xref: /openbmc/linux/ipc/mqueue.c (revision d23015c1)
1 /*
2  * POSIX message queues filesystem for Linux.
3  *
4  * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
5  *                          Michal Wronski          (michal.wronski@gmail.com)
6  *
7  * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
8  * Lockless receive & send, fd based notify:
9  *			    Manfred Spraul	    (manfred@colorfullife.com)
10  *
11  * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
12  *
13  * This file is released under the GPL.
14  */
15 
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/fs_context.h>
22 #include <linux/namei.h>
23 #include <linux/sysctl.h>
24 #include <linux/poll.h>
25 #include <linux/mqueue.h>
26 #include <linux/msg.h>
27 #include <linux/skbuff.h>
28 #include <linux/vmalloc.h>
29 #include <linux/netlink.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32 #include <linux/signal.h>
33 #include <linux/mutex.h>
34 #include <linux/nsproxy.h>
35 #include <linux/pid.h>
36 #include <linux/ipc_namespace.h>
37 #include <linux/user_namespace.h>
38 #include <linux/slab.h>
39 #include <linux/sched/wake_q.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/user.h>
42 
43 #include <net/sock.h>
44 #include "util.h"
45 
46 struct mqueue_fs_context {
47 	struct ipc_namespace	*ipc_ns;
48 };
49 
50 #define MQUEUE_MAGIC	0x19800202
51 #define DIRENT_SIZE	20
52 #define FILENT_SIZE	80
53 
54 #define SEND		0
55 #define RECV		1
56 
57 #define STATE_NONE	0
58 #define STATE_READY	1
59 
60 struct posix_msg_tree_node {
61 	struct rb_node		rb_node;
62 	struct list_head	msg_list;
63 	int			priority;
64 };
65 
66 struct ext_wait_queue {		/* queue of sleeping tasks */
67 	struct task_struct *task;
68 	struct list_head list;
69 	struct msg_msg *msg;	/* ptr of loaded message */
70 	int state;		/* one of STATE_* values */
71 };
72 
73 struct mqueue_inode_info {
74 	spinlock_t lock;
75 	struct inode vfs_inode;
76 	wait_queue_head_t wait_q;
77 
78 	struct rb_root msg_tree;
79 	struct rb_node *msg_tree_rightmost;
80 	struct posix_msg_tree_node *node_cache;
81 	struct mq_attr attr;
82 
83 	struct sigevent notify;
84 	struct pid *notify_owner;
85 	struct user_namespace *notify_user_ns;
86 	struct user_struct *user;	/* user who created, for accounting */
87 	struct sock *notify_sock;
88 	struct sk_buff *notify_cookie;
89 
90 	/* for tasks waiting for free space and messages, respectively */
91 	struct ext_wait_queue e_wait_q[2];
92 
93 	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
94 };
95 
96 static struct file_system_type mqueue_fs_type;
97 static const struct inode_operations mqueue_dir_inode_operations;
98 static const struct file_operations mqueue_file_operations;
99 static const struct super_operations mqueue_super_ops;
100 static const struct fs_context_operations mqueue_fs_context_ops;
101 static void remove_notification(struct mqueue_inode_info *info);
102 
103 static struct kmem_cache *mqueue_inode_cachep;
104 
105 static struct ctl_table_header *mq_sysctl_table;
106 
107 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
108 {
109 	return container_of(inode, struct mqueue_inode_info, vfs_inode);
110 }
111 
112 /*
113  * This routine should be called with the mq_lock held.
114  */
115 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
116 {
117 	return get_ipc_ns(inode->i_sb->s_fs_info);
118 }
119 
120 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
121 {
122 	struct ipc_namespace *ns;
123 
124 	spin_lock(&mq_lock);
125 	ns = __get_ns_from_inode(inode);
126 	spin_unlock(&mq_lock);
127 	return ns;
128 }
129 
130 /* Auxiliary functions to manipulate messages' list */
131 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
132 {
133 	struct rb_node **p, *parent = NULL;
134 	struct posix_msg_tree_node *leaf;
135 	bool rightmost = true;
136 
137 	p = &info->msg_tree.rb_node;
138 	while (*p) {
139 		parent = *p;
140 		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
141 
142 		if (likely(leaf->priority == msg->m_type))
143 			goto insert_msg;
144 		else if (msg->m_type < leaf->priority) {
145 			p = &(*p)->rb_left;
146 			rightmost = false;
147 		} else
148 			p = &(*p)->rb_right;
149 	}
150 	if (info->node_cache) {
151 		leaf = info->node_cache;
152 		info->node_cache = NULL;
153 	} else {
154 		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
155 		if (!leaf)
156 			return -ENOMEM;
157 		INIT_LIST_HEAD(&leaf->msg_list);
158 	}
159 	leaf->priority = msg->m_type;
160 
161 	if (rightmost)
162 		info->msg_tree_rightmost = &leaf->rb_node;
163 
164 	rb_link_node(&leaf->rb_node, parent, p);
165 	rb_insert_color(&leaf->rb_node, &info->msg_tree);
166 insert_msg:
167 	info->attr.mq_curmsgs++;
168 	info->qsize += msg->m_ts;
169 	list_add_tail(&msg->m_list, &leaf->msg_list);
170 	return 0;
171 }
172 
173 static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
174 				  struct mqueue_inode_info *info)
175 {
176 	struct rb_node *node = &leaf->rb_node;
177 
178 	if (info->msg_tree_rightmost == node)
179 		info->msg_tree_rightmost = rb_prev(node);
180 
181 	rb_erase(node, &info->msg_tree);
182 	if (info->node_cache) {
183 		kfree(leaf);
184 	} else {
185 		info->node_cache = leaf;
186 	}
187 }
188 
189 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
190 {
191 	struct rb_node *parent = NULL;
192 	struct posix_msg_tree_node *leaf;
193 	struct msg_msg *msg;
194 
195 try_again:
196 	/*
197 	 * During insert, low priorities go to the left and high to the
198 	 * right.  On receive, we want the highest priorities first, so
199 	 * walk all the way to the right.
