515 		return -EINVAL;
1516 	return 0;
1517 }
1518 
1519 SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1520 		const char __user *, u_msg_ptr,
1521 		unsigned int, msg_len, unsigned int, msg_prio,
1522 		const struct old_timespec32 __user *, u_abs_timeout)
1523 {
1524 	struct timespec64 ts, *p = NULL;
1525 	if (u_abs_timeout) {
1526 		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1527 		if (res)
1528 			return res;
1529 		p = &ts;
1530 	}
1531 	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1532 }
1533 
1534 SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1535 		char __user *, u_msg_ptr,
1536 		unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1537 		const struct old_timespec32 __user *, u_abs_timeout)
1538 {
1539 	struct timespec64 ts, *p = NULL;
1540 	if (u_abs_timeout) {
1541 		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1542 		if (res)
1543 			return res;
1544 		p = &ts;
1545 	}
1546 	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1547 }
1548 #endif
1549 
1550 static const struct inode_operations mqueue_dir_inode_operations = {
1551 	.lookup = simple_lookup,
1552 	.create = mqueue_create,
1553 	.unlink = mqueue_unlink,
1554 };
1555 
1556 static const struct file_operations mqueue_file_operations = {
1557 	.flush = mqueue_flush_file,
1558 	.poll = mqueue_poll_file,
1559 	.read = mqueue_read_file,
1560 	.llseek = default_llseek,
1561 };
1562 
1563 static const struct super_operations mqueue_super_ops = {
1564 	.alloc_inode = mqueue_alloc_inode,
1565 	.destroy_inode = mqueue_destroy_inode,
1566 	.evict_inode = mqueue_evict_inode,
1567 	.statfs = simple_statfs,
1568 };
1569 
1570 static const struct fs_context_operations mqueue_fs_context_ops = {
1571 	.free		= mqueue_fs_context_free,
1572 	.get_tree	= mqueue_get_tree,
1573 };
1574 
1575 static struct file_system_type mqueue_fs_type = {
1576 	.name			= "mqueue",
1577 	.init_fs_context	= mqueue_init_fs_context,
1578 	.kill_sb		= kill_litter_super,
1579 	.fs_flags		= FS_USERNS_MOUNT,
1580 };
1581 
1582 int mq_init_ns(struct ipc_namespace *ns)
1583 {
1584 	struct vfsmount *m;
1585 
1586 	ns->mq_queues_count  = 0;
1587 	ns->mq_queues_max    = DFLT_QUEUESMAX;
1588 	ns->mq_msg_max       = DFLT_MSGMAX;
1589 	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1590 	ns->mq_msg_default   = DFLT_MSG;
1591 	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1592 
1593 	m = mq_create_mount(ns);
1594 	if (IS_ERR(m))
1595 		return PTR_ERR(m);
1596 	ns->mq_mnt = m;
1597 	return 0;
1598 }
1599 
1600 void mq_clear_sbinfo(struct ipc_namespace *ns)
1601 {
1602 	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1603 }
1604 
1605 void mq_put_mnt(struct ipc_namespace *ns)
1606 {
1607 	kern_unmount(ns->mq_mnt);
1608 }
1609 
1610 static int __init init_mqueue_fs(void)
1611 {
1612 	int error;
1613 
1614 	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1615 				sizeof(struct mqueue_inode_info), 0,
1616 				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1617 	if (mqueue_inode_cachep == NULL)
1618 		return -ENOMEM;
1619 
1620 	/* ignore failures - they are not fatal */
1621 	mq_sysctl_table = mq_register_sysctl_table();
1622 
1623 	error = register_filesystem(&mqueue_fs_type);
1624 	if (error)
1625 		goto out_sysctl;
1626 
1627 	spin_lock_init(&mq_lock);
1628 
1629 	error = mq_init_ns(&init_ipc_ns);
1630 	if (error)
1631 		goto out_filesystem;
1632 
1633 	return 0;
1634 
1635 out_filesystem:
1636 	unregister_filesystem(&mqueue_fs_type);
1637 out_sysctl:
1638 	if (mq_sysctl_table)
1639 		unregister_sysctl_table(mq_sysctl_table);
1640 	kmem_cache_destroy(mqueue_inode_cachep);
1641 	return error;
1642 }
1643 
1644 device_initcall(init_mqueue_fs);
1645