200 	 */
201 	parent = info->msg_tree_rightmost;
202 	if (!parent) {
203 		if (info->attr.mq_curmsgs) {
204 			pr_warn_once("Inconsistency in POSIX message queue, "
205 				     "no tree element, but supposedly messages "
206 				     "should exist!\n");
207 			info->attr.mq_curmsgs = 0;
208 		}
209 		return NULL;
210 	}
211 	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
212 	if (unlikely(list_empty(&leaf->msg_list))) {
213 		pr_warn_once("Inconsistency in POSIX message queue, "
214 			     "empty leaf node but we haven't implemented "
215 			     "lazy leaf delete!\n");
216 		msg_tree_erase(leaf, info);
217 		goto try_again;
218 	} else {
219 		msg = list_first_entry(&leaf->msg_list,
220 				       struct msg_msg, m_list);
221 		list_del(&msg->m_list);
222 		if (list_empty(&leaf->msg_list)) {
223 			msg_tree_erase(leaf, info);
224 		}
225 	}
226 	info->attr.mq_curmsgs--;
227 	info->qsize -= msg->m_ts;
228 	return msg;
229 }
230 
231 static struct inode *mqueue_get_inode(struct super_block *sb,
232 		struct ipc_namespace *ipc_ns, umode_t mode,
233 		struct mq_attr *attr)
234 {
235 	struct user_struct *u = current_user();
236 	struct inode *inode;
237 	int ret = -ENOMEM;
238 
239 	inode = new_inode(sb);
240 	if (!inode)
241 		goto err;
242 
243 	inode->i_ino = get_next_ino();
244 	inode->i_mode = mode;
245 	inode->i_uid = current_fsuid();
246 	inode->i_gid = current_fsgid();
247 	inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
248 
249 	if (S_ISREG(mode)) {
250 		struct mqueue_inode_info *info;
251 		unsigned long mq_bytes, mq_treesize;
252 
253 		inode->i_fop = &mqueue_file_operations;
254 		inode->i_size = FILENT_SIZE;
255 		/* mqueue specific info */
256 		info = MQUEUE_I(inode);
257 		spin_lock_init(&info->lock);
258 		init_waitqueue_head(&info->wait_q);
259 		INIT_LIST_HEAD(&info->e_wait_q[0].list);
260 		INIT_LIST_HEAD(&info->e_wait_q[1].list);
261 		info->notify_owner = NULL;
262 		info->notify_user_ns = NULL;
263 		info->qsize = 0;
264 		info->user = NULL;	/* set when all is ok */
265 		info->msg_tree = RB_ROOT;
266 		info->msg_tree_rightmost = NULL;
267 		info->node_cache = NULL;
268 		memset(&info->attr, 0, sizeof(info->attr));
269 		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
270 					   ipc_ns->mq_msg_default);
271 		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
272 					    ipc_ns->mq_msgsize_default);
273 		if (attr) {
274 			info->attr.mq_maxmsg = attr->mq_maxmsg;
275 			info->attr.mq_msgsize = attr->mq_msgsize;
276 		}
277 		/*
278 		 * We used to allocate a static array of pointers and account
279 		 * the size of that array as well as one msg_msg struct per
280 		 * possible message into the queue size. That's no longer
281 		 * accurate as the queue is now an rbtree and will grow and
282 		 * shrink depending on usage patterns.  We can, however, still
283 		 * account one msg_msg struct per message, but the nodes are
284 		 * allocated depending on priority usage, and most programs
285 		 * only use one, or a handful, of priorities.  However, since
286 		 * this is pinned memory, we need to assume worst case, so
287 		 * that means the min(mq_maxmsg, max_priorities) * struct
288 		 * posix_msg_tree_node.
289 		 */
290 
291 		ret = -EINVAL;
292 		if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
293 			goto out_inode;
294 		if (capable(CAP_SYS_RESOURCE)) {
295 			if (info->attr.mq_maxmsg > HARD_MSGMAX ||
296 			    info->attr.mq_msgsize > HARD_MSGSIZEMAX)
297 				goto out_inode;
298 		} else {
299 			if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
300 					info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
301 				goto out_inode;
302 		}
303 		ret = -EOVERFLOW;
304 		/* check for overflow */
305 		if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
306 			goto out_inode;
307 		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
308 			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
309 			sizeof(struct posix_msg_tree_node);
310 		mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
311 		if (mq_bytes + mq_treesize < mq_bytes)
312 			goto out_inode;
313 		mq_bytes += mq_treesize;
314 		spin_lock(&mq_lock);
315 		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
316 		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
317 			spin_unlock(&mq_lock);
318 			/* mqueue_evict_inode() releases info->messages */
319 			ret = -EMFILE;
320 			goto out_inode;
321 		}
322 		u->mq_bytes += mq_bytes;
323 		spin_unlock(&mq_lock);
324 
325 		/* all is ok */
326 		info->user = get_uid(u);
327 	} else if (S_ISDIR(mode)) {
328 		inc_nlink(inode);
329 		/* Some things misbehave if size == 0 on a directory */
330 		inode->i_size = 2 * DIRENT_SIZE;
331 		inode->i_op = &mqueue_dir_inode_operations;
332 		inode->i_fop = &simple_dir_operations;
333 	}
334 
335 	return inode;
336 out_inode:
337 	iput(inode);
338 err:
339 	return ERR_PTR(ret);
340 }
341 
342 static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
343 {
344 	struct inode *inode;
345 	struct ipc_namespace *ns = sb->s_fs_info;
346 
347 	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
348 	sb->s_blocksize = PAGE_SIZE;
349 	sb->s_blocksize_bits = PAGE_SHIFT;
350 	sb->s_magic = MQUEUE_MAGIC;
351 	sb->s_op = &mqueue_super_ops;
352 
353 	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
354 	if (IS_ERR(inode))
355 		return PTR_ERR(inode);
356 
357 	sb->s_root = d_make_root(inode);
358 	if (!sb->s_root)
359 		return -ENOMEM;
360 	return 0;
361 }
362 
363 static int mqueue_get_tree(struct fs_context *fc)
364 {
365 	struct mqueue_fs_context *ctx = fc->fs_private;
366 
367 	return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns);
368 }
369 
370 static void mqueue_fs_context_free(struct fs_context *fc)
371 {
372 	struct mqueue_fs_context *ctx = fc->fs_private;
373 
374 	put_ipc_ns(ctx->ipc_ns);
375 	kfree(ctx);
376 }
377 
378 static int mqueue_init_fs_context(struct fs_context *fc)
379 {
380 	struct mqueue_fs_context *ctx;
381 
382 	ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
383 	if (!ctx)
384 		return -ENOMEM;
385 
386 	ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
387 	put_user_ns(fc->user_ns);
388 	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
389 	fc->fs_private = ctx;
390 	fc->ops = &mqueue_fs_context_ops;
391 	return 0;
392 }
393 
394 static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
395 {
396 	struct mqueue_fs_context *ctx;
397 	struct fs_context *fc;
398 	struct vfsmount *mnt;
399 
400 	fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
401 	if (IS_ERR(fc))
402 		return ERR_CAST(fc);
403 
404 	ctx = fc->fs_private;
405 	put_ipc_ns(ctx->ipc_ns);
406 	ctx->ipc_ns = get_ipc_ns(ns);
407 	put_user_ns(fc->user_ns);
408 	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
409 
410 	mnt = fc_mount(fc);
411 	put_fs_context(fc);
412 	return mnt;
413 }
414 
415 static void init_once(void *foo)
416 {
417 	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
418 
419 	inode_init_once(&p->vfs_inode);
420 }
421 
422 static struct inode *mqueue_alloc_inode(struct super_block *sb)
423 {
424 	struct mqueue_inode_info *ei;
425 
426 	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
427 	if (!ei)
428 		return NULL;
429 	return &ei->vfs_inode;
430 }
431 
432 static void mqueue_free_inode(struct inode *inode)
433 {
434 	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
435 }
436 
437 static void mqueue_evict_inode(struct inode *inode)
438 {
439 	struct mqueue_inode_info *info;
440 	struct user_struct *user;
441 	struct ipc_namespace *ipc_ns;
442 	struct msg_msg *msg, *nmsg;
443 	LIST_HEAD(tmp_msg);
444 
445 	clear_inode(inode);
446 
447 	if (S_ISDIR(inode->i_mode))
448 		return;
449 
450 	ipc_ns = get_ns_from_inode(inode);
451 	info = MQUEUE_I(inode);
452 	spin_lock(&info->lock);
453 	while ((msg = msg_get(info)) != NULL)
454 		list_add_tail(&msg->m_list, &tmp_msg);
455 	kfree(info->node_cache);
456 	spin_unlock(&info->lock);
457 
458 	list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
459 		list_del(&msg->m_list);
460 		free_msg(msg);
461 	}
462 
463 	user = info->user;
464 	if (user) {
465 		unsigned long mq_bytes, mq_treesize;
466 
467 		/* Total amount of bytes accounted for the mqueue */
468 		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
469 			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
470 			sizeof(struct posix_msg_tree_node);
471 
472 		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
473 					  info->attr.mq_msgsize);
474 
475 		spin_lock(&mq_lock);
476 		user->mq_bytes -= mq_bytes;
477 		/*
478 		 * get_ns_from_inode() ensures that the
479 		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
480 		 * to which we now hold a reference, or it is NULL.
481 		 * We can't put it here under mq_lock, though.
482 		 */
483 		if (ipc_ns)
484 			ipc_ns->mq_queues_count--;
485 		spin_unlock(&mq_lock);
486 		free_uid(user);
487 	}
488 	if (ipc_ns)
489 		put_ipc_ns(ipc_ns);
490 }
491 
492 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
493 {
494 	struct inode *dir = dentry->d_parent->d_inode;
495 	struct inode *inode;
496 	struct mq_attr *attr = arg;
497 	int error;
498 	struct ipc_namespace *ipc_ns;
499 
500 	spin_lock(&mq_lock);
501 	ipc_ns = __get_ns_from_inode(dir);
502 	if (!ipc_ns) {
503 		error = -EACCES;
504 		goto out_unlock;
505 	}
506 
507 	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
508 	    !capable(CAP_SYS_RESOURCE)) {
509 		error = -ENOSPC;
510 		goto out_unlock;
511 	}
512 	ipc_ns->mq_queues_count++;
513 	spin_unlock(&mq_lock);
514 
515 	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
516 	if (IS_ERR(inode)) {
517 		error = PTR_ERR(inode);
518 		spin_lock(&mq_lock);
519 		ipc_ns->mq_queues_count--;
520 		goto out_unlock;
521 	}
522 
523 	put_ipc_ns(ipc_ns);
524 	dir->i_size += DIRENT_SIZE;
525 	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
526 
527 	d_instantiate(dentry, inode);
528 	dget(dentry);
529 	return 0;
530 out_unlock:
531 	spin_unlock(&mq_lock);
532 	if (ipc_ns)
533 		put_ipc_ns(ipc_ns);
534 	return error;
535 }
536 
537 static int mqueue_create(struct inode *dir, struct dentry *dentry,
538 				umode_t mode, bool excl)
539 {
540 	return mqueue_create_attr(dentry, mode, NULL);
541 }
542 
543 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
544 {
545 	struct inode *inode = d_inode(dentry);
546 
547 	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
548 	dir->i_size -= DIRENT_SIZE;
549 	drop_nlink(inode);
550 	dput(dentry);
551 	return 0;
552 }
553 
554 /*
555 *	This is routine for system read from queue file.
556 *	To avoid mess with doing here some sort of mq_receive we allow
557 *	to read only queue size & notification info (the only values
558 *	that are interesting from user point of view and aren't accessible
559 *	through std routines)
560 */
561 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
562 				size_t count, loff_t *off)
563 {
564 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
565 	char buffer[FILENT_SIZE];
566 	ssize_t ret;
567 
568 	spin_lock(&info->lock);
569 	snprintf(buffer, sizeof(buffer),
570 			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
571 			info->qsize,
572 			info->notify_owner ? info->notify.sigev_notify : 0,
573 			(info->notify_owner &&
574 			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
575 				info->notify.sigev_signo : 0,
576 			pid_vnr(info->notify_owner));
577 	spin_unlock(&info->lock);
578 	buffer[sizeof(buffer)-1] = '\0';
579 
580 	ret = simple_read_from_buffer(u_data, count, off, buffer,
581 				strlen(buffer));
582 	if (ret <= 0)
583 		return ret;
584 
585 	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
586 	return ret;
587 }
588 
589 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
590 {
591 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
592 
593 	spin_lock(&info->lock);
594 	if (task_tgid(current) == info->notify_owner)
595 		remove_notification(info);
596 
597 	spin_unlock(&info->lock);
598 	return 0;
599 }
600 
601 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
602 {
603 	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
604 	__poll_t retval = 0;
605 
606 	poll_wait(filp, &info->wait_q, poll_tab);
607 
608 	spin_lock(&info->lock);
609 	if (info->attr.mq_curmsgs)
610 		retval = EPOLLIN | EPOLLRDNORM;
611 
612 	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
613 		retval |= EPOLLOUT | EPOLLWRNORM;
614 	spin_unlock(&info->lock);
615 
616 	return retval;
617 }
618 
619 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
620 static void wq_add(struct mqueue_inode_info *info, int sr,
621 			struct ext_wait_queue *ewp)
622 {
623 	struct ext_wait_queue *walk;
624 
625 	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
626 		if (walk->task->prio <= current->prio) {
627 			list_add_tail(&ewp->list, &walk->list);
628 			return;
629 		}
630 	}
631 	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
632 }
633 
634 /*
635  * Puts current task to sleep. Caller must hold queue lock. After return
636  * lock isn't held.
637  * sr: SEND or RECV
638  */
639 static int wq_sleep(struct mqueue_inode_info *info, int sr,
640 		    ktime_t *timeout, struct ext_wait_queue *ewp)
641 	__releases(&info->lock)
642 {
643 	int retval;
644 	signed long time;
645 
646 	wq_add(info, sr, ewp);
647 
648 	for (;;) {
649 		__set_current_state(TASK_INTERRUPTIBLE);
650 
651 		spin_unlock(&info->lock);
652 		time = schedule_hrtimeout_range_clock(timeout, 0,
653 			HRTIMER_MODE_ABS, CLOCK_REALTIME);
654 
655 		if (ewp->state == STATE_READY) {
656 			retval = 0;
657 			goto out;
658 		}
659 		spin_lock(&info->lock);
660 		if (ewp->state == STATE_READY) {
661 			retval = 0;
662 			goto out_unlock;
663 		}
664 		if (signal_pending(current)) {
665 			retval = -ERESTARTSYS;
666 			break;
667 		}
668 		if (time == 0) {
669 			retval = -ETIMEDOUT;
670 			break;
671 		}
672 	}
673 	list_del(&ewp->list);
674 out_unlock:
675 	spin_unlock(&info->lock);
676 out:
677 	return retval;
678 }
679 
680 /*
681  * Returns waiting task that should be serviced first or NULL if none exists
682  */
683 static struct ext_wait_queue *wq_get_first_waiter(
684 		struct mqueue_inode_info *info, int sr)
685 {
686 	struct list_head *ptr;
687 
688 	ptr = info->e_wait_q[sr].list.prev;
689 	if (ptr == &info->e_wait_q[sr].list)
690 		return NULL;
691 	return list_entry(ptr, struct ext_wait_queue, list);
692 }
693 
694 
695 static inline void set_cookie(struct sk_buff *skb, char code)
696 {
697 	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
698 }
699 
700 /*
701  * The next function is only to split too long sys_mq_timedsend
702  */
703 static void __do_notify(struct mqueue_inode_info *info)
704 {
705 	/* notification
706 	 * invoked when there is registered process and there isn't process
707 	 * waiting synchronously for message AND state of queue changed from
708 	 * empty to not empty. Here we are sure that no one is waiting
709 	 * synchronously. */
710 	if (info->notify_owner &&
711 	    info->attr.mq_curmsgs == 1) {
712 		struct kernel_siginfo sig_i;
713 		switch (info->notify.sigev_notify) {
714 		case SIGEV_NONE:
715 			break;
716 		case SIGEV_SIGNAL:
717 			/* sends signal */
718 
719 			clear_siginfo(&sig_i);
720 			sig_i.si_signo = info->notify.sigev_signo;
721 			sig_i.si_errno = 0;
722 			sig_i.si_code = SI_MESGQ;
723 			sig_i.si_value = info->notify.sigev_value;
724 			/* map current pid/uid into info->owner's namespaces */
725 			rcu_read_lock();
726 			sig_i.si_pid = task_tgid_nr_ns(current,
727 						ns_of_pid(info->notify_owner));
728 			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
729 			rcu_read_unlock();
730 
731 			kill_pid_info(info->notify.sigev_signo,
732 				      &sig_i, info->notify_owner);
733 			break;
734 		case SIGEV_THREAD:
735 			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
736 			netlink_sendskb(info->notify_sock, info->notify_cookie);
737 			break;
738 		}
739 		/* after notification unregisters process */
740 		put_pid(info->notify_owner);
741 		put_user_ns(info->notify_user_ns);
742 		info->notify_owner = NULL;
743 		info->notify_user_ns = NULL;
744 	}
745 	wake_up(&info->wait_q);
746 }
747 
748 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
749 			   struct timespec64 *ts)
750 {
751 	if (get_timespec64(ts, u_abs_timeout))
752 		return -EFAULT;
753 	if (!timespec64_valid(ts))
754 		return -EINVAL;
755 	return 0;
756 }
757 
758 static void remove_notification(struct mqueue_inode_info *info)
759 {
760 	if (info->notify_owner != NULL &&
761 	    info->notify.sigev_notify == SIGEV_THREAD) {
762 		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
763 		netlink_sendskb(info->notify_sock, info->notify_cookie);
764 	}
765 	put_pid(info->notify_owner);
766 	put_user_ns(info->notify_user_ns);
767 	info->notify_owner = NULL;
768 	info->notify_user_ns = NULL;
769 }
770 
771 static int prepare_open(struct dentry *dentry, int oflag, int ro,
772 			umode_t mode, struct filename *name,
773 			struct mq_attr *attr)
774 {
775 	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
776 						  MAY_READ | MAY_WRITE };
777 	int acc;
778 
779 	if (d_really_is_negative(dentry)) {
780 		if (!(oflag & O_CREAT))
781 			return -ENOENT;
782 		if (ro)
783 			return ro;
784 		audit_inode_parent_hidden(name, dentry->d_parent);
785 		return vfs_mkobj(dentry, mode & ~current_umask(),
786 				  mqueue_create_attr, attr);
787 	}
788 	/* it already existed */
789 	audit_inode(name, dentry, 0);
790 	if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
791 		return -EEXIST;
792 	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
793 		return -EINVAL;
794 	acc = oflag2acc[oflag & O_ACCMODE];
795 	return inode_permission(d_inode(dentry), acc);
796 }
797 
798 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
799 		      struct mq_attr *attr)
800 {
801 	struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
802 	struct dentry *root = mnt->mnt_root;
803 	struct filename *name;
804 	struct path path;
805 	int fd, error;
806 	int ro;
807 
808 	audit_mq_open(oflag, mode, attr);
809 
810 	if (IS_ERR(name = getname(u_name)))
811 		return PTR_ERR(name);
812 
813 	fd = get_unused_fd_flags(O_CLOEXEC);
814 	if (fd < 0)
815 		goto out_putname;
816 
817 	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
818 	inode_lock(d_inode(root));
819 	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
820 	if (IS_ERR(path.dentry)) {
821 		error = PTR_ERR(path.dentry);
822 		goto out_putfd;
823 	}
824 	path.mnt = mntget(mnt);
825 	error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
826 	if (!error) {
827 		struct file *file = dentry_open(&path, oflag, current_cred());
828 		if (!IS_ERR(file))
829 			fd_install(fd, file);
830 		else
831 			error = PTR_ERR(file);
832 	}
833 	path_put(&path);
834 out_putfd:
835 	if (error) {
836 		put_unused_fd(fd);
837 		fd = error;
838 	}
839 	inode_unlock(d_inode(root));
840 	if (!ro)
841 		mnt_drop_write(mnt);
842 out_putname:
843 	putname(name);
844 	return fd;
845 }
846 
847 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
848 		struct mq_attr __user *, u_attr)
849 {
850 	struct mq_attr attr;
851 	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
852 		return -EFAULT;
853 
854 	return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
855 }
856 
857 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
858 {
859 	int err;
860 	struct filename *name;
861 	struct dentry *dentry;
862 	struct inode *inode = NULL;
863 	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
864 	struct vfsmount *mnt = ipc_ns->mq_mnt;
865 
866 	name = getname(u_name);
867 	if (IS_ERR(name))
868 		return PTR_ERR(name);
869 
870 	audit_inode_parent_hidden(name, mnt->mnt_root);
871 	err = mnt_want_write(mnt);
872 	if (err)
873 		goto out_name;
874 	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
875 	dentry = lookup_one_len(name->name, mnt->mnt_root,
876 				strlen(name->name));
877 	if (IS_ERR(dentry)) {
878 		err = PTR_ERR(dentry);
879 		goto out_unlock;
880 	}
881 
882 	inode = d_inode(dentry);
883 	if (!inode) {
884 		err = -ENOENT;
885 	} else {
886 		ihold(inode);
887 		err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
888 	}
889 	dput(dentry);
890 
891 out_unlock:
892 	inode_unlock(d_inode(mnt->mnt_root));
893 	if (inode)
894 		iput(inode);
895 	mnt_drop_write(mnt);
896 out_name:
897 	putname(name);
898 
899 	return err;
900 }
901 
902 /* Pipelined send and receive functions.
903  *
904  * If a receiver finds no waiting message, then it registers itself in the
905  * list of waiting receivers. A sender checks that list before adding the new
906  * message into the message array. If there is a waiting receiver, then it
907  * bypasses the message array and directly hands the message over to the
908  * receiver. The receiver accepts the message and returns without grabbing the
909  * queue spinlock:
910  *
911  * - Set pointer to message.
912  * - Queue the receiver task for later wakeup (without the info->lock).
913  * - Update its state to STATE_READY. Now the receiver can continue.
914  * - Wake up the process after the lock is dropped. Should the process wake up
915  *   before this wakeup (due to a timeout or a signal) it will either see
916  *   STATE_READY and continue or acquire the lock to check the state again.
917  *
918  * The same algorithm is used for senders.
919  */
920 
921 /* pipelined_send() - send a message directly to the task waiting in
922  * sys_mq_timedreceive() (without inserting message into a queue).
923  */
924 static inline void pipelined_send(struct wake_q_head *wake_q,
925 				  struct mqueue_inode_info *info,
926 				  struct msg_msg *message,
927 				  struct ext_wait_queue *receiver)
928 {
929 	receiver->msg = message;
930 	list_del(&receiver->list);
931 	wake_q_add(wake_q, receiver->task);
932 	/*
933 	 * Rely on the implicit cmpxchg barrier from wake_q_add such
934 	 * that we can ensure that updating receiver->state is the last
935 	 * write operation: As once set, the receiver can continue,
936 	 * and if we don't have the reference count from the wake_q,
937 	 * yet, at that point we can later have a use-after-free
938 	 * condition and bogus wakeup.
939 	 */
940 	receiver->state = STATE_READY;
941 }
942 
943 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
944  * gets its message and put to the queue (we have one free place for sure). */
945 static inline void pipelined_receive(struct wake_q_head *wake_q,
946 				     struct mqueue_inode_info *info)
947 {
948 	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
949 
950 	if (!sender) {
951 		/* for poll */
952 		wake_up_interruptible(&info->wait_q);
953 		return;
954 	}
955 	if (msg_insert(sender->msg, info))
956 		return;
957 
958 	list_del(&sender->list);
959 	wake_q_add(wake_q, sender->task);
960 	sender->state = STATE_READY;
961 }
962 
963 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
964 		size_t msg_len, unsigned int msg_prio,
965 		struct timespec64 *ts)
966 {
967 	struct fd f;
968 	struct inode *inode;
969 	struct ext_wait_queue wait;
970 	struct ext_wait_queue *receiver;
971 	struct msg_msg *msg_ptr;
972 	struct mqueue_inode_info *info;
973 	ktime_t expires, *timeout = NULL;
974 	struct posix_msg_tree_node *new_leaf = NULL;
975 	int ret = 0;
976 	DEFINE_WAKE_Q(wake_q);
977 
978 	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
979 		return -EINVAL;
980 
981 	if (ts) {
982 		expires = timespec64_to_ktime(*ts);
983 		timeout = &expires;
984 	}
985 
986 	audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
987 
988 	f = fdget(mqdes);
989 	if (unlikely(!f.file)) {
990 		ret = -EBADF;
991 		goto out;
992 	}
993 
994 	inode = file_inode(f.file);
995 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
996 		ret = -EBADF;
997 		goto out_fput;
998 	}
999 	info = MQUEUE_I(inode);
1000 	audit_file(f.file);
1001 
1002 	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1003 		ret = -EBADF;
1004 		goto out_fput;
1005 	}
1006 
1007 	if (unlikely(msg_len > info->attr.mq_msgsize)) {
1008 		ret = -EMSGSIZE;
1009 		goto out_fput;
1010 	}
1011 
1012 	/* First try to allocate memory, before doing anything with
1013 	 * existing queues. */
1014 	msg_ptr = load_msg(u_msg_ptr, msg_len);
1015 	if (IS_ERR(msg_ptr)) {
1016 		ret = PTR_ERR(msg_ptr);
1017 		goto out_fput;
1018 	}
1019 	msg_ptr->m_ts = msg_len;
1020 	msg_ptr->m_type = msg_prio;
1021 
1022 	/*
1023 	 * msg_insert really wants us to have a valid, spare node struct so
1024 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1025 	 * fall back to that if necessary.
1026 	 */
1027 	if (!info->node_cache)
1028 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1029 
1030 	spin_lock(&info->lock);
1031 
1032 	if (!info->node_cache && new_leaf) {
1033 		/* Save our speculative allocation into the cache */
1034 		INIT_LIST_HEAD(&new_leaf->msg_list);
1035 		info->node_cache = new_leaf;
1036 		new_leaf = NULL;
1037 	} else {
1038 		kfree(new_leaf);
1039 	}
1040 
1041 	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1042 		if (f.file->f_flags & O_NONBLOCK) {
1043 			ret = -EAGAIN;
1044 		} else {
1045 			wait.task = current;
1046 			wait.msg = (void *) msg_ptr;
1047 			wait.state = STATE_NONE;
1048 			ret = wq_sleep(info, SEND, timeout, &wait);
1049 			/*
1050 			 * wq_sleep must be called with info->lock held, and
1051 			 * returns with the lock released
1052 			 */
1053 			goto out_free;
1054 		}
1055 	} else {
1056 		receiver = wq_get_first_waiter(info, RECV);
1057 		if (receiver) {
1058 			pipelined_send(&wake_q, info, msg_ptr, receiver);
1059 		} else {
1060 			/* adds message to the queue */
1061 			ret = msg_insert(msg_ptr, info);
1062 			if (ret)
1063 				goto out_unlock;
1064 			__do_notify(info);
1065 		}
1066 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1067 				current_time(inode);
1068 	}
1069 out_unlock:
1070 	spin_unlock(&info->lock);
1071 	wake_up_q(&wake_q);
1072 out_free:
1073 	if (ret)
1074 		free_msg(msg_ptr);
1075 out_fput:
1076 	fdput(f);
1077 out:
1078 	return ret;
1079 }
1080 
1081 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1082 		size_t msg_len, unsigned int __user *u_msg_prio,
1083 		struct timespec64 *ts)
1084 {
1085 	ssize_t ret;
1086 	struct msg_msg *msg_ptr;
1087 	struct fd f;
1088 	struct inode *inode;
1089 	struct mqueue_inode_info *info;
1090 	struct ext_wait_queue wait;
1091 	ktime_t expires, *timeout = NULL;
1092 	struct posix_msg_tree_node *new_leaf = NULL;
1093 
1094 	if (ts) {
1095 		expires = timespec64_to_ktime(*ts);
1096 		timeout = &expires;
1097 	}
1098 
1099 	audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1100 
1101 	f = fdget(mqdes);
1102 	if (unlikely(!f.file)) {
1103 		ret = -EBADF;
1104 		goto out;
1105 	}
1106 
1107 	inode = file_inode(f.file);
1108 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1109 		ret = -EBADF;
1110 		goto out_fput;
1111 	}
1112 	info = MQUEUE_I(inode);
1113 	audit_file(f.file);
1114 
1115 	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1116 		ret = -EBADF;
1117 		goto out_fput;
1118 	}
1119 
1120 	/* checks if buffer is big enough */
1121 	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1122 		ret = -EMSGSIZE;
1123 		goto out_fput;
1124 	}
1125 
1126 	/*
1127 	 * msg_insert really wants us to have a valid, spare node struct so
1128 	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1129 	 * fall back to that if necessary.
1130 	 */
1131 	if (!info->node_cache)
1132 		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1133 
1134 	spin_lock(&info->lock);
1135 
1136 	if (!info->node_cache && new_leaf) {
1137 		/* Save our speculative allocation into the cache */
1138 		INIT_LIST_HEAD(&new_leaf->msg_list);
1139 		info->node_cache = new_leaf;
1140 	} else {
1141 		kfree(new_leaf);
1142 	}
1143 
1144 	if (info->attr.mq_curmsgs == 0) {
1145 		if (f.file->f_flags & O_NONBLOCK) {
1146 			spin_unlock(&info->lock);
1147 			ret = -EAGAIN;
1148 		} else {
1149 			wait.task = current;
1150 			wait.state = STATE_NONE;
1151 			ret = wq_sleep(info, RECV, timeout, &wait);
1152 			msg_ptr = wait.msg;
1153 		}
1154 	} else {
1155 		DEFINE_WAKE_Q(wake_q);
1156 
1157 		msg_ptr = msg_get(info);
1158 
1159 		inode->i_atime = inode->i_mtime = inode->i_ctime =
1160 				current_time(inode);
1161 
1162 		/* There is now free space in queue. */
1163 		pipelined_receive(&wake_q, info);
1164 		spin_unlock(&info->lock);
1165 		wake_up_q(&wake_q);
1166 		ret = 0;
1167 	}
1168 	if (ret == 0) {
1169 		ret = msg_ptr->m_ts;
1170 
1171 		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1172 			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1173 			ret = -EFAULT;
1174 		}
1175 		free_msg(msg_ptr);
1176 	}
1177 out_fput:
1178 	fdput(f);
1179 out:
1180 	return ret;
1181 }
1182 
1183 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1184 		size_t, msg_len, unsigned int, msg_prio,
1185 		const struct __kernel_timespec __user *, u_abs_timeout)
1186 {
1187 	struct timespec64 ts, *p = NULL;
1188 	if (u_abs_timeout) {
1189 		int res = prepare_timeout(u_abs_timeout, &ts);
1190 		if (res)
1191 			return res;
1192 		p = &ts;
1193 	}
1194 	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1195 }
1196 
1197 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1198 		size_t, msg_len, unsigned int __user *, u_msg_prio,
1199 		const struct __kernel_timespec __user *, u_abs_timeout)
1200 {
1201 	struct timespec64 ts, *p = NULL;
1202 	if (u_abs_timeout) {
1203 		int res = prepare_timeout(u_abs_timeout, &ts);
1204 		if (res)
1205 			return res;
1206 		p = &ts;
1207 	}
1208 	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1209 }
1210 
1211 /*
1212  * Notes: the case when user wants us to deregister (with NULL as pointer)
1213  * and he isn't currently owner of notification, will be silently discarded.
1214  * It isn't explicitly defined in the POSIX.
1215  */
1216 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1217 {
1218 	int ret;
1219 	struct fd f;
1220 	struct sock *sock;
1221 	struct inode *inode;
1222 	struct mqueue_inode_info *info;
1223 	struct sk_buff *nc;
1224 
1225 	audit_mq_notify(mqdes, notification);
1226 
1227 	nc = NULL;
1228 	sock = NULL;
1229 	if (notification != NULL) {
1230 		if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1231 			     notification->sigev_notify != SIGEV_SIGNAL &&
1232 			     notification->sigev_notify != SIGEV_THREAD))
1233 			return -EINVAL;
1234 		if (notification->sigev_notify == SIGEV_SIGNAL &&
1235 			!valid_signal(notification->sigev_signo)) {
1236 			return -EINVAL;
1237 		}
1238 		if (notification->sigev_notify == SIGEV_THREAD) {
1239 			long timeo;
1240 
1241 			/* create the notify skb */
1242 			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1243 			if (!nc)
1244 				return -ENOMEM;
1245 
1246 			if (copy_from_user(nc->data,
1247 					notification->sigev_value.sival_ptr,
1248 					NOTIFY_COOKIE_LEN)) {
1249 				ret = -EFAULT;
1250 				goto free_skb;
1251 			}
1252 
1253 			/* TODO: add a header? */
1254 			skb_put(nc, NOTIFY_COOKIE_LEN);
1255 			/* and attach it to the socket */
1256 retry:
1257 			f = fdget(notification->sigev_signo);
1258 			if (!f.file) {
1259 				ret = -EBADF;
1260 				goto out;
1261 			}
1262 			sock = netlink_getsockbyfilp(f.file);
1263 			fdput(f);
1264 			if (IS_ERR(sock)) {
1265 				ret = PTR_ERR(sock);
1266 				goto free_skb;
1267 			}
1268 
1269 			timeo = MAX_SCHEDULE_TIMEOUT;
1270 			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1271 			if (ret == 1) {
1272 				sock = NULL;
1273 				goto retry;
1274 			}
1275 			if (ret)
1276 				return ret;
1277 		}
1278 	}
1279 
1280 	f = fdget(mqdes);
1281 	if (!f.file) {
1282 		ret = -EBADF;
1283 		goto out;
1284 	}
1285 
1286 	inode = file_inode(f.file);
1287 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1288 		ret = -EBADF;
1289 		goto out_fput;
1290 	}
1291 	info = MQUEUE_I(inode);
1292 
1293 	ret = 0;
1294 	spin_lock(&info->lock);
1295 	if (notification == NULL) {
1296 		if (info->notify_owner == task_tgid(current)) {
1297 			remove_notification(info);
1298 			inode->i_atime = inode->i_ctime = current_time(inode);
1299 		}
1300 	} else if (info->notify_owner != NULL) {
1301 		ret = -EBUSY;
1302 	} else {
1303 		switch (notification->sigev_notify) {
1304 		case SIGEV_NONE:
1305 			info->notify.sigev_notify = SIGEV_NONE;
1306 			break;
1307 		case SIGEV_THREAD:
1308 			info->notify_sock = sock;
1309 			info->notify_cookie = nc;
1310 			sock = NULL;
1311 			nc = NULL;
1312 			info->notify.sigev_notify = SIGEV_THREAD;
1313 			break;
1314 		case SIGEV_SIGNAL:
1315 			info->notify.sigev_signo = notification->sigev_signo;
1316 			info->notify.sigev_value = notification->sigev_value;
1317 			info->notify.sigev_notify = SIGEV_SIGNAL;
1318 			break;
1319 		}
1320 
1321 		info->notify_owner = get_pid(task_tgid(current));
1322 		info->notify_user_ns = get_user_ns(current_user_ns());
1323 		inode->i_atime = inode->i_ctime = current_time(inode);
1324 	}
1325 	spin_unlock(&info->lock);
1326 out_fput:
1327 	fdput(f);
1328 out:
1329 	if (sock)
1330 		netlink_detachskb(sock, nc);
1331 	else
1332 free_skb:
1333 		dev_kfree_skb(nc);
1334 
1335 	return ret;
1336 }
1337 
1338 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1339 		const struct sigevent __user *, u_notification)
1340 {
1341 	struct sigevent n, *p = NULL;
1342 	if (u_notification) {
1343 		if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1344 			return -EFAULT;
1345 		p = &n;
1346 	}
1347 	return do_mq_notify(mqdes, p);
1348 }
1349 
1350 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1351 {
1352 	struct fd f;
1353 	struct inode *inode;
1354 	struct mqueue_inode_info *info;
1355 
1356 	if (new && (new->mq_flags & (~O_NONBLOCK)))
1357 		return -EINVAL;
1358 
1359 	f = fdget(mqdes);
1360 	if (!f.file)
1361 		return -EBADF;
1362 
1363 	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1364 		fdput(f);
1365 		return -EBADF;
1366 	}
1367 
1368 	inode = file_inode(f.file);
1369 	info = MQUEUE_I(inode);
1370 
1371 	spin_lock(&info->lock);
1372 
1373 	if (old) {
1374 		*old = info->attr;
1375 		old->mq_flags = f.file->f_flags & O_NONBLOCK;
1376 	}
1377 	if (new) {
1378 		audit_mq_getsetattr(mqdes, new);
1379 		spin_lock(&f.file->f_lock);
1380 		if (new->mq_flags & O_NONBLOCK)
1381 			f.file->f_flags |= O_NONBLOCK;
1382 		else
1383 			f.file->f_flags &= ~O_NONBLOCK;
1384 		spin_unlock(&f.file->f_lock);
1385 
1386 		inode->i_atime = inode->i_ctime = current_time(inode);
1387 	}
1388 
1389 	spin_unlock(&info->lock);
1390 	fdput(f);
1391 	return 0;
1392 }
1393 
1394 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1395 		const struct mq_attr __user *, u_mqstat,
1396 		struct mq_attr __user *, u_omqstat)
1397 {
1398 	int ret;
1399 	struct mq_attr mqstat, omqstat;
1400 	struct mq_attr *new = NULL, *old = NULL;
1401 
1402 	if (u_mqstat) {
1403 		new = &mqstat;
1404 		if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1405 			return -EFAULT;
1406 	}
1407 	if (u_omqstat)
1408 		old = &omqstat;
1409 
1410 	ret = do_mq_getsetattr(mqdes, new, old);
1411 	if (ret || !old)
1412 		return ret;
1413 
1414 	if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1415 		return -EFAULT;
1416 	return 0;
1417 }
1418 
1419 #ifdef CONFIG_COMPAT
1420 
1421 struct compat_mq_attr {
1422 	compat_long_t mq_flags;      /* message queue flags		     */
1423 	compat_long_t mq_maxmsg;     /* maximum number of messages	     */
1424 	compat_long_t mq_msgsize;    /* maximum message size		     */
1425 	compat_long_t mq_curmsgs;    /* number of messages currently queued  */
1426 	compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1427 };
1428 
1429 static inline int get_compat_mq_attr(struct mq_attr *attr,
1430 			const struct compat_mq_attr __user *uattr)
1431 {
1432 	struct compat_mq_attr v;
1433 
1434 	if (copy_from_user(&v, uattr, sizeof(*uattr)))
1435 		return -EFAULT;
1436 
1437 	memset(attr, 0, sizeof(*attr));
1438 	attr->mq_flags = v.mq_flags;
1439 	attr->mq_maxmsg = v.mq_maxmsg;
1440 	attr->mq_msgsize = v.mq_msgsize;
1441 	attr->mq_curmsgs = v.mq_curmsgs;
1442 	return 0;
1443 }
1444 
1445 static inline int put_compat_mq_attr(const struct mq_attr *attr,
1446 			struct compat_mq_attr __user *uattr)
1447 {
1448 	struct compat_mq_attr v;
1449 
1450 	memset(&v, 0, sizeof(v));
1451 	v.mq_flags = attr->mq_flags;
1452 	v.mq_maxmsg = attr->mq_maxmsg;
1453 	v.mq_msgsize = attr->mq_msgsize;
1454 	v.mq_curmsgs = attr->mq_curmsgs;
1455 	if (copy_to_user(uattr, &v, sizeof(*uattr)))
1456 		return -EFAULT;
1457 	return 0;
1458 }
1459 
1460 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1461 		       int, oflag, compat_mode_t, mode,
1462 		       struct compat_mq_attr __user *, u_attr)
1463 {
1464 	struct mq_attr attr, *p = NULL;
1465 	if (u_attr && oflag & O_CREAT) {
1466 		p = &attr;
1467 		if (get_compat_mq_attr(&attr, u_attr))
1468 			return -EFAULT;
1469 	}
1470 	return do_mq_open(u_name, oflag, mode, p);
1471 }
1472 
1473 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1474 		       const struct compat_sigevent __user *, u_notification)
1475 {
1476 	struct sigevent n, *p = NULL;
1477 	if (u_notification) {
1478 		if (get_compat_sigevent(&n, u_notification))
1479 			return -EFAULT;
1480 		if (n.sigev_notify == SIGEV_THREAD)
1481 			n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1482 		p = &n;
1483 	}
1484 	return do_mq_notify(mqdes, p);
1485 }
1486 
1487 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1488 		       const struct compat_mq_attr __user *, u_mqstat,
1489 		       struct compat_mq_attr __user *, u_omqstat)
1490 {
1491 	int ret;
1492 	struct mq_attr mqstat, omqstat;
1493 	struct mq_attr *new = NULL, *old = NULL;
1494 
1495 	if (u_mqstat) {
1496 		new = &mqstat;
1497 		if (get_compat_mq_attr(new, u_mqstat))
1498 			return -EFAULT;
1499 	}
1500 	if (u_omqstat)
1501 		old = &omqstat;
1502 
1503 	ret = do_mq_getsetattr(mqdes, new, old);
1504 	if (ret || !old)
1505 		return ret;
1506 
1507 	if (put_compat_mq_attr(old, u_omqstat))
1508 		return -EFAULT;
1509 	return 0;
1510 }
1511 #endif
1512 
1513 #ifdef CONFIG_COMPAT_32BIT_TIME
1514 static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1515 				   struct timespec64 *ts)
1516 {
1517 	if (get_old_timespec32(ts, p))
1518 		return -EFAULT;
1519 	if (!timespec64_valid(ts))
1520 		return -EINVAL;
1521 	return 0;
1522 }
1523 
1524 SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1525 		const char __user *, u_msg_ptr,
1526 		unsigned int, msg_len, unsigned int, msg_prio,
1527 		const struct old_timespec32 __user *, u_abs_timeout)
1528 {
1529 	struct timespec64 ts, *p = NULL;
1530 	if (u_abs_timeout) {
1531 		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1532 		if (res)
1533 			return res;
1534 		p = &ts;
1535 	}
1536 	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1537 }
1538 
1539 SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1540 		char __user *, u_msg_ptr,
1541 		unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1542 		const struct old_timespec32 __user *, u_abs_timeout)
1543 {
1544 	struct timespec64 ts, *p = NULL;
1545 	if (u_abs_timeout) {
1546 		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1547 		if (res)
1548 			return res;
1549 		p = &ts;
1550 	}
1551 	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1552 }
1553 #endif
1554 
1555 static const struct inode_operations mqueue_dir_inode_operations = {
1556 	.lookup = simple_lookup,
1557 	.create = mqueue_create,
1558 	.unlink = mqueue_unlink,
1559 };
1560 
1561 static const struct file_operations mqueue_file_operations = {
1562 	.flush = mqueue_flush_file,
1563 	.poll = mqueue_poll_file,
1564 	.read = mqueue_read_file,
1565 	.llseek = default_llseek,
1566 };
1567 
1568 static const struct super_operations mqueue_super_ops = {
1569 	.alloc_inode = mqueue_alloc_inode,
1570 	.free_inode = mqueue_free_inode,
1571 	.evict_inode = mqueue_evict_inode,
1572 	.statfs = simple_statfs,
1573 };
1574 
1575 static const struct fs_context_operations mqueue_fs_context_ops = {
1576 	.free		= mqueue_fs_context_free,
1577 	.get_tree	= mqueue_get_tree,
1578 };
1579 
1580 static struct file_system_type mqueue_fs_type = {
1581 	.name			= "mqueue",
1582 	.init_fs_context	= mqueue_init_fs_context,
1583 	.kill_sb		= kill_litter_super,
1584 	.fs_flags		= FS_USERNS_MOUNT,
1585 };
1586 
1587 int mq_init_ns(struct ipc_namespace *ns)
1588 {
1589 	struct vfsmount *m;
1590 
1591 	ns->mq_queues_count  = 0;
1592 	ns->mq_queues_max    = DFLT_QUEUESMAX;
1593 	ns->mq_msg_max       = DFLT_MSGMAX;
1594 	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1595 	ns->mq_msg_default   = DFLT_MSG;
1596 	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1597 
1598 	m = mq_create_mount(ns);
1599 	if (IS_ERR(m))
1600 		return PTR_ERR(m);
1601 	ns->mq_mnt = m;
1602 	return 0;
1603 }
1604 
1605 void mq_clear_sbinfo(struct ipc_namespace *ns)
1606 {
1607 	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1608 }
1609 
1610 void mq_put_mnt(struct ipc_namespace *ns)
1611 {
1612 	kern_unmount(ns->mq_mnt);
1613 }
1614 
1615 static int __init init_mqueue_fs(void)
1616 {
1617 	int error;
1618 
1619 	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1620 				sizeof(struct mqueue_inode_info), 0,
1621 				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1622 	if (mqueue_inode_cachep == NULL)
1623 		return -ENOMEM;
1624 
1625 	/* ignore failures - they are not fatal */
1626 	mq_sysctl_table = mq_register_sysctl_table();
1627 
1628 	error = register_filesystem(&mqueue_fs_type);
1629 	if (error)
1630 		goto out_sysctl;
1631 
1632 	spin_lock_init(&mq_lock);
1633 
1634 	error = mq_init_ns(&init_ipc_ns);
1635 	if (error)
1636 		goto out_filesystem;
1637 
1638 	return 0;
1639 
1640 out_filesystem:
1641 	unregister_filesystem(&mqueue_fs_type);
1642 out_sysctl:
1643 	if (mq_sysctl_table)
1644 		unregister_sysctl_table(mq_sysctl_table);
1645 	kmem_cache_destroy(mqueue_inode_cachep);
1646 	return error;
1647 }
1648 
1649 device_initcall(init_mqueue_fs);
1